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LMT - Laboratoire de Mécanique et Technologie

61, Avenue du Président Wilson
F-94235 CACHAN Cedex

February 2020

Abstract

A multi-scale model simulating hysteretic thermomechanical behavior of polycrystalline
shape memory alloys (SMA) is presented. Using a kinetic Monte-Carlo approach, the energy-
based model estimates the stochastic average in terms of volume fraction for a phase or phase
variant deriving from the Gibbs free energy density as a selection inside a given population.
Indeed pseudo-elastic behavior for example is well-known to be associated with the nucleation
of martensite plates inside the austenite parent phase. Associated variants are similar to
sub-domains inside a thermodynamic system following the statistical definition of [37]. The
germination process of a variant is on the other hand dictated by a germination potential
barrier identified from a differential scanning calorimetry (DSC) measurement. The stochas-
tic average for each type of variants inside a grain leads then to the numerical simulation
of hysteresis phenomena at the single crystal scale. Homogenization operations allow finally
macroscopic quantities (phases fraction, deformation and temperature) to be calculated at the
polycrystalline scale. This procedure is applied to model the whole thermomechanical behav-
ior of an equiatomic Ni-Ti SMA polycrystalline alloy considering the phase transformation
between austenite, R-phase and martensite.

Keywords— Multi-scale model, Stochastic approach, Kinetic Monte-Carlo, Shape Memory Alloy

1 Introduction

Since the discovery of shape memory effect (SME) in binary nickel-titanium (Ni-Ti) alloy, a major 1

research effort has been focused on the understanding and simulation of the mechanisms associated 2

with the pseudo-elastic behavior in shape memory alloy (SMA) materials. It is now well understood 3

that SME is a particular manifestation of a displacive (diffusionless) solid-solid crystalline phase 4

transformation of a parent phase (denoted as austenite) into a child phase (denoted as martensite). 5

Such transformation occurs under mechanical loading and during the cooling process if initial 6

temperature is sufficiently high so that the parent phase is stabilized. It is also a first order 7

thermodynamic transformation (seen as a change of state) which is characterized by an emission 8

(or absorption) of heat during the transformation. In view of the unique mechanical properties of 9

SMA, their industrial applications are in progress in domains such as microscopic active or passive 10

devices (e.g., actuators, valves) and biomedical tools (e.g., denting). The field of applications 11

remains limited because of the difficulty in obtaining a reliable modeling of their behavior, in 12

particular in case of a multiaxial mechanical or anisothermal situations. This explains the intensive 13

study of SMA behavior and modeling attempts in the last decades. However, the main features 14

that make the modeling of SMA difficult are: 15

• phase transformations are out-of equilibrium phenomena, as evidenced by the hysteretic 16

character of the transitions. 17

• latent heat of the transformation modifies the temperature in the neighborhood, and as a 18

result, prevents the transformation to propagate. This induces a localization instability such 19

that the phase distribution is highly contrasted in slender structures [34][11][16]. 20
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Generally, three approaches are proposed to describe the hysteresis thermomechanical phenomena 21

in SMA. First, macroscopic thermomechanical behavior can be obtained in the frame of General- 22

ized Standard Materials by using an average volume fraction of martensite and the associated mean 23

transformation strain as internal variables [1],[25],[24][19]. This approach addresses exclusively the 24

macroscopic scale but laws obtained are in general consistent with thermodynamics and experimen- 25

tal observations. Due to the ad-hoc and phenomenological nature of this approach, relationships 26

between macroscopic response, fundamental material properties and evolution of microstructure 27

during the thermomechanical loading are not provided. Extension to multiaxial loading requires 28

new parameters and a fastidious identification of the transformation thresholds. 29

The second approach considers the phase transformation at the single crystal scale via an appro- 30

priate modeling and uses a scaling process to derive the macroscopic behavior. The local modeling 31

aims at establishing a direct link between hysteretic response and underlying events at different 32

time scales. This approach supposes a more fundamental understanding of the nature of hysteresis 33

phenomena such as meta-stability, micro-instability (localization), material heterogeneity or grain- 34

size induced hysteresis [30][38][26]. 35

The third approach is a mixture between the aforementioned two approaches, seeking to describe 36

the hysteresis phenomena in SMA by adopting the concept of thermodynamic driving force, acting 37

at the boundary between two phases or on an assembly of variants. The force must overcome the 38

level-set germination barrier to propagate. In this type of description, the width of hysteresis loop 39

is directly related to the magnitude of the germination barrier [35][19][18]. 40

In a previous study, the second approach has been adopted by using a uniform stress hypothesis 41

and a Boltzmann type distribution to estimate the volume fraction of austenite and martensite 42

variants under complex thermomechanical loading configurations. The main drawback of this ap- 43

proach was that Boltzmann distribution applies in a reversible thermodynamic framework: out-of 44

equilibrium phenomena during phase transformation were not taken into consideration. This ap- 45

proach however was able to model multiaxial mechanical modeling in an appropriate way. 46

In this paper, the stochastic and energy based model is reformulated to explore time evolution of 47

volume fraction, aiming at simulating and reproducing the macroscopic hysteresis response and 48

shape memory effect (SME) at the grain and polycrystalline scales1. 49

This paper is organized as follows. In section 2, the Gibbs free energy density construction is 50

first recalled. In order to understand and model the source of macroscopic hysteresis, the concept of 51

master equation for calculating the volume fraction of each variant of any phase at the grain scale is 52

introduced. Concepts of meta-stability and germination barrier are then reviewed. In section 3, the 53

Kinetic Monte-Carlo (KMC) framework is detailed. The identification of the modeling parameters 54

(Gibbs free energy parameters, stiffness, mass density, lattice parameters, orientation data) is ex- 55

plained next in section 4: most of them involves a simple Differential Scanning Calorimetry (DSC) 56

measurement. The procedure has been applied to model several aspects of the thermomechanical 57

behavior of an equiatomic Ni-Ti SMA polycrystalline alloy RVE. Modeling the behavior of this 58

material is made particularly delicate by the occurrence of intermediate rhombohedral (R) phase 59

(four variants) involved in the transition from the austenite phase (B2) to the martensite phase 60

(B19’) exhibiting twelve variants. Numerical simulations are presented and discussed in section 5. 61

Summary and conclusions are provided in section 6. 62

1Polycrystal is considered as a Representative Volume Element (RVE)
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Nomenclature

f̂(ξ, t) Volume fraction of configuration ξ at
time instant t

αv Volumetric dilatation coefficient
(K−1)

∆εtr Transformation strain variation

γ(µ, t) Total amount of variants submitted to
a µ type transformation at instant t

κ Thermal conductivity (W.m−1.K−1)

f Helmholtz free energy density (J.m−3)

g Gibbs free energy density (J.m−3)

u Internal energy density (J.m−3)

g Grain or single crystal

RVE Representative Volume Element -
polycrystal

µ First transformation type

φ phase

ψ Volume fraction of a phase

ρ Mass density (kg.m−3)

τ First transformation time (s)

εεε Strain Tensor

σσσ Stress Tensor (N.m−2)

CCC Stiffness matrix (N.m−2)

~qs The heat flux vector

ξ Configuration describing the state of
grain

ζ(t) Total amount of variants transformed
at instant t

c Transformation Rate

cp Specific heat capacity(J.kg−1.K−1)

dga(i, j) Mechanical incompatibility related
germination energy barrier between
variant i and j (J.m−3)

dgc(dt) Metastable germination energy bar-
rier (J.m−3)

f Volume fraction

h Enthalpy density (J.m−3)

i Digit indicating a variant of type i

k Equivalent convection factor
(W.m−3.K−1)

kb Boltzmann constant (J.K−1)

Lij Latent heat density associated with a
µ type transformation from variant j
to variant i (J.m−3)

M(i, j) Markov transition matrix from vari-
ant j to variant i

N Number of standard unit inside a grain

n Number of variant types inside a grain

Ni Number of standard unit correspond-
ing to a variant i

p(τ, µ) Transition probability that a µ type
transformation occurs at instant t+ τ

p1(τ) Transition probability that at least
one variant transforms into another in
time interval [t, t+ τ ]

p2(µ|τ) Transition probability that a µ type
transformation occurs for a variant in
time interval [t, t+ τ ]

s Entropy density (J.K−1.m−3)

t Time (s)

T Temperature (K)

Vu Volume of standard unit (m3)

X Thermodynamic force associated to φ
(J/m3)
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2 Multiscale stochastic formulation 63

In this section, the Gibbs free energy density g at the variant scale in SMA is fist defined. Boltzmann 64

system and associated master equation defining the evolution of variant’s volume fraction at the 65

grain scale are then introduced. 66

2.1 Multiscale approach 67

The scale organization is illustrated in Figure 1, from the variant scale to the RVE scale. The idea 68

of multiscale approach is to use the volume fraction of variant i at time t in a phase φ (fφ(i, t)) or 69

a grain g (fg(i, t)) to describe the physical quantities at different scales and times by appropriate 70

averaging operations. A multiscale approach supposes on the other hand an appropriate localiza- 71

tion of loading. This step is strongly simplified in the present paper by using an hypothesis of 72

homogeneous loading. In the following, a single crystal or grain g is supposed to be composed of 73

several phases φ (austenite, martensite, etc). Hereafter, i denotes a variant meaning that a phase 74

φ may be composed of different variants i depending on the crystal symmetry. i is the lowest 75

scale. A single crystal may contain n different variants i in total (sum of all variants in all phases): 76

i = 1, 2, · · ·n. 77

78

Polycrystal
     RVE

Single crystal
g  

Variant
    i   

Phase
    φ  

Figure 1: Scales involved in the multiscale modeling of SMA from variant to polycrystal scales.

