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Conventional sound 
absorbers (CSA) 
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Single layers 

Multilayers 

The common point is… 
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Multilayer – TMM in series 
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Transmission through a series of layers (multilayer) 
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Transmission through a series of layers (multilayer) 
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Non-conventional sound 
absorbers (NCSA) 
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Patchwork Dead-end surface porosity 

The common point is… 

Grooved surface 

Source : J. Ducourneau et al.  
Journal of Sound and Vibration 329 (2010) 2276–2290  
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Modeling non-conventional 
sound absorbers (NCSA) 

• Non-propagative static model – Thin patchworks(kl<<1 )  
[Atalla, Panneton, and Allard, ACUSTICA - Acta acustica 83, 891-896 (1997)] 

• Finite element method – Patchworks  
[Atalla, Panneton, and Allard, ACUSTICA - Acta acustica 83, 891-896 (1997)] 

• Wave based method (indirect Treff method)  - Patchworks  
[Lanoye, Vermerir, Lauriks, Sgard, Desmet, JASA 123, 793-802 (2008)] 

• Waveguide method – Grooved surface 
[J. Ducourneau et al. , Journal of Sound and Vibration 329, 2276–2290 (2010) ] 

• Finite element method – Parallel MPP absorbers  
[Wang and Huang, J. Acoust. Soc. Am. 130, 208-218 (2011)] 

• Wave theory, Bruijn’s theory – Grooved surface 
[Wang, Leistner and Li,  Applied Acoustics 79, 960-968 (2012)] 

 

Analytical, Semi-analytical, and FE models 
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Objective of the research 

Extend the Transfer Matrix Method 
(TMM) to non-conventional sound 
absorbers having surface 
hetorogeneities. 

For this presentation, we limit to 
locally reacting acoustic mosaic  
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Transfer Matrix Method 
Acoustic Mosaic Periodic Elementary Patch 

(PEP)  

Assumptions 
• The walls of a cell are impervious (locally reacting) 
• Each cell is filled with a sound absorber(single or multilayer) 
• Sound absorbers are modeled as rigid/limp equivalent fluid 
• PEP excited by a normally incidence plane wave 
• Wavelength much larger than the PEP size 
• The surface ratio of a cell in a PEP is : 

Ex.: PEP with N =3 cells 

i i PEPr S S=
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Transfer Matrix Method 
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Transfer Matrix Method 
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Transfer Matrix Method 
Continuity conditions 1 

…
 

1

1

P
U
 
 
 

2

2

P
U
 
 
 

2 

N N

N

P
U
 
 
 

P
U
 
 
 

P
U
′ 

 ′ 

1

1

P
U
′ 

 ′ 

2

2

P
U

 ′ 
 

′  

N

N

P
U
′ 

 ′ 

Continuity of upstream flow 

Continuity of downstream flow 

Continuity of upstream pressure 

Continuity of downstream pressure for open-end cells 
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Transfer Matrix Method 
From admittance to transfer matrix… 
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Transfer Matrix Method 

iP P=

Particular case of cells with closed end 
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Transfer Matrix Method 
General case of open and closed backing… 
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Transfer Matrix Method 
Adding a backing layer (ex.: air cavity backing) 
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Transfer Matrix Method 
Adding a backing layer (ex.: air cavity backing) 
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Transfer Matrix Method 
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Finite Element Method 
Objective : Validate the developed transfer matrix 

against FE simulations of impedance  
tube measurements 

Virtual sample 
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Finite Element Method 
FE model of the PEP only  

Cell 1

Cell 2

Cell 3
PEP

1

1

Pairs of periodic surface
condition on the air domain

in contact with PEP

Periodic  
conditions 

Hardwall 
condition 
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Finite Element Method 
FE model of the PEP in the tube 

Pµ1 

Pµ2 Micro 1 plane 

Micro 2 plane 

PEP 

Air  
cavity 

Micro 3 plane 
on termination 
(anechoic or  

hardwall) 
Pµ3 
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Micro 1 plane

Micro 2 plane

PEP

Air 
cavity

End

Finite Element Method 
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Material 1 2 3 
Open porosity 0.941 0.883 0.765 
Flow resistivity (N.s.m-4) 6 260 34 403 80 697 
Tortuosity 1.35 1.77 1.88 
Viscous characteristic length (µm) 125 343 28 
Thermal characteristic length (µm) 302 360 355 

PEP contains: 3 cells 
PEP thickness:  15 mm 
Cell width:  12 mm 
Wall thickness:  0.5 mm 

Honeycomb filled with porous materials 
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Porous material modeling 
• JCA model 
• Rigid frame  
• Equivalent fluid model 
• Visco-inertial effects 

• Johnson et al. (1987) - φ, σ, α∞, Λ 
• Thermal effects 

• Champoux and Allard (1991) - φ, Λ′ 

Description of sample 1 
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Transfer matrix for ith material  
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FE results obtained with COMSOL 
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Results on sample 1 
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FE results obtained with COMSOL 
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Results on sample 1 
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FE results obtained with COMSOL 
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Material Melamine 
foam 

Open porosity 0.98 
Flow resistivity (N.s.m-4) 10 000 
Tortuosity 1.1 
Viscous characteristic length (µm) 100 
Thermal characteristic length (µm) 150 

Configuration:  Series and Parallel 
Tube size : 0.6 x 0.6 m2 

Cutoff frequency: 570 Hz 
End condition:  Rigid end 
1st layer thickness: 50 mm 
2nd layer thickness: 50 mm 

Patchwork in square impedance tube1 

foam 

Air or Solid 

1Lanoye, Vermerir, Lauriks, Sgard, Desmet, JASA 123, 793-802 (2008) 
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parallel 

series 

One assumption not fulfilled: 
No impervious wall 
between the 2 patches 

foam 

Air or Solid 
Special remark 
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Results on sample 2a 
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air 



Intro 
Method 
Results 

Conclusion 

DRIVE 

Results on sample 2b 
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Solid 
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Conclusion 
 
 
 

• Development of parallel assembling of Transfer 
Matrix  

• Parallel assembling accounts for parallel 
patchworks and surface non-homogeneity under 
locally reacting assumption 

• Can be assembled in series with classical transfer 
matrix to account for multilayer configurations 
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Conclusion 
 
 
 

• Validated for locally reacting acoustical mosaic 
(honeycomb with impervious walls filled with materials) 

• Validated for non-locally reacting patchworks 
when pressure diffusion between materials is 
weak  (patches with no impervious walls)  
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Future works 
 
 
 

• Test other and more complex configurations 

• Remove assumptions to enable: 

• Excitations different from normal incidence 
plane wave 

• Interactions between cells (multipole matrix) 
to account for pressure diffusion 

• Poroelastic modelling of porous materials 

See recent publications on this topic at: 
http://ema.recherche.usherbrooke.ca/?page_id=264 
 




