
HAL Id: hal-02559702
https://hal.science/hal-02559702v1

Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can UAVs fill the gap between in situ surveys and
satellites for habitat mapping?

Emilien Alvarez-Vanhard, Thomas Houet, Cendrine Mony, Lucie Lecoq,
Thomas Corpetti

To cite this version:
Emilien Alvarez-Vanhard, Thomas Houet, Cendrine Mony, Lucie Lecoq, Thomas Corpetti. Can UAVs
fill the gap between in situ surveys and satellites for habitat mapping?. Remote Sensing of Environ-
ment, 2020, 243, pp.111780. �10.1016/j.rse.2020.111780�. �hal-02559702�

https://hal.science/hal-02559702v1
https://hal.archives-ouvertes.fr


Can UAVs fill the gap between in situ surveys and satellites for habitat mapping ?

Emilien Alvarez-Vanhard 1,3 *; Thomas Houet 1,3; Cendrine Mony 2,3; Lucie Lecoq 2,3; Thomas 

Corpetti 1

1 CNRS UMR 6554 LETG, Université Rennes 2, Place du recteur Henri le Moal, 35000 

Rennes, France

2 CNRS UMR 6553 ECOBIO, Université Rennes 1, Avenue Général Leclerc, 35000 Rennes, 

France

 3 LTSER site “ZA Armorique”

* Corresponding author: alvarez_emilien@live.fr

1

1

2

3

4

5

6

7

8

9

1
2

mailto:alvarez_emilien@live.fr


Abstract:

Habitat mapping is an essential descriptor to monitor and manage natural or semi-natural 

ecosystems. Habitats integrate both the environmental conditions and the related 

biodiversity. However, it remains challenging to map certain habitats such as inland wetlands

due to spectral, spatial and temporal variability in the vegetation cover. Currently, no satellite 

constellations optimize the spectral, spatial and temporal resolutions required to map 

wetlands according to the habitats discriminated from in situ surveys. Our approach aims to 

combine satellite and unmanned aerial vehicle (UAV) data to exceed their respective 

limitations. Both data sources were combined through a spectral unmixing algorithm with the 

hypothesis that endmembers from UAV data are pure enough to enhance plant community 

abundances estimated from satellite data. The experiment was conducted on the regional 

preserve of the Sougéal marsh, a wet grassland of 174 ha located upstream of the Mont-

Saint-Michel Bay. Two satellite data sources - Sentinel-2 and Pleiades - and three acquisition

periods - November 2017, April 2018 and May 2018 - were considered. A reference map of 

plant community distribution was produced from UAV multitemporal data and floristic surveys

to validate the unmixing of satellite data. This study shows innovative results and 

perspectives: while UAV can improve habitat discrimination, results vary among acquisition 

periods and habitats. Results illustrate well the great potential of combined UAV and satellite 

data but also demonstratethe influence of endmembers on the unmixing process and 

technical limitations (e.g. spectral mismatches between sensors), which can be overcome 

using domain adaptation.

Keywords: Unmanned Aerial Vehicle; sensor synergy; endmember; wetlands; spectral 

unmixing; habitat mapping; LTSER Armorique
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1. Introduction

Global changes caused by human activities are a major threat to ecosystems, leading to a 

worldwide loss of biodiversity (Tilman et al., 2017), which calls for an assessment of the 

conservation status of wetlands. Habitat mapping is essential to describe and monitor 

ecosystems because habitats result from both environmental conditions and the ecosystem’s

biodiversity (Lopez and Fennessy, 2002; Lu et al., 2015). Remote sensing (RS) has been 

identified as a pertinent source of data to derive “essential biodiversity variables”, (O’Connor 

et al., 2015; Pereira et al., 2013), which can be used to characterize and monitor natural and 

semi-natural ecosystems. They also help to discriminate ecosystem distributions at the 

landscape scale, as well as habitat heterogeneity within these ecosystems (Alleaume et al., 

2018; Skidmore et al., 2015), providing useful indicators for supporting environmental 

management of landscapes (Lu et al., 2015).

While habitats have been adequately mapped using RS for forest, heathland and grassland 

ecosystems since the early 2000s (Corbane et al., 2015), mapping inland wetlands remains 

challenging (Adam et al., 2010). Indeed, they encompass a wide diversity of ecosystems 

driven by water stress, including humid and flooded grasslands. These ecosystems are of 

particular interest since they provide many ecosystem services due to their hydrological, 

ecological and biogeochemical functionalities (Costanza et al., 1997). They provide natural 

and semi-natural habitats for rare fauna and flora and act as a refuge for wildlife diversity 

(Denny, 1994). However, human land use leads to habitat degradation (Johnston et al., 

2009; Malekmohammadi and Jahanishakib, 2017), such as invasion by exotic or eutrophic 

indigenous species, disturbances due to intensive agriculture or development of late-

successional vegetation stages due to land abandonment (Andrew and Ustin, 2009). 

Detecting and monitoring habitat degradation in its early stages is of major importance for 

land and biodiversity management (Walker and Smith, 1997). Accurately discriminating 

habitats and mapping wet and flooded grasslands using optical RS is challenging (Adam et 

al., 2010) since they exhibit high spectral and spatial variability in vegetation cover and 

mixtures, which can become even more confused by local properties and processes (e.g. 
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underlying soil, hydrological regime, atmospheric water vapor, agricultural practices). It is 

also difficult to define clear boundaries between habitats due to the spatio-temporal 

dynamics of vegetation cover caused by seasonal and annual effects of climate and human 

activities (Rapinel et al., 2019; Zlinszky et al., 2014). Although RS faces these challenges, it 

remains the only way to exhaustively map large spatial areas that could not be covered by 

in-situ surveys. Nevertheless, these surveys are crucial for training and validating RS results.

The accuracy of habitat maps depend strongly on the spectral, spatial and temporal 

resolutions of RS imagery. First, the use of multispectral and hyperspectral data 

demonstrates that as the spectral resolution increases, discrimination of habitats or species 

becomes easier (Adam et al., 2010). Multispectral data allow for good discrimination (Sha et 

al., 2008; Yang, 2007), although hyperspectral data provide more precise information about 

biophysical and biochemical characteristics of habitats (Erudel et al., 2017; Silvestri et al., 

2003; Wang et al., 2007) or plants (Rebelo et al., 2018). However, hyperspectral data is only 

currently available from airborne systems, which do not provide high frequency observations 

over large areas except at high cost.. Second, high spatial resolution makes it possible to 

extract features that describe textural or multi-scale characteristics, which allows for habitat 

mapping at meter (Martínez-López et al., 2014) and sub-meter resolutions (Sawaya et al., 

2003; Szantoi et al., 2013). Very high spatial resolution (VHSR) sensors, such as Ikonos, 

Quickbird or even Pleiades, however, have an associated cost that does not allow for 

sufficiently frequent sampling to monitor habitats continuously over large areas (Guo et al., 

2017; Yang, 2007). Third, RS time series captures changes in vegetation spectra due to 

phenology and hydrological regimes (Wang et al., 2012; Asner, 1998). Discrimination of 

wetland and grassland has been improved by the use of the phenological variability in 

reflectance (Ouyang et al., 2013; Rapinel et al., 2019; Gilmore et al., 2008; Schuster et al., 

2015). New satellite constellations such as Sentinel-2 provide high temporal frequency and 

spectral richness, but their spatial resolution remains too low to discriminate small or patchy 

habitat types effectively (Rapinel et al., 2019). Finally, no current satellite constellation offers 

high-frequency temporal sampling with suitable high spatial and spectral resolutions; 

however, optimizing the resolutions improved results (Rapinel et al., 2019). One way to 
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optimize resolutions is to combine several data sources, such as optical data from unmanned

aerial vehicles (UAV) and satellites.

Recent technological advances have made UAVs widely available, providing a new low-cost 

RS data source with unrivalled properties (Anderson and Gaston, 2013). Despite their 

inability to cover large areas, light UAVs can acquire VHSR multispectral data (Kaneko and 

Nohara, 2014) at centimeter to decimeter spatial resolutions, which can be equivalent to pure

pixels. They are more flexible than traditional spaceborne or airborne sensors, allowing data 

to be acquired at the same time as satellite data (Anderson and Gaston, 2013). Because of 

this flexibility, we hypothesized that UAV data can be used to complement satellite data (e.g. 

Pleiades, Sentinel-2) to improve mapping of wetland habitats. We assume that UAVs can 

play an important role between field surveys and satellite data. Indeed, automatic mapping 

depends on field surveys, which are expensive (Elzinga et al., 1998) and difficult to combine 

with satellite imagery due to spatial and temporal topological errors (Karl et al., 2014; Zhang 

et al., 2019) and, as mentioned, satellite resolutions that are too low. Thus, we examined 

whether UAVs can fill the gap between in situ surveys and satellites.

Our study aimed to test spectral synergies between UAV and satellite data to map plant 

communities, which were considered as habitat units. Reference spectra can be extracted 

from UAV data to map habitats at a lower spatial resolution (satellite) using a spectral 

unmixing approach (Roth et al., 2015). Unmixing allows the estimation of fractional 

abundances of distinct habitat classes that have specific spectral signatures (i.e. 

