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The missing (A, D, r) diagram

Alexandre Delyon∗ Antoine Henrot† Yannick Privat‡

May 6, 2021

Abstract

In this paper we are interested in "optimal" universal geometric inequalities involving the area,
diameter and inradius of convex bodies. The term "optimal" is to be understood in the following
sense: we tackle the issue of minimizing/maximizing the Lebesgue measure of a convex body
among all convex sets of given diameter and inradius. The minimization problem in the two-
dimensional case has been solved in a previous work, by M. Hernandez-Cifre and G. Salinas. In
this article, we provide a generalization to the n-dimensional case based on a different approach,
as well as the complete solving of the maximization problem in the two-dimensional case. This
allows us to completely determine the so-called 2-dimensional Blaschke-Santaló diagram for planar
convex bodies with respect to the three magnitudes area, diameter and inradius in euclidean
spaces, denoted (A,D, r). Such a diagram is used to determine the range of possible values of the
area of convex sets depending on their diameter and inradius. Although this question of convex
geometry appears quite elementary, it had not been answered until now. This is likely related to
the fact that the diagram description uses unexpected particular convex sets, such as a kind of
smoothed nonagon inscribed in an equilateral triangle.

Keywords: shape optimization, diameter, inradius, convex geometry, 2-cap bodies, Blaschke-Santaló
diagram.

AMS classification: 49Q10, 52A40, 28A75, 49K15.

1 Introduction

Let n ∈ N∗. In the whole article, we will denote by Kn the set of all convex bodies (i.e. compact
convex sets with non-empty interior) in Rn.

In convex geometry, the search for optimal inequalities between the six standard geometrical
quantities which are the surface A (or volume V ), the perimeter P , the diameter D, the inradius r,
the circumradius R and the (minimal) width1 w of any convex body, is a very old activity that dates
back to the work of W. Blaschke ([2], [3]) and has been extensively studied by L. Santaló in [15]. For
a list of such inequalities known in 2000, we refer to the classical review paper [17].The general idea
is to consider three of the aforementioned quantities (q1, q2, q3) and to determine a complete system
of inequalities relating them, in other words a system of inequalities describing the set

{(q1(K), q2(K), q3(K)), K ∈ Kn}.
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1In other words, the smallest distance between any two different parallel supporting hyperplanes of a convex body.
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In general, it is convenient to summarize it into a diagram, usually called Blaschke-Santaló diagram.
It represents the set of possible values of the triple that can be reached by a convex set (suitably
normalized). Among the 20 possible choices of this three geometric quantities, L. Santaló completely
solved in his work the 6 cases (A,P,w), (A,P, r), (A,P,R), (A,D,w), (P,D,w), (D, r,R) and gave
a partial solution to (D,R,w) and (r,R,w). These two last cases were eventually solved by M.
Hernandez Cifre and S. Segura Gomis in [13]. In a series of papers with collaborators, M. Hernandez
Cifre has also been able to prove complete systems of inequalities in the cases

(A,D,R), (P,D,R) [11], in the cases (A, r,R), (P, r,R) [5] and finally in the case (D, r, w) [10].
In spite of all these efforts, several Blaschke-Santaló diagrams (or complete systems of inequal-

ities) remain unknown. To the best of our knowledge, this is the case for the diagrams (A,P,D),
(A,D, r), (A, r, w), (A,R,w), (P,D, r), (P, r, w) and (P,R,w). Let us mention that several interest-
ing inequalities for (P,D, r) and (P,R,w) can be found in [12]. Let us also mention several works
dedicated to Blaschke-Santaló diagrams involving four geometric quantities (see e.g. [6]).

In this paper, we focus on the case (A,D, r) and completely solve it in the two-dimensional case
(n = 2), and partially in the general case n > 3. More precisely in the case n = 2, we obtain
universal inequalities involving the area of a plane convex set, its diameter and inradius, and we plot
the corresponding Blaschke-Santaló diagram:

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

To this aim, we will introduce two families of optimization problems for the area (or the volume
in higher dimension) and then solve them. More precisely, we will tackle the issue of maximizing
and minimizing the area with prescribed diameter and inradius. It turns out that the minimization
problem has already been solved in the two dimensional case by M. Hernandez Cifre and G. Salinas
[12]. The optimal set is known to be a two-cap body defined as the convex hull of a disk of radius r
and illustrated on Fig. 1. with two points that are symmetric with respect to the center of the ball
and at a distance D. This result has been extended in three dimensions in [18] but with an additional
assumption. In this paper, we solve this minimization problem in full generality (see Theorem 1).

