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Abstract. Developing provably correct graph transformations is not a trivial
task. Besides writing the code, a developer must as well specify the pre and
post conditions. The objective of our work is to assist developers in producing
such a Hoare triple in order to submit it to a formal verification tool. By
combining static and dynamic analysis, we aim at providing more useful
feedback to developers. Dynamic analysis helps identify inconsistencies
between the code and its specifications. Static analysis facilitates extracting the
pre and post conditions from the code. Based on this proposal, we implemented
a prototype that allows running, testing and proving graph transformations
written in small t4,¢, our own transformation language.

Keywords: Symbolic execution - Test case generation - Graph transformation
development

1 Introduction

For most of untrained developers, writing Hoare-style provably correct graph trans-
formations is particularly demanding because besides the transformation code, they
have to specify formally the pre- and post-conditions in a suitable logic.

Our ultimate goal is an integrated development environment that allows developing
and reasoning about graph transformations written in small-t 4-¢, a logic-based graph
transformation language. In the previous work [1], we focused on using a prover to
verify a given Hoare triple presenting the transformation. However, in practice, a proof
based on Hoare logic is difficult to perform and often many programing efforts are
needed before submitting a transformation to the prover. Thus, in this work, we turn
our attention to assisting developers in writing provably correct transformations.

Section 2 presents briefly our graph transformation language small-t 4-¢. Section 3
presents our approach to help developers analyzing better their transformations. On the
one hand, we use dynamic analysis to detect inconsistencies between the code and its
specifications (Sect. 3.1). On the other hand, we use static analysis to construct the pre-
and post-conditions from a code (Sect. 3.2). This paper reports on how these techniques
can complement each other in a testing environment to offer useful feedback to
developers.
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2 Small-t4-¢ Environment for Graph Transformations

Our graph transformation language is based on ALC (Attributive Language with
Complements) [2], a member of the Description Logic family. This logic uses a three-tier
framework: concepts, facts and formulae. A concept represents a set of individuals and a
role represents a binary relation between the individuals.

At the concept level, a concept C can be empty, atomic or built from other con-
cepts. ALC provides the following concept constructors: intersection (C1 N C2), union
(C1U C2), complement (—C) and existential or universal restrictions on roles (3r C
and Vr C). The fact level allows making assertions about an individual owned by a
concept, or involved in a role. The grammar of facts is summarized in the following:
(i:C) asserts that an individual i is an instance of a concept C; (i r j) and (i (—r) j) assert
respectively that an instance of a role r exists or not between two individuals i and
Jj- The final level is about formulae defined by a Boolean combination of ALC facts.
This formula level includes negation (—f), conjunction (fI A f2) and disjunction (fI V/
f2) of formulae.

Concepts, facts and formulae are the core of small-t 4.¢, a rule-based imperative
programming language that we’ve developed for specifying and reasoning about graph
transformations [1]. Note that individuals of a concept can be represented as the nodes
of a graph; in the same way, a role between two individuals corresponds to an edge.
Thus, a graph can be described by a formula in which each node is represented by a fact
(i:C) and each edge between two nodes i and j is represented by a fact (i r j).
Manipulating a graph results in modifying the formula representing it.

small-t 4-c provides statements to manipulate the structure of a graph: add (i:C) and
delete (i:C) for adding and respectively deleting a node (an individual) from a concept';
add (i r j) and delete (i r j) for adding and respectively deleting an edge (a role) between
two nodes. small-t 4.¢ also proposes (select i with f), a non-deterministic assignment
statement allowing to select a set of individuals satisfying a formula. In this work, we
focus only on transformation of graph structure and do not deal with the values of
attributes that maybe associated to graph’s elements.

small-t4-c enables sequential composition, branching, iteration and modularity.
A small-t 4¢ program comprises transformation rules and a main function, as the
program’s entry, that orders the rules to be executed. To allow reasoning about graph
transformation programs, a rule is annotated with assertions specifying its pre- and
post-conditions. The distinctive feature of small-t 4.¢ is that formulae occur not only in
assertions (such as pre- and post-conditions or loop invariants), but also in statements
(branching and iteration conditions, select conditions). In this way, assertions are akin
to graph manipulation statements and based on the same logic dialect. Assertions lead
to a Hoare-like calculus for small-t4-c with potential tests and proofs.