“endmembers”) (Keshava and Mustard, 2002). This approach has been applied to habitat 

mapping (Hamada et al., 2013; Silvestri et al., 2003; Wang et al., 2007) and has the 

advantage of considering plant communities as fuzzy sets (Bastin, 1997; Rocchini et al., 

2013), due to the variation in plant abundance along soil or altitudinal gradients. The main 

limitation of unmixing processes is the need to select pure endmembers (or pixels), although 

vegetation patterns have fine-grained spatial heterogeneity. Hamada et al. (2013) pointed out

that the purity of endmembers is the key to achieving good accuracy using a spectral 

unmixing approach. This study assumes that the spatial resolution of UAV data helps in 
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extracting pure endmembers.

To test these hypotheses, this study focused on the contribution of multispectral UAV data, 

used along with satellite data, to map habitats using three RS datasets (UAV, Sentinel-2 and 

Pleiades) and in situ floristic surveys. We focused specifically on analyzing the mosaic of 

habitats of a flooded grassland in France. Their temporal (time series) and spatial (textural 

information) resolutions were not considered.

2. Materials

2.1. Study site

The study was conducted in the Sougéal marsh (western France, 48.52° N, 1.53° W) which 

is part of the LTSER site “Zone Atelier Armorique”. This site is a large flooded grassland of 

174 ha located in the floodplain of the Couesnon River, upstream of Mont-Saint-Michel Bay 

(Fig. 1). Due to its high conservation value, it has been included as a sub-site of the Natura 

2000 “Baie du Mont Saint-Michel” site. It has been also labelled as a regional nature reserve.

It is regularly flooded from December to April, and managed through extensive mixed-grazing

of cows, horses and geese. It includes a network of shallow and stagnant channels, which 

enables drainage of the site in spring. Plant assemblages are driven strongly by the flooding 

gradient, encompassing different types of communities, from mesophilic to long-flooded 

communities (assemblages described in Appendix A). The corresponding habitats are 

identified using EUNIS typology (Ichter et al., 2014). Possible degradation of these habitats 

has been detected at the site, particularly the spread of competitive eutrophic plant species 

(e.g. Urtica dioica) and local trampling by cattle, which has created areas of bare soil.
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Fig. 1. (left) Location of the Sougéal marsh study site on the Mont-Saint-Michel Bay Natura 

2000 site and (right) locations of floristic surveys in 2017 and 2018 on the orthophotograph 

acquired by UAV on 18 May 2018.

2.2. Field data

Plant assemblages were characterized by floristic surveys performed in May 2017 and May 

2018 (106 and 46 sampling plots, respectively; Fig. 1). For each plot of both surveys, we 

recorded all plant species and estimated their abundance as a percentage of cover in the 

plot. The first survey was performed by distributing plots along four transects parallel to the 

slope of the site to survey plant communities along the gradient of flooding duration. Plots 

measured 2 × 2 m and were located every 5 m along the transects. The second survey was 

performed to supplement the first. To include all possible variants of the communities 

identified at the site, plots were randomly placed in spatially homogeneous areas. These 

plots measured 50 × 50 cm.

2.3. Remotely sensed data

2.3.1.UAV data

UAV data were acquired for three dates (6 November 2017, 20 April 2018, 18 May 2018) to 
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provide a multi-season dataset providing information about the phenology and seasonality of 

the habitats (Tomaselli et al., 2017). Two periods were selected to provide contrasting 

phenologies: 1) before the winter floods (i.e. in November) and 2) after the winter floods, 

starting in April, which corresponded to the flowering period and biomass peak, a key period 

for identifying floristic patterns with spectral data (Deng et al., 2017; Feilhauer et al., 2013). 

Although grazing had started by 18 May 2018, an exclusion zone had been established to 

allow vegetation to grow. Spectral responses for a given community differed depending on 

whether it was inside or outside this zone.

UAV data were acquired using an eBee+ (SenseFly, Cheseaux-sur-Lausanne, Switzerland), 

a self-guided, lightweight (1.2 kg) and fixed-wing drone. Its mean duration is 40 minutes, 

which allows it to cover up to 14 km² under fair meteorological conditions (low wind). Its 

multispectral sensor (Sequoia, Parrot SA, Paris, France) acquired 1.2 megapixel images in 

the green, red, red-edge and near infrared (NIR) bands (Fig. 2). It flew 148 m above the 

ground, providing data at a resolution of 14.7 cm, which was resampled to 20 cm to provide 

consistent spatial data for the study. The orthomosaics were generated for each 

date/spectral band using Pix4dmapper software (Pix4D SA, Lausanne, Switzerland) 

producing geometric error smaller than the pixel size (root mean square error (RMSE) = 

0.048-0.154 m). Data were radiometrically corrected for optical instrument factors (e.g. 

vignetting, spectral response) and differences in solar irradiance and angle, and calibrated 

using a radiometric target to provide top-of-canopy (TOC) reflectance (Assmann et al., 2018).

2.3.2.Satellite data

Two types of multispectral satellite images were used: Sentinel-2 (ESA) and Pleiades 

(Airbus) (Table 1). Satellite data were pre-processed at level 2A (i.e. orthorectified with 

absolute ground reflectance values). Pleiades imaging was provided by the Centre National 

d'Études Spatiales (CNES, the French spatial agency) KALIDEOS program at level 1C: 

geometric corrections are accurate (< 0.7 m), while reflectance is retrieved using the 

FLAASH algorithm (Cooley et al., 2002). Sentinel-2 images were pre-processed by the 

CNES: radiometric corrections using the MACCS algorithm (Hagolle et al., 2015) and an 
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estimated positional error with an RMSE of 12.5 m (Dechoz et al., 2015) (i.e. a potential 

offset of > 50 pixels compared to UAV data). Pixels were adjusted empirically by shifting 

them to match ground-control points to minimize geometric mismatches between satellite 

and UAV data.

Table 1. Acquisition details for UAV, Sentinel-2 and Pleiades data.

Date Sensor Local time Sensor
incidence

angle

Sensor
azimuth

angle

Solar
zenith
angle

Solar
azimuth

angle
6 Nov 2017 UAV 11:32:30 Near-nadir / 64.181° 177.031°
6 Nov 2017 Pleiades 11:26:34 21.2762° 180.0429° 64.639° 173.643°

20 Apr

2018

UAV 11:36:30 Near-nadir / 36.281° 170.816°

19 Apr

2018

Sentinel-2 10:56:19 Near-nadir / 36.992° 166.341°

18 May

2018

UAV 11:10:30 Near-nadir / 29.548° 157.664°

20 May

2018

Pleiades 11:25:34 17.7779° 180.0648° 29,298° 161.603°

19 May

2018

Sentinel-2 10:56:19 Near-nadir / 30.369° 151.244°

Spectral characteristics of the satellite and UAV images complemented each other (Fig. 2). 

All satellite and UAV images were acquired under clear-sky conditions with a maximum 

temporal mismatch between satellite and UAV acquisition of 2 days. Consequently, we 

assumed that the two sets of images did not differ significantly in spectral responses.
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Fig. 2. Spectral (bandwidth) and spatial features of Sentinel-2, Pleiades and Sequoia (UAV) 

sensors.

3. Methods

The methodological workflow was stratified in four steps (Fig. 3), as described in the 

following subsections.

Fig. 3. The general workflow, composed of four steps: 1) unsupervised classification of 

floristic data, 2) supervised classification of multi-temporal UAV data to create a reference 

map, 3) estimation of plant community abundances by habitat based on two types of spectral

unmixing (extraction of endmembers in (A) UAV imagery or (B) satellite imagery) and 4) 
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accuracy assessment.

3.1. Step 1: Unsupervised classification of floristic data

Plant groups were defined based on their floristic composition using correspondence 

analysis (Greenacre, 2010) performed using the FactoMineR package of R software (R Core 

Team, 2019). Groups were identified using hierarchical classification analysis based on the 

coordinates of the sampled plots on the correspondence analysis axes. Four groups were 

detected based on the plots sampled in 2017. Plots sampled in 2018 were projected as 

supplementary individuals on the multivariate plots. Each sampling plot was assigned to a 

group depending on its location in the multivariate plot. Seven plots that lay on the border 

between two groups were removed from subsequent analysis. In total, floristic groups 1-4 

contained 61, 19, 39 and 26 plots, respectively.

3.2. Step 2: Reference map: supervised classification of UAV data

The spatial distribution of plant communities was mapped using a supervised classification. 

The entire UAV dataset, composed of spectral bands and three additional indices (NDVI, 

NDVI-RE and NDWI; Gitelson and Merzlyak, 1994; Rouse et al., 1974; Xie et al., 2018) from 

the three dates, was processed using one random forest (RF) model (Breiman, 2001). RF is 

an ensemble classifier that generates multiple decision trees by randomly selecting a subset 

of samples and variables (Belgiu and Drăguţ, 2016). It is useful for RS data because it is 

non-parametric and thus does not make assumptions about the distribution of the data, 

which are rarely Gaussian. Moreover, it provides both hard and soft classifications that 

correspond to probability maps of each class considered.