Figure 1: The two-cap body in 2D, minimizer of the area among convex bodies of prescribed inradius
and diameter.

Regarding the maximization problem, it is much harder and we are only able to solve it in the
two-dimensional case. At first glance, it seems intuitive that the optimal shape should be a spherical
slice defined as the intersection of a disk of diameter D with a strip of width 2r, symmetric with
respect to the center of the disk (see Fig. 2). Surprisingly, this is only true for "large" values of D/r
(more precisely for D > αr with α ' 2.388, see Theorem 2), while for small values of D/r the optimal
set is some kind of nonagon made of 3 segments and 6 arcs of circle inscribed in an equilateral triangle
(see Fig. 3). For the precise definition of this set, we refer to Definition 2 hereafter. It is likely that
this unexpected solution explains why this elementary shape optimization problem remained unsolved
up to now.

The article is organized as follows. Section 1.1 is devoted to introducing the optimization problems
we will deal with and stating the main results. In Section 1.2, the Blaschke-Santaló diagram D for
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the triple (A,D, r) is plotted. The whole sections 2 and 3 are respectively concerned with the proofs
of Theorems 1 and 2. Because of the variety and complexity of optimizers, the proofs appear really
difficult and involve several tools of convex analysis, optimal control and geometry.

Let us end this section by gathering some notations used throughout this article:

• Hn−1 is the n− 1 dimensional Hausdorff measure.

• if K is a convex set of R2, we call respectively A(K), D(K) and r(K) (or alternatively A, D
and r if there is no ambiguity) the area, diameter and inradius of K.

• in the more general n-dimensional case, we keep the same notations, except for the volume of
K which will be either denoted V (K) or |K|.

• x · y is the Euclidean inner product of two vectors x and y in Rn.

• B(O, r) denotes the ball of center O and radius r while S(O, r) is the sphere (its boundary).

• The boundary of the biggest ball included into a convex set will be called incircle in dimension
2, insphere in higher dimension.

1.1 Optimization problems and main results

Let us first make the notations precise. Let r > 0, D > 2r be given and let Knr,D be the set of convex
bodies of Rn having as inradius r and as diameter D, namely

Knr,D = {K ∈ Kn | r(K) = r and D(K) = D}.

We are interested in the following maximization problem

sup
K∈K2

r,D

|K| (Pmax)

and minimization problem
inf

K∈Kn
r,D

|K|. (Pmin)

Note that the condition D > 2r guarantees that the set Knr,D is non-empty. If D = 2r, problems
are obvious since only the ball belongs to the set of constraints Knr,D.

Let us first observe, since we are working with convex sets, that existence of solutions for Problems
(Pmax) and (Pmin) is almost straightforward.

Proposition 1. Let (r,D) be two given parameters such that D > 2r. Problems (Pmax) and (Pmin)
have a solution.

Proof. Without loss of generality, by using an easy rescaling argument, one can deal with sets of
constraints with unitary inradius, in other words r = 1 and with diameter D > 2.

Let us deal with the minimization problem (Pmin), the case of the maximization problem (Pmax)
being exactly similar. Let us consider a minimizing sequence (Km)m∈N. Since we are working with
sets of diameter D, up to applying a well-chosen translation to each element of the sequence, on
can assume that every convex set Km is included in a (compact) box B of Rn. Since the set of
convex sets included in a given box is known to be compact for the Hausdorff distance [9], there
exists a subsequence (still denoted (Km)m∈N) converging to a convex set K. To conclude, we will
prove that the objective function (the area) is continuous with respect to the Hausdorff distance and
that the diameter and inradius constraints are stable for the Hausdorff convergence, in other words
that K belongs to the admissible set K2

r,D. Recall that the volume and diameter functionals are not
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continuous in general for the Hausdorff distance. Nevertheless, when dealing with convex sets, the
continuity property becomes true (see [9, 16]).