Figure 1 gives an example of a small-t 4-¢ rule which redirects the edges between
nodes of concept A and nodes of concept B to the edges between nodes of concept
A and new nodes of concept C. The rule is structured into three parts: a pre-condition,
the code (a set of statements) and a post-condition. small-t 4-¢ is designed as a domain

! The individual is not deleted from the graph because it can be still owned by other concepts.



rule EdgeRedirection ({
pre : a : Aand b : Band a r b
post : a : Aand b : Band c : C and a r c
while (a : A and b : B and a r b) do {
select a, b with a : A and b : B and a r b;
add(c : C);
delete(a r b);
add(a r c);

}

Fig. 1. Rule redirecting (a » b) to (a r ¢)

specific language, not a general purpose one. Thus, to simplify its syntax, all rules work
on the same input and output graphs and the pre- and post-conditions are specified on
these global graphs. In this example, the pre-condition expresses that a is a node of
concept A, b a node of concept B and that a is linked to b via role (or edge) . While
there are nodes a and b satisfying the while condition, the rule selects these nodes,
deletes the link between them, add a new node ¢ of concept C, then connects the
selected node a with the new node ¢ via the role r. The post-condition expresses that
there are three nodes @, b and ¢ of concepts A, B and C respectively and that a is
connected to ¢ via role 7.

For executing and reasoning on small-t ¢ programs, we developed an environ-
ment composed of a Java code generator to enable executing small-t 4.¢ rules, a JUnit
test case generator for rule testing and an Isabelle/HOL verification condition generator
coupled to a tableau prover for Hoare triples.

3 Assistance for Writing Small-t .- Programs

Our objective is to provide assistance on writing both small-t 4¢ code and specifica-
tions by combining static and dynamic analysis [3]. In Sect. 3.1 we report how testing
can help developers correct their code with respect to given specifications. In Sect. 3.2
we investigate the symbolic execution technique to help a developer construct pre- and
post-conditions from a given code.

3.1 Dynamic Analysis for Detecting Defects in Transformation Code

We consider a situation where the correct specifications of a code are given, especially
the pre-condition. As presented in Sect. 2, the pre- and post-conditions are formulae
specifying graphs before and after a transformation. Each fact of the pre-condition
represents the existence of a node or an edge in the source graph. Each fact of the

2 We can strengthen the post condition by adding the fact (a —r b) to insist that there is no edge
between a and b. However, we intentionally keep it weak to illustrate that developers can write any
post condition, not exactly the strongest post condition wrt. the given pre condition.



pre:a:Aandb:Bandarb post: a:Aand b:Bandc:Candarc
assertExistNode (a : A);
@ r @ assertExistNode (b : B);
assertExistNode (c : C);
assertExistEdge (a r c);

Fig. 2. Source graph and test cases generated from the running example

post-condition represents the existence of a node or an edge in the target graph. Thus,
from the given pre-condition we can generate a source graph and, from the given
post-condition, generate a set of test cases for the required properties. In our frame-
work, dynamic analysis consists in testing the target graph obtained by the transfor-
mation with the generated test cases which are expressed in JUnit. In this context, we
defined and implemented a unit testing library for small-t 4 having about twenty
assertion methods allowing testing the existence and multiplicity of nodes and edges.

Figure 2 shows the result of the generation of a source graph and the test cases
corresponding to the pre- and post-conditions of the example in Fig. 1. The generated
source graph represents the minimal graph configuration satisfying the pre-condition.

Suppose that the developer did not write the statement add(a r c) in the code. Because
of this missing statement, the corresponding test assertExistEdge(a r c) fails. This test
result reveals then an inconsistency between the code and its specifications. Moreover, it
informs the developer about the non-existence of the edge r between a and ¢’.

When the proof fails on verifying a program, the prover can give a counter example
without further suggestions about the code’s inconsistencies. This counterexample can
be used as the program’s graph input instead of a graph generated from the precon-
dition to provide more feedback about the behavior of the code in such situation.

3.2 Static Analysis for Constructing Specifications from Code

Assume now that a code is correct, but developers need help to define the formal
specification. We aim at computing, from the given code, conditions that must be
satisfied before and after applying the transformation. For small-t 4¢ programs whose
symbolic values are explicitly defined in the code’s formulae, such computation can be
easily done by using a technique based on symbolic execution. We analyze the code’s
control flows to generate all possible execution paths and then execute each path
symbolically to construct incrementally the pre- and post-conditions by considering the
required conditions of each path.