The RF classifier was set up to generate 300 trees. Then, the accuracy, choice of hyper-

parameters and robustness of RF classification was assessed by cross validation: the 

sampling dataset from fields plots was divided into 10 subsets, each containing a nearly 

equal number of each class. Each subset served successively as learning/validation data, 

allowing the established model to be tested with 10 different sampling sets. The quality of the

classification was assessed using the Kappa index of agreement (KIA) and the overall 

accuracy (OA). To optimize RF hyperparameters (maximum of features, maximum of leaf 

11

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

21
22



nodes, ...), 20 values taken randomly have been tested for each subset for each subset and 

the best one has been kept (see Appendix B). The RF and cross validation were performed 

using the scikit-learn package in Python (Pedregosa et al., 2011).

3.3. Step 3: Estimation of abundances of plant communities

3.3.1.State-of-the-art: A priori assumption for analyzing spectral mixtures of plant 

communities

Two steps are crucial in the unmixing process: selection of endmembers and estimation of 

abundance. The first requires identifying the spectral signature of each endmember, which is 

essential because spectral unmixing is entirely dependent on - and thus sensitive to - the 

choice of endmembers (Tompkins et al., 1997). The flooding gradient creates fine-grained 

spatial variability in plant communities, which makes endmember extraction challenging. To 

include a wider range of variability, Multiple Endmember Spectral Mixing Analysis (MESMA) 

was performed, in which each endmember is represented by several spectra (Roberts et al., 

1998). The second step - estimating the abundance matrix - uses the following equation (Eq. 

1):

X=E×A  (Eq. 1)

with 𝑋 the signal received, 𝐸 the endmember matrix and 𝐴 the abundance matrix. 

Then, MESMA attempts to minimize the residuals (Eq. 2).

[L(X , E A )+P(E , A )] (Eq. 2)

with L a loss function (measuring the quality of the estimate) and P a penalty function (to 

force the equation to achieve desired properties).

In this study, the spectral signal was a mixture of photons that interacted with different plant 

species, soil and potentially water, which is assumed to be highly non-linear (Asner, 1998; 

Borel and Gerstl, 1994; Roberts et al., 1993).

3.3.2.SAGA+ unmixing algorithm

The unmixing algorithm used to estimate abundances was SAGA+ (Nakhostin et al., 2016), 
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which is based on the geometric concept of finding the simplex that embeds data. The 

simplex is calculated in a feature space associated with a kernel, which is useful when 

analyzing non-linear mixtures. Each vertex of the simplex corresponds to an endmember. 

Two constraints are imposed on the algorithm to avoid having all endmembers contribute to 

the estimated solution: 1) the sparsity level (λ), which establishes the threshold below which ), which establishes the threshold below which 

the abundance of an endmember becomes null, and 2) a maximum number of endmembers 

per pixel (nE).

3.4. Step 4: Accuracy assessment and optimization

The accuracy of satellite unmixing was assessed by calculating a fuzzy confusion matrix, 

which is particularly suitable when using fuzzy classification (Binaghi et al., 1999). Unmixing 

can indeed be viewed as a “soft” classifier in which the proportions of classes in each pixel is

extracted instead of a single class. Analyzing results with a fuzzy confusion matrix is thus 

more consistent than analyzing only regression between abundances, since false positives 

and false negatives are considered. The fuzzy confusion matrix was calculated by comparing

estimated abundances to reference abundances from RF probability maps. Like hard 

classifications, this fuzzy matrix preserves the ability to locate errors and to derive the 

following indicators from soft classifications: fuzzy OA (OAf), fuzzy KIA (KIAf), fuzzy 

producer's accuracy (PAf) and fuzzy user's accuracy (UAf). Since the unmixing algorithm is 

configurable, hyperparameter optimization (Kernel sigma, λ), which establishes the threshold below which , nE) was performed using KIAf as

a quality criterion. The setting with the highest KIAf was selected.

3.5. Experiments

3.5.1. Influence of acquisition features

The first experiment assessed the influence of the spatial/spectral resolutions of the satellite 

sensor and the acquisition period on the spectral unmixing results. In May 2018, all types of 

data were acquired almost simultaneously. Comparing results from Sentinel-2 and Pleiades 

imagery while performing the same unmixing process would allow the respective influence of

the spectral and spatial resolution to be determined. The contribution of the spectral 

resolution of Sentinel-2 was also tested by comparing the results obtained using its full 
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spectral resolution to those obtained with only the spectral bands similar to those in the UAV 

data. Since satellite images were acquired on three dates, the influence of the state of 

habitats (i.e. phenology, winter flooding) during a given period could be identified. Each 

satellite sensor was compared among the acquisition dates. To identify the tests performed, 

codes were established that combined the acquisition month (nov, apr, may), satellite sensor

(pl, s2) and source of endmember data (sat, uav) (Table 2).

Table 2. Codes given to the unmixing processes tested

Date Sensor
Images used to

extract
endmembers

Code

6 Nov 2017 Pleiades
Pleiades nov-pl-sat

UAV nov-pl-uav

20 Apr
2018

Sentinel-
2

Sentinel-2 apr-s2-sat

UAV apr-s2-uav

18 May
2018

Sentinel-
2

Sentinel-2
may-s2-

sat

UAV
may-s2-

uav

Pleiades
Pleiades may-pl-sat

UAV
may-pl-

uav

3.5.2.Influence of extracting endmembers from UAV vs. satellite data

The second experiment assessed the potential of UAV data to provide suitable endmembers 

for unmixing habitats. Two sources of endmembers were distinguished. The classic method 

consisted of extracting spectra from the satellite imagery that will be processed (case B, Fig. 

3). Their pixels are often assumed to be pure. The locations of sampling plots, acquired with 

a DGPS with a spatial accuracy of 2-3 cm, were used to extract endmembers. Since plots 

were separated by 5 m, however, a given pixel – especially in Sentinel-2 images (10 m 

spatial resolution) – may have covered two plots. If the two plots did not belong to the same 

habitat (i.e. the pixel covers two habitats), the corresponding spectrum was removed from 

the endmember matrix. Since sampling plots covered 2 × 2 m or less, even Pleiades images 

may have provided mixed spectral signatures, since the plots did not fit the image geometry 

perfectly (Fig. 4). The second method consisted of extracting endmembers from UAV images
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(case A, Fig. 3), whose high spatial resolution (0.2 m) allowed us to assume that most pixels 

were pure (Fig. 4). Given the high spatial resolution of the UAV data, the number of spectra 

selected was too large to include all of them in the MESMA unmixing process; thus, the 

median spectral value was calculated for each sampling plot. This approach extracted 

endmembers of certain types and patches of vegetation that would not be detectable at lower

resolutions because of their small size, such as U. dioica patches or bare soils, which are 

mainly long and narrow, corresponding to cattle pathways on the study site. The extracted 

endmembers are compared in Appendix C.

Fig. 4. Influence of spatial resolution on the spectral response of survey areas. a) Sentinel-2 

resolution (10 m), b) Pleiades resolution (2 m), c) UAV resolution (0.2 m), d) Example of 

plant community distribution.

3.5.3. Influence of radiometric intercalibration

Combining optical RS data sources requires radiometric intercalibration. Each data source 

was processed for TOC reflectance. Despite these corrections, interoperability between 

sensors with different characteristics (e.g. spectral response, point spread function, 

instantaneous field of view) can produce errors (Teillet et al., 2007). To address this problem,

the domain adaptation method was used (Tuia et al., 2016). This family of methods consists 
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of adapting data when one uses two sources with different characteristics (here, UAV and 

satellite data) in order to compare them effectively. In practice, UAV data are transformed to 

make them compatible with satellite data.

4. Results

4.1. Floristic typology

Four groups of plants were discriminated, which corresponded to plant assemblages 

(Appendix A) along the flooding gradient (Appendix D):

 Group 1: mesophilic (M) communities (“E2.1 Permanent mesotrophic 

pastures and aftermath-grazed meadows” in the EUNIS typology), dominated by 

Lolium perenne, Poa trivialis and Ranunculus repens, with Rumex obtusifolius, 

R. crispus, Taraxacum officinale and Deschampsia cespitosa as interstitial 

species.

 Groups 2 and 3: meso-hygrophilic (MH) communities (“E3.4: Moist or wet 

eutrophic and mesotrophic grassland” in the EUNIS typology), with group 2 

dominated by Alopecurus geniculatus and Poa trivialis, with Carex hirta, 

Ranunculus sardous and Potentilla anserine as interstitial species; and group 3 

dominated by Eleocharis acicularis and Agrostis stolonifera, with Ranunculus 

flammula as an interstitial species.

 Group 4: hygrophilic (H) communities (“E3.4: Moist or wet eutrophic and 

mesotrophic grassland” in the EUNIS typology), dominated by Glyceria fluitans, 

with Veronica scutellata and Eleocharis palustris as interstitial species.

