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Introduction

In 2009 in his thesis [START_REF] Gentry | A Fully Homomorphic Encryption Scheme[END_REF], G. Grentry proposed the first fully homomorphic encryption scheme. It was a revolution and it solves an open problem already stated by Rivest Shamir and Adelman when they invented RSA in [START_REF] Rivest | A Method for Obtaining Digital signatures and Public-Key Cryptosystems[END_REF]. Many advances have been done and nowadays we have some efficient implementations like for instance SEAL developed by Microsoft (SEAL, 2019). However for some applications like the inversion of a large matrix or multiplications of large matrices fully homomorphic encryption schemes can be very slow or produce large ciphertext or even be inexact. It is why all partial homomorphic encryptions like RSA [START_REF] Rivest | A Method for Obtaining Digital signatures and Public-Key Cryptosystems[END_REF], GM [START_REF] Goldwasser | Probabilistic encryption and how to play mental poker keeping secret all partial information[END_REF], ElGamal [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF], Benaloh [START_REF] Benaloh | Dense probabilistic encryption[END_REF][START_REF] Fousse | Benaloh's Dense Probabilistic Encryption Revisited[END_REF], Okamoto-Uchiyama [START_REF] Okamoto | A new publickey cryptosystem as secure as factoring[END_REF], [START_REF] Naccache | A new public key cryptosystem based on higher residues[END_REF], Paillier [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF] or Galbraith [START_REF] Galbraith | Elliptic Curve Paillier Schemes[END_REF], are still widely used. They can be used to solve such problems in reasonable among of time like in [START_REF] Ciucanu | Secure strassen-winograd matrix multiplication with mapreduce[END_REF].

Many cryptosystems rely on the Diffie-Hellman decision problem (DDH) [START_REF] Boneh | The decision diffie-hellman problem[END_REF][START_REF] Joux | Separating decision diffe-hellman to diffe hellmann in cryptographie groups[END_REF]) assumption, notably the ElGamal encryption scheme and the Cramer-Shoup encryption scheme [START_REF] Cramer | A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack[END_REF]. In (D. [START_REF] Boneh | Short group signatures[END_REF], Boneh et al. introduced the Decisional Linear Assumption (DLA) and a variation of ElGamal encryption scheme. Our aim is to improve this linear version of ElGamal encryption scheme using the same approach proposed in [START_REF] Sow | A new variant of el gamal's encryption and signatures schemes[END_REF].

Contributions. We propose the following results:

• Most of today's public key cryptosystems are resistant to various types of attacks and are effective. Their main role is the protection of communications so they guarantee the security of the data exchanged or stored. Thus, it will always be interesting to find a new encryption scheme or to improve a known one. It is in this context that we propose a linear Generalized ElGamal encryption scheme. The modifications are about the key generation which lead to a different encryption and decryption algorithms. Like linear ElGamal encryption, the linear Generalized ElGamal encryption scheme is IND-CPA secure under (DLA).

• We also propose the ElGamal and the Generalized ElGamal schemes from the generalized linear.

• We implement the algorithms and compare their performances with the original algorithms. Our performance evaluations show that the decryption algorithm is faster. We also demonstrate that our key generation algorithm is slower, but this is not a problem since this operation is usually done only once.

Related works. In 1985, Taher ElGamal [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF] proposed an encryption and signature scheme called ElGamal scheme.

In [START_REF] Hanoymak | On provable security of cryptographic schemes[END_REF], Turgut Hanoymak proves the security of ElGamal encryption scheme which is based on the hardness to solve the Computational Diffie-Hellman (CDH) and Decisional Diffie-Hellman (DDH) problems.

In (D. [START_REF] Boneh | Short group signatures[END_REF], Boneh et al. proposed a linear encryption scheme based on the El-Gamal encryption scheme. The linear ElGamal encryption scheme is IND-CPA secure under the (DLA).

In [START_REF] Sow | A new variant of el gamal's encryption and signatures schemes[END_REF], a modified variant of the ElGamal scheme is presented, and it is called Generalized ElGamal. As ElGamal's scheme, the Generalized ElGamal scheme is based on Decisional Diffie-Hellman Problem (DDH). In the Generalized ElGamal scheme, the decryption key size is smaller than those of ElGamal scheme. Hence the Generalized ElGamal scheme is more efficient than ElGamal scheme; since the decryption process is a bit faster. The encryption mechanism has the same efficiency than ElGamal encryption mechanism. But, the key generation algorithm is slower than the key generation algorithm of ElGamal scheme. However, this is not a problem since the key generation is done only once.

Outline of paper.