The statistic description needs to define a Standard Unit (SU) defining the statistic volume 79

(Vu). As for the phase or grain, this volume may be occupied by a fraction of each variant i at time 80

instant t, written simply as f(i, t). The total volume occupied by variant i can be described by 81

a number Ni(t) of unit volume Vu too. Indeed Ni(t) is time dependent, due to variant to variant 82

or phase to phase transition. At time instant t, the total population of SU inside the grain is 83

considered as fixed and noted as N , verifying: 84

N =

n∑
i=1

Ni(t) (1) 85

leading to a discrete definition of volume fraction of variant i at the grain scale: 86

fg(i, t) =
Ni(t)

N
, i = 1, 2, · · ·n (2) 87

with 88
n∑
i=1

fg(i, t) = 1 (3) 89

An energy-based stochastic approach is next proposed to define the time evolution of the variants’ 90

volume fraction as function of thermal and mechanical loading. 91

2.2 Definition of the Gibbs free energy density at the variant scale 92

The first principle given at the local scale states that the total energy density composed of kinetic 93

energy density and internal energy [J m−3] can only be modified by the action of external work and 94

heat flux. The internal energy density at the variant scale is written as u. At constant velocity, 95

kinetic energy remains as a constant. There is a direct relationship between the variation of internal 96

energy density and heat sources: 97

du(i, s, εεε) = dh(i) + T (i)ds(i) + σσσ(i) : dεεε(i) (4)

This expression is composed of: 98
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• dh(i): chemical energy variation= bound energy variation inside a variant; 99

• T (i)ds(i): heat quantity variation (thermal power), function of entropy variation ds (second 100

law of thermodynamics) and local temperature T ; 101

• σσσ(i) : dεεε(i): mechanical energy variation (mechanical power), function of deformation varia- 102

tion dεεε and local stress σσσ. 103

The free (Helmholtz) energy density f(i) is a result of the Legendre transformation of internal en- 104

ergy density by heat quantity. It allows energy variation to be defined as function of temperature 105

variation instead of entropy variation: 106

107

f(i, T ) = u(i, s)− T (i)s(i) (5)

108

109

The Gibbs free energy (or free enthalpy) is the result of a Legendre transformation of the 110

Helmholtz free energy density by a mechanical quantity. It allows finally the energy variation to 111

be defined as function of stress variation instead of deformation variation. 112

g(i, T,σσσ) = f(i, T )− σσσ(i) : εεε(i) (6)

The variation of Gibbs free energy density is given by: 113

dg(i, T,σσσ) = dh(i)− s(i)dT (i)− εεε(i) : dσσσ(i) (7)

A second order Taylor expansion of entropy leads to derive s(i) as function of temperature T , 114

reference entropy s0 at the reference temperature T0, mass density ρ and specific heat capacity cp 115

(considered as temperature independent): 116

s(i, T ) = s0(i, T0) + ρ(i)cp(i)ln

(
T0(i)

T (i)

)
(8)

117

On the other hand, in the framework of small perturbation hypothesis, we wish to consider total 118

deformation εεε(i) as a sum of elastic εεεe(i), thermal εεεth(i) and transformation εεεtr(i) deformations 119

associated with phase transition. The total deformation at the variant scale i can be expressed as 120

function of stress, temperature and εεεtr(i) (considered as a free deformation) following: 121

εεε(i, T,σσσ) = CCC−1(i) : σσσ(i) +
αv(i)

3
(T (i)− T0(i))I + εεεtr(i) (9)

CCC is the local stiffness tensor, αv is the volumetric dilatation coefficient and I the second order 122

identity tensor. The transformation strain εεεtr is usually considered as stress independent (and is 123

assumed to be so). 124

Gibbs free energy density is finally expressed (for a constant) after integration as a formal sum of 125

thermal part gt(i, T ), mechanical part gm(i,σσσ) and coupled thermomechanical part gtm(i, T,σσσ). 126

g(i, T,σσσ) = gt(i, T ) + gm(i,σσσ) + gtm(i, T,σσσ) (10)

with 127

gt(i, T ) = h(i)− s0(i)T (i) + ρ(i)cp(i)

[
T (i)− T0(i)− T (i)ln

(
T (i)

T0(i)

)]
(11)

gm(i,σσσ) = −1

2
σσσ(i) : CCC−1(i) : σσσ(i)− σσσ(i) : εεεtr(i)

gtm(i, T,σσσ) = −αv(i)
3

(T (i)− T0(i))tr(σσσ(i))

where tr(σσσ) denotes the trace of the stress tensor. 128

129

The main simplifications that can be made at this step concern the ad-hoc loading. We will 130

consider in the following that: 131
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• by adopting the Reuss approach for the homogenized medium, stress is supposed as homo- 132

geneous over the RVE, leading to: σσσ(i) = σσσ; 133

• temperature is considered homogeneous over the RVE, leading to: T (i) = T ; 134

• stiffness, mass density, specific heat capacity and dilatation coefficient are considered as the 135

same for all phases and variants: CCC(i) = CCC, ρ(i) = ρ, cp(i) = cp and αv(i) = αv. 136

The Gibbs free energy density simplifies into: 137

g(i, T,σσσ) = h(i)− s0(i)T + ρcp

[
T − T0 − T ln

(
T

T0

)]
− 1

2
σσσ : CCC−1 : σσσ

−σσσ : εεεtr(i)−
αv
3

(T − T0)tr(σσσ) (12)

138

2.3 Boltzmann system and master equation 139

In the Boltzmann stochastic theory, a Boltzmann system is referred as a specific system consisting 140

of N different independent units (N Standard units), where each unit has no interaction with 141

others and total population of units remains unchanged. For simplicity reasons, we firstly consider 142

a system containing one standard unit N = 1. This simple system may contain n discrete Gibbs free 143

energy level at time instant t (g(i, t), i = 1, 2 · · ·n). Consequently the conservation of population 144

in the standard unit can be expressed as: 145

n∑
i=1

df(i, t)

dt
= 0 (13) 146

As a result, the temporal variation of volume fraction for variant i at time t,
df(i, t)

dt
can be 147

calculated via a Master equation, which is defined by the following system of equations: 148

df(i, t)

dt
= −fd(i, t) + fb(i, t) (14)

df(i, t)

dt
= −

n∑
j=1,j 6=i

Tr(i, j)f(i, t) +

n∑
j=1,j 6=i

Tr(j, i)f(j, t) (15)

fb(i, t) =

n∑
j=1,j 6=i

Tr(j, i)f(j, t) (16)

fd(i, t) =

n∑
j=1,j 6=i

Tr(i, j)f(i, t) (17)

Tr(i, j) = min(1, cij exp(−βs(g(j, t)− g(i, t)))) (18)

βs =
Vu
kbT

(19)

df(i, t)

dt
indicates the temporal increment of volume fraction for variant i, which is 149

determined by the difference between birth amount fb(i, t) and death amount fd(i, t); 150

fb(i, t) and fd(i, t) are the birth and death amount for the volume fraction of variant i. 151

These two amounts are both determined by the transition probability function Tr(i, j) and 152

the current volume fraction of the system f(i, t) (Equation 16 and Equation 17); 153

Tr(i, j) is the transition probability, defining the probability for variant i to transform 154

towards variant j; 155

βs is a parameter that defines the severity of transformation (Equation 17). It is calculated 156

from the unit volume Vu, current temperature T and Boltzmann constant kb; 157

cij is the transformation rate of variant i towards variant j. 158
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In order to simplify the Master equation, we decide to adopt the Markov convention. The 159

Markov transition matrix M(i, j) verifies: 160

M(i, j) = Tr(i, j),∀(i, j), i 6= j

M(i, i) = −
n∑
j=1

Tr(j, i) (20)

It is introduced in Equation 15 allowing to get the following expression: 161

df(i, t)

dt
=

n∑
j=1

M(j, i)f(j, t) (21) 162

The master equation is the main tool allowing the temporal variation of a volume fraction to be 163

estimated. This relationship applies at the unit volume scale as well as at the grain scale. 164

Without the presence of heterogeneous residual stress, the grain can be considered as a typical 165

Boltzmann stochastic system. This point is addressed in subsection 2.4 and subsection 2.6. 166

2.4 Previous modeling 167

In the modeling proposed by [26], βs is considered to be a constant (temperature independent). 168

Moreover, it is assumed that the Boltzmann system is always at the thermodynamic equilibrium 169

so that we get at the grain scale: 170

dfg(i, t)

dt
= 0, ∀i = 1, · · · , n (22) 171

When the Boltzmann system is at equilibrium, it is by nature extensive, meaning that N 172

standard units possess the exact same variant volume fractions as 1 standard unit (Equation 23 173

and Equation 24). At the equilibrium state, for the system containing 1 standard unit, the 174

volume fraction of each variant f(i, t) equals the probability of presence for variant i, prob(i, t), 175

whereas the Boltzmann distribution is the unique and converged solution of (Equation 25). 176

fg(i, t) = fN=1(i, t), ∀i = 1, · · · , n (23)

dfg(i, t)

dt
=
dfN=1(i, t)

dt
= 0, ∀i = 1, · · · , n (24)

fN=1(i, t) = N prob(i, t) = prob(i, t) =
exp(−βsg(i, t))∑n
j=1 exp(−βsg(j, t))

(25)

Despite these strong hypotheses, a pretty good prediction of the transformation threshold of 177

Ni-Ti SMA alloy under multiaxial stress condition was obtained; a good qualitative estimation of 178

phase composition under thermal loading was obtained too [27][13]. However, due to the 179

thermodynamic equilibrium assumption, the thermomechanical behavior is reversible. An 180

artificial germination energy barrier had to be introduced to produce a major hysteresis loop 181

(partial loops were not modeled). The master equation can provide a more natural modeling of 182

hysteresis when the Boltzmann system is considered out of equilibrium. 183

2.5 Out-of-equilibrium phase transformation 184

Herein, we focus on the Boltzmann system containing 1 standard unit (N = 1). A generalization 185

towards Boltzmann system at grain scale consisting of N standard units is addressed in 186

subsection 2.6. Hysteresis phenomena are the macroscopic outcomes of time evolution for 187

out-of-equilibrium microscopic systems, indicating that : 188

df(i, t)

dt
6= 0, ∀i ∈ [1, · · · , n] (26) 189

cij constants are consequently bounded: 190

0 ≤ cij ≤ ∞, ∀(i, j) i 6= j (27) 191

In order to highlight the source of hysteresis when the system is out of equilibrium, the classic 192

notion of meta-stable and associated transition probability have to be introduced. 193
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2.5.1 Meta-stable and Transition probability 194

We seek to compare the Gibbs free energy density of three chosen variants i, j and k. Their 195

Gibbs free energy density is supposed given by the function plotted in Figure 2: variant i exhibits 196

the lowest energy that corresponds to a ’stable’ state; variant k has the highest Gibbs free energy 197

that corresponds to an ’unstable’ state; The intermediate variant j exhibits an intermediate 198

energy level in a local minimum that corresponds to a ’metastable’ state. 199

Figure 2: Schematic evolution of Gibbs free energy density in variant space (seen as a continuous
function): illustration of unstable(k), stable(i) and metastable(j) variants.