4.2. Sub-pixel reference map

The supervised classification using RF and applied to multi-temporal UAV data discriminated

the four plant communities with an OA of 0.83 (± 0.07) and a KIA of 0.77 (± 0.10). The two 

MH classes showed confusion between them (Appendix E), but once merged into a single 

MH class, it was discriminated well from the two others (M and H). Once merged, its 

classification had an OA of 0.90 (± 0.08) and a KIA of 0.85 (± 0.12). Analysis of the confusion

matrix (Table 3) showed little confusion between the classes; the lowest producer’s accuracy
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(PA) was 0.81 for class H. Nearly all commission and omission errors were between classes 

M and MH or H and MH. The three other classes considered (water, bare soils and U. dioica)

were discriminated well, with few confusions. The relative importance of features is shown in 

Appendix F.

Table 3. Mean confusion matrix (%) between the random forest classification of three plant 

communities derived from UAV imagery (columns) and sampling plots (lines). Classes: M – 

mesophilic; MH – meso-hygrophilic; H – hygrophilic; BS - bare soils; Ud – Urtica dioica and 

W – water. PA: Producer’s accuracy, UA: User’s accuracy.

Classification
Class M MH H Bs U

d
W PA UA

R
e
f
e
r
e
n
c
e

M 31.
9

4.4 0.
2

0.9
3

0.8
7

MH 2.1 38.
8

1.
8

0.8
7

0.9
1

H 1.5 8.
5

0.8
1

0.8
5

Bs 2.
8

0.
1

0.9
8

0.9
8

Ud 0.3 3.
7

1.0
0

0.9
2

W 3.
9

0.9
9

1.0
0

Plant community abundances produced by the RF model (Fig. 5) highlight the complexity of 

the spatial distribution of habitats and their ecotones (i.e. transitions between two habitats). 

Some habitats were well discriminated at the southern end of the site, while the ecotones 

were fuzzier at the northern end, with interlaced habitats (Fig 5a). Habitat distribution 

logically depended on the topography. Drier locations in highest areas corresponded to M 

class, and vice-versa for H class. MH class was usually located between them. At the 

northern end of the site, small dikes on either side of channels with MH class on them were 

clearly identified (Fig 5b). Comparing the distribution of RF-classified communities to field 

observations confirmed the accuracy of the mapping, except for one artifact: a depression in 

the southeast corner of the study site that contained only H class was mapped instead as a 

pattern of all three classes (Fig. 5c).
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Fig. 5. Topography and plant communities of the Sougéal marsh. Left: digital surface model 

derived from UAV RGB data. Right: color composite of wet grassland plant communities in 

the Sougéal marsh derived from random forest classification of UAV imagery. Insets: a) 

ecotone, b) class MH on small dikes of channels and c) hygrophilic depression. Classes: M –

mesophilic; MH – meso-hygrophilic; H – hygrophilic.

4.3. Abundance estimation

4.3.1. Influence of satellite acquisition features

For May 2018, the best unmixing results were obtained for may-pl-sat (OAf = 0.68 and KIAf = 

0.53; Table 4). May-pl-sat was more effective than may-s2-sat, with a difference of +0.10 

KIAf points. The two satellite sensors identified class M well, with a UAf and PAf exceeding 

0.70 for both (Fig. 7). However, Sentinel-2 did not detect class MH as well (PAf = 0.40 and 

UAf = 0.64) as Pleiades (PAf = 0.63 and UAf = 0.71). Both satellite sensors yielded poor 

results for bare soils, especially Sentinel-2, from whose data accurate endmembers for bare 

soils could not be extracted. Pleiades (Fig. 6g and 6h) clearly identified the channels, unlike 

Sentinel-2 (Fig. 6e and 6f). However, the latter provided higher abundances for each habitat 

with less plant community mixing – compared to those obtained from Pleiades (see Appendix

G for details) – which is more consistent with field observations. Concerning Sentinel-2 data, 
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applying the same processes to a subset of satellite bands corresponding to those of the 

UAV yielded identical results for both acquisition dates (apr-s2-sat and may-s2-sat).

Table 4. Unmixing results by endmember sources for each Sentinel-2 and Pleiades 

acquisition. OA: overall accuracy, KIA: Kappa index of agreement, DA: domain adaptation.

Acquisition date 6 Nov 2017 20 Apr 2018 18 May 2018

Sensor Pleiades Sentinel-2 Sentinel-2 Pleiades

Score OAf KIAf OAf KIAf OAf KIAf OAf KIAf

Satellite
endmembers

0.58 0.40 0.76 0.64 0.60 0.43 0.68 0.53

UAV endmembers 0.48 0.22 0.64 0.44 0.56 0.40 0.65 0.49
UAV endmembers 

(with DA)
0.58 0.38 0.71 0.57 0.65 0.51 0.65 0.51

Comparison of results highlighted the strong influence of acquisition date and solar zenith 

angle: scores were higher for April and lower for November. For Pleiades, scores were 

higher for May than for November (OAf = 0.68 and 0.58, respectively). For Sentinel-2, scores 

were higher for April than for May (OAf = 0.76 and 0.6, respectively), while Pleiades yielded a

higher score than Sentinel-2 for May (OAf = 0.65 and 0.60, respectively). Apr-s2-sat 

discriminated class M (PAf = 0.80 and UAf = 0.86) and class H class better (PAf = 0.85 and 

UAf = 0.62). Estimated abundances for November showed strong confusion between plant 

communities for nov-pl-sat (Fig 6a and 6b), while apr-s2-sat showed habitat patterns most 

similar to the reference map. Estimates for May showed clear but different patterns for 

classes H and MH.
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Fig. 6. Color composites of wet grassland plant communities in the Sougéal marsh derived 

from spectral unmixing of a) nov-pl-sat, b) nov-pl-uav, c) apr-s2-sat, d) apr-s2-uav, e) may-

s2-sat, f) may-s2-uav, g) may-pl-sat, and h) may-pl-uav. See Table 2 for unmixing codes. 

Classes: M – mesophilic; MH – meso-hygrophilic; H – hygrophilic.

4.3.2.Influence of endmembers extracted from UAV vs. satellite data

UAV-extracted endmembers rarely estimated abundances better than satellite-extracted 

endmembers (Table 4). May-s2-uav was the only experiment in which UAV-extracted 

endmembers had better results than satellite-extracted endmembers (+0.08 KIAf points 

compared to may-s2-sat). The other experiments showed slightly lower OAf or KIAf scores 

when using UAV endmembers. UAV endmembers did not discriminate habitat classes as 

clearly as satellite ones (Fig. 6, darker hues). In certain cases, however, UAV endmembers 

always improved the PAf for classes that were fuzzier (MH) or covered areas often smaller 

than satellites’ pixel size (water, bare soils) (Fig. 7). For instance, may-pl-uav endmembers 

estimated class MH better (i.e. higher PAf) than Sentinel-2 or Pleiades endmembers. UAV 

endmembers discriminated water better, especially may-pl-uav (PAf = 0.76 and UAf = 0.53). 

For bare soils, UAV-extracted estimates were similar to those extracted from Pleiades but 

always better than those extracted from Sentinel-2.

20

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

39
40



Fig. 7. Fuzzy producer’s accuracy (PAf) and user’s accuracy (UAf) by class and unmixing 

process. See Table 2 for unmixing codes. Classes: M – mesophilic; MH – meso-hygrophilic; 

H – hygrophilic; BS - bare soils; Ud – Urtica dioica and W – water.

4.3.3. Influence of radiometric intercalibration: domain adaptation

Domain adaptation adjusted the TOC reflectance values acquired with UAV to those of the 

satellite sensor, thus compensating for radiometric mismatches that remained after 

correcting each type of RS data (Fig. 8). Domain adaptation improved data intercalibration 

for all acquisition dates significantly: improvements were greater for November and April but 

less pronounced for May. Similarly, intercalibration of UAV data was better with Sentinel-2 

data (Fig. 8c and 8d) than with Pleiades data (Fig. 8a and 8b).
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Fig. 8. Scatterplots of UAV vs. satellite reflectance with (red) and without (blue) domain 

adaptation (DA) for the near infrared spectral band: a) Pleiades on 6 November 2017, b) 

Pleiades on 20 May 2018, c) Sentinel-2 on 19 April 2018 and d) Sentinel-2 on 19 May 2018.

Using domain-adapted UAV endmembers improved all unmixing results, regardless of the 

date of acquisition (Table 5). The mean improvement was +0.09 KIAf points, but 

improvement varied among dates (+0.01 to +0.16 KIAf points, +0.01 to +0.09 OAf points). 

The accuracy of the results was strongly correlated with the quality of the intercalibration of 

the data sources.

Table 5. Improvements in spectral calibration of UAV data (RMSE) and unmixing results with 

UAV endmembers (overall accuracy (OAf) and Kappa index of agreement (KIAf)) between 

applying and not applying the domain adaptation method.