It remains to show that the inradius constraint is also continuous for the Hausdorff distance.
Let (Km)m∈N be a sequence of convex bodies converging to K for the Hausdorff distance. Let us
introduce rm = r(Km), r = r(K) and xm ∈ Km, such that B(xm, rm) ⊂ Km. Since (rm) (resp.
(xm)) is bounded, there exists subsequences still denoted rm and xm with a slight abuse of notation,
that converges respectively towards r̃ > 0 and x̃ ∈ Rn. By stability of the Hausdorff convergence
for the inclusion (see e.g. [9, Chapter 2 and Prop. 2.2.17]), we have B(x̃, r̃) ⊂ K. Therefore, one
has r̃ 6 r. Assume by contradiction that r > r̃. Hence, there exists x ∈ K and α > 0 such that
B(x, r̃ + α) ⊂ K. Let us consider the closed disk B̂ = B(x, (r̃ + α)/2). By stability of the Hausdorff
convergence, one has B ⊂ Km whenever m is large enough, which implies that r(Km) > (1 + α)/2,
yielding to a contradiction. The expected continuity property follows.

As underlined in the Introduction, Problem (Pmin) has already been solved in the two-dimensional
case in [12]. In what follows, we will generalize it to the general case Rn, by proving that the two-cap
body is the only solution in any dimension.

Theorem 1. The (unique) optimal shape for Problem (Pmin) is the convex hull of a ball of radius r
and two points apart of distance D and whose middle is the center of the ball. In other words, any
convex set in Rn with volume V , diameter D and inradius r satisfies:

V > 2ωn−1r
n
∫ π/2

arccos(2r/D)
sinn tdt+ ωn−1r

n−1

nDn

(
D2 − 4r2

)(n+1)/2
(1)

where ωn−1 is the volume of the unit ball in dimension n − 1. In particular, any convex set in R2

with area A, diameter D and inradius r satisfies:

A > r
√
D2 − 4r2 + r2

(
π − 2 arccos

(2r
D

))
. (2)

Let us turn to the maximization Problem (Pmax). Let us introduce particular convex sets of Knr,D
that will be shown to be natural candidates to solve the maximization problem.

Definition 1 (The symmetric spherical slice KS(D)). Let D > 2. We call symmetric spherical slice
and denote by KS(D) the convex set defined as the intersection of the disc D(O,D/2) with a strip
of width 2 centered at O (see Fig. 2). We have

|KS(D)| =
√
D2 − 4 + D2

2 arcsin
( 2
D

)
.

Definition 2 (The smoothed regular nonagon KE(D)). Let D ∈]2, 2
√

3[. We denote by KE(D) the
convex set enclosed in an equilateral triangle ∆E of inradius 1 and made of segments and arcs of
circle of diameter D in the following way (see Fig. 3): let ηi be the normal angles to the sides of ∆E

(where one sets for example η1 = −π/2). Let us introduce

τ = (3 +
√
D2 − 3)/2 and h =

√
D2 − τ2

and the points Ai, Bi and Mi, i = 1, 2, 3 defined through their coordinates by

Ai =
(

cos ηi + h sin ηi
sin ηi − h cos ηi

)
, Bi =

(
cos ηi − h sin ηi
sin ηi + h cos ηi

)
, Mi = (1− τ)×

(
cos ηi
sin ηi

)
, i = 1, 2, 3.

The set KE(D) is then obtained as follows:
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D/2

1

O

Figure 2: The symmetric slice KS(D) and its (non unique) incircle.

• the points A1, B1, M3, A2, B2, M1, A3, B3, M2, A1 belong to its boundary;

• >
B1M3 and >M1A3 are diametrally opposed arcs of the same circle of diameter D, and similarly
for the two other pairs of arcs of circle >B2M1 and >M2A1,

>
M2B3 and >M3A2.