In Section 2, we present the original ElGamal encryption scheme and the Generalized ElGamal encryption scheme. In Section 3, we present the Linear assumption, the linear ElGamal encryption scheme and the ElGamal encryption scheme from the generalized linear. In Section 4, we propose the linear Generalized ElGamal encryption scheme and the Generalized ElGamal encryption scheme from the generalized linear. In Section 5, we propose a complexity analysis of our scheme. In Section 6.1, we present the curves showing the average time of the key generation, encryption and decryption algorithms of the ElGamal encryption scheme and the Generalized ElGamal encryption scheme. In Section 6.2, we also present the curves showing the average time of the key generation, encryption and decryption algorithms of the Linear ElGamal encryption scheme and the Linear Generalized ElGamal encryption scheme. Note that a full version with the security proofs is available on (Lafourcade et al., 2020).

ElGamal and Generalized ElGamal Encryption Schemes

We recall the ElGamal encryption scheme [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF] and the Generalized ElGamal encryption scheme [START_REF] Sow | A new variant of el gamal's encryption and signatures schemes[END_REF].

The ElGamal Encryption Scheme

Given a computational group scheme G, the ElGamal public-key encryption is defined as following [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF]: Key Generation Algorithm. For the creation of a public/secret key, Bob should do the following: 1. Select a finite cyclic group G of order d with generator g. 2. Select a random integer a such that 2 < a < d. 3. Compute h = g a in G. 4. The public key is pk = (G, d, g, h) and the secret key is sk = a.

Encryption Algorithm. To encrypt a message m for Bob, Alice should do the following: 1. Take pk = (G, d, g, h), the Bob's public key; 2. Select a random integer r such that 1

< r < d = #G; 3. Compute c 1 = g r and c 2 = m • h r in G; 4. The ciphertext is c = (c 1 , c 2 ).
Decryption Algorithm. To decrypt a ciphertext c, Bob should do the following: 1. Take sk = a the secret key. 2. Compute m = c 2 (c 1 ) a , we note that m ∈ G.

The plaintext is m.

Security proof of ElGamal encryption. We recall some theorems, which show the security of ElGamal encryption scheme under the CDH and DDH assumptions. Let GP an algorithm which takes 1 k and returns the public key pk = (G, d, g, h) of the ElGamal encryption scheme.

One-wayness under the CDH Assumption. If the CDH assumption holds with respect to GP , then the ElGamal encryption scheme is one-way.

Theorem 2.1. Let adversary A be a probabilistic polynomial-time algorithm against the ElGamal encryption scheme [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF] in the OW-CPA sense. Then there is a probabilistic polynomial-time algorithm B against GP solving the CDH problem such that: 

Adv CDH GP ,B (k) = Adv OW -CPA Π,A (k) 
Adv DDH GP ,B (k) = 1 2 • Adv IND-CPA Π,A (k) 
.

Semantic security. In (J. [START_REF] Katz | Introduction to modern cryptography[END_REF], Katz and al. prove the semantic security of the ElGamal encryption scheme.

Theorem 2.3. Under the DDH assumption, El-Gamal encryption scheme is semantically secure.

Generalized ElGamal Encryption Scheme

We give a key generation mechanism and a public key encryption algorithm [START_REF] Sow | A new variant of el gamal's encryption and signatures schemes[END_REF], which can be view as a slight modification of ElGamal's schemes [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF].

Key generation algorithm. To create a pair of public and private key, we do the following: 1. Select a cyclic group G with sufficiently large order d = #G such that G = g . 2. Select two random integers r and k sufficiently large such that 2 < k < d and r of size half the size of d with d = #G. Compute kd. 3. Compute with euclidean division algorithm, the pair (s,t) such that kd = rs + t where t = kd mod s. 4. Compute γ = g s and δ = g t in G; Note that γ = 1 and δ = 1. Then public key is ((γ, δ), G) and the private key is (r, G).

Encryption algorithm. To encrypt a message with the public key ((γ, δ), d, G), we do the following: 1. Select a random integer 2 < α < d = #G such that α and #G are co-prime. 2. Compute c 1 = γ α and λ = δ α in G, hence c 1 = 1 and λ = 1. 3. Transform the message m as an element of G and compute

c 2 = λm in G. The ciphertext is (c 1 , c 2 ).
Decryption algorithm. To decrypt a ciphertext of the form (c 1 , c 2 ) that is encrypted with the public key ((γ, δ), d, G) and knowing the associate secret key (r, G), we just need to compute c r 1 c 2 .

Provable security of the Generalized ElGamal Encryption Scheme.

One-wayness under the CDH Assumption.