The transition probability matrix Tr(i, j) helps us to define these different states in a stochastic 200

way. Indeed, we have: 201

Tr(i, j) = Tr(i, k) = 0 (28)

Tr(k, i) = 1 (29)

Tr(j, i) = cji exp(−βs(g(i, t)− g(j, t)) (30)

Equation 28 indicates that the transition probability for variant i to transform towards other 202

variant is strictly 0. This state corresponds to the stable state and applies to variant i in 203

Figure 2. On the contrary, when the variant k is unstable, the transition probability for variant k 204

to transform towards stable variant i is strictly 1. Equation 29 illustrates this situation. 205

Equation 30 applies for the metastable situation. Indeed, variant j may transform to variant i: 206

the transition probability for variant j to transform towards stable variant i is consequently a 207

constant between [0, 1]. 208

2.5.2 Metastable and Germination energy density 209

A metastable variant j can transform towards a stable variant i at time t′ = t+ dt once it affords 210

an additional energy dg(j, i, dt) to ensure that the transition probability equals to one. 211

g(j, t) ≥ g(i, t) + dg(j, i, dt)→ Tr(j, i) = 1 (31) 212

This additional energy term can be divided into two parts(see Equation 32): 213

• dgc(dt): this term is the meta stable germination energy density, it decreases as function of 214

time dt (see Equation 33 and Equation 34) 215

• dga(j, i): this term is the mechanical incompatibility related germination energy density 216

between variant i and j (a same kind of germination energy associated with mechanical 217

incompatibility has been proposed in [35] and [30]) 218

dg(j, i, dt) = dgc(dt) + dga(j, i) (32)

dgc(dt = 0) = − log(cµ)

βs
(33)

dgc(dt =∞) = 0 (34)
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2.5.3 Saturation of hysteresis loop and temporal relaxation of germination energy 219

In stochastic theory, when the variation of Gibbs free energy density from variant j to variant i is 220

overwhelmingly higher than the corresponding germination energy density, the transformation 221

takes place immediately without any temporal delay. This transformation generates an 222

incompressible energy loss associated to the predefined difference of Gibbs free energy between 223

the two variants. In other words, for this type of configuration, the hysteresis loop is always 224

saturated and remains constant (see Equation 33), ignoring any possible dynamic effect. 225

Otherwise, when the variation of Gibbs free energy density from variant j to variant i is not 226

high enough to achieve the immediate transformation, the accumulation of transition probability 227

with an increasing differential time interval pacc(j → i, t′ = t+ dt) , would allow the transition to 228

eventually occur. A time delay is consequently necessary to achieve the transformation. The 229

associated energy loss is on the other hand lower in accordance with a lower Gibbs free energy 230

difference, which is only related to the mechanical incompatibility between variants (see 231

Equation 35 and Equation 36). 232

When an infinite time is considered and mechanical incompatibilities are neglected 233

dga(i, j) = 0,∀(i, j), the system does not have theoretically to compensate any germination 234

energy dg(j, i) in order to achieve the transformation (see Equation 36). Consequently the 235

Boltzmann system can reach its equilibrium state leading to a reversible behavior (see 236

Equation 37 and Equation 36). This point has been already addressed in subsection 2.4. 237

pacc(j → i, t′ = t+ dt) =

∫ t+dt

t

Tr(j, i)dt (35)

dg(j, i, dt =∞) = 0 + dga(j, i) = 0 (36)

pacc(j → i, t′ =∞) =

∫ ∞
t

Tr(j, i)dt = 1 (37)

2.6 Numerical difficulties 238

When the Boltzmann system contains only 1 or a few of standard units, the temporal evolution 239

of the volume fraction of each variant can be analytically calculated from the implemented 240

germination energy barrier. However, at the grain scale, when the Boltzmann system (grain) 241

consists of N standard units, the system is associated with nN different levels of Gibbs free 242

energy. To give a short example, for the grain at configuration ξ, which consists of N standard 243

units (SU), and Ni is the sub-population of standard unit described by each variant i. The 244

associated energy level can be expressed as : 245

ξ = [N1, N2, · · ·Nn], with

n∑
i=1

Ni = N =
∑
i=1

ξ(i) (38)

gg(ξ, t) =
1

N

n∑
i=1

N
i
(t)gi(t) (39)

The average Gibbs free energy density associated to configuration ξ, should be seen as 246

probabilistic quantity where all linear combinations (nN combinations in total) should be tested 247

to extract the grand probability function (i.e. the highest probability at infinite time instant 248

fg(i, t =∞) corresponding to the combination where the average Gibbs energy density at the 249

grain scale is minimized). 250

The master equation and volume fraction for variant i at grain scale can be written, considering 251

two different possible configurations {ξ, ξ∗}: 252

df̂(ξ, t)

dt
=

nN∑
ξ∗=1

M(ξ, ξ∗) f̂(ξ∗, t) (40)

fg(i, t) =

nN∑
ξ=1

f̂(ξ, t)
ξ(i)

N
(41)

where f̂(ξ, t) is the volume fraction of configuration ξ at time instant t. 253

The computation cost of the master equation may grow very fast with an increasing number of 254

SU required to get a stochastic result. Classical procedures are consequently not relevant to solve 255

the problem analytically. An alternative way is proposed, detailed in the next section. 256
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3 Kinetic Monte-Carlo framework at the grain scale 257

The use of Kinetic Monte-Carlo (KMC) algorithm can be traced back to the early work of [4] and 258

[10]. This algorithm is essentially a re-organization of former stochastic algorithms. By deploying 259

the density of transformation probability function, it accounts for the previous distribution of 260

volume fractions and the state of Markov Transition Matrix (both at time instant t), to get the 261

volume fractions at the next investigated time instant t′. Doing this way, we aim to evaluate the 262

current state of the master equation at the given time t instead of solving analytically the master 263

equation itself. Based on these indirect observations, the temporal volume fraction variation is 264

generated through the KMC framework in a stochastic way. After a sufficient number of repeated 265

samplings, the stochastic average should converge towards the analytic response of the master 266

equation at the grain scale. 267

3.1 Transformation quantities and transformation weight 268

We first consider the initial time instant t = t0. An initial volume fraction of variant i f(i, t0) 269

inside the grain can be defined at this time instant. Equation 42 gives the raw increase and 270

decrease of the volume fraction of variant i: 271

df(i, t)

dt
=

n∑
j=1

M(j, i)f(j, t = t0) (42) 272

or 273

df(i, t)

dt
=
dfb(i, t)

dt
+
dfd(i, t)

dt
(43) 274

The raw transformation birth quantities ζ(t = t0) are given by: 275

ζ(t = t0) = N

n∑
i=1

dfb(i, t)

dt
(44) 276

ζ evaluates the total number of variants transformed inside the Boltzmann system at instant 277

t = t0. 278

We seek next to obtain the weight of each transformation type inside ζ. Therefore γ(j, i, t = t0) 279

in Equation 45 indicates the weight of transformation from j → i inside the total transformed 280

quantities ζ at instant t = t0. 281

γ(j, i, t = t0) = N
M(j, i)f(j, t = t0)

ζ(t = t0)
(45) 282

ζ(t = t0) and γ(j, i, t = t0) describe the global tendency of the master equation at instant t = t0. 283

These quantities indirectly indicate when the next transformation triggers and which variant is 284

chosen to transform towards another variant in the Boltzmann system. These parameters can be 285

denoted as the ’indirect observers’ of the Boltzmann system. To describe directly the evolution of 286

the volume fraction, two new concepts must be introduced: the first transformation time τ and 287

the first transformation type µ. 288

3.2 First transformation time and first transformation type 289

First transformation time and first transformation type are two variables defining the stochastic 290

Monte-Carlo step (τ, µ). 291

• τ is the first transformation time. It corresponds to the time delay needed for at least a SU 292

inside the system to transform from one variant to another for the time instant t = t0. 293

• µ : j → i is the first transformation type. It is evaluated when at least one SU is 294

transformed. A µ type transformation is corresponding to a specific transformation of 295

variant j towards variant i ( since i 6= j, there are n2 − n possible transformation types). 296

Parameters (τ, µ) describe exactly the time delay for the first transformation and the associated 297

transformation type. 298

Given the indirect observers of the Boltzmann system (ζ, γ), the transition probability to have 299

a (τ, µ) transformation can be written following (mathematical demonstration available in [10]): 300

p(τ, µ)dτ = γ(µ, t) exp(−ζ(t)τ) (46)

γ(µ, t) = γ(j, i, t),∀(i, j), i 6= j (47)
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where p(τ, µ)dτ indicates the probability at time t that a SU transforms in the time interval 301

[t+ τ, t+ τ + dτ ] inside a Boltzmann system consisting of N SU, and that this transformation is 302

a µ type transformation. 303

For the sake of simplicity, Equation 47 is introduced and used throughout this paper2. 304

3.3 Procedure for random generation of (τ, µ) 305

As mentioned in the previous section, (τ, µ) are the two direct stochastic descriptors for the 306

hysteretic behavior at the grain scale. The classical approach to generate a pair of variables 307

based on the probability function is referred as ’conditioning’: p(τ, µ) can be built through the 308

product of two independent one-variable density of probability functions p1(τ) and p2(µ|τ), 309

where p1(τ) and p2(µ|τ) indicate the probabilities of two cause-related events: 310

1. p1(τ) measures whether or not at least one variant inside the system transforms into a 311

different variant type in the differential time interval [t, t+ τ ]. 312

2. p2(µ|τ) is the conditional probability measuring when at least one variant inside the system 313

transforms into a different variant type in the differential time interval [t, t+ τ ] following a 314

µ type transformation. 315

These conditional probability functions can be estimated using the current transformation 316

quantity ζ(t) and the associated transformation weight γ(µ, t) following: 317

p(τ, µ) = γ(µ, t) exp(−ζ(t)τ) = p1(τ)p2(µ|τ) (48)

p1(τ) =
∑
µ

p(τ, µ) = exp(−ζ(t)τ)ζ(t) (49)

p2(µ|τ) =
γ(µ, t)

ζ(t)
(50)

In the work of [10], it is demonstrated that the generation of τ and µ can be done separately 318

based on p1(τ) and p2(µ|τ) (see Equation 49 and Equation 50). The numerical implementation of 319

random number generations (RNG) to produce (τ, µ) by using Inverse Monte Carlo technique is 320

discussed in Appendix B. 321

3.4 Kinetic Monte-Carlo framework 322

The basic idea of this computation procedure is to deploy the two-variables density of probability 323

function p(τ, µ) using a Monte-Carlo technique to generate the two stochastic descriptors (τ, µ) of 324

the system at current time t. To begin with, we simplify the problem by neglecting the heat 325

emission (absorption or emission) impact due to the phase transformation. With this 326

simplification, the Kinetic Monte-Carlo algorithm at the grain scale is straightforward and can be 327

summarized as follows (the corresponding KMC algorithm flowchart for a grain is shown in 328

Appendix A): 329

Step 0: Set the time variable t at t0. Define the total variant population N inside the grain system 330

and initialize the volume fraction for each variant f(i, t0), i = 1, · · ·n; specify cji according 331

to each type of transformation µ→ (j, i); specify a series of sampling time and a stopping 332

time: t = t1 < t2 · · · < tn < · · · tstop with a time interval dt between each sampling time 333

step; reposition t in the differential time interval [tn−1, tn]; load the crystal texture then 334

interpolate the Gibbs free energy density g(i, t), i = 1, · · ·n for each variant at current time 335

t in each grain; 336

Step 1: Using Equation 15, calculate ζ(t) and γ(µ, t) which collectively determine the density of 337

transformation probability function p(τ, µ) in Equation 46; select a proper inverse Monte 338

Carlo technique to generate one random pair (τ, µ) based on the joint density probability 339

function p(τ, µ) pre-calculated at the previous step; an explicit random variable generation 340

technique is used for this step: it is detailed in Appendix B. 341

Step 2: Deploy the two random variables (τ, µ) obtained at the previous step; increment the current 342

time t by τ ; update the variant population involved in transformation µ : j → i. 343

2We reshape a matrix towards a vector by this numerical operation.
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t′ = t+ τ and dt = τ

df(µ, t) = M(j, i)f(j, t)τ

f(i, t′) = f(i, t) + df(µ, t)

f(j, t′) = f(j, t)− df(µ, t)

t = t′ (51)