• the boundary contains the segment [AiBi], i = 1, 2, 3. Note that the contact point Ii with the
incircle is precisely the middle of [AiBi],

Moreover, setting

t1 = arccos
(√

3
D

)
= arcsin

(2τ − 3
D

)
, t2 = arccos

(√
3(τ − 2)
D

)
= arcsin

(
τ

D

)
,

one has

|KE(D)| = 3
4D

2(t2 − t1) + 3
√

3
2 (

√
D2 − 3− 1) = 3

2D
2
(
π

3 − t1
)

+ 3
√

3
2
(√

D2 − 3− 1
)
. (3)

I1

I2I3

S1

S2 S3
A1 B1

A2

B2A3

B3

M1

M2 M3

Figure 3: The set KE(D) and its incircle
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In a nutshell, we will prove that for r = 1 the set KE(D) is optimal for small values of D whereas
the solution is the symmetric slice for bigger values of D. In what follows, the notation rK with
r > 0 and K ∈ K2

r,D denotes the range of K by the homothety centered at the origin of the considered
orthonormal basis, with scale factor r.

Theorem 2. Let r > 0 There exists D? ' 2.3888 such that if D < rD?, the (unique) solution of
Problem (Pmax) is rKE(D/r), and for D > rD? the unique solution is rKS(D/r). For D = D?r the
two solutions coexist.

In other words, for every plane convex set with area A, diameter D and inradius r, one has

A 6 ψ(D, r) where ψ(D, r) =


3
√

3r
2

(√
D2 − 3r2 − r

)
+ 3D2

2

(
π
3 − arccos

(√
3r
D

))
if D 6 rD?

r
√
D2 − 4 + D2

2 arcsin
(

2r
D

)
if D > rD?.

(4)
More precisely D? is the unique number in [2, 2

√
3] for which both expressions of ψ(D, r) above

are equal.

1.2 The Blaschke-Santaló Diagram for (A, D, r)
Usually, Blaschke-Santaló diagrams are normalized to fit into the unit square [0, 1] × [0, 1]. Thus,
starting from the straightforward inequalities D > 2r and A > πr2 (where A, D and r denote
respectively the area, diameter and inradius of any two-dimensional convex set), drives us to choose
the system of coordinates x = 2r/D and y = πr2/A. We then define the Blaschke-Santaló diagram
D as the set of points

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

The point (1, 1) corresponds to the disk, while the point (0, 0) corresponds to an infinite strip. The
solution of the minimization problem (Pmin) provided in Theorem 1 leads to the upper curve of D.
Using (2), we claim that the upper curve is the graph of y+, defined by

y+(x) = πx

x(π − 2 arccosx) + 2
√

1− x2
, x ∈ [0, 1].

According to Theorem 2, the lower curve is the graph of y−, piecewisely defined by

y−(x) =


πx

2
√

1− x2 + 2arcsinx
x

if x 6 2/D?

πx2

2π − 6 arccos(
√

3x
2 ) + 3

√
3x

2

(√
4− 3x2 − x

) if x > 2/D?.

Were already known the inequalities

• 4A 6 πD2 (see [14]) which corresponds to the inequality y > x2 on the diagram,

• A 6 2rD (see [8]) which is equivalent to y > πx
4 on the diagram.

These two inequalities are shown with a dotted line on the diagram hereafter.

To plot the Blaschke-Santaló diagram, it remains to prove that the whole zone between the two
graphs {(x, y−(x)), x ∈ [0, 1]} and {(x, y+(x)), x ∈ [0, 1]} is filled, meaning that each point between
these two graphs corresponds to at least one plane convex domain.

Let us start with the part of the diagram on the left of x 6 x? := 2/D?. For a given diameter
D and inradius r, let K− denote the convex set with minimal area (the two-cap body) and K+ the
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convex set with maximal area (the symmetric slice). We have K− ⊂ K+ and for any t ∈ [0, 1] the
convex set Kt : constructed according to the Minkowski sum Kt = tK+ + (1− t)K− with t ∈ [0, 1],
is known to satisfy K− ⊂ Kt ⊂ K+. Therefore, all the sets Kt share the same diameter D, the same
inradius r and their area is increasing from A(K−) to A(K+). This way, it follows that the whole
vertical joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) is included in D as soon as 2r/D 6 2/D?.