Theorem 2.4. Under the CDH Assumption, the Generalized ElGamal encryption scheme is One-Way secure under Chosen Plaintext Attack (OW-CPA). That is, for a security parameter k, if there is an attacker A that inverse the Generalized El-Gamal encryption then we can build an algorithm B that solves CDH, it means that

Adv CDH GP ,B (k) = Adv OW -CPA Π,A (k) 
.

Indistinguishability under the DDH Assumption.

Theorem 2.5. Under the DDH Assumption, the Generalized ElGamal encryption scheme is indistinguishable under Chosen Plaintext Attacks, i.e., it is IND-CPA secure. So we have:

Adv DDH GP ,B (k) = 1 2 • Adv IND-CPA Π,A (k),
where A is an attacker of the Generalized ElGamal encryption and k the security parameter.

To justify the performance of Generalized ElGamal encryption scheme described in [START_REF] Sow | A new variant of el gamal's encryption and signatures schemes[END_REF] with respect to ElGamal encryption scheme, comparison curves in execution time of the key generation, encryption and decryption algorithms are performed (see Figure 1, Figure 2 and Figure 3).

3 Linear Encryption [START_REF] Boneh | Short group signatures[END_REF] introduced a decisional assumption, called Linear, intended to take the place of DDH in groups -in particular, bilinear groups [START_REF] Joux | Separating decision diffie-hellman from computational diffiehellman in cryptographic groups[END_REF] -where DDH is easy. For this setting, the Linear problem has desirable properties, as they have shown: it is hard if DDH is hard, but, at least in generic groups [START_REF] Shoup | Lower bounds for discrete logarithms and related problems[END_REF], it remains hard even if DDH is easy. Letting G be a cyclic multiplicative group of prime order p, and letting g 1 , g 2 , and g 3 be arbitrary generators of G, we consider the following problem: and it is equal to:

Linear Problem in G: Given g 1 , g 2 , g 3 , g a 1 , g b 2 , g c 3 ∈ G as input, output yes if a + b = c
|Pr[A(g 1 , g 2 , g 3 , g a 1 , g b 2 , g a+b 3 ) = yes : g 1 , g 2 , g 3 R ← G, a, b R ← Z p ] -Pr[A(g 1 , g 2 , g 3 , g a 1 , g b 2 , η) = yes : g 1 , g 2 , g 3 , η R ← G, a, b R ← Z p ]|
with the probability taken over the uniform random choice of the parameters to A and over the coin tosses of A. We say that an algorithm A(t,ε)-decides Linear in G if A runs in time at most t, and Adv linear A is at least ε. Definition 3.1. We say that the (t, ε)-Decision Linear Assumption holds in G if no algorithm (t, ε)-decides the Decision Linear problem in G.

The Linear problem is well defined in any group where DDH is well defined. It is mainly used in bilinear groups like in [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF]D. Boneh and Shacham, 2004a;[START_REF] Paterson | Cryptography from pairings[END_REF].

Linear ElGamal Encryption Scheme

Boneh et al proposed a linear encryption scheme based on the ElGamal encryption scheme. Given a computational group scheme G, the Linear ElGamal encryption scheme is defined as follows:

LE.Gg(1 λ ): Choose a random generator g 3 $ ← G and x 1 , x 2 $ ← Z p , and set g 1 ← g x -1 1 3 and g 2 ← g x -1 2 3 . The public key is pk = (g 1 , g 2 , g 3 ) ∈ G 3 ; the secret key is sk = (x 1 , x 2 ) ∈ Z 2 p . LE.Enc(pk, M): To encrypt a message M ∈ G, parse pk = (g 1 , g 2 , g 3 ) ∈ G 3 , choose random exponents r 1 , r 2 $ ← Z p , and set: u 1 ← g r 1 1 and u 2 ← g r 2 2 and u 3 ← Mg r 1 +r 2 3 . The ciphertext ct = (u 1 , u 2 , u 3 ) ∈ G 3 . LE.Dec(sk, ct): Parse the private key sk as (x 1 , x 2 ) ∈ Z 2 p and the ciphertext ct as (u 1 , u 2 , u 3 ) ∈ G 3 and compute M ← u 3 u -x 1 1 u -x 2 2 .
Correctness of decryption process. Since u 1 = g r 1 1 and u 2 = g r 2 2 , u 3 = Mg r 1 +r 2 3 we have:

u 3 /(u x 1 1 u x 2 2 ) = Mg r 1 +r 2 3 /((g r 1 1 ) x 1 (g r 2 2 ) x 2 ) = (Mg r 1 +r 2 3 )/(g r 1 3 g r 2 3 ) = M Theorem 3.2.
Under the Linear Assumption, ElGamal Encryption Scheme is IND-CPA secure (D. [START_REF] Boneh | Short group signatures[END_REF].