We recall that the axiomatic semantics of each small-t 4.¢ statement is defined by
the formulae representing its pre- and post-conditions, which specify a graph before
and after executing the statement. Thus, on tracing the path’s statements, we can
compute progressively the formulae representing the pre- and post-conditions of the
path by updating them according to the pre- or post-conditions of each encountered

3If the post condition was strengthened by the fact (a —r b), the corresponding test
assertNotExistEdge(a r b) will have been also generated.



Forward computation

FC (add(f), Q) = delFM (addFM(Q, post(add(f))), pre(add(f)))
FC (delete(f), Q) = delFM (Q, pre(delete(f)))
FC (select(f), Q) = addFM (Q, post(select(f)))

Backward computation

BC (add(f), P) = addFM (delFM (P, post(add(f))), pre(add(f)))
BC (delete(f), P) = addFM (P, pre(delete(f)))
BC (select(f), P) = addFM (P, pre(select(f)))

Fig. 3. Forward and Backward computations for analyzing small t4.¢ statements

statement. An execution path is analyzed in two directions. A forward computation
extracts a formula representing the post-condition and a backward computation extracts
a formula representing the pre-condition. Path statements are processed differently in
each computation mode. Figure 3 presents, in a simplified functional style, the algo-
rithms to update the extracted specification according to the semantics of the
encountered statement.

In this figure, FC represents the Forward Condition formula and BC the Backward
Condition formula. st(f) denotes a small-t 4.¢ statement, where st can be add, delete or
select and f is the formula specifying the manipulated graph element. If sz is add or
delete, f can be (i:C) to represent a node, or (i r j) to represent an edge. The auxiliary
functions pre(st(f)) and post(st(f)) extract respectively the pre- and post-conditions of st
(f). For example, pre(add(i r j)) = (i (—r) j) and post(add(i r j)) = (i r j) as we allow
only one edge of a given relation between two nodes. For the select statement, pre
(select(f)) = post(select(f)) = f. The auxiliary functions addFM(C, f) and delFM(C, f)
are used respectively to add the formula f into the path’s conjunction C (if C does not
already contain f) or delete the formula fin the conjunction (if C contains f). C denotes
a post-condition Q in a forward computation, or a pre-condition P in a backward
computation.

For a given path, FC and BC of the classic control statements are computed in the
same way as strongest post-condition and weakest pre-condition computations respec-
tively [4]. Figure 4 illustrates the FC computation for the post-condition Q of the example
in Fig. 1. We consider only the execution path in which the while condition is true.

The computed formula is then presented to developers in the testing framework (c.f.
Sect. 3.3) to allow them to verify if the conditions of the analyzed path are respected in
the current rule’s pre- and post-conditions issued from analyzing previous execution
paths or written by developers themselves.

while condition FC(select,Q)
Q=tru¢ =——>Q=a:Aandb:Bandarb =———> Q=a:Aandb:Bandarb

FC(add, FC(delete,
#Q:a:Aandb:Bandarbandc:C M Q=a:Aandb:Bandc:C

FC(add,Q)
Q=a:Aandb:Bandc:Candarc

Fig. 4. FC computation for the example



The consequence rule of Hoare logic rule allows to strengthen the precondition
and/or to weaken the post-condition of a Hoare triple: given P/ — P2 and Q2 — QI,
if {P2} S {02} then {P1} S {Q1}. Ideally PI should be the weakest precondition wp(S,
Q1) of S with respect to QI and vice versa (i.e. QI should be the strongest
post-condition sp(S, P) of S with respect to PI). However, developers can write a rule
with the independent specifications P2 and Q2 where some facts of the precondition P2
are not necessarily considered for the post-condition Q2. Considering the rule in Fig. 1,
(a r b) in the pre-condition has been translated into (a r ¢) without considering (a —r b)
in the post-condition.

3.3 Combining Dynamic and Static Analysis

The two scenarios represented in Sects. 3.1 and 3.2 are the borderline cases of small-
tacc transformations development. In practice, both of specifications and code are
partially and imprecisely defined. Complementary to the diagnostics provided by a
prover, we propose an approach that allows treating an incomplete Hoare triple by
verifying its consistency in an incremental manner. In general developers prefer testing
to proving, so our assistance provides them feedback via a testing framework com-
bining white-box testing and black-box testing [5].

