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This paper shows an approach to control cooling devices for photovoltaic plants in order to optimize the energy production thanks to a limited reserve of harvested rainwater. This is a complex problem, considering the dynamic environment and the interdependence of the parameters, such as the weather data and the state of the photovoltaic panels. Our claim is to design a system composed of autonomous components cooperating in order to obtain an emergent efficient control.

COOLING PHOTOVOLTAIC PANELS

also current meteorological conditions, weather forecasts, statistics about past meteorological conditions, etc. Consequently the regulation process for cleaning and cooling panels must answer several questions: What amount of water reserve has to be used for the current day? How to distribute it during the day? How the estimation of water reserve during the next days is influenced by the weather forecast? Considering the non-linearity of this regulation problem, the imprecision of the forecast, the possible changes (addition or removal of sensors), or the degradation of the photovoltaic panels, these choices become a complex problem. Using a system able to perform a learning process for changing its own behaviour at runtime becomes therefore inevitable.

The objective of the work described in this paper is to propose such an intelligent strategy. A multiagent system, named AmaSun, is designed for optimizing the energy production of a photovoltaic plant considering a limited amount of water. The paper is structured as follows: sections 2 and 3 present the context of this work, section 4 describes the system designed to regulate the cooling of PV panels, and section 5 evaluates some aspects of this system before concluding on prospects in section 6.

LIMITATIONS OF STANDARD CONTROL PROCESSES

Controlling systems is a generic problem that can be expressed as finding which modifications are needed Solar energy is a very promising solution for energy production since the sun provides an unlimited source of energy. Many studies have been performed to improve the technology for converting the solar energy into electrical energy [START_REF] Lewis | Research opportunities to advance solar energy utilization[END_REF]. A photovoltaic (PV) plant consists in a large number of photovoltaic panels connected in series, producing energy according to the power received from the sun or irradiance.

Studies [START_REF] Akbarzadeh | Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation[END_REF] [START_REF] Skoplaki | On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations[END_REF] showed that the ability of a PV panel depends strongly of its temperature, with a voltage decreasing by one volt per half degree [START_REF] Shan | Comparative simulation analyses on dynamic performances of photovoltaic-thermal solar collectors with different configurations[END_REF]. So, when the perceived irradiation is very high, the photovoltaic panel heats and produces less energy than with a lower irradiation.

In order to increase the panels efficiency and ensure them a longer life, researchers converge toward cooling and cleaning solutions [START_REF] Sargunanathan | Performance enhancement of solar photovoltaic cells using effective cooling methods: A review[END_REF]. [START_REF] Alami | Effects of evaporative cooling on efficiency of photovoltaic modules[END_REF], [START_REF] Chandrasekar | Experimental demonstration of enhanced solar energy utilization in flat pv (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures[END_REF], [START_REF] Ebrahimi | An experimental study on using natural vaporization for cooling of a photovoltaic solar cell[END_REF], [START_REF] Bahaidarah | Uniform cooling of photovoltaic panels: a review[END_REF], (Nižetic ´ et al., 2016), [START_REF] Sargunanathan | Performance enhancement of solar photovoltaic cells using effective cooling methods: A review[END_REF]. These solutions involve an intelligent use of water reserves in order to be efficient. A dopting an automatic regulation reinforces the importance of a right balance between using water supplies to improve current energy production and saving the water reserves in order to not miss them later. This equilibrium depends on several interdependent data: current water level and current energy production, but to be applied on the inputs in order to obtain the desired effects on the ouputs. The most well-known types of control are perfomed by PID, adaptive or intelligent controllers.

The widely used Proportional-Integral-Derivative (PID) controller computes three terms related to the error between the current and the desired state of the controlled system, from which it deduces the next action to apply [START_REF] Åström | The future of pid control[END_REF]. PID controllers are not efficient with complex systems, due to their difficulties to handle several inputs and outputs and to deal with non-linearity.

Model-based approaches like Model Predictive Control (MPC) [START_REF] Nikolaou | Model predictive controllers: A critical synthesis of theory and industrial needs[END_REF] use a model able to forecast the behaviour of the system in order to find the optimal control scheme. These approaches handle several inputs but are limited by the mathematical models they use. The Dual Control Theory uses two types of commands: the actual controls that drive the system to the desired state, and probes to observe the system reactions and refine the controllers knowledge [START_REF] Feldbaum | Dual control theory[END_REF]. The concepts behind this approach are interesting but a heavy instantiation work is still required for a system such as a PV plant.