ElGamal from Generalized Linear

We define three functions: the setup function, denoted LE.Gg(), the encryption function, denoted LE.Enc() and the decryption function, denoted LE.Dec(). We now describe how these functions works.

LE.Gg(1 λ ) : Choose a random generator g n $ ← G and x 1 , x 2 , . . . , x n-1 $ ← Z p , and set: g 1 ← g 1/x 1 n , g 2 ← g 1/x 2 n , . . ., g n-1 ← g 1/x n-1 n . The public key is pk = (g 1 , g 2 , . . . , g n ) ∈ G n ; the secret key is sk = (x 1 , x 2 , . . . , x n-1 ) ∈ Z n-1 p . LE.Enc(pk, M): To encrypt a message M ∈ G, parse pk = (g 1 , g 2 , . . . , g n ) ∈ G n , choose random ex- ponents r 1 , r 2 , . . . , r n-1 $ ← Z p , and set: u 1 ← g r 1 1 , u 2 ← g r 2 2 , . . . u n ← Mg r 1 +r 2 +...+r n-1 n . the ci- phertext ct = (u 1 , u 2 , . . . , u n ) ∈ G n .
LE.Dec(sk, ct): Parse the private key sk as (x 1 , x 2 , . . . , x n-1 ) ∈ Z n-1 p and the ciphertext ct as

(u 1 , u 2 , . . . , u n ) ∈ G n ) ∈ G n and compute : M ← u n /(u x 1 1 u x 2 2 . . . u x n-1 n-1 )
4 Linear Generalized ElGamal Encryption Scheme

We present the Linear Generalized ElGamal encryption scheme, its security and the Generalized El-Gamal encryption scheme from the generalized linear.

Algorithms

Given a computational group scheme G, the Linear Generalized ElGamal encryption scheme is composed of the following three functions: the setup function, denoted LGE.Gg(), the encryption function, denoted LGE.Enc() and the decryption function, denoted LGE.Dec().

We now describe how these functions works.

LGE.Gg(1 λ ): Choose a random generator g

$ ← G and k $ ← Z d , r $ ← Z d/2 .
Compute (s,t) ∈ Z 2 d such that s ← kd r and t ← kd mod r and set g 1 ← g r , g 2 ← g s , and g 3 ← g t .

The public key is pk = (g 1 , g 2 , g 3 ) ∈ G 3 and the secret key is sk = (r, s,t)

∈ Z d/2 × Z 2 d . LGE.Enc(pk, M): To encrypt a message M ∈ G, parse pk = (g 1 , g 2 , g 3 ) ∈ G 3 , choose random ex- ponents α 1 , α 2 $ ← Z d , and set c 1 ← g α 1 1 and c 2 ← g α 2 2 and c 3 ← Mg α 1 +α 2 3 ; the ciphertext ct = (c 1 , c 2 , c 3 ) ∈ G 3 .
LGE.Dec(sk, ct): Parse the private key sk as (r, s,t)

∈ Z d/2 × Z 2 d and the ciphertext ct as (c 1 , c 2 , c 3 ) ∈ G 3 and compute M ← c s 1 c r 2 c 3 .
Before proving the security of our scheme in Theorem 4.1, we give its correctness.

Correctness of decryption process. Since c

1 = g α 1 1 , c 2 = g α 2 2 and c 3 = Mg α 1 +α 2 3
, we have:

c s 1 c r 2 c 3 = g α 1 s 1 g α 2 r 2 g α 1 +α 2 3 M = Mg α 1 rs g α 2 sr g (α 1 +α 2 )t = Mg (rs+t)(α 1 +α 2 ) = Mg kd(α 1 +α 2 ) = M
Theorem 4.1. The Linear Generalized ElGamal Encryption Scheme is IND-CPA secure under the Decisional Linear Assumption (DLA).