Let us consider the remaining case x > x? := 2/D?. Starting from the optimal domain K+

which maximizes the area with given D and r (recall that K+ is the convex set inscribed in the
equilateral triangle introduced in Definition 2), we fix one of its diameter, say [A,B] and we shrink
continuously K+ to the set KAB defined as the convex hull of the points A,B and the disk of radius r
contained in K+. Secondly, we move the points A,B continuously to the points A′, B′ at distance D,
oppositely located with respect to the center of the disk (in the sense that the center is the middle of
A′, B′) by keeping the convex hull with the disk at each step. The final step is therefore the two-cap
body K− and we have constructed a continuous path between K+ and K− keeping the diameter
and the inradius fixed: it follows that the whole joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) for
2r/D > 2/D? is included in D. At the end, D has only one connected component.

The complete Blaschke-Santaló diagram is plotted on Fig. 4 below.

Figure 4: The Blaschke-Santaló diagram D for (A,D, r) (colored picture). The dotted lines represents
the known inequalities 4A 6 πD2 and A 6 2rD.

Remark 1. It is notable that the two-cap body has been showed to solve a shape optimization
problem motivated by the understanding of branchiopods eggs geometry in biology, and involving
packings (see [7]).

2 Proof of Theorem 1

Let us first introduce several notations. For a generic convex set K, we will denote by A and B the
points of K realizing the diameter, and respectively by O and r the center and radius of an insphere
(the boundary of the biggest ball included in K). Introduce B = (e1, ..., en) an orthonormal basis
such that en = −−→AB/AB, so that the coordinates of A and B in B are

A = (0, 0, ..., 0) and B = (0, 0, ..., 0, D).

More generally, we will denote by (x1, . . . , xn) the coordinates of a generic vector X in B.
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First, in order to relax the conditions D(K) = D and r(K) = r in Problem (Pmin), we show that
it is equivalent to deal with the conditions r(K) > r and D(K) > D, which are always saturated at
the optimum.

Lemma 1. Let r > 0 and D > 2r. Let us consider the minimization problem

inf
K∈K̂n

r,D

|K|. (P̂min)

where K̂nr,D = {K ∈ Kn | r(K) > r and D(K) > D}. Then, Problem (P̂min) has at least a solution
K? and moreover, one has D(K?) = D and r(K?) = r.

Proof. Existence of K? follows by an immediate adaptation of the proof of Proposition 1 (if the
diameter goes to +∞ it is easy to prove that the volume must blow up).

Regarding the second part of the statement, let us argue by contradiction, assuming that r(K?) >
r. We use the coordinate system associated to the basis B introduced above, constructed from a
diameter [AB] of K?. Defining λ = r/r(K?) < 1 and applying to K? the linear transformation
whose matrix in B is diag(λ, ..., λ, 1), we obtain a new convex set K ′ with diameter D and inradius
r. Moreover, its volume is λn−1|K?| < |K?|. this is in contradiction with the minimality of K?.

Similarly, arguing still by contradiction, let us assume that D(K?) > D. Since D > 2r = 2r(K?),
there exist A′ and B′ in [A,B] such that A′B′ = D. Given O, the center of an insphere, we consider
the set K ′ defined as the convex hull of A′, B′ and B(O, r). From this construction and by convexity,
K ′ is strictly included inK, D(K ′) > D and r(K ′) > r. Therefore, one hasK ′ ∈ K̂nr,D and |K ′| < |K|,
which is in contradiction with the optimality of K. The conclusion follows.

It follows in particular from this result that the solutions of Problems (Pmin) and (P̂min) coincide.
Furthermore, if K is a general convex body in Knr,D, by repeating the argument used to deal with

the diameter constraint in the proof of Lemma 1, one sees that the convex hull of A, B and B(O, r)
also belongs to Knr,D and has a lower measure than the one of K.

Therefore, any minimizer K? is necessarily the convex hull of two points A and B realizing its
diameter, and B(O, r), whose boundary is an insphere We note KO such a set. The next result proves
a symmetry property of K?.