Intelligent control regroups approaches that use Artificial Intelligence methods to enhance existing controllers among which neural networks [START_REF] Hamm | Global optimization of neural network weights[END_REF], fuzzy logic [START_REF] Lee | Fuzzy logic in control systems: fuzzy logic controller[END_REF], expert systems [START_REF] Stengel | Stochastic robustness of linear time-invariant control systems[END_REF] and Bayesian controllers [START_REF] Del Castillo | Bayesian process monitoring, control and optimization[END_REF]. These methods can be easily combined but they unfortunately require a fine grain description of the system to control, which is inappropriate for the photovoltaic plant because it evolves during time.

ADAPTIVE MULTI-AGENT SYSTEMS

Considering the dynamics to take into account during the regulation: inaccuracy of the weather forecasts, possible changes in sensors (addition/removal), or degradation of the PV panels, a system able to perform a learning process in order to change its own behaviour at runtime is then required. Some heuristic learning algorithms, as the genetic algorithms, allow to take account of these constraints but require a large number of iterations to obtain a relevant behaviour. Therefore they are not relevant for our objective of a quick learning. On the other hand, because of the evolution of the environment, a dynamic learning is required, making the offline learning process not relevant.

Multi-agent systems represent an appropriate technology to deal with the dynamic and complex nature of such a problem [START_REF] Jennings | Agent-based control systems: Why are they suited to engineering complex systems[END_REF], and considering the fact that self-adaptation is a key to solve it, we focused our study on Adaptive Multi-Agent Systems (AMAS) [START_REF] Gleizes | Self-adaptive complex systems[END_REF]. The AMAS approach enables to design a system to solve a complex problem through a bottom-up approach: local functions of the agents composing the system are first defined -bearing in mind that each agent tries to reach its own objective -and then the cooperative interactions between these agents allow to collectively produce a global emerging functionality. According to the AMAS approach, each agent must maintainfrom its local point of view -cooperative interactions with the agents it knows and with the environment of the system [START_REF] Georgé | Cooperation[END_REF]. If an agent encounters a Non Cooperative Situation (NCS), it has to solve it to come back into a cooperative state. The criticality measure -the distance between the current state of an agent and the state where its goal is reached -helps also an agent to remain in a cooperative state.

The behaviour of an agent in an AMAS consists to continuously act for decreasing both its own criticality and the criticality of its neighborhood. The AMAS technology has been, for instance, used to solve problems of real-time control such as heat engine [START_REF] Boes | Self-organizing agents for an adaptive control of heat engines[END_REF] or game parameters control [START_REF] Pons | A multi-agent system for autonomous control of game parameters[END_REF].

Considering the ability of AMAS to take into account environmental dynamics, we consider this approach relevant for designing a system able to optimize the energy production of a photovoltaic plant by using environmental conditions and weather forecasts to determine when to activate cooling devices.

A SELF-ADAPTIVE CONTROLLER FOR OPTIMIZING PV PRODUCTION

This section first defines the general architecture of AmaSun, a self-adaptive multi-agent system which aims at maximizing energy production by controlling when to cool photovoltaic panels while using water reserves in an effective way, as only harvested rainwater can be used. The behaviours of the agents involved in this control system are then described. Figure 1 represents the global architecture of AmaSun and its environment. The AmaSun control system collects data from external modules such as the database in which the historical meteorological data of previous years are recorded, as well as the weather forecasts. It also collects data from local sensors through the DataManager module, including environmental data (temperature, wind power, solar irradiance) and internal data about the photovoltaic plant (panel temperatures, water level in the tank, current energy produced). All these data are collected thanks to sensors at the level of the photovoltaic panels. The system is also connected to the cooling devices to which it can send activation commands.

water when it is necessary. Because the goal of the Energy agent is to minimize the difference between EP and ROEP, we consider the criticality C of the Energy agent as this difference : C = ROEP -EP.

The good behaviour of the system depends on the ability of the Energy agent to correctly estimate ROEP. If C is globally too low, the system will not perform enough cooling activations and the Energy agent will not be able to reach its goal. If C is globally too high, too many activations will be performed try to decrease it, to the detriment of the other agents. These two problems occur when the ratio R used to convert the irradiance into ROEP is too high or too low. Therefore, the Energy agent has to detect these situations and consequently to adapt the value of R to solve them.

When the value of EP is higher than ROEP, since this situation is theoretically not possible, this means that R is too low, so the Energy agent increases R until EP becomes lower or equal to ROEP. When ROEP is higher than 100%, another situation theoretically not possible, this means that R is too high, so the Energy agent decreases R until ROEP becomes lower than 100.

This cooperative mechanism allows the Energy agent to learn at runtime how to convert the irradiance value into ROEP.