A developer may write a code and weak specifications, apply the white-box testing
to detect inconsistencies between them and use the static analysis technique to complete
them. On the basis of the static analysis technique, extracted specifications from the code
are compared to pre- and post-conditions given by the developer to help him correct or
complete his specifications. This comparison yields black-box test cases generated from
the extracted pre- and post-conditions then executed on a graph generated from the
given pre- and post-conditions respectively. Each test which fails corresponds to a
missing or an incorrect fact in the formula representing the given specification.
Therefore, during the development of a transformation program, in each iteration, a
developer can alternate between the two approaches depending on his needs.

4 Discussion

Our small-t 4.¢ environment combines two techniques for verifying a Hoare triple. The
prover we developed [1] can prove the correctness of a transformation for all arbitrary
graphs satisfying the pre-condition without executing the transformation. This formal
verification technique, although has been well developed [6, 7], is not really applicable
during the transformation development where the Hoare triple is often still incomplete.
The testing environment presented in this paper proposes a more pragmatic solution,
from the developer’s point of view, to detect inconsistencies in an under-developed
transformation. By using both of the above techniques, we try to take advantage of
multiple complementary approaches [3, 8, 9] for assisting transformation developers.

To assist developers, testing has been used for generic imperative languages. Our
approach shares with [5] the idea to use a deductive program verification mechanism
for extracting specification by symbolically executing small-t4,¢ rules. Our forward



and backward test cases generations are based on code-driven paths exploration as in
[5, 10]. The transitions from code to specification and vice versa are straightforward
with small-t 4-¢ because it uses the same logic to specify programs and properties to be
verified. This is often less direct for conventional imperative languages where there is a
possible gap between the logic defining the semantics of the language and the logic
used for formalizing the correctness of programs. In such cases, sometimes it is difficult
to identify symbolic values [11] and symbolic execution is often achieved for only a
limited subset of the target language features [10].

The design of language GP2 [12] is close to small-f4,¢. Building blocks in GP
programs are conditional rule schemata whose nodes and edges are labeled by
sequences of expressions over parameters of type integer, string and list. Condition of a
rule schema can be expressed then on the existence of a specific labeled edge or the
in/out degree of a node. small-f4,¢ does not propose such computations on nodes and
edges: individuals (nodes) and roles (edges) within a rule define only local structural
properties of a graph. We do not define variables and values in order to simplify the
small-7 4.¢’s computation model. The conditions of our calculus are ALCQ formulae
while GP uses E-conditions [6], i.e. nested graph conditions extended with expressions
as labels and assignment constraints for specifying properties of labels [7]. Tools to
help the designer when a fail occurs are not addressed in GP.

Few works have been proposed for testing graph transformation implementations.
Close to our work, [13] generates test cases for the graph pattern matching phase; [14]
generates JUnit test cases from a Fujaba graphical story diagram. Both approaches are
based on the graph pattern matching phase of the transformation rule to generate test
cases, not on logical rule specifications as we propose.

5 Conclusion

Thanks to the formal semantic basis of small-t4,c, we can apply both dynamic and
static analysis techniques in an effortless way to reason about small-t 4¢ programs and
give useful feedback to developers during the transformation development.

Our current test data generation is rather simplistic and just covers a minimal
configuration of possible source graphs. We are improving our algorithm for generating
more graphs from the typical graph on the basis of Molloy-Reed algorithm [15, 16] and
allowing also graph inputs provided by developers as the prover’s counterexample.

In this paper we did not deal with loop invariants as conditions of a transformation,
we plan to automatically infer and test invariant candidates gathered from their cor-
responding post-condition as proposed in [17]. This attempt is based on the fact that a
small-t 4r¢ loop iterates on all individuals selected from a logic formula in order to
achieve the same logic property for all transformed elements. We also aim at enhancing
interface functionalities between test and proof processes. For instance, suppose that
our testing environment validates a rule’s post-condition on a given path. One can
imagine, with the help of a prover, computing the strongest post-condition of this path
by symbolic execution. The correctness of the path can be proven if the strongest
post-condition implies the given post-condition. If this implication holds for all paths in
the code, then the original Hoare triple is valid [4].
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