Data source and
date

∆ OAf
∆

KIAf

∆ RMSE
(NIR)

Pleiades
(6 Nov 2017)

+0.09 +0.16 -0.116

Pleiades
(18 May 2018)

+0.01 +0.01 -0.016
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Sentinel-2
(20 Apr 2018)

+0.06 +0.09 -0.096

Sentinel-2
(19 May 2018)

+0.09 +0.11 -0.048

5. Discussion

Broadly, this study demonstrates that UAVs show great potential to fill the gap between in 

situ surveys and satellite imagery for providing and improving RS essential biodiversity 

variables. The spectral unmixing approach allowed for estimation of mixed habitats and 

overcame the spatial resolution constraint of satellite sensors by providing subpixel 

information. MESMA has already demonstrated its ability to integrate the variability in 

heterogeneous plant classes but at lower spatial resolutions (Li et al., 2005; Michishita et al., 

2012; Rosso et al., 2005). When used to map natural or semi-natural habitats, it enables 1) 

discrimination of community patterns with a grain size smaller than the spatial resolution of 

the sensor (Roth et al., 2015) and 2) representation of ecotones between two habitats (Hill et

al., 2007).

5.1. Endmember effectiveness in spectral, spatial and temporal dimensions

Endmember selection remains a challenging task that can be controversial. The dataset 

used made it possible to evaluate influences of spectral, spatial and temporal dimensions in 

this crucial step of habitat mapping in flooded and humid grasslands in a temperate oceanic 

climate.

First, spectral resolution is known to be essential for discriminating wetland plant 

communities (Adam et al., 2010), and it is an important feature when analyzing the spectral 

mixture (Bioucas-Dias et al., 2012). Surprisingly, however, we found that including all 

Sentinel-2 spectral bands did not improve analysis of the spectral mixture for the Sougéal 

marsh. The increased spectral resolution from the additional bands (6 red-edge, NIR and 

mid-infrared bands at 20 m) may not have compensated for the decrease in the spatial 

resolution. This study also shows that spectral intercalibration of RS data is crucial to perform

unmixing of satellite data with endmembers from a different source. Even though data were 

radiometrically corrected to produce TOC reflectance, mismatches in spectral values 

remained between UAV and satellite data, especially in the green and NIR bands (Appendix 
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H). Overestimation of spectral values by the UAV‘s Sequoia multispectral sensor is 

suspected because its grassland reflectances exceeded 0.6 in the NIR. Domain adaptation 

overcame these problems, although testing the quality and interoperability of the sensor is 

required for future scientific studies.

Second, most endmembers extracted from high-spatial-resolution imagery yielded better 

results. Pleiades, with a spatial resolution 5 times as high as that of Sentinel-2, yielded better

results in May 2018. One can assume that the VHSR images of Pleiades make it possible to 

extract endmembers that are not influenced by potential class mixtures (Roth et al., 2015). 

Higher-spatial-resolution UAV data can also help extract a pure spectral signature, but also 

one that could be too specific, depending on the grain size of plant community patterns. 

Nonetheless, UAV endmembers always improved discrimination of the meso-hygrophilic 

class, which is floristically more heterogeneous because of variations in flooding throughout 

the year (Bonis, 2014). This result suggests that endmembers from VHSR data are more 

suitable for heterogeneous classes, for which acquisition of pure pixels is more complicated. 

In future studies, VHSR data could be used to purify endmember spectral bands by 

identifying and eliminating endmembers influenced by the background (Bian et al., 2016; Ma 

et al., 2015).

Finally, this study strengthens the ability of RS data to discriminate plant communities better 

during specific periods. Like Rapinel et al. (2019), acquiring images in early spring (April), 

near the biomass peak and flowering of plants, appears to help discriminate plant 

communities greatly (Feilhauer et al., 2013). The grain size of plant community patterns may 

vary among periods depending on the hydrological regime (Corriale et al., 2013; Todd et al., 

2010). The differences in spatial patterns identified between the periods studied (e.g. 

hygrophilic habitat in April and May) were likely due to confusion caused by certain species 

common to several habitats but not present in all vegetation belts, due to the flooding 

gradient over time, which causes spatial and temporal phenological shifts. Depending on 

land use, vegetation types and vegetation dynamics (i.e. during the acquisition period), 

selection of endmembers can be even more subtle than expected. Hence, integrating multi-
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temporal endmembers when a phenological gradient is present is an interesting prospect 

(Dudley et al., 2015).

5.2. Synergies among In situ, UAV and satellite data

UAV technology shows great potential for successfully mapping habitats of the Sougéal 

marsh at a spatial resolution never achieved before (20 cm). VHSR imagery played two 

major roles in this study: clarifying and validating satellite data. First, UAV data were used to 

extract “pure” endmembers to clarify satellite data using the unmixing algorithm (Schaaf et 

al., 2011), which estimated plant community abundances. Second, combing UAV data with in

situ surveys provided a spatially exhaustive ground truth to assess these estimated 

abundances. However, the accuracy of the reference map can be questioned, because 

spatial and temporal phenological shifts could contribute to a failure to discriminate habitats 

properly. For instance, ecotones can represent one of these shifts, ultimately belonging to 

one habitat rather than a mixture of two. Moreover, grazing activities (May-November) are 

likely to influence spectral signatures of plant communities and may lead to local 

misclassifications. Producing a monthly time series of UAV data, for instance, would help 

discriminate these habitats by monitoring floods and vegetation phenology.

This study focused on spectral complementarities between UAV and satellite data. Spatial 

and temporal complementarities still need to be explored. Indeed, UAV data provide high-

resolution textural (vegetation patterns or heterogeneity) and topographical information that 

can be useful for habitat mapping. These spatial features can complement spectral 

information to differentiate complex environments in which vegetation communities have a 

strong spectral similarity (Zhao and Du, 2016). Object-oriented approaches that include 

texture information allow for multi-scale analyses (Moffett and Gorelick, 2013; Tuxen and 

Kelly, 2008) and could be used with a convolutional neural network to automatically extract 

multi-scale spatial features. This method has proven to be even more effective for wetland 

mapping (Mahdianpari et al., 2018; Rezaee et al., 2018) than traditional classifiers such as 

RF. Finally, an interesting perspective for combining UAV and satellite data is spatio-

temporal fusion, which allows for modeling of high-resolution images using two data sources,

one at high spatial resolution and the other at high temporal resolution (Chen et al., 2015).
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5.3. Remote sensing: a proxy of the state of biodiversity

Using UAVs for RS provides good discrimination or estimation of wetland habitats at level 3 

of the EUNIS typology on the Sougéal marsh, despite grazing, which prevents vegetation 

from developing fully. Classifying species groups into plant communities is based essentially 

on the presence of certain species that characterize the habitat; however, the abundances of

all of its constituent species contributes most to the spectral signature of the plant 

community. The spectral signal acquired does not make it possible to identify the typical 

species of the community, which may have low abundance. On the contrary, the dominant 

species in the community contribute the most to the spectral signature. Nonetheless, this 

study demonstrates that UAV data have great potential to enhance discrimination of 

herbaceous habitats in humid grasslands at a fine level of nomenclature (typological 

resolution below EUNIS level 3), whether combined with satellite data or not.

Habitat mapping has been recognized for more than 40 years as a good proxy of 

biodiversity. Beyond its assessment of habitat types, this study also demonstrates that some 

indices of conservation status can be estimated in wetland habitats, such as the proliferation 

of eutrophic species (U. dioica) or the occurrence of local disturbances due to intensive 

grazing (i.e. bare soils). This opens new avenues for using UAV technology in a broader 

objective of analyzing the ecosystem functioning related to habitat presence, distribution and 

ecological status.

6. Conclusion

This study evaluated the utility of UAV data to fill the gap between in situ survey and satellite 

data for habitat mapping. The main results showed that UAVs have great potential for habitat

mapping: they are flexible (allowing data to be acquired at the same time as satellite data), 

can map habitats on small areas (up to ca. 100 ha) effectively and provide training 

(endmember) and validation (habitat class) data for unmixing high-temporal-resolution 

satellite multispectral data, such as Sentinel-2 (10 m) or Pleiades (2.4 m). Fuzzy 

classifications of mesophilic, meso-hygrophilic and hygrophilic communities were produced 

with good to reasonable accuracy when combining UAV endmembers and satellite data, 

although the study revealed some technical limitations and the challenge of mapping of these
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habitats. For the former, although it is necessary to intercalibrate sensors to increase the 

accuracy of habitat maps, domain adaptation can overcome spectral mismatches. For the 

latter, some acquisition periods were more suitable than others. The influence of climate, 

hydrological regimes and land use (here, grazing) may lead to spatial and temporal shifts in 

habitat phenology, making it difficult to discriminate boundaries of flooded grassland habitats 

accurately. However, UAV data contribute to early detection of invasive species or land 

degradation whose mean area remains smaller than the spatial resolution of satellite images.

Futur work is needed to benefit fully from potential synergies between satellite and UAV data 

for environmental applications. Although focused only on spectral synergies, this study 

identified promising improvements by combining spatial and temporal characteristics.