Water Agent

The goal of the Water agent is to make an efficient use of the harvested rainwater; it is satisfied when it is able to supply the water requested by the Controller agent to cool panels. Two obvious situations could prevent it to perform in the best way: the tank is empty when water is required, which means too much water was previously used, or the tank is full while it is raining, which means more water could have been used previously. However, it is not reasonable to wait until these situations happen to decide too much or too little water was used.

The decisions about when to efficiently use water are then performed by cooperation of both the Water and Controller agents: the Water agent determines how much water the system has to use for a given amount of time, and the Controller agent determines which policy as to be applied during this same period of time in order to use as precisely as possible this amount of water. On average, a constant loss of water is used each time a cooling device is activated, the Water agent therefore expresses the amount of water the Controller agent is allowed to use as a number of activations of the cooling devices.

Actually, the Water agent is not completely im- Four types of agents are used in AmaSun to control the cooling: the Energy agent determines if the current energy production is satisfactory or not, the Water agent determines the amount of water usable by the system, and the Controller agent, thanks to a set of Context agents, determines when to activate the cooling devices. Every minute (i.e. every cycle), the system receives a data update from the DataManager, and each agent acts depending on these values.

Energy Agent

The objective of the Energy agent is to maximize the Energy Production (EP) i.e. to minimize the loss of efficiency by reducing the gap between the optimum energy production and the current energy production. As we do not consider the optimum energy production as a theoretical value but as an empirical evaluation depending on the additions or removals of sensors, the decay of the panels, and so on, we prefer to consider the Real Optimum Energy Production (ROEP).

If we consider a PV panel with a constant low temperature, the energy production depends only on solar irradiance. Therefore, ROEP, the highest energy value that can be produced with this irradiance, is computed by the linear function F ROEP which applies a ratio R to the value of irradiance Ir:

F ROEP (Ir) = R * Ir
Even if the Energy agent cannot directly decide when to activate the cooling devices, it can express its criticality level to drive the Controller agent to spray plemented yet in the current AmaSun version, and an empirical number of activations of the cooling devices per day is considered. In the future, the Water agent will decide the value of the activation number based on the weather forecast and the amount of water.

Controller Agent

The aim of the Controller agent is to determine the behaviour of the cooling devices, for a given period of time (e.g., a day), in order to meet both the Water and Energy agents' requirements. At the beginning of the day, the Controller agent determines an activation threshold value, AT . During the day, for meeting the constraints of the Energy agent, each time the criticality C of this Energy agent exceeds AT , cooling devices are activated. To fulfil also the constraints of the Water agent, the value of AT takes into account the required number of cooling devices activations it requested.

However, this policy of activation depends strongly on the context in which the photovoltaic panels are, in particular the temperature, the solar irradiance and, more generally, the weather conditions.

The AT value is determined thanks to the weather forecast for the next day. As a matter of fact, if we consider the number of activations for a period of one hundred cycles, i.e. the percentage of activations Pa for a period of time, this value depends, on the one hand, on the AT value, a higher value for AT involving a lower value of Pa, and on the other hand, on the weather of the next day, a bright day involving a higher value for Pa than a rainy or a dark day. To determine which value of AT will involve the correct Pa value for the next day, the Controller agent is associated with a set of Context agents. Each Context agent represents a specific weather, and owns a function τ(AT ) that takes an AT value chosen by the Controller agent, as input, and sends back an estimation of the Pa value with this value of AT , as output.

Thanks to the set of Context agents representing the weather forecasts -each Context agent being involved depending on the duration its associated weather is forecasted -the Controller agent can establish the value of Pa for the next day depending on a given value of AT by interacting with the Context agent, as explained in the next section. So, at the beginning of each day, it estimates by dichotomy the correct value of AT to obtain the Pa that corresponds to the required number of cooling device activations.

Context Agents

There are typically several hundred of Context agents in the controller system since a Context agent represents information about a specific weather condition. The goal of such an agent is to be able to evaluate the percentage of activations of the cooling devices for its associated weather depending on the activation threshold AT given by the Controller agent.

A Context agent owns a values range per each weather piece of data associated with its weather condition: temperature, solar irradiance and wind speed. When the current weather values are included in the values ranges of a Context agent, it considers itself as valid, and invalid otherwise. In a similar way, when it becomes valid for a weather forecast, this means that it will probably be valid the next day, so it signals this information to the Controller agent which will take it into account when computing AT .