Lemma 2. Let D > 2r > 0 and A,B be two points at distance D in Rn. For any O ∈ Rn, define
the set KO := conv(A,B,B(O, r)). Then KO ∈ Kn and |KO| > |KO′ | where O′ is the orthogonal
projection of O onto the line containing A and B, with equality if and only if O = O′.

Proof. Assume that that O 6= O′ we will prove that |KO| > |KO′ |. Two cases may happen.

1. The ball B(O, r) does not meet the diameter [AB].

2. The ball meets the diameter [AB].

In the first case let a = OO′− r > 0, and assume that e1 =
−−→
OO′/OO′. Let us consider S(KO) the

Steiner symmetrization of KO with respect to the hyperplane with normal vector e1 and containing A
andB. It is a well known result (see [4]) that S(KO) is still convex with same area asKO. Furthermore
it contains B(O′, R), A and B. So it contains KO′ . Let us finally remark that KO ∩ (OO′) has length
2r+ a, and so S(KO) contains the point C = (xO, r+ a/2, 0, .., 0) which is not in KO′ . By convexity
we deduce that |KO′ | < |KO|.

In the second case, we will distinguish three parts in S(KO), and for each part we will compare
the volume of KO with the one of KO′ . The main difficulty of what follows consists in proving that
the area of the set KO′ is strictly smaller than that of KO, the corresponding large inequality being
easily obtained with the properties of the symmetrization. Consider the upper part K+

O of KO,
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namely KO ∩ {X ∈ Rn | X · en ∈ [xO, D]}. Let ΓB be the set of points of B(O, r) whose tangent
hyperplane contains B, and Γ′B be the set of points of S(O′, r) whose tangent hyperplane contains B.
By symmetry, all the points of Γ′B share the same last coordinate x′. Let x1 and x2 denote respectively
the minimal and maximal first coordinate of points of ΓB. Hence, one has xO + r > x2 > x1 > xO
and moreover, x′ ∈ (x1, x2) (see points M,M1, and M2 in Fig. 5).

Let us distinguish between three zones of K+
O :

• On K+
O∩{X ∈ Rn | X ·en ∈ [xO, x1]}. It is easy to see that B(O′, r)∩{X ∈ Rn | X ·en ∈ [xO, x1]

is exactly the image of

K+
O ∩ {X ∈ Rn | X · en ∈ [xO, x1]} = B(O′, r) ∩ {X ∈ Rn | X · en ∈ [xO, x1]}.

by the translation vector
−−→
O′O. These two sets have therefore the same measure.

• On K+
O ∩ {x ∈ [x1, x

′]}. For x ∈ R, let Hx be the affine hyperplane whose equation in B is
{X ∈ Rn | X · en = x}, and introduce Kx = KO ∩Hx. If x ∈ [xO − r, xO + r], let Bx be the
n− 1 dimensional ball B(O′, r) ∩Hx. By construction, one has Hn−1(Bx) < Hn−1(Kx) for all
x > x1 . As a consequence

|B(O, r) ∩ {X ∈ Rn | X · en ∈ [x1, x
′]}| < |K ∩ {X ∈ Rn | X · en ∈ [x1, x

′]}|.

• On K+
O ∩ {X ∈ Rn | X · en ∈ [x′, D]}. Define Cx′ as the cone with vertex B and basis

Bx′ = B(O′, r) ∩ Hx′ . Since Cx′ is the convex hull of Bx′ and B, it follows that |Cx′ | <
|K? ∩ {X ∈ Rn | X · en ∈ [x′, D]}|.

It follows that |KO′ ∩ {x ∈ [x0, D]}| < |KO ∩ {x ∈ [x0, D]}|. Doing the same construction on the
lower part of KO yields at the end that |KO′ | < |KO|. The expected result follows.

A

B

O

M2

M1

A

B

O ′

M

Figure 5: Illustration of the proof of Lemma 2. The convex set on the right has the same inradius
and diameter as the one on the left but a lower volume.