Acknowledgements

This study was supported by public funds (Région Bretagne) received in the framework of 

the emerging research project (PER) coordinated by "Groupement Bretagne Télédétection" 

(BreTel), the ANR project MATS (ANR-18-CE23-0006) and from the European Regional 

Development Fund (ERDF) under the umbrella of INTERREG Atlantic Area 

(EAPA_261/2016) “Improving the management of Atlantic Landscapes: accounting for 

biodiversity and ecosystem services (ALICE)”. Data provisioning was supported by the 

LTSER “Zone Atelier Armorique”, the KALIDEOS Bretagne satellite acquisition program 

supported by the CNES and by public funds received in the framework of GEOSUD, a 

project (ANR-10-EQPX-20) of the "Investissements d'Avenir" program managed by the 

French National Research Agency and the DroneSat Project supported by the University of 

Rennes 2.

References

Adam, E., Mutanga, O., Rugege, D., 2010. Multispectral and hyperspectral remote sensing 

for identification and mapping of wetland vegetation: a review. Wetl. Ecol. Manag. 18,

281–296. https://doi.org/10.1007/s11273-009-9169-z

Alleaume, S., Dusseux, P., Thierion, V., Commagnac, L., Laventure, S., Lang, M., Féret, J.-

B., Hubert‐Moy, L., Luque, S., 2018. A generic remote sensing approach to derive 

27

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

53
54

https://anr.fr/Project-ANR-18-CE23-0006


operational essential biodiversity variables (EBVs) for conservation planning. 

Methods Ecol. Evol. 9, 1822–1836. https://doi.org/10.1111/2041-210X.13033

Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will revolutionize 

spatial ecology. Front. Ecol. Environ. 11, 138–146. https://doi.org/10.1890/120150

Andrew, M.E., Ustin, S.L., 2009. Habitat suitability modelling of an invasive plant with 

advanced remote sensing data. Divers. Distrib. 15, 627–640. 

https://doi.org/10.1111/j.1472-4642.2009.00568.x

Asner, G.P., 1998. Biophysical and Biochemical Sources of Variability in Canopy 

Reflectance. Remote Sens. Environ. 64, 234–253. https://doi.org/10.1016/S0034-

4257(98)00014-5

Assmann, J.J., Kerby, J.T., Cunliffe, A.M., Myers-Smith, I.H., 2018. Vegetation monitoring 

using multispectral sensors - best practices and lessons learned from high latitudes. 

bioRxiv 334730. https://doi.org/10.1101/334730

Bastin, L., 1997. Comparison of fuzzy c-means classification, linear mixture modelling and 

MLC probabilities as tools for unmixing coarse pixels. Int. J. Remote Sens. 18, 3629–

3648. https://doi.org/10.1080/014311697216847

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications and 

future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 

https://doi.org/10.1016/j.isprsjprs.2016.01.011

Bian, J., Li, A., Zhang, Z., Zhao, W., Lei, G., Xia, H., Tan, J., 2016. Grassland fractional 

vegetation cover monitoring using the composited HJ-1A/B time series images and 

unmanned aerial vehicles: A case study in Zoige wetland, China, in: 2016 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS). Presented at 

the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),

pp. 7192–7195. https://doi.org/10.1109/IGARSS.2016.7730876

Binaghi, E., Brivio, P.A., Ghezzi, P., Rampini, A., 1999. A fuzzy set-based accuracy 

assessment of soft classification. Pattern Recognit. Lett. 20, 935–948. https://doi.org/

10.1016/S0167-8655(99)00061-6

28

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

55
56



Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J., 

2012. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse 

Regression-Based Approaches. ArXiv12026294 Phys. Stat.

Bonis, A., 2014. Hydropériode des zones humides : un enjeu décisif pour la structure des 

communautés végétales et leur diversité. Lavoisier.

Borel, C.C., Gerstl, S.A.W., 1994. Nonlinear spectral mixing models for vegetative and soil 

surfaces. Remote Sens. Environ. 47, 403–416. https://doi.org/10.1016/0034-

4257(94)90107-4

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 

https://doi.org/10.1023/A:1010933404324

Chen, B., Huang, B., Xu, B., 2015. Comparison of Spatiotemporal Fusion Models: A Review. 

Remote Sens. 7, 1798–1835. https://doi.org/10.3390/rs70201798

Cooley, T., Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Chetwynd, J.H., 

Gardner, J.A., Adler-Golden, S.M., Matthew, M.W., Berk, A., Bernstein, L.S., Acharya,

P.K., Miller, D., Lewis, P., 2002. FLAASH, a MODTRAN4-based atmospheric 

correction algorithm, its application and validation, in: IEEE International Geoscience 

and Remote Sensing Symposium. Presented at the IEEE International Geoscience 

and Remote Sensing Symposium, pp. 1414–1418 vol.3. 

https://doi.org/10.1109/IGARSS.2002.1026134

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García Millán, V.E., 

Strasser, T., Vanden Borre, J., Toon, S., Michael, F., 2015. Remote sensing for 

mapping natural habitats and their conservation status – New opportunities and 

challenges. Int. J. Appl. Earth Obs. Geoinformation, Special Issue on Earth 

observation for habitat mapping and biodiversity monitoring 37, 7–16. 

https://doi.org/10.1016/j.jag.2014.11.005

Corriale, M.J., Picca, P.I., di Francescantonio, D., 2013. Seasonal variation of plant 

communities and their environments along a topographic gradient in the Iberá 

wetland, ancient Paraná floodplain, Argentina. Phytocoenologia 53–69. 

https://doi.org/10.1127/0340-269X/2013/0043-0539

29

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

57
58



Costanza, R., d’Arge, R., Groot, R. de, Farber, S., GrasSo, M., Hannon, B., Limburg, K., 

Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., Belt, M. van den, 

1997. The value of the world’s ecosystem services and natural capital. Nature 387, 

253. https://doi.org/10.1038/387253a0

Dechoz, C., Poulain, V., Massera, S., Languille, F., Greslou, D., de Lussy, F., Gaudel, A., 

L’Helguen, C., Picard, C., Trémas, T., 2015. Sentinel 2 global reference image, in: 

Bruzzone, L. (Ed.), . p. 96430A. https://doi.org/10.1117/12.2195046

Deng, C., Li, C., Zhu, Z., Lin, W., Xi, L., 2017. Subpixel urban impervious surface mapping: 

the impact of input Landsat images. ISPRS J. Photogramm. Remote Sens. 133, 89–

103. https://doi.org/10.1016/j.isprsjprs.2017.09.015

Denny, P., 1994. Biodiversity and wetlands. Wetl. Ecol. Manag. 3, 55–611. 

https://doi.org/10.1007/BF00177296

Dudley, K.L., Dennison, P.E., Roth, K.L., Roberts, D.A., Coates, A.R., 2015. A multi-temporal

spectral library approach for mapping vegetation species across spatial and temporal 

phenological gradients. Remote Sens. Environ., Special Issue on the Hyperspectral 

Infrared Imager (HyspIRI) 167, 121–134. https://doi.org/10.1016/j.rse.2015.05.004

Elzinga, C., Salzer, D., Willoughby, J., 1998. Measuring & Monitering Plant Populations. US 

Bur. Land Manag. Pap.

Erudel, T., Fabre, S., Houet, T., Mazier, F., Briottet, X., 2017. Criteria Comparison for 

Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. 

Remote Sens. 9, pages 1-62. https://doi.org/10.3390/rs9070748

Feilhauer, H., Thonfeld, F., Faude, U., He, K.S., Rocchini, D., Schmidtlein, S., 2013. 

Assessing floristic composition with multispectral sensors—A comparison based on 

monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Obs. 

Geoinformation 21, 218–229. https://doi.org/10.1016/j.jag.2012.09.002

Gilmore, M.S., Wilson, E.H., Barrett, N., Civco, D.L., Prisloe, S., Hurd, J.D., Chadwick, C., 

2008. Integrating multi-temporal spectral and structural information to map wetland 

vegetation in a lower Connecticut River tidal marsh. Remote Sens. Environ. 112, 

4048–4060. https://doi.org/10.1016/j.rse.2008.05.020

30

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

59
60



Gitelson, A., Merzlyak, M.N., 1994. Spectral Reflectance Changes Associated with Autumn 

Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral 

Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 143, 286–292. 

https://doi.org/10.1016/S0176-1617(11)81633-0

Guo, M., Li, J., Sheng, C., Xu, J., Wu, L., 2017. A Review of Wetland Remote Sensing. 

Sensors 17, 777. https://doi.org/10.3390/s17040777

Greenacre, M., 2010. Correspondence analysis of raw data. Ecology 91, 958–963. 

https://doi.org/10.1890/09-0239.1

Hagolle, O., Huc, M., Villa Pascual, D., Dedieu, G., 2015. A Multi-Temporal and Multi-

Spectral Method to Estimate Aerosol Optical Thickness over Land, for the 

Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. S and Sentinel-2 Images. 