A Context agent observes the state of the cooling devices, it counts the total number of cycles where it is valid and the specific number of cycles where the cooling devices are also activated. A Context agent records a map to associate these values, in other words, the ratio of the number of cycles with activated cooling devices NB activated [AT ] to the total of cycles NB total [AT ], depending on the AT value. This ratio not only depends on AT but also on the weather associated with the Context agent, some weather involving more cooling devices activations, so each Context agent has its own map.

When the Controller agent tries to estimate the percentage of activations Pa with a given threshold AT at the beginning of the day, each Context agent has to be able to generalize its estimation thanks to its previous observations. So, it uses its function τ(AT ), which is a linear regression weighted by the total number of cycles for each value of AT . With every functioning day, the Context agent increases the precision of the τ(AT ) function. To perform the learning process, a Context agent makes evolving its knowledge, such as its τ(AT ) function, in order to represent more correctly its associated weather. Then, the evolution of the number and knowledge of the Context agents allows to improve the knowledge of the Controller agent.

RESULTS

The goal of the Adaptive Multi-Agent System Ama-Sun is to estimate the amount of rainwater which has to be used each day, and then to determine each day when to activate the cooling devices to maximize the energy production by using this rainwater amount. However, the Water agent behaviour is still under study and then we focus here on evaluating the ability of AmaSun to learn how to maximize the energy production with a given amount of rainwater.

The learning process performed by AmaSun is an on-line learning, that means it requires a retroaction loop with its environment: it makes actions and observes the feedback from this environment. To perform the next evaluations, simulated photovoltaic panels are used for testing several months of Ama-Sun operation in a few minutes. They are based on real data recorded from an actual PV panel plant and coupled with historical weather data, to generate a model of the photovoltaic panels using a neural network system, thanks to the Weka tool [START_REF] Holmes | Weka: A machine learning workbench[END_REF]. This model takes into account the environmental conditions (solar irradiance, temperature and wind power), state of the cooling devices (activated or not) and the previous temperature of the PV panels, for generating the new temperature of the panels.

In this evaluation, the Water agent decides how many cooling devices activations have to be performed each day, depending only on the solar irradiance forecast. This simple computing is sufficient enough to evaluate the AmaSun ability to perform the number of actions we tell it to perform, independently from the pertinence of this number. Once the Water agent will also be able to decide what is the best number of activations to do, AmaSun will be able to find the best cooling control. end of December. The important thing is the low difference between the two curves, represented in figure 3. While still high the very first days of the learning, this difference rapidly decreases. We performed the same simulation with data coming from three different real power plants. For each place, we observed the difference between the number of requested and actually performed actions, and we obtained an average deviation of 18%. This value can be considered good because it is obtained without any previous knowledge. At the end of the simulations, we have an average number of 154 Context agents to represent the encountered weathers. Since AmaSun starts without any Context agents, the ability of the agents to evaluate the correct value of threshold AT in order to obtain the right number of activations depends only on the observations made by the system at runtime over the days. Moreover, the data used as input to AmaSun are subject to a lot of disturbances: the data perceived by the sensors are heavily noisy, weather forecasts are partially inaccurate, and given hourly whereas the system works with a cycle per minute.

CONCLUSION

This paper introduced the problem of using a Multi-Agent System-based controller to increase the energy production of a photovoltaic plant thanks to the use of cooling devices connected to a limited reserve of rainwater. Due to the interdependence of several parameters, we cannot define a classical control function to optimize the energy production.

To answer this problem, we designed AmaSun, an Adaptive Multi-Agent System able to learn, depending on environmental conditions and weather forecasts, the amount of water to use during a period, Figure 2 shows the number of cooling devices activations that AmaSun has to perform during the day (i.e. requested, light curve), as determined by the Wa-ter agent at the beginning of the day, and the number of activations actually performed at the end of each day (dark curve). The decreasing number of requested actions is only the result of the decreasing irradiance between the beginning of September and the the optimal energy production depending on the perceived solar irradiance value and which gap, between the current energy production and the estimated optimal energy production, is permitted before activating the cooling devices in order to use the allowed water in the most efficient manner.

Preliminary results were given on this latter point and to complete AmaSun, our ongoing work will study how, depending on weather forecasts, the optimal number of activations is to be estimated, and, considering the amount of water the system possesses, how many activations it has to perform each day. Moreover, in order to more efficiently evaluate the impact of AmaSun, we plan to equip half of the photovoltaic panels of a real plant with this control system, while the other half of the panels will work without any cooling device.

Figure 1 :

 1 Figure 1: General architecture of AmaSun.
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 3 Figure 3: Difference between requested and actually performed number of cooling devices activations.
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 2 Figure 2: Requested and actually performed number of cooling devices activations.
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