. 344

Step 3: If τ is higher than the sampling time interval [tm, tm+1], increment t towards tm+1 keeping 345

the volume fractions unchanged; if t > tstop, return to Step 0 , otherwise return to Step 1. 346

Step 4: Perform Ns independent Kinetic Monte-Carlo repeated samplings; obtain the stochastic 347

average response for grain g. 348

Concerning the last point, indeed, when a complex thermomechanical loading is applied, several 349

variants may have the same level of Gibbs free energy at current time t, meaning that the 350

activation of these transformation types are equiprobable. The KMC procedure will randomly 351

choose a specific transformation type and move forward based on the probability functions, 352

leading to a final result that may have been different if another transformation type had been 353

chosen. The solution is to multiply KMC estimations fd(i, t) and process to a stochastic average 354

fst(i, t) as defined in Equation 52. The result converges to the macroscopic solution fsol(i, t) 355

when enough independent KMC samplings are performed. 356

fst(i, t) = lim
Ns→∞

1

Ns

Ns∑
d=1

fd(i, t) = fsol(i, t) (52) 357

An exact convergence criterium of the Monte-Carlo process cannot however be properly 358

estimated (mentioned as stochastic fluctuation). The most discriminant situation is probably the 359

simulation of a pure thermal loading (DSC scan for example), because all variants are 360

equiprobable at the transformation temperature. The simulation requires several independent 361

samplings before the convergence is suitably reached (see next section and Figure 25). 362

3.5 Kinetic Monte-Carlo framework with additional heat source due to 363

a phase transformation 364

Heat emission or absorption are not considered in the previous sections. It is however possible to 365

evaluate their effects by solving the heat equation and by using admissible boundary conditions 366

to mimic the anisothermal behavior. The heat equation that can apply in the framework of a 367

stochastic approach considering a µ : i→ j transformation at time instant τ is given by: 368

dT (τ, µ) =
1

ρcp
Lijdf(τ, µ) +

τ

ρcp
κ∆L(T ) (53) 369

This form that neglects the thermoelastic heat source is demonstrated in Appendix D. It involves 370

the latent heat associated with µ : i→ j transformation which writes: 371

Lij = hi − hj − σσσ : (εεεtri − εεεtri ) (54) 372

Using Equation 53, an adiabatic situation can easily be modeled by neglecting the thermal 373

diffusion. Of course any spatial derivation has no direct physical signification for modeling at 374

RVE scale. An anisothermal situation, intermediate between adiabatic and isothermal extreme 375

situations can only be modeled by transforming the Laplacian by an equivalent convection effect, 376

supposing that the RVE is embedded in a coolant. Heat conduction term in Equation 53 is then 377

replaced by: 378

κ∆L(T )→ k(T − Tamb) (55) 379

where Tamb is the ambient temperature, T is the temperature of the medium and k an equivalent 380

convection coefficient. We can consider the following situations: 381

• k = 0: the system is adiabatic, without heat exchange with environment; 382

• k =∞: ideal convection: the temperature is fully controlled by the ambient temperature, 383

leading to the isothermal situation; 384

12



• ∞ ≥ k ≥ 0: intermediate anisothermal situations 385

By solving Equation 53, we can calculate the temperature variation dT (τ, µ) at each time step. 386

t′ = t+ τ

T (t′) = T (t) + dT (τ, µ) (56)

t = t′

In the present paper, no real convergence between KMC and heat equation has been looked for to 387

avoid too long computation time. One alternative strategy is to update the temperature at each 388

time step and consider it for the next calculation. A converged result is not guaranteed but the 389

chosen time interval [tn, tn+1] is sufficiently small to describe the evolution of temperature with a 390

good accuracy and observe some relevant anisothermal effects. 391

3.6 Homogenization and localization 392

The procedure has been detailed for a grain g in the previous sections but it can apply the same 393

way for all grains of RVE (polycrystal defined by the Orientation Data Function - ODF - 394

obtained via Electron Back-Scattered Diffraction - EBSD - measurement). Once f(i, t) is defined, 395

the calculation of average transformation strain εεεtr(g) and entropy density s(g) (as associated 396

variables to stress and temperature loading) over the grains is easily obtained: 397

εεεtr(g) =

n∑
i=1

f(i)εεεtr(i) (57)

s(g) =

n∑
i=1

f(i)s(i) (58)

The same quantities can be calculated at the RVE scale by averaging over the grains. It must be 398

noticed that no strain localization is required since homogeneous stress assumption[13] is retained 399

for all calculations. 400

εεεtr =
1

Ng

Ng∑
g=1

εεεtr(g) (59)

s =
1

Ng

Ng∑
g=1

s(g) (60)

Total deformation (sum of elastic, thermal and transformation) can be built by a simple 401

summation of quantities whatever the scale. 402

Application of localization procedures is possible from RVE to grain scales. This localization is 403

for example required if a real single crystal stiffness tensor (usually anisotropic) is considered for 404

the polycrystalline calculation. Different localization procedures can however be applied. The 405

most relevant is probably the self-consistent that allows the stress at grain scale σσσg to be defined 406

as function of the applied macroscopic stress σσσ, the transformation deformation matrix at the 407

grain and macro scales, the accommodation stiffness tensor CCCacc and the stress concentration 408

tensor BBB (see more details concerning this procedure in [9]). 409

σσσ(g) = BBB(g) : σσσ +CCCacc(g) : (εεεtr − εεεtr(g)) (61) 410

Once the full knowledge of transformation strain for each grain is given, the macroscopic response 411

εεεtr of the material is obtained, through an averaging operation involving a strain localization: 412

εεεtr =
1

Ng

Ng∑
g=1

tBBB(g) : εεεtr(g) (62) 413

4 Identification procedure of the modeling parameters 414

A Ni− 50.2Ti SMA is chosen to illustrate the identification procedure. The Ni-Ti SMA has been 415

heat treated at T = 773K for 1 hour and quenched in cold water. The parameters used in the 416

model include: 417

• Chemical and thermal properties; 418
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• Mechanical properties; 419

• Crystalline properties and texture; 420

• Instant germination energy. 421

4.1 Chemical and thermal properties 422

The Differential Scanning Calorimetry (DSC), consists in measuring the difference in heat flux 423

between a specimen and a reference (often an empty crucible) at stress free state, and aims to 424

determine the chemical properties of the material: 425

• Specific heat capacity cp ; 426

• Phase transformation properties, including transition temperatures Ttr, associated latent 427

heat densities δh and variations of entropy s and enthalpy h densities. 428

The DSC analysis is conducted over a small sample (8.4 mg) taken from a virgin specimen of 429

NiTi SMA. A quasi-static thermal cycle is applied: 430

• Isothermal at T = 373K for 10 min; 431

• Cooling from T = 373K to T = 193K with a temperature rate of Ṫ = 5 K min−1; 432

• Isothermal at T = 193K for 10 min; 433

• Heating from T = 193K to T = 373K with a temperature rate of Ṫ = 10 K min−1; 434

This cycle is usually repeated two times. 435

Thermal hysteresis and phases. 436

The DSC measurement used for the identification is plotted in Figure 3. It confirms that for the 437

investigated NiTi SMA, three principal phases may exist depending on the temperature: austenite 438

(A), martensite (M) and so-called R-phase. Two significant heat flux peaks are observed during 439

the cooling stage. They correspond to the A→R and R→M phase transformations. Only one 440

significant heat flux peak is observed during the heating stage. It may be possible that the 441

backward transformation M→A passes through the intermittent formation of the R phase.

Figure 3: DSC: Heat flow as function of temperature

442
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Specific heat capacity. 443

In the area without phase transformation, the difference measured in heat flux between the
specimen and a reference crucible can be interpreted as the heat required by the material to
maintain the temperature variations, which helps us to identify the specific heat capacity of the
specimen. The following relationships apply:

p = ρcpṪ

cp =
p

ρṪ
(63)

where p represents the heat flow difference without phase transformation and ρ is the mass 444

density. 445

The specific heat capacity of A, R and M phases in NiTi SMA are nearly close. For simplicity 446

reasons, we will assume for calculations that the three phases share the same specific heat 447

capacity: 448

cAp = cMp = cRp = cp (64) 449

Latent heat. 450

Latent heat (or enthalpy of transition) is defined as an additional quantity of heat exchanged 451

between the external heat source and the analyzed specimen to maintain the same reference 452

command temperature during the phase transformation. Herein the raw curve3 of heat flux as 453

function of time during cooling is used to explain the protocol.

Figure 4: Determination of latent heat ∆h: example of NiTi SMA during DSC (cooling).

454

As illustrated in Figure 4, by defining the transformation start and finish time (or temperature), 455

the specific latent heat ∆h can be calculated as follows: 456

∆h =
1

V

∫ tf

ts

p(t)dt (65) 457

where p(t) represents the additional heat flux (mW) required by the specimen to ensure the 458

phase transformation. V is the volume of material used for the DSC. 459

Transformation temperature and variation of entropy. 460

Usually, the transformation temperature is defined at the point where the additional heat flux 461

reaches its maximum during the DSC measurement. As shown in Figure 5, T1 represents the 462

transformation temperature during the cooling from A → R and T2 represents the transformation 463

temperature during the cooling from R → M. Given these temperatures, the variation in entropy 464

density can be expressed as follows (Ttr figures out T1 or T2): 465

∆s =
∆h

Ttr
(66) 466

As for enthalpy density, only the variation of entropy density is relevant for the modeling. 467

Table 1 gathers the different modeling parameters extracted from the DSC experiment. 468

3before baseline correction
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Figure 5: Transformation temperature and entropy variations: example of NiTi SMA during DSC
(cooling).

Parameters Symbol Value

Specific heat capacity cp [J kg−1 K−1] 460± 20

Latent heat density A→ R ∆h(A→ R) [MJ m−3] 40± 4

Latent heat density R→M ∆h(A→M) [MJ m−3] 98± 6

Variation of entropy density A→ R ∆s(A→ R) [MJ m−3 K−1] 0.14± 0.02

Variation of entropy density R→M ∆s(A→M) [MJ m−3 K−1] 0.38± 0.02

Table 1: NiTi SMA chemical parameters identified by DSC

469
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4.2 Mechanical properties 470

The mechanical properties that are looked for are mainly the elastic properties. Considering the 471

material as isotropic, only the Young modulus and Poisson ratio must be identified. We use for 472

that purpose the results of a more complete study addressing the pseudo-elastic behavior of the 473

NiTi SMA subjected to a uniaxial loading and a concomitant identification of the phases 474

produced during the strengthening [6]. Since the phase transformation occurs through 475

localization bands, a measurement of the kinematic fields by digital image correlation (PGD-RT3 476

DIC code developed by LMT ) is necessary (see the work of [2] for more details about the DIC 477

code). The same tool can be used to extract the elastic properties. 478

Figure 6: 1D strip specimen with black and white speckle paints; 10× 3 mm2 surface used for DIC
measurement is highlighted.