Remote Sens. 7, 2668–2691. https://doi.org/10.3390/rs70302668

Hamada, Y., Stow, D.A., Roberts, D.A., Franklin, J., Kyriakidis, P.C., 2013. Assessing and 

monitoring semi-arid shrublands using object-based image analysis and multiple 

endmember spectral mixture analysis. Environ. Monit. Assess. 185, 3173–3190. 

https://doi.org/10.1007/s10661-012-2781-z

Hill, R.A., Granica, K., Smith, G.M., Schardt, M., 2007. Representation of an alpine treeline 

ecotone in SPOT 5 HRG data. Remote Sens. Environ., ForestSAT Special Issue 110,

458–467. https://doi.org/10.1016/j.rse.2006.11.031

Ichter, J., Evans, D., Richard, D., Poncet, L., Spyropoulou, R., Pereira Martins, I., European 

Environment Agency, Museum national d’Histoire naturelle (MNHN), 2014. Terrestrial

habitat mapping in Europe: an overview. Publications Office, Luxembourg.

Johnston, C.A., Zedler, J.B., Tulbure, M.G., Frieswyk, C.B., Bedford, B.L., Vaccaro, L., 2009.

A unifying approach for evaluating the condition of wetland plant communities and 

identifying related stressors. Ecol. Appl. 19, 1739–1757. https://doi.org/10.1890/08-

1290.1

Karl, J.W., Taylor, J., Bobo, M., 2014. A double-sampling approach to deriving training and 

validation data for remotely-sensed vegetation products. Int. J. Remote Sens. 35, 

1936–1955. https://doi.org/10.1080/01431161.2014.880820Kaneko, K., Nohara, S., 

31

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

61
62



2014. Review of Effective Vegetation Mapping Using the UAV (Unmanned Aerial 

Vehicle) Method. J. Geogr. Inf. Syst. 06, 733–742. 

https://doi.org/10.4236/jgis.2014.66060

Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Process. Mag. 19, 44–57. 

https://doi.org/10.1109/79.974727

Li, L., Ustin, S.L., Lay, M., 2005. Application of multiple endmember spectral mixture analysis

(MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China 

Camp, CA, USA. Int. J. Remote Sens. 26, 5193–5207. 

https://doi.org/10.1080/01431160500218911

Lopez, R.D., Fennessy, M.S., 2002. Testing the Floristic Quality Assessment Index as an 

Indicator of Wetland Condition. Ecol. Appl. 12, 487–497. https://doi.org/10.1890/1051-

0761(2002)012[0487:TTFQAI]2.0.CO;2

Lu, Y., Wang, R., Zhang, Y., Su, H., Wang, P., Jenkins, A., Ferrier, R.C., Bailey, M., Squire, 

G., 2015. Ecosystem health towards sustainability. Ecosyst. Health Sustain. 1, 1–15. 

https://doi.org/10.1890/EHS14-0013.1

Ma, L., Zhou, Y., Chen, J., Cao, X., Chen, X., 2015. Estimation of Fractional Vegetation 

Cover in Semiarid Areas by Integrating Endmember Reflectance Purification Into 

Nonlinear Spectral Mixture Analysis. IEEE Geosci. Remote Sens. Lett. 12, 1175–

1179. https://doi.org/10.1109/LGRS.2014.2385816

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., Zhang, Y., 2018. Very 

Deep Convolutional Neural Networks for Complex Land Cover Mapping Using 

Multispectral Remote Sensing Imagery. Remote Sens. 10, 1119. 

https://doi.org/10.3390/rs10071119

Malekmohammadi, B., Jahanishakib, F., 2017. Vulnerability assessment of wetland 

landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) 

model. Ecol. Indic. 82, 293–303. https://doi.org/10.1016/j.ecolind.2017.06.060

Martínez-López, J., Carreño, M.F., Palazón-Ferrando, J.A., Martínez-Fernández, J., Esteve, 

M.A., 2014. Remote sensing of plant communities as a tool for assessing the 

condition of semiarid Mediterranean saline wetlands in agricultural catchments. Int. J. 

32

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

63
64



Appl. Earth Obs. Geoinformation 26, 193–204. 

https://doi.org/10.1016/j.jag.2013.07.005

Michishita, R., Gong, P., Xu, B., 2012. Spectral mixture analysis for bi-sensor wetland 

mapping using Landsat TM and Terra MODIS data. Int. J. Remote Sens. 33, 3373–

3401. https://doi.org/10.1080/01431161.2011.611185

Moffett, K.B., Gorelick, S.M., 2013. Distinguishing wetland vegetation and channel features 

with object-based image segmentation. Int. J. Remote Sens. 34, 1332–1354. 

https://doi.org/10.1080/01431161.2012.718463

Nakhostin, S., Clenet, H., Corpetti, T., Courty, N., 2016. Joint Anomaly Detection and 

Spectral Unmixing for Planetary Hyperspectral Images. IEEE Trans. Geosci. Remote 

Sens. 54, 6879–6894. https://doi.org/10.1109/TGRS.2016.2586188

O’Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N.D., 

Hutton, J.M., 2015. Earth observation as a tool for tracking progress towards the Aichi

Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28. 

https://doi.org/10.1002/rse2.4

Ouyang, Z.-T., Gao, Y., Xie, X., Guo, H.-Q., Zhang, T.-T., Zhao, B., 2013. Spectral 

Discrimination of the Invasive Plant Spartina alterniflora at Multiple Phenological 

Stages in a Saltmarsh Wetland. PloS One 8, e67315. 

https://doi.org/10.1371/journal.pone.0067315

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine Learning in 

Python. J. Mach. Learn. Res. 12, 2825–2830.

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford,

M.W., Brummitt, N., Butchart, S.H.M., CardoSo, A.C., Coops, N.C., Dulloo, E., Faith, 

D.P., Freyhof, J., Gregory, R.D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D.S., 

McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., 

Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M., Wegmann, M., 2013. 

33

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

65
66



Essential Biodiversity Variables. Science 339, 277–278. 

https://doi.org/10.1126/science.1229931

Pix4D. 2019. Support website. Available from https://support.pix4d.com/hc/en-us [accessed 

18 October 2019]

Rapinel, S., Mony, C., Lecoq, L., Clément, B., Thomas, A., Hubert-Moy, L., 2019. Evaluation 

of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote

Sens. Environ. 223, 115–129. https://doi.org/10.1016/j.rse.2019.01.018

Rebelo, A.J., Somers, B., Esler, K.J., Meire, P., 2018. Can wetland plant functional groups 

be spectrally discriminated? Remote Sens. Environ. 210, 25–34. 

https://doi.org/10.1016/j.rse.2018.02.031

Rezaee, M., Mahdianpari, M., Zhang, Y., Salehi, B., 2018. Deep Convolutional Neural 

Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. 

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 3030–3039. 

https://doi.org/10.1109/JSTARS.2018.2846178

Roberts, D.A., Smith, M.O., Adams, J.B., 1993. Green vegetation, nonphotosynthetic 

vegetation, and soils in AVIRIS data. Remote Sens. Environ., Airbone Imaging 

Spectrometry 44, 255–269. https://doi.org/10.1016/0034-4257(93)90020-X

Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R.O., 1998. Mapping 

Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral 

Mixture Models. Remote Sens. Environ. 65, 267–279. https://doi.org/10.1016/S0034-

4257(98)00037-6

Rocchini, D., Foody, G.M., Nagendra, H., Ricotta, C., Anand, M., He, K.S., Amici, V., 

Kleinschmit, B., Förster, M., Schmidtlein, S., Feilhauer, H., Ghisla, A., Metz, M., 

Neteler, M., 2013. Uncertainty in ecosystem mapping by remote sensing. Comput. 

Geosci., Benchmark problems, datasets and methodologies for the computational 

geosciences 50, 128–135. https://doi.org/10.1016/j.cageo.2012.05.022

Rosso, P.H., Ustin, S.L., Hastings, A., 2005. Mapping marshland vegetation of San 

Francisco Bay, California, using hyperspectral data. Int. J. Remote Sens. 26, 5169–

5191. https://doi.org/10.1080/01431160500218770

34

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

67
68



Roth, K.L., Roberts, D.A., Dennison, P.E., Peterson, S.H., Alonzo, M., 2015. The impact of 

spatial resolution on the classification of plant species and functional types within 

imaging spectrometer data. Remote Sens. Environ. 171, 45–57. 

https://doi.org/10.1016/j.rse.2015.10.004

Rouse, J.W., Jr., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring Vegetation 

Systems in the Great Plains with Erts. NASA Spec. Publ. 351, 309.

Sawaya, K.E., Olmanson, L.G., Heinert, N.J., Brezonik, P.L., Bauer, M.E., 2003. Extending 

satellite remote sensing to local scales: land and water resource monitoring using 

high-resolution imagery. Remote Sens. Environ., IKONOS Fine Spatial Resolution 

Land Observation 88, 144–156. https://doi.org/10.1016/j.rse.2003.04.006

Schaaf, A.N., Dennison, P.E., Fryer, G.K., Roth, K.L., Roberts, D.A., 2011. Mapping Plant 

Functional Types at Multiple Spatial Resolutions Using Imaging Spectrometer Data. 