Generalized ElGamal from Generalized Linear

Given a computational group scheme G, the Generalized ElGamal encryption scheme from the generalized linear is defined as follows:

LGE.Gg(1 λ ): Choose a random generator g

$ ← G and k, r i $ ← Z d × Z d/2 , compute (s i ,t i ) ∈ Z 2 d such that s i ← kd r i and t i ← kd mod r i , 1 ≤ i ≤ n 3 and set for 0 ≤ k ≤ n 3 -1: g 3k+1 ← g r k+1 , g 3k+2 ← g s k+1 and g 3k+3 ← g t k+1 . The public key is pk = (g 1 , g 2 , g 3 , . . . , g n-2 , g n-1 , g n ) ∈ G n and the secret key is sk = (r i , s i ,t i ) ∈ Z d/2 × Z 2 d , 1 ≤ i ≤ n 3 .
LGE.Enc(pk, M): . To encrypt a message M ∈ G, parse pk = (g 1 , g 2 , g 3 , . . . ,

g n-2 , g n-1 , g n ) ∈ G n , choose random exponents α 1 , α 2 , . . . , α n-1 $ ← Z d , and set 0 ≤ k ≤ n 3 -1 : c 3k+1 ← g α 3k+1 3k+1 , c 3k+2 ← g α 3k+2 3k+2 , c 3k+3 ← Mg α 3k+1 +α 3k+2 3k+3 . The ciphertext ct is (c 3k+1 , c 3k+2 , c 3k+3 ) ∈ G 3 .
LGE.Dec(sk, ct): Parse the private key sk as (r i , s i ,t i )

∈ Z d/2 × Z 2 d , 1 ≤ i ≤ n/3 and the ciphertext ct as (c 1 , c 2 , . . . , c n ) ∈ G n and compute M ← n n ∏ k=1 c s k+1 3k+1 c r k+1 3k+2 c 3k+3 .

Complexity Evaluation

We present a complexity comparison between the Linear ElGamal and the Linear Generalized ElGamal schemes. We give in this section a theoretical complexity where we study the number of computations needed in each algorithm (key generation, encryption and decryption). Let us set the following parameters: • M = multiplication's number,

• P = power's number (exponent), Linear ElGamal Linear General- ized ElGamal Size Key secret key ∈ Z q , q = o(G) secret key ∈ Z d , d = o(G) Key Gen P = 2, M = 0, nP = 3, nS = 2 P = 3, M = 1, nP = 3, nS = 3 Encryption P = 3, M = 1 P = 3, M = 1 Decryption P = 2, M = 2, I = 2 P = 2, M = 2, I = 0
• S = sum's number,

• I = inverse's number,

• nP = number of parameters of the public key,

• nS = number of parameters of the private key.

To present the performance of the two encryption schemes, we study the number of operations performed (according to the parameters described) in the key generation, encryption and decryption processes.

From the comparative Table 1, we can clearly see that Linear Generalized ElGamal encryption scheme is slower at generating keys but is faster for decryption the exponent used in the decryption algorithm has a size half of the order of the group. Moreover, we see that there is no inverse computed (even though this difference brings only a slight improvement).

Performance Evaluations

All our algorithms have been programmed with SageMath (The Sage Developers, 2020). The tests are performed with security parameters of size 32, 64, 128, 512, 1024 bits. Some even go up to 2048 bits. We start by comparing ElGamal and Generalized El-Gamal1 before comparing Linear ElGamal and Linear Generalized ElGamal.

ElGamal and Generalized ElGamal

We present the curves showing the execution time of the key generation, encryption and decryption algorithms of the ElGamal encryption scheme and the Generalized ElGamal encryption scheme.

The execution time of those two schemes is carried out under the same conditions in terms of gen- eration of the values and sizes of the security parameters. Indeed, given a size of a security parameter, there are 1000 trials where new parameters (such as prime number and messages) are computed for each trial.

We give a detailed execution time for the key generation in Figure 1 and 4, the encryption algorithm in Figure 2 and 5 and the decryption algorithm in Figure 3 and6. 1 show the execution time of key generation algorithms for the ElGamal encryption scheme and for Generalized ElGamal encryption scheme. We show that the two algorithms are similar. When the key size increases then the Generalized ElGamal is a bit faster. Encryption Algorithms. The curves of Figure 2 show the execution time of encryption algorithms of the ElGamal encryption scheme and Generalized El-Gamal encryption scheme. We observe that the Generalized ElGamal encryption is always faster that El-Gamal encryption. Indeed, we observe empirically that computations of γ α and computations of δ α for Generalized ElGamal have the same execution time than the term h r for the standard ElGamal. Yet, the computations of the term g r is slower than the three others. Thus, the overall execution time of encryption algorithm for the Generalized scheme is less than the one for the standard ElGamal. eralized ElGamal encryption scheme. We can see that the Generalized ElGamal decryption is always significantly faster that ElGamal decryption.

Key Generation Algorithms. The curves of Figure

Decryption Algorithms. The curves given in

Linear ElGamal and Linear Generalized ElGamal

We studied the performance of Linear Generalized El-Gamal encryption scheme with respect to Linear El-Gamal encryption scheme. We present the execution time evaluations of the key generation in Figure 4, encryption in Figure 5 and decryption in Figure 6.