Figure 6 shows the sample used for the experiment. The central region used for DIC is a 479

parallelepipedic volume, i.e. 10× 3× 0.3mm3. Longitudinal and transversal average deformations 480

have been extracted at several stress levels. The engineering stress expresses as follows: 481

σxx =
F

S0
(67) 482

where F is the axial force recorded by the force cell of the loading machine and S0 is the initial 483

section of the NiTi strip. We can for example build a virtual strain gauge to extract the averaged 484

axial and transversal strain over the chosen area S of the image: 485

εxx =
1

S

∫∫
S

ε̃xx(x, y) dxdy (68) 486

εyy =
1

S

∫∫
S

ε̃yy(x, y) dxdy (69) 487

The longitudinal and transversal averaged stress-strain curves are plotted in Figure 7. The basic 488

elastic properties (Young modulus and Poisson ratio) can be easily calculated. Values are 489

reported in Table 2. For simplicity reasons, elastic properties will be considered identical for all 490

phases. 491

EY =
σxx
εxx

492

ν = − εyy
εxx

(70) 493

494

Parameters Symbol Value

Young modulus EY [GPa] 60± 9

Poisson ratio ν 0.31± 0.02

Table 2: Elastic parameters identified by 1D tensile testing
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Figure 7: Longitudinal strain εxx and transversal strain εyy as function of engineering stress σxx
for 1D NiTi SMA strip

The dilatation coefficient is a thermo-mechanical parameter. Its identification via a dilatometer 495

set-up is not a problem. However, it has not been identified since dilatation effects have not been 496

considered in the modeling (αv set at 0 K−1). Indeed associated deformations are negligible 497

comparing to elastic or transformation strains for the temperature range addressed in this work. 498

The mass density ρ = 6450 kg m−3 (in accordance with literature) has been estimated using a 499

dedicated balance (see Table 3 for these two more parameters). 500

Parameters Symbol Value

Dilatation coefficient αv [K−1] not meas.

Mass density ρ [kg m−3] 6450± 160

Table 3: Dilatation coefficient and mass density.
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4.3 Crystalline parameters and texture identification 501

As already mentioned, A, M and R-phase may exist in the material depending on thermal and 502

stress conditions. Austenite is a cubic phase denoted as parent phase that exhibits only one 503

variant numbered i = 17. The R-phase is rhombohedral and exhibits 4 variants numbered from 504

i = 13 to i = 16. Martensite is a monoclinic phase exhibiting 12 variants numbered from i=1 to 505

i=12. An identification of the crystalline parameters of these phases is possible by a measurement 506

of X-ray diffraction spectrum carried out under stress at room temperature. 507
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Figure 8: X-ray diffraction spectrum field measured at different position along the tensile specimen
and associated von Mises equivalent strain field.

Indeed, the mechanical test presented in the previous section can be led to deformations levels 508

where the martensitic phase transformation occurs. Figure 8 right thus plots the spatial 509

evolution of the von Mises equivalent strain. This result shows that the transformation takes 510

place in a heterogeneous way in the form of localization bands (they can be multiple [11]). A 511

simultaneous measurement of the spatial evolution of the X-ray spectrum has been carried out 512

(see [6] for more details about the procedure). The different spectra are presented in Figure 8 513

left, highlighting that A/M/R phases do coexist in the sample. A dedicated procedure [6] allows 514

on the other hand the typical experimental spectrum of the three phases to be plotted (Figure 9). 515

The indexation of diffraction patterns can be achieved by using the Bragg’s law: 516

nλ

2dhkl
= sin(θhkl) (71) 517

where dhkl denotes as the inter-planar spacing between two (hkl) planes and λ is the wavelength 518

of X-ray radiation source. The theoretical values for the inter-planar spacing of A/M/R phases for 519

the equiatomic NiTi SMA are given as function of the lattice parameters (see the work of [8]) by: 520

dhkl =
a0√

h2 + k2 + l2
→ A phase (72) 521

dhkl =
aR
√

1− 3 cos2(α) + 2 cos3(α)√
(h2 + k2 + l2) sin2(α) + 2(hk + kl + hl)(cos2(α)− cos(α))

→ R phase (73) 522

dhkl =
sin(β)√

h2

a2M
+
k2 sin2(β)

b2M
+

l2

c2M
− 2hl cos(β)

aMcM

→ M phase (74) 523

The theoretical spectra have been plotted in Figure 10. By a parameter optimization of the 524

theoretical patterns to fit the experimental patterns, it is possible to identify the lattice 525
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Figure 9: Three diffraction scans of Ni-Ti SMA indexed using the diffraction theory, showing:
R-phase ( in blue), austenite ( in red), and martensite ( in black) - representation using a vertical
offset of 200 counts between each spectrum.

parameters after removal of stress effect (shift of peaks associated with elastic deformation). 526

Errors obtained are however too large to make a relevant identification. It has been consequently 527

decided to use parameters from literature, in good agreement with our experimental observations 528

[39][17]. Lattice parameters are (errors are not given, defined by the last significant number): 529

• Austenite: a0 = 0.3015 nm; 530

• R-phase: aR = a0 = 0.3015 nm; α = 91.5°; 531

• Martensite: aM = 0.2889 nm; bM = 0.4120 nm; cM = 0.4622 nm; β = 96.8°. 532

The associated Bain matrix UUU can be constructed as follows Table 4 and Table 5 : (R-Phase - 533

η = 0.998 and δ = −0.0131 ; M phase - α = 1.0243, γ = 0.9563, δ = 0.058, ε = −0.0427) . 534

Figure 10: Theoretical diffraction patterns for A, M, and R phases

Austenite has the highest crystal symmetry, the associated Bain matrix is the Identity matrix: 535

U17 = III (75) 536
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U13 =

η δ δ
δ η δ
δ δ η

 U14 =

 η −δ −δ
−δ η δ
−δ δ η

 U15 =

 η δ −δ
δ η −δ
−δ −δ η

 U16 =

 η −δ δ
−δ η −δ
δ −δ η


Table 4: Bain matrix of R-phase variants [39]

U1 =

γ ε ε
ε α δ
ε δ α

 U2 =

 γ −ε −ε
−ε α δ
−ε δ α

 U3 =

 γ −ε ε
−ε α −δ
ε −δ α

 U4 =

 γ ε −ε
ε α −δ
−ε −δ α



U5 =

α ε δ
ε γ ε
δ ε α

 U6 =

 α −ε δ
−ε γ −ε
δ −ε α

 U7 =

 α −ε −δ
−ε γ ε
−δ ε α

 U8 =

 α ε −δ
ε γ −ε
−δ −ε α



U9 =

α δ ε
δ α ε
ε ε γ

 U10 =

 α δ −ε
δ α −ε
−ε −ε γ

 U11 =

 α −δ ε
−δ α −ε
ε −ε γ

 U12 =

 α −δ −ε
−δ α ε
−ε ε γ



Table 5: Bain matrix of M phase variants [17]

The transformation strain tensor is obtained for each variant following: 537

εεεtri '
1

2
(UiU

T
i − III), i = 1, · · · 17 (76) 538

Crystallographic texture 539

Observations by Scanning Electron Microscope (SEM) and EBSD analyses have been performed 540

over a surface S = 1 mm2 of a NiTi SMA sheet after diamond polishing and electro-polishing. 541

The pole figures and inverse pole figures are reported in Figure 11. They clearly illustrate an 542

isotropic transverse texture with a 〈111〉 pole along the normal direction to the sheet. This 543

texture may result in a quite isotropic behavior for stress-controlled experiments loaded in a 544

direction belonging to the sheet plane. 545
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Figure 11: Pole figures and Inverse pole figure (representing orientations normal to the sheet plane)
obtained via EBSD.

EBSD analysis also grants to measure the average grain size and grain size distribution. The 546

overall distribution of grain size varies between 8 µm ≤ d ≤ 40 µm, with an average value of about 547

d ' 15 µm. Area defined in Figure 11 right and associated EBSD data can therefore be 548

considered as representative of the material. They define the RVE of the multiscale model 549

introduced in section 2. 413 grain orientations have been selected from the collected crystal FDO 550

as representative of the material texture (see Figure 12) for calculations.

TD

RD

(a) Pole figure 〈100〉

TD

RD

(b) Pole figure 〈111〉

Figure 12: Pole figures associated with the 413 grains FDO (RD: rolling direction; TD: transverse
direction).

551

4.4 Calibration of germination energy based on DSC 552

The remaining parameters to be identified are the severity of transformation βs and the instant 553

germination barrier dg(j, i, dt = 0). DSC scan results, shown in Figure 3 have to be reused for 554

that purpose. The Gibbs free energy density mapping is first built. It has been shown in [12] that 555

βs, seen as temperature independent in the framework of reversible modeling, is related to the 556

maximal heat flux qm(W.m−3) of a DSC peak emission (using A to R phase or R to M emission 557

peak), variation of enthalpy and entropy densities (∆h and ∆s) and temperature rate Ṫ used 558

during the experiment (Equation 77). 559

βs = − 4qm

Ṫ∆s∆h
(77) 560

Based on the pre-defined Gibbs free energy density mapping and initial βs, a first Boltzmann 561

reversible based DSC simulation is processed (result is shown in Figure 13a). βs is then used to 562

define the appropriate unit volume Vu at the transformation temperature. A second simulation 563

using a temperature dependent βs can be performed (Figure 13b). We assume next that all 564

transformation types µ→ (j → i) share the same germination barrier dgc related to the delay 565
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between forward and reverse DSC peaks. The germination barrier dg(j, i, dt = 0) for all 566

transformation types verifies: 567

dgc(i, j, t = 0) = dgc(dt = 0)∀(i, j), i 6= j (78) 568

dgc(i, i, dt = 0) =∞∀i (79) 569

The strong penalty used in the second relation is introduced to forbid any self transformation. 570

After several tries, the uniform germination barrier dgc can be estimated (Figure 13c). Optimized 571

values for NiTi used in the experiments are: 572

N = 1e5; (80) 573

c = 8.5× 10−7 s−1 (81) 574

dgc(dt = 0) =
− log(c)

βs
= 15.2× 106 J m−3 (82) 575

A third (and more correct) simulation of DSC is obtained. But as we can see in Figure 13c, the 576

transformation delay does not differ for M to R forward and R to M reverse peaks. Indeed the 577

lowest crystalline symmetry of martensite variants induces the largest meta-stability barrier for 578

other variant types to transform into. The additional non-compressible germination term dga is 579

consequently considered for the transformation of austenite and R phase into martensite (dgaA−M 580

and dgaR−M ) in order to reduce the temperature hysteresis for A-R transformation keeping a high 581

M-R hysteresis. Optimized values are given below: 582

dgaA−M = 6.5× 106 J m−3 ∀(i, j), i 6= j (83)

dgaR−M = 5.5× 106 J m−3 ∀(i, j), i 6= j (84)

dgaA−R = 1× 106 J m−3 ∀(i, j), i 6= j (85)