GIScience Remote Sens. 48, 324–344. https://doi.org/10.2747/1548-1603.48.3.324

Schuster, C., Schmidt, T., Conrad, C., Kleinschmit, B., Förster, M., 2015. Grassland habitat 

mapping by intra-annual time series analysis – Comparison of RapidEye and 

TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinformation 34, 25–34. 

https://doi.org/10.1016/j.jag.2014.06.004

Sha, Z., Bai, Y., Xie, Y., Yu, M., Zhang, L., 2008. Using a hybrid fuzzy classifier (HFC) to 

map typical grassland vegetation in Xilin River Basin, Inner Mongolia, China. Int. J. 

Remote Sens. 29, 2317–2337. https://doi.org/10.1080/01431160701408436

Silvestri, S., Marani, M., Marani, A., 2003. Hyperspectral remote sensing of salt marsh 

vegetation, morphology and soil topography. Phys. Chem. Earth Parts ABC, 

Applications of Quantitative Remote Sensing to Hydrology 28, 15–25. 

https://doi.org/10.1016/S1474-7065(03)00004-4

Skidmore, A.K., Pettorelli, N., Coops, N.C., Geller, G.N., Hansen, M., Lucas, R., Mücher, 

C.A., O’Connor, B., Paganini, M., Pereira, H.M., Schaepman, M.E., Turner, W., 

Wang, T., Wegmann, M., 2015. Environmental science: Agree on biodiversity metrics 

to track from space. Nat. News 523, 403. https://doi.org/10.1038/523403a

35

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

69
70



Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S., Pearlstine, L., 2013. Analyzing fine-

scale wetland composition using high resolution imagery and texture features. Int. J. 

Appl. Earth Obs. Geoinformation 23, 204–212. 

https://doi.org/10.1016/j.jag.2013.01.003

Teillet, P.M., Fedosejevs, G., Thome, K.J., Barker, J.L., 2007. Impacts of spectral band 

difference effects on radiometric cross-calibration between satellite sensors in the 

solar-reflective spectral domain. Remote Sens. Environ. 110, 393–409. 

https://doi.org/10.1016/j.rse.2007.03.003

Tilman, D., Clark, M., Williams, D.R., Kimmel, K., Polasky, S., Packer, C., 2017. Future 

threats to biodiversity and pathways to their prevention. Nature 546, 73. 

https://doi.org/10.1038/nature22900

Todd, M.J., Muneepeerakul, R., Pumo, D., Azaele, S., Miralles-Wilhelm, F., Rinaldo, A., 

Rodriguez-Iturbe, I., 2010. Hydrological drivers of wetland vegetation community 

distribution within Everglades National Park, Florida. Adv. Water Resour., Special 

Issue on Novel Insights in Hydrological Modelling 33, 1279–1289. 

https://doi.org/10.1016/j.advwatres.2010.04.003

Tomaselli, V., Adamo, M., Veronico, G., Sciandrello, S., Tarantino, C., Dimopoulos, P., 

Medagli, P., Nagendra, H., Blonda, P., 2017. Definition and application of expert 

knowledge on vegetation pattern, phenology, and seasonality for habitat mapping, as 

exemplified in a Mediterranean coastal site. Plant Biosyst. - Int. J. Deal. Asp. Plant 

Biol. 151, 887–899. https://doi.org/10.1080/11263504.2016.1231143

Tompkins, S., Mustard, J.F., Pieters, C.M., Forsyth, D.W., 1997. Optimization of 

endmembers for spectral mixture analysis. Remote Sens. Environ. 59, 472–489. 

https://doi.org/10.1016/S0034-4257(96)00122-8

Tuia, D., Persello, C., Bruzzone, L., 2016. Domain adaptation for the classification of remote 

sensing data: an overview of recent advances. IEEE Geosci. Remote Sens. Mag. 4, 

41–57. https://doi.org/10.1109/MGRS.2016.2548504

Tuxen, K., Kelly, M., 2008. Multi-scale functional mapping of tidal marsh vegetation using 

object-based image analysis, in: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object-

36

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

71
72



Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing 

Applications, Lecture Notes in Geoinformation and Cartography. Springer Berlin 

Heidelberg, Berlin, Heidelberg, pp. 415–442. https://doi.org/10.1007/978-3-540-

77058-9_23

Walker, L.R., Smith, S.D., 1997. Impacts of Invasive Plants on Community and Ecosystem 

Properties, in: Luken, J.O., Thieret, J.W. (Eds.), Assessment and Management of 

Plant Invasions, Springer Series on Environmental Management. Springer New York, 

New York, NY, pp. 69–86. https://doi.org/10.1007/978-1-4612-1926-2_7

Wang, C., Menenti, M., Stoll, M.-P., Belluco, E., Marani, M., 2007. Mapping mixed vegetation

communities in salt marshes using airborne spectral data. Remote Sens. Environ. 

107, 559–570. https://doi.org/10.1016/j.rse.2006.10.007

Wang, L., Dronova, I., Gong, P., Yang, W., Li, Y., Liu, Q., 2012. A new time series 

vegetation–water index of phenological–hydrological trait across species and 

functional types for Poyang Lake wetland ecosystem. Remote Sens. Environ. 125, 

49–63. https://doi.org/10.1016/j.rse.2012.07.003

Xie, Q., Dash, J., Huang, W., Peng, D., Qin, Q., Mortimer, H., Casa, R., Pignatti, S., Laneve, 

G., Pascucci, S., Dong, Y., Ye, H., 2018. Vegetation Indices Combining the Red and 

Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens. 11, 1482–1493. 

https://doi.org/10.1109/JSTARS.2018.2813281

Yang, X., 2007. Integrated use of remote sensing and geographic information systems in 

riparian vegetation delineation and mapping. Int. J. Remote Sens. 28, 353–370. 

https://doi.org/10.1080/01431160600726763

Zhang, J., Okin, G.S., Zhou, B., 2019. Assimilating optical satellite remote sensing images 

and field data to predict surface indicators in the Western U.S.: Assessing error in 

satellite predictions based on large geographical datasets with the use of machine 

learning. Remote Sens. Environ. 233, 111382. 

https://doi.org/10.1016/j.rse.2019.111382

37

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

73
74



Zhao, W., Du, S., 2016. Learning multiscale and deep representations for classifying 

remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165. 

https://doi.org/10.1016/j.isprsjprs.2016.01.004

Zlinszky, A., Schroiff, A., Kania, A., Deák, B., Mücke, W., Vári, Á., Székely, B., Pfeifer, N., 

2014. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser 

Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types. Remote 

Sens. 6, 8056–8087. https://doi.org/10.3390/rs6098056

38

871

872

873

874

875

876

877

75
76



Figure captions

Fig. 1: (left) Location of the Sougéal marsh study site on the Mont-Saint-Michel Bay Natura 

2000 site and (right) locations of floristic surveys in 2017 and 2018 on the orthophotograph 

acquired by UAV on 18 May 2018.

Fig. 2: Spectral (band width) and spatial features of Sentinel-2, Pleiades and Sequoia (UAV) 

sensors.

Fig. 3: The general processing workflow composed by four steps. 1) Unsupervised 

classification of floristic data. 2) Supervised classification of multidate UAV data to provide a 

reference map. 3) Estimation of habitats’ abundances using spectral unmixing with two 

cases: A) extraction of endmembers in UAV imagery; and B) extraction of endmembers in 

satellite imagery. 4) accuracy assessment.

Fig. 4: Impact of spatial resolution on the spectral response of survey areas. a) Sentinel-2 

resolution (10m) ; b) Pleiades resolution (2m) ; c) UAV resolution (0.2m) ; d) Example of 

plant communities distribution.

Fig. 5: Topography and plant communities of the Sougeal marsh. Left: digital surface model 

derived from UAV RGB data. Right: color composite of wet grasslands plant communities in 

the Sougeal marsh derived from RF classification of UAV imagery. Specific areas: a) 

ecotone; b) MH on small dikes of channels; c) hygrophilic depression. Classes description: M

– Mesophilic; MH – Meso-Hygrophilic; H – Hygrophilic.

Fig. 6: Color composites of wet grasslands plant communities in the Sougeal marsh derived 

from spectral unmixing of a) nov-pl-sat, b) nov-pl-uav, c) apr-s2-sat, d) apr-s2-uav, e) may-

s2-sat, f) may-s2-uav, g) may-pl-sat, and h) may-pl-uav. Classes description: M – Mesophilic;

MH – Meso-Hygrophilic; H – Hygrophilic.

Fig. 7: Fuzzy producer’s (PAf) and user’s (UAf) accuracy per classes and unmixing 

processes. Classes description: M – Mesophilic; MH – Meso-Hygrophilic; H – Hygrophilic; BS

- Bare soils; Ud – Urtica dioica and W – Water. PA: Producer’s accuracy, UA: User’s 
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accuracy.

Fig. 8: Scatter plots of UAV versus Satellite measurements with (red) and without (blue) DA 

for the NIR spectral band: a) Pleiades at 2017-11-06; b) Pleiades at 2018-05-20; c) Sentinel-

2 at 2018-04-19 ; and d) Sentinel-2 at 2018-05-19.
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