Key Generation Algorithms. The curves given in Figure 4 show the execution time of key generation algorithms of the Linear ElGamal encryption scheme and Linear Generalized ElGamal encryption scheme. We can see that our algorithm for key generation is clearly slower than the one proposed by Boneh et al. It is the price to pay in order to have a faster encryption and decryption algorithms. It is not an issue because the key generation is in general done only once while the encryption and decryption algorithms are more often used. Encryption Algorithms. The curves of Figure 5 give the execution time of encryption algorithms of the Linear ElGamal encryption scheme and Linear Generalized ElGamal encryption scheme. According to the complexity analysis the timings are similar since the number of exponentiations are similar. Empirically, we observe that they are similar. Decryption Algorithms. The curves of Figure 6 represent the execution time of decryption algorithms of the Linear ElGamal encryption scheme and Linear Generalized ElGamal encryption scheme. We clearly see that the decryption is faster using our scheme, which confirms the complexity analysis of the previous section.

Conclusion

We have proposed a faster Linear Generalized El-Gamal encryption scheme based on the Generalized ElGamal encryption scheme. We prove that our linear scheme is IND-CPA secure under the Linear problem like the linear encryption scheme based on the ElGamal encryption scheme. It also has a faster encryption and decryption algorithms.

In the future, we would like to see how our approach can be applied to improved other schemes.

A Cryptographic Recalls

We recall some notions about public key encryption schemes: success probability of an adversary, security models in terms of the adversarial goals and the adversarial capabilities (see [START_REF] Hanoymak | On provable security of cryptographic schemes[END_REF]). We also recall some notions on security models.

A.1 Public Key Encryption Schemes

Definition A.1. A public key encryption scheme is a tuple of probabilistic polynomial time algorithms Π = (Gen, Enc, Dec) such that: 1. The key generation algorithm Gen takes as input the security parameter and outputs a pair of public and secret keys (pk, sk). 2. The encryption algorithm Enc takes as input a public key pk and a message m from some underlying plaintext message space. It outputs a ciphertext c, i.e., c = Enc pk (m).

The decryption algorithm Dec takes as input

(sk, c) and outputs a message m or ⊥. We denote the decryption algorithm by m = Dec sk (c).

We note that Enc may be probabilistic but Dec must be deterministic and the following equation should hold for any message:

Dec sk (Enc pk (m)) = m

A.2 Security Notions

In this subsection, we recall some security notions:

Chosen Plaintext Attack (CPA). A chosenplaintext attack (CPA) is an attack model for cryptanalysis which presumes that the attacker can obtain the ciphertexts for arbitrary plaintexts. The goal of the attack is to gain information that reduces the security of the encryption scheme.

Modern ciphers aim to provide semantic security, also known as ciphertext indistinguishability under chosen-plaintext attack, and are therefore by design generally immune to chosen-plaintext attacks if correctly implemented.

One-Wayness. This goal is defined via a game between the adversary and the challenger as follows:

Game 1: The One Wayness Game: PubK ow A,Π 1: Gen is run to obtain the keys (pk, sk) 2: m is chosen at random from message space 3: The challenge ciphertext c = Enc pk (m) 4: Adversary A is given pk and c to produce m = A(pk, c) 5: The output of the game is defined to be 1 if m = m and ⊥ otherwise. Indistinguishability. Here, the goal of the adversary is to find out which of the plaintexts have been selected by the challenger. where a negligible function µ : N → R + is function such that for every positive polynomial p(•) there exists N p ∈ N such that for all integers x > N p , we have µ(x) < 1 p(x) .

A.3 Semantic security:

This definition comes from [START_REF] Goldwasser | Probabilistic encryption[END_REF], where is called polynomial indistinguishability, and semantic security is actually the name of a syntactically different, but equivalent, characterization. This is formally defined via a game between an adversary and a challenger.

• The challenger computes: (pk, sk) $ ← KeyGen(), and gives pk to the adversary.

• The adversary chooses two messages m 0 , m 1 ∈ M, and gives these to the challenger.

• The challenger computes

b $ ← {0, 1}, ψ $ ← E(pk, m b )
and gives the "target ciphertext" ψ to the adversary.

• The adversary outputs b ∈ {0, 1}.

We define the SS-advantage of the adversary to be:

|Pr[b = b] - 1 2 |
Semantic security means that any efficient adversary's SS-advantage is negligible.