• (j, i)→ Transformation between A/M dga(j, i) = dgaA−M 583

• (j, i)→ Transformation between R/M dga(j, i) = dgaR−M 584

• (j, i)→ Otherwise dga(j, i) = dgaA−R 585

The global germination barrier is finally given by:

dg(j, i, dt) = dgc(dt) + dga(j, i) (86)

With this ad-hoc correction, the numerical simulation of DSC process converges towards the 586

experimental observation as illustrated in Figure 13d. 587

However it can be observed that the simulated transformation peak from R phase towards 588

martensite is ’sharper’ than the experimental one. Indeed, βs parameter (and associated unit 589

volume) is identified using only one peak (here the A to R-phase peak) of two possible peaks, 590

supposing a same shape of the two peaks. This is not the case. Improvements are possible and 591

will be addressed in conclusion, but this drawback is not detrimental for other modeling aspects. 592
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(a) Simulation with reversible Boltzmann model
and βs defined as a constant

(b) Simulation with reversible Boltzmann

model and βs =
Vunit

kbT

(c) Simulation with uniform germination bar-
rier - 1500 tests

(d) Simulation with dgA→M =
6.5× 106 J m−3 - 1500 tests

Figure 13: Germination barrier calibration based on DSC scan, Ṫ = 5 K min−1

5 Several examples of virtual tests 593

In this section, a series of virtual loading of Ni-Ti polycrystal (using the parameters identified in 594

the previous section) is proposed. This series allows an illustration of the performance of the 595

energy based stochastic model to be presented. Among those, we choose to present simulations, 596

from the most classical to the most challenging cases: pseudo-elasticity under tension and 597

compression at various temperature and stress rate, one-way shape memory effect under tension 598

and compression, two ways shape memory effect and 2D plane-stress loading (deformation 599

threshold, non proportional loading). 600

It must be underlined as a major point that a validation of the modeling by a point to point 601

comparison to experimental results would require to implement the RVE model in a numerical 602

model (see for example the finite difference approach developed in [11]). Indeed, the stochastic 603

multiscale model is unable to reproduce strain localization bands as observed in the experiments 604

reported in subsection 4.3 and in many other experiments reported in the literature. A strict 605

validation is consequently not reachable since we only present in this paper a modeling of RVE. 606

For the same reason (thermal boundary conditions cannot be modeled), the heat emission (or 607

absorption) due to phase transformation was neglected in most simulations presented in this 608

section (k =∞). Anisothermal situations are illustrated only for the 1D tensile loading at the 609

end of this section. In the following, some Gibbs free energy density of variants are plotted vs. 610

time for a single crystal tensile strained along the < 111 > axis of the austenite parent phase 611

(Φ1 = −π/2,Ψ = −acos(1/
√

3),Φ2 = π/4). Plots giving the average phase volume fractions 612

concern the entire RVE. 613

5.1 Simulation of 1D tensile loading 614

A quasi-static stress-controlled tensile loading and unloading is simulated at two different 615

temperatures T = 293K and T = 303K, the loading protocol is synthesized as follows: 616
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• 1D Load at T = 303K : Apply stress-controlled load and unload with a speed 617

v = 1 MPa s−1 at T = 303K, with a maximum amplitude of σmax = 500 MPa 618

• 1D Load at T = 293K : Apply stress-controlled load and unload with a speed 619

v = 1 MPa s−1 at T = 293K, with a minimum amplitude of σmax = 500 MPa 620

Figure 14 shows respectively: the associated temporal evolution of phases volume fractions, the 621

Gibbs free energy density evolution of each variant in the selected grain, and the modeled 622

stress-strain response of the material at different temperatures. The general comments that can 623

be given are: 624

• General trends for Ni-Ti pseudo-elastic behavior are observed, in accordance with 625

experiments reported in the literature [33]; the mechanical hysteresis is remarkably 626

modeled; 627

• The RVE has been fully transformed at maximum stress load leading to an axial 628

transformation strain of about 11%. This deformation level may appear too high. This is a 629

common defect when a homogeneous stress assumption is used [13]. Value reached is 630

however in accordance with the parameters of the Bain matrices. 631

• At T = 303K, martensite transformation is fully accomplished at a higher maximum stress 632

level compared to T = 293K. 633

• The phase transformation threshold increases following a temperature sensitivity of about 634

∆σ/∆T ' 6.4 MPa K−1. 635
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(a) Phases volume fraction as function of stress: (Left)T = 293 K (Right) T = 303 K

(b) Gibbs free energy density evolution of each variant:(Left)T = 293 K (Right) T = 303 K
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(c) Numerical stress/strain response at the two different temperatures for single and polycrystal

Figure 14: 1D tensile loading/unloading at different room temperatures.

5.2 Simulation of 1D tension-compression loading 636

In literature, for nearly equiatomic NiTi SMA at room temperature, the stress threshold in 637

compression is slightly higher than in tension ([26]). A virtual loading is applied in order to 638

simulate this asymmetry. The loading protocol can be summarized in: 639

• 1D stress-controlled tensile load and unload with a speed v = 1 MPa s−1 at T = 293K, with 640

a maximum amplitude of σmax = 500 MPa 641

• 1D stress-controlled compression load and unload with a speed v = 1 MPa s−1 at 642

T = 293K, with a maximum amplitude of σmin = −500 MPa 643

Figure 15 shows respectively: the Gibbs free energy density evolution of each variant in the 644

selected grain, numerical stress/strain response for polycrystal and single crystal strained along 645

< 111 > direction and the associated temporal evolution of phases volume fractions. The general 646

comments that can be given are: 647

• General expected trends are observed (see some typical experimental results by [14]); 648

• In Figure 15a, it is clearly observed that martensite variants activated during tension are 649

different from martensite variants activated during compression; 650

• This selection leads to the asymmetry observed for the tension vs. compression stress-strain 651

response (Figure 15b), and is consistent with experimental observations [14]; 652

• Under compression, the presence of R-phase is observed during both the loading and 653

unloading stages before austenite transformation starts. As seen in Figure 15a for single 654

crystal loaded along < 111 > direction, the R phase variant (R14) has the lowest Gibbs 655

potential at σmin = −500 MPa. Consequently a large volume fraction of R phase is 656

expected after full loading and unloading, as seen in Figure 15c, which induces a significant 657

residual strain of about εres = 2%. On the contrary, under tension, several martensite 658
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variants are more stable than the R phase variants at higher stress level. As a result, the 659

volume fraction of R phase as predicted by the simulation is low. The 660

presence/non-presence of R phase is potentially the principal factor inducing the 661

asymmetrical behavior between tension and compression. It leads on the other hand to an 662

initial threshold in compression apparently close to the threshold in tension for the single 663

crystal loaded along 〈111〉 direction. However a numerical test carried out at higher 664

compression stress shows that a R → M transformation occurs at −1000 MPa, allowing the 665

expected tension/compression asymmetry to be obtained. 666
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(c) Phases volume fraction as function of stress for tension(up) and compres-
sion(down) for a single crystal strained along < 111 > direction.

Figure 15: 1D tension/compression loading at room temperature (T=293 K

5.3 Pseudoelasticity and partial load 667

In this subsection, some partial tensile loading/unloading tests have been simulated, 668

corresponding to a situation where the stress level is insufficient to fully transform the austenite 669

into martensite. This simulation especially allows the effect of temporal relaxation associated 670

with the germination barrier to be illustrated. The following loadings are considered: 671

• Full Tensile Load: stress-controlled tensile load and unload with a speed v = 1 MPa s−1 at 672

T = 293K, with a maximum amplitude of σmax = 500 MPa 673

• Partial Tensile Load 1: stress-controlled tensile load and unload with a speed 674

v = 1 MPa s−1 at T = 293K, with a maximum amplitude of σmax = 190 MPa 675

• Partial Tensile Load 2: stress-controlled tensile load and unload with a speed 676

v = 1 MPa s−1 at T = 293K, with a maximum amplitude of σmax = 190 MPa; stress is kept 677

constant for 200s at the maximum stress amplitude level before unloading. 678
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(b) Stress/strain simulation

Figure 16: 1D tension/compression partial loadings at room temperature (T=293K)
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The comments that can be given are: 679

• As we can see in Figure 16a and Figure 16b, the partial load 1 illustrates the germination 680

barrier delays in two transformation directions (A→M and M → A). For partial load 1, 681

when stress unload begins, the RVE is still far away from equilibrium state, thus the 682

stress/strain curve does not immediately go back to the elastic regime. A narrow non linear 683

region is needed to overcome the germination barrier for M → A transformation initiation. 684

• However, if we hold the stress level as constant for a long time instead of immediately 685

unload the sample (case of partial load 2), transformation from A→M and deformation 686

still increases until a certain martensite volume fraction is reached. This is a direct example 687

of temporal relaxation for germination barrier. When the Gibbs free energy density 688

between variants is not enough to bypass instant germination barrier, it takes a longer time 689

to converge towards the equilibrium state (see Equation 37). 690

• For the case of partial load 2, the unload begins after the NiTi SMA reaches its equilibrium 691

state (see Figure 16a). At that time, the polycrystal needs to bypass a germination barrier 692

before any M → A transformation initializes, leading to an elastic unloading part. 693

• This point illustrates that an extremely low strain rate would be required to reach the 694

’true’ static behavior, due to the time constant associated with the stochastic process. 695

Stress threshold and hysteresis loop are sensitive to this process, superimposed to classical 696

thermal effects (not accounted for in this simulation). 697

5.4 Simulation of one way shape memory effect(OWSME) 698

The one way shape memory effect of SMA appears when the alloy is in its cold state (below 699

austenite start temperature T ≤ As, mainly indicating a martensite state). The alloy can be 700

stretched and still hold the permanent deformation after unloading, until it is heated above the 701

M → A transition temperature [29] when the deformation is recovered. We propose hereafter to 702

simulate a one way shape memory effect for both tension and compression of NiTi polycrystal. 703

Let consider the following steps illustrated by letters (A to K): 704

• From A to F: 705

– A → B: NiTi polycrystal is cooled at T = 263 K; 706

– B → C → D: a tensile loading up with a maximum stress σmax = 100 MPa is first 707

applied. The material is then unloaded to zero; 708

– D → E → F: the material is heated up to T = 373 K (above the M → A 709

transformation temperature) and then cooled to T = 263 K. 710

• From F to J: the same steps are applied under compression 711

Figure 18a and 18b plot the associated variation of Gibbs free energy density and variants 712

volume fraction respectively in the reference single crystal. 713

The comments that can be given are: 714

• Initial cooling shifts points in Figure 17 from A to B (or E to F for compression). At point 715

B and F. It must be first observed that R phase is dominant at this temperature. R phase 716

variants are equiprobable (equivalent in volume fraction) as illustrated in Figure 18b. By 717

applying the stress loading, R phase variants whose transformation strain is mainly 718

oriented along the loading direction are favored in tension. The same variants are unfavored 719

under compression leading to an asymmetric selection of variant types and numbers (in 720

accordance with their Gibbs free energy density as illustrated in Figure 18a). Selected 721

variants remain stable during unloading between C and D (or G and H under compression), 722

leading to a permanent strain even when the stress is completely removed. The associated 723

maximum eigenvalue of transformation matrix for R phase is around εmax ' 2%, which 724

explains the maximum value for permanent strain observed during OWSME cycle. Despite 725

some few differences of stress threshold, results of the modelling are in very good agreement 726

with the experimental results reported in [20]. 727

• Asymmetry of OWSME between tension and compression is clearly illustrated in relation 728

with the asymmetric selection of variant types and numbers in grains, although the 729

reorientation mechanism between tension and compression has nearly the same stress 730

threshold according to the definition of the germination energy. Indeed, it is possible 731

following the proposition of some authors [30] to make a more complete identification of 732

germination matrix dg(i, j) that could lead to an improvement of the modeling results. 733
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Figure 17: Simulation of OWSME in tension and compression

5.5 Simulation of stress-assisted two ways shape memory effect 734

(SA-TWSME) 735

Stress-assisted two ways shape memory effect refers to the fact that SMA may remember two 736

different shapes: one at high temperature and the other at low temperature. A material that 737

exhibits a shape memory effect during both heating and cooling is a two ways shape memory 738

effect material. The loading path that helps to produce the two ways shape memory effect of 739

NiTi polycrystal (reference points are illustrated in Figure 19a) is the following: 740

• A-B-C-D: 1D tensile loading is applied to NiTi SMA. The stress is held as constant 741

σ = 250 MPa, and a thermal cycle consisting of a constant rate heating and cooling is 742

applied with a maximum amplitude Tmax = 373 K. 743

• D-E-F-G: From the end point of previous cycle, the applied stress is raised up and held as 744

constant σ = 300 MPa, and a second thermal cycle consisting of a constant rate heating and 745

cooling is applied with a maximum amplitude Tmax = 373 K. 746

Figure 19a illustrates the associated stress-strain behavior. The simulation plotted in Figure 19b 747

illustrates how the thermal loading at two different stress levels (σ = 250, 300 MPa) can change 748

the volume fraction of the different phases. For the two cycles investigated, the NiTi polycrystal 749

always returns to its shape at the end of thermal loading. At higher stress level start (σ = 300 750

MPa), the thermal hysteresis area is higher because of a higher amount of martensite phase 751

involved in the transformation (Figure 19b). The higher temperature threshold at high stress 752

level for SA-TWSME can be explained by the fact that martensite variants are more stable. A 753

higher temperature is required to destabilize this phase. Again, to the best knowledge of authors, 754

very few models are able to simulate such kind of complex behavior, for single or polycrystals. 755
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(a) Gibbs free energy density of variants

(b) Variants volume fraction evolution

Figure 18: The evolution of Gibbs free energy density of variants
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(a) Applied 1D tensile load and two thermal cycles
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Figure 19: Stress-assisted two ways shape memory effect

5.6 Proportional / non proportional biaxial loading - 2D phase 756

mapping 757

The stochastic multiscale model can simulate the effect of a multiaxial mechanical loading. Its 758

intrinsic hysteresis makes of course the loading path part of the model’s response. Situations that 759

can be tested are then innumerable. We decided to focus on a simple biaxial loading since some 760

biaxial experiments are available in literature allowing a model/experiment comparison. A 761

proportional stress-controlled loading is first applied on the polycrystal given by : 762

σσσ = s(t)

 cos θ 0 0
0 sin θ 0
0 0 0

 (87)

s(t) = [0 : 1 : 1000 1000 : −1 : 0] MPa (88)

θ = [0 : 5 : 355] degree (89)

The forward transformation is defined for proportional load s(t) = [0 : 1 : 1000] MPa and the 763

backward transformation is defined for corresponding unload s(t) = [1000 : −1 : 0] MPa. Each 764

simulation is performed at constant angle θ for a constant temperature T=303K. The simulation 765

is repeated for each angle, allowing a discrete mapping of the stress plane. Many figures can of 766

course be drawn. We decided to illustrate this loading by plotting the volume fraction of A, R 767
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and M phases during loading and unloading (see respectively Figure 20a to Figure 21d). These 768

figures illustrate clearly the global shape of the transformation threshold in the stress plane. 769

(a) Loading (b) Unloading

Figure 20: Austenite phase mapping under proportional stress condition.

(a) R-phase - Loading (b) R-phase - Unloading

(c) Martensite - Loading (d) Martensite - Unloading

Figure 21: R phase and martensite phase mapping under proportional stress condition.

As expected, the forward transformation leads to a larger stress threshold compared to backward 770

transformation, and the hysteresis between loading and unloading is consistent. However, there 771

exists an unexpected area (narrow cone) where R phase concentration remains high along 772

σ1 = σ2 axis (σ > 0). Indeed, depending on their orientation, a significant amount of grains does 773

not transform from R to M phase under equibiaxial loading. The Gibbs free energy density of 774

some R phase variants remains lower than the Gibbs free energy density of some corresponding 775

M phase variants whatever the stress level ! Some validation of such result would require for 776

example in-situ XRD measurement as proposed in [6]. 777
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Transformation thresholds under biaxial loading are available in literature [22][20]. They are 778

always defined using a deformation criterium. Figure 22 illustrates the transformation threshold 779

from the SMSM for an equivalent transformation strain of 0.6% at 293 K and 303 K (a Levy-Mises 780

equivalent strain (Equation 90) has been chosen to define the deformation criterium). This result 781

is in very good agreement with experimental results and the phenomenological modeling of [22]. 782

εtreq =

√
2

3
εεεtr : εεεtr (90)
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Figure 22: Simulation of the transformation threshold defined by Levy-Mises equivalent transfor-
mation strain at 0.6% for NiTi polycrystal at 293 K and 303 K.

The stochastic multiscale model is an hysteretic modeling. Non proportional loading and 783

sensitivity to stress path can consequently be tested. These points are highlighted in the next 784

figures where the following paths have been used in (σxx, σyy) plane: 785

• Path 1: a quasi static stress-controlled uniaxial loading is first applied along ~x until 786

σxx = 600MPa is reached. This stress is hold and a second stress loading is gradually 787

applied along ~y direction until σyy=600 MPa, reaching the equibiaxial point 788

(σxx, σyy) = (600, 600) MPa. 789

• Path 2: ~x and ~y axes have been inverted comparing to path 1. The final stress point is 790

exactly the same. 791

As we can see in Figure 23, the strain (total strain) response of NiTi polycrystal for paths 1 and 792

2 is nearly symmetrical regarding to εxx = εyy axis (εzz component exists but has not been 793

plotted), in accordance with the transverse isotropic texture of the material, but the strain levels 794

at the final point are strongly different highlighting the strong non-linear and hysteretic character 795

of the material behavior. Some comparisons with experiments should be necessary too to validate 796

the modeling. 797
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Figure 23: Illustration of the material behavior in case of non proportional loading and sensitivity
to the stress path: Stress and corresponding total strain paths

5.7 Pseudoelasticity and heat dissipation 798

All numerical simulations presented in this section until now have been obtained using isothermal 799

condition (k =∞). This choice has been made for an easier interpretation of results and because 800

an anisothermal condition can be seen as artificial for the modeling of a RVE. The influence of 801

heat dissipation and exchange of NiTi polycrystal can however be illustrated for all previous 802

cases. It must be kept in mind that the validity of the results remains questionable considering 803

the fact that a RVE is not a structure. A simple test case is proposed as an illustration: it is a 804

1D tensile stress controlled loading and unloading, using a stress rate σ̇ = 1 MPas−1 and a 805

maximum stress σmax = 600 MPa at T = 293K (initial and ambient temperature). Three 806

different heat dissipation conditions are applied: 807

• Adiabatic: k = 0 J.m−3.K−1 808

• Isothermal: k =∞ (see subsection 5.1) 809

• moderate heat exchange: k = 11.5 kW m−3 K−1. This value corresponds as a heat exchange 810

coefficient of about 20 W m−2 K−1 for the sample presented in Figure 6. 811
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(a) Evolution of variants volume fractions as function of stress
for the selected grain

(b) Temperature evolution as function of stress

(c) stress-strain curves

Figure 24: Illustration of pseudoelastic behavior from SMSM depending on thermal conditions and
comparison to experimental data for NiTi SMA.

The following comments can be proposed: 812

• Anisothermal situation has already been discussed. It corresponds to a perfect convection 813

(or conduction) situation describing a quasistatic transformation; 814

• As we can see in Figure 24b, the emission of latent heat due to A→M phase 815

transformation leads to a very high temperature increase reaching up to T=355 K for the 816

adiabatic situation. This temperature increase is accompanied by a concomitant phase 817

transformation threshold increase (see Figure 24c). Of course, the initial temperature of 818

NiTi polycrystal (T = 293K) is almost fully recovered during unloading due to the heat 819

absorption associated with the backward phase transformation (M → A); 820

• In case of moderate heat exchange, the latent heat due to A→M phase transformation 821

acts as heat source that brings to a temperature increase up to T = 305K during loading. 822

Indeed a part of power source is transmitted to the (virtual) surrounding medium. The 823

temperature of NiTi polycrystal decreases next to T = 282K during the unloading reaching 824

a temperature below the ambient temperature. These small temperature variations result 825

in a moderate stress threshold increase during loading and a moderate stress threshold 826

decrease during unloading. This phenomenon leads to a significant increase of hysteresis 827

area, comparing to the isothermal situation (see Figure 24c). These results are in 828

qualitative agreement with the experimental results from Mac Cormick (1993) [28]. They 829

are in agreement with the macroscopic modeling results and comments from Boyd and 830

Lagoudas (1996) [5] too. The latter highlight in particular the phenomenon of ”thermal 831

hardening” of SMA here clearly observed. The same authors also obtained an adiabatic 832
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cycle surface smaller than the isothermal cycle surface, resulting from a temperature 833

assistance effect on transformations. Interpretation of adiabatic cycle surface remains 834

however complex given the co-existence of the three phases. 835

6 Conclusion 836

In this paper, a stochastic multiscale thermomechanical modeling of shape memory alloys has 837

been presented. The stochastic description of the volume fraction of phase variants is ensured by 838

a kinetic Monte-Carlo algorithm, using the local Gibbs free energy density as a main input. This 839

model includes an instantaneous description of the germination process from variant to variant. 840

It leads to simulate the hysteretic and non-linear mechanical behavior of SMA and the phase 841

volume fraction kinetic includes the nucleation of the so-called R-phase usually omitted in former 842

models. Only few parameters are required to describe the hysteretic behavior at the grain and 843

RVE scales by successive homogenizations: most of them can be obtained via a simple DSC scan. 844