A.4 Homomorphic encryption

Homomorphic encryption is a form of encryption that allows specific types of computations to be executed on ciphertexts and obtain an encrypted result that is the ciphertext of the result of operations performed on the plain text. A homomorphic encryption allows a user to manipulate without needing to decrypt it first. An example of homomorphic encryption is the RSA algorithm. Other examples of homomorphic encryption schemes are the ECC encryption, the ElGamal cryptosystem [START_REF] Elgamal | A public key cryptosystem and a signature scheme based on discrete logarithms[END_REF], and the Pailler cryptosystem.

Typically, secure data aggregation mechanisms require nodes to perform the following operations:

• at the transmitting node, prior to transmission, data are encrypted with some cryptographic function E;

• at the receiving node, all received data packets are decrypted with the inverse cryptographic function D = E -1 to retrieve the original data;

• data are aggregated with an aggregation function;

• prior to re-transmission, aggregated data are encrypted through E and relayed to the next hop. Lemma A.4. Linear Generalized ElGamal Encryption Scheme is a homomorphic encryption.

Proof. The ElGamal encryption scheme, Linear El-Gamal encryption and Generalized ElGamal Encryption scheme are homomorphic encryptions. Our Linear Generalized ElGamal Encryption scheme has the same encryption mechanism than these schemes but with some parameters then it is also a homomorphic encryption.

B Security Proof

Theorem 4.1. The Linear Generalized ElGamal Encryption Scheme is IND-CPA secure under the Decisional Linear Assumption (DLA).

Proof. Let G be a group and g be a random generator of G. Let a random instance (g 1 = g r , g 2 = g s , g 3 = g t ) of the Decisional Linear problem that one wants to solve, considering the adversary A against the Linear Generalized ElGamal encryption in time t. We write Game 0 the adversary's scenarios and we modify it gradually to the Decisional Linear problem. We note C the challenger and D a distinguisher and compare each output when a random is generated or when DH is computed.

Game 0: challenger C , adversary A 1: g $ ← G and k, r $ ← Z d × Z d/2 , compute (s,t) such that kd = rs + t and output (g 1 , g 2 , g 3 ) = (g r , g s , g t ): C 2: (m 0 , m 1 ) ←-A(g 1 , g 2 , g 3 ) 3: (c 1 , c 2 , c 3 ) ←-E((g 1 , g 2 , g 3 ), m σ , α 1 , α 2 ) where σ $ ← {0, 1} and α 1 , α 2 $ ← G : C 4: {0, 1} σ ←-A(c 1 , c 2 , c 3 )
Here, we have modeled the adversary A as a deterministic algorithm that takes as input a random element sampled uniformly from some set. It should be evident that this algorithm faithfully represents the attack game. If we define S 0 to be the event that σ = σ , then the adversary's advantage is |Pr[S 0 ] -1 2 |. Game 1. (This is a transition based on indistinguishability). We now make one small change to the above game. Namely, instead of computing c 3 as g α 1 +α 2 3 , we compute it as g z 1 +z 2 for randomly chosen z 1 , z 2 ∈ Z d . We can describe the resulting game algorithmically as follows:

Game 1: challenger C and adversary A

1: g $ ← G and k, r $ ← Z d × Z d/2 , compute (s,t) such that kd = rs + t: C 2: (m 0 , m 1 ) ←-A(g 1 , g 2 , g 3 ) 3: (c 1 , c 2 , c 3 ) ←-E((g 1 , g 2 , g t(z 1 +z 2 ) ), m σ , α 1 , α 2 ) where σ $ ← {0, 1} and α 1 , α 2 $ ← G : C 4: {0, 1} σ ←-A(c 1 , c 2 , c 3 )
Let S 1 be the event that σ = σ in Game 1. Claim B.1. We prove that: Pr[S 1 ] = 1 2 .

This follows from the fact that in Game 1, g t(z 1 +z 2 ) is effectively a one-time pad, and as such, the adversary's output σ is independent of the hidden bit σ. To prove this more rigorously, it suffices to show that σ, α 1 , α 2 , g 1 , g 2 , g 3 , c 1 , c 2 , c 3 are mutually independent, since from this, it follows that σ and σ = A(α 1 , α 2 , g 1 , g 2 , g 3 , c 1 , c 2 , c 3 ) are independent. First observe that by construction, σ, α 1 , α 2 , g 1 , g 2 , g 3 , c 1 , c 2 , g z 1 +z 2 are mutually independent. It suffices to show that conditioned on any fixed values of σ, α 1 , α 2 , g 1 , g 2 , g 3 , c 1 , c 2 , the conditional distribution of c 3 is the uniform distribution over G. Now, if σ, α 1 , α 2 , g 1 , g 2 , g 3 , c 1 , c 2 are fixed, then so are m 0 , m 1 , since they are determined by α 1 , α 2 , g 1 , g 2 , g 3 ; moreover, by independence, the conditional distribution of g z 1 +z 2 is the uniform distribution on G, and hence from this, one sees that the conditional distribution of c 3 = g t(z 1 +z 2 ) • m σ is the uniform distribution on G.