This model is not, however, a structure model: it only allows the modeling of a RVE. A 845

polycrystalline NiTi has been used to illustrate the parameters identification. However the 846

deformation of this material highlights strong localization bands whose description is unreachable 847

by the modeling. Any comparison between model and experiments for validation purposes is 848

therefore not possible. A crucial stage must consist in the implementation of this model in a 849

structure calculation using finite elements or finite differences modeling. 850

The various illustrations proposed (therefore assuming the material to be homogeneous) are 851

nevertheless in very good qualitative agreement with the various experimental results reported in 852

the literature. : DSC scan; pseudo-elasticity under tension and compression; hysteresis loops for 853

partial transformation; one way shape memory effect and stress-assisted two ways shape memory 854

effect; tension-compression asymmetry, biaxial proportionnal and non-proportional loading 855

effects. 856

To the best knowledge of authors, no phenomenological model has demonstrated such capabilities 857

to describe so completely a so wide diversity of behaviors. The model demonstrated its strength 858

especially when phase transformation induced by multi-axial thermomechanical load was not fully 859

finished and unloading begins. [18] and [30] has presented a summary of most classical existing 860

models in the recent twenty years. A brief comparison between several most classical models 861

including our model is proposed in Table 6, underlining the relatively universal character of the 862

present modeling. On the other hand, the robustness and simplicity of stochastic modeling must 863

be underlined: for example, the computation time to obtain a 2D transformation stress threshold 864

(3.6× 106 stress points !) takes 8 hours for the investigated NiTi polycrystalline containing 413 865

grains (about 8 ms per point) with a processing power of 20 parallel ×2.2 GHz computers. 866

Improvements are however possible. It has been for example shown that the R-phase to 867

martensite peak emission during a DSC scan is not properly modeled (insufficient width). Indeed 868

the mechanical incompatibility is not taken into account at the variant scale. The 869

implementation of a spatial heterogeneity of germination and associated variants prohibition (see 870

the work of [36]) would probably slow down the transformation. The definition of a specific 871

interaction matrix is another possible solution to take these phenomena into account in a 872

modeling, as proposed by [35] and [31]). 873

No validation of the model in the strict sense of the term has been proposed in this paper. As 874

already explained, this essential step can only be done once this model implemented in a 875

structure calculation allowing to adequately reproduce heterogeneous chemical, thermal and 876

mechanical fields. This work is in progress. 877
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Appendices 878

A Kinetic Monte-Carlo algorithm flowchart at grain scale 879

Specify σσσ and T , then
obtain g(i,σσσ, T ) at time t

Init. at step
time t ∈ [tn, tn+1]

df

dt
(i) =

n∑
j=1

M(i, j)f(j)

obtain ζ(t) and γ(µ, t)
and transition prob-
ablity function p1(τ)

Check if
τ ≤ dt

Evaluate Mas-
ter Equation

Time step RNG

Transformation
triggered,

RNG µ based
on p2(µ|τ)

No trans-
formation

Reposition
t between
tn and tn+1

Transformation
type RNG

t′ = t+ τ and dt = τ

df(µ, t) = M(j, i)f(j, t)τ

f(i, t′) = f(i, t) + df(µ, t)

f(j, t′) = f(j, t)− df(µ, t)

t = t′

Update volume
fraction and time

Check if
t > tstop

Time-out
verification

End loop, return interpo-
lated volume fractions fg(t)

Output f

Update T by
heat equation

if needed

update M(i, j) at t

Generating τ based on p1(τ)

Based on (τ, µ)

µ = 0, τ = dt

τ > dt

τ < dt

t < tstop, move on

t > tstop
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B Inversion Monte-Carlo Method to implement 881

Monte-Carlo step 882

The description of KMC in subsection 3.4 is nearly complete, except for how we randomly 883

generate transformation variables (τ, µ) at each step (this pair of variable is usually called 884

’Monte-Carlo step’). In this paper, we adopt the direct method (Inversion Monte-Carlo Method 885

[32] and [3]) to implement the Monte-Carlo step. Another numerical implementation approach 886

(called as ’first transformation method’) exists. Both methods have been demonstrated to be 887

exact and rigorous [10]). When the system exceeds three transformation types, the direct method 888

is more sufficient (for the case of Ni-Ti polycrystal, we have 272 different transformation types 889

between variants). 890

The ’inversion Monte-Carlo method’ provides a stochastic application to generate random 891

variables according to prescribed density probability functions, or by using random numbers 892

generated in the unit interval [0,1] (RNG application is available in softwares such as Matlab and 893

C++). 894

In this appendix, we detail this well known technique for both continuous variable applied for the 895

case of p1(τ)→ τ and discrete variable applied for the case of p2(µ|τ)→ µ. 896

We seek to generate a random variable y according to the one-variable density function p(y). By 897

definition, the probability that y is generated inside the interval [y′, y′ + dy] is p(y′)dy. Based on 898

it, we can build a parent probability function F : 899

F (y) =

∫ y

0

p(y′)dy′ (91) 900

Trivially, F (y0) measures the probability that variable y ≤ y0 (this function is defined as 901

probability distribution function). It must be noticed that with the normality of p(y), F is built 902

to have this type of property and its monotony is ensured: 903

F (y = 0) = 0 and F (y =∞) = 1 (92)

p(y) ≥ 0 (93)

The basic philosophy of ’inversion method’ is that in order to generate a variable y based on p(y), 904

it is easy to select a random number (RN) r belonging to the unit interval [0, 1] and then take for 905

y a value that satisfies: 906

y = F−1(r) (94) 907

Where F−1 is the inverse function of F (the existence of F−1 is guaranteed by Equation 92 and 908

Equation 93). 909

Thus considering probability p1(τ), the parent function F1(τ) can be written as: 910

F1(τ) = 1− exp(−ζτ) (95)

τ =
1

ζ
log(

1

r
) (96)

With r uniformly distributed in the unit interval [0, 1] 911

In discrete case, the procedure is even more trivial. We calculate: 912

F2(µ) =
∑
µ

p2(µ|τ) (97)

F2(µ− 1) ≤ r ≤ F2(µ) (98)



C Convergence of KMC algorithm - influence of 913

independent selections 914

When a complex thermo-mechanical loading is applied, the crystal system may encounter a 915

scenario where several variants exhibit the same Gibbs free energy density at current time, 916

meaning that the activation of these transformation types are equiprobable. 917

Unfortunately, KMC randomly choose one of the specific transformation types and moves 918

forward. Convergence to solution is not guaranteed. Other KMC tests are necessary. Indeed, 919

results are probably different but have the same tendency. In stochastic theory, the stochastic 920

average eventually converges towards the macroscopic average when enough independent tests 921

based on probability functions are performed. 922

Figure 25 illustrates this progressive convergence for DSC simulation with an increasing number 923

of numerical tests. 924

(a) 50 tests (b) 150 tests

(c) 300 tests (d) 3000 tests

Figure 25: Relation between convergence and number of independent tests



D Heat equation in the framework of a stochastic 925

approach 926

The heat equation in the framework of a stochastic approach can be derived as follows. 927

We consider first a simple two phases (1,2) problem so that their volume fraction verifies 928

f1 = 1− ψ,f2 = ψ and are consequently only give by parameter ψ. Volume fractions verify: 929

f1 + f2 = 1 (99) 930

The equilibrium is supposed to be changed by stress σσσ or temperature T as homogeneous 931

quantities over the volume. Some complementary usual hypotheses are used: 932

• homogeneous mass density ρ 933

• homogeneous stiffness C 934

• homogeneous heat capacity cp 935

• homogeneous thermal conductivity κ 936

Gibbs free energy density of both phases is given by (s1 and s2 are written as temperature 937

independent. Results are the same by considering them as temperature dependent): 938

g1 = h1 − Ts1 −
1

2
σσσ : C : σσσ − εεεtr1 : σσσ

g2 = h2 − Ts2 −
1

2
σσσ : C : σσσ − εεεtr2 : σσσ

(100) 939

The average Gibbs free energy density is simply given by: 940

g = f1g1 + f2g2 = ψ(g2− g1) + g1 (101) 941

leading to: 942

g = ψ(∆h− T∆s−∆εεεtr : σσσ) + h1 − Ts1 −
1

2
σσσ : C : σσσ − εεεtr1 : σσσ (102) 943

where ∆h = h2 − h1, ∆s = s2 − s1 and ∆εεεtr = εεεtr2 − εεεtr1 are the enthalpy density variation, 944

entropy density variation and transformation strain variation respectively. ψ is considered as an 945

internal variable of the macroscopic problem. so that g = g(ψ,σσσ, T ). 946

Total deformation εεε, total entropy density s and thermodynamic force X associated with volume 947

fraction ψ are obtained thanks to: 948

εεε = − dg
dσσσ

= C : σσσ + ψ∆εεεtr + εεεtr1 = f1εεε1 + f2εεε2

s = − dg
dT

= ψ∆s+ s1 = ψs2 + (1− ψ)s1 = f1s1 + f2s2

X = − dg
dψ

= −∆h+ T∆s+ ∆εεεtr : σσσ = g1− g2

(103) 949

Indeed, if X > 0, the Gibbs free energy density of phase 2 is lower than for phase 1. 950

Transformation is favored leading to an increase of phase 2 associated with phase fraction ψ. 951

This result is formally given by application of the second principle leading to the following 952

intrinsic inequality: 953

−Xψ̇ ≥ 0 (104) 954

The heat equation (without internal convection) related to this two phases system comes from 955

the application of energy conservation: 956

du

dt
= σσσ : ε̇εε+ qv − div(~qs) (105) 957

where qv represents the ”other” heat sources (that can be considered as zero here since all heat 958

sources are derived from the other terms) and ~qs is the heat flux vector. The introduction of the 959

decomposition given by Equation 106 with associated variables and the Fourier law 960

(Equation 107) in the energy conservation relationship leads to the heat equation after few 961

calculations (see Equation 108) [11] and [21]). 962

u = g + Ts+ σσσ : εεε (106) 963



~qs = −κ~∇(T ) (107) 964

ρcpṪ = −T dεεε

dT
: σ̇σσ + (X − T dX

dT
)ψ̇ + κ∆LT (108)

∆L indicates a Laplacian operator. 965

−T dεεε

dT
: σ̇σσ is the so-called thermoelasticity heat source term. This term is usually neglected in 966

phase transformation problems leading to few millikelvin temperature increase even in adiabatic 967

conditions (to be compared to dozens of Kelvin given by the second term). It will not be 968

considered in the modeling. Quantity (X − T dX
dT

) is the so-called latent heat denoted as L. It is 969

interesting to observe that this term is composed of the enthalpy density variation and a 970

mechanical energy associated with the transformation strain variation between the two phases: 971

L = X − T dX
dT

= h1 − h2 − σσσ : (εεεtr1 − εεεtr2 ) (109) 972

In the framework of the stochastic theory developed in the paper, transformation µ : i→ j at 973

time step τ is considered. This transition involves two variants (mother and child variants that 974

can belong or not to the same phase) making this situation very close to the two phases situation 975

illustrated above. A specific latent heat Lij can be derived allowing the thermal effect of all 976

possible i→ j transitions to be estimated. Equation 110 gives this latent heat introduced in the 977

new heat equation valuable at time instant τ for the considered µ : i→ j transition. 978

Lij = hi − hj − σσσ : (εεεtri − εεεtri ) (110) 979

The temperature increment associated with time step τ = tn − tn−1 is simply given by: 980

dT (τ, µ) =
1

ρcp
Lijdf(τ, µ) +

τ

ρcp
κ∆LT (111)
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