Claim B.2. We prove that |Pr[S 0 ] -Pr[S 1 ]| = ε dla where ε dla is the DLA-advantage of some efficient algorithm (and hence negligible under the DLA (Decisional Linear Assumption).

The proof of this is essentially the observation that in Game 0, the triple (g rα 1 , g sα 2 , g t(z 1 +z 2 ) ) is of the form (g rα 1 , g sα 2 , g t(α 1 +α 2 ) ), while in Game 1, it is of the form (g rα 1 , g sα 2 , g t(z 1 +z 2 ) ), and so the adversary should not notice the difference, under the DLA assumption. To be more precise, our distinguishing algorithm D works as follows:

Algorithm: D(g rα 1 , g sα 2 , g t(z 1 +z 2 ) )

• (m 0 , m 1 ) ←-A D (g 1 , g 2 , g 3 )

• (c 1 , c 2 , λ • m σ ) ← E((g 1 , g 2 , g 3 ), m σ , α 1 , α 2 )
where λ = g t(z 1 +z 2 ) , σ

$ ← {0, 1}; α 1 , α 2 $ ← G : C • {0, 1} σ ←-A D (c 1 , c 2 , c 3 ) • If σ = σ
then output 1 else output 0 Algorithm D effectively "interpolates" between Games 0 and 1. If the input to D is of the form (g rα 1 , g sα 2 , g t(α 1 +α 2 ) ), then computation proceeds just as in Game 0, and therefore Pr[α 1 , α 2 $ ←-Z d : D(g rα 1 , g sα 2 , g t(α 1 +α 2 ) ) = 1] = Pr[S 0 ].

If the input to D is of the form (g rα 1 , g sα 2 , g t(z 1 +z 2 ) ), then computation proceeds just as in Game 1, and therefore 
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 1 Figure 1: Average time of key generation algorithm depending on the size of security parameter.
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 23 Figure 2: Average time of encryption algorithm depending on the size of security parameter.
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 5 Figure 5: Average time of encryption algorithm depending on the size of security parameter.
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 6 Figure 6: Average time of decryption algorithm depending on the size of security parameter.

Definition A. 2 .

 2 A public key encryption scheme Π = (Gen, Enc, Dec) is one-way secure against chosen plaintext attacks (OW-CPA) if the advantage of any probabilistic polynomial-time algorithm A defined by Adv ow-cpa Π,A (k) = Pr Exp ow Π,A (k) ⇒ true is negligible as a function k, where Exp ow Π,A (k) is the experiment.

  Gen is run to obtain public and secret keys (pk, sk). 2: Adversary A is given pk, outputs a pair of messages (m 0 , m 1 ) of equal length. 3: A random bit b ∈ {0, 1} is chosen, the challenge ciphertext c = Enc pk (m b ) is computed and given to A. 4: A outputs a bit b . 5: The output of the game is defined to be 1 if b = b and 0 otherwise. Definition A.3. A public key encryption scheme Π = (Gen, Enc, Dec) is indistinguishable secure against chosen plaintext attacks (IND-CPA) if for all probabilistic polynomial time adversaries A, there exists a negligible

Pr[α 1 , α 2 $

 2 ←-Z d : D(g rα 1 , g sα 2 , g t(z1 +z 2 ) ) = 1] = Pr[S 1 ]From this, it follows that the DLA-advantage of D isequal to |Pr[S 0 ] -Pr[S 1 ]|.That completes the proof of Claim B.2. Combining Claim B.1 and Claim B.2, we see that |Pr[S 0 ] -1 2 | = ε dla , and this is negligible. That completes the proof of security of Linear Generalized El-Gamal encryption.
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	Indistinguishability under the DDH Assump-
	tion. If the DDH assumption holds with respect
	to GP , then the ElGamal encryption scheme is
	indistinguishable under chosen-plaintext attacks,
	i.e., it is IND-CPA secure.
	Theorem 2.2. Let adversary A be a probabilis-
	tic polynomial-time against the ElGamal encryp-
	tion scheme in the IND-CPA sense. Then there
	is a probabilistic polynomial-time algorithm B
	against GP solving the DDH problem such that:

Table 1 :

 1 Comparison of Linear ElGamal and Linear Generalized ElGamal for each algorithm in terms of computational cost.

Surprisingly this performance evaluation has not been done in(Sow and Sow, 

2011).
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