To sum-up, we know that any minimizer K? is of the type KO, the convex hull of A, B and
B(O, r), where AB = D and A, B and O are collinear. it remains to show that the minimum is
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reached whenever O is in the middle of the [AB]. This can be done by an explicit computation, but
we propose a more geometrical proof based again on Steiner symmetrization.

Let us argue by contradiction, considering O ∈ [AB]\{I}, where I is the middle of [AB] and
assuming that K? = KO. Let H be the hyperplane containing I with normal vector −−→AB. Let K ′ be
the Steiner symmetrized of K? with respect to H. We claim that K ′ ∈ Knr,D. Indeed, by monotonicity
of the Steiner symmetrization with respect to the inclusion and since the range of B(O, r) by the
Steiner symmetrization is B(I, r), one has necessarily r(K ′) > r(K?). In the same way, observe that
the strip S := {x ∈ Rn | x1 ∈ [−r/2, r/2]} is invariant by the Steiner symmetrization and contains
K?. By using again the aforementioned monotonicity property, one has also K ′ ⊂ S, and therefore,
r(K ′) 6 r = r(S). Therefore, one has r(K ′) = r. It is standard that Steiner symmetrization reduces
diameter. Moreover, since [AB] is invariant by the Steiner symmetrization and since [AB] ⊂ K ′, one
has D(K ′) > D and thus D(K ′) = D.

Since |K ′| = |K?| by property of the Steiner symmetrization, it follows that K ′ solves Prob-
lem (Pmin).

It now remains to investigate the equality case, namely to compare |K ′| and |KI | where we
recall that KI = hull(A,B,B(I, r)). More precisely we will prove that K ′ has a larger volume
than KI . In the basis B, let x∗1 ∈ (0, r) be such that KI ∩ {x1 > x?1} = B(I, r) ∩ {x1 > x?1} and
B(O, r) ∩ {x1 > x?1} ( KO ∩ {x1 > x?1}. The existence of x?1 follows from the dissymmetry of KO

with respect to H. Using one more time the monotonicity property of the Steiner symmetrization
with respect to the inclusion, one has

B(I, r) ∩ {x1 > x?1} ( K ′ ∩ {x1 > x?1},

which implies that the volume of K ′ is strictly larger than the one of hull(A,B,B(I, r)). We have
thus reached a contradiction and it follows that one has necessarily O = I, meaning that K? =
hull(A,B,B(I, r)), which concludes the proof.

3 Proof of Theorem 2

In the whole proof, for a given set K ∈ K2, we will denote by CK an incircle of K. It is standard
that K is tangent to CK at two points at least.

Definition 3. Let K ∈ K2. A point x ∈ K is said to be diametral if there exists y ∈ K such that
‖x− y‖ = D(K).

Obviously, if x is diametral, then it belongs necessarily to ∂K. Denoting by y its counterpart, if
the boundary of K is C 1 at x, the outward unit normal vector at x on ∂K is n(x) = (x− y)/‖x− y‖.

In what follows, we will consider a solution K? to Problem (Pmax), whose existence is provided
by Proposition 1.

Since the area is maximized, it seems natural to look for the largest possible set and thus to
saturate the diameter constraint at each point. Nevertheless, the inradius constraint tends to stick
the convex body onto the circle. M. Belloni and E. Oudet in [1] worked on the minimal gap between
the first eigenvalue of the Laplacian λ2 and the first eigenvalue of the ∞−Laplacian λ∞. Since
λ∞(Ω) = 1/r(Ω) and λ2 is decreasing for the inclusion, some of their results were obtained by
constructing bigger sets while maintaining the inradius and the diameter. The following lemma is an
example.

Lemma 3 ([1]). Let x ∈ ∂K?. Then, one has the following alternative:

1. x is non diametral and belongs to the interior of a segment of ∂K?.

2. x is diametral and is not in the interior of a segment of ∂K?.

10



3. x is in the intersection of two segments of ∂K?.
To locate the segments of ∂K? and provide an estimate of their numbers, we need the notion of

contact point.
Definition 4. A contact point of ∂K? is a point x at the intersection of ∂K? and an incircle CK?

of K?. Similarly, a contact line is a support line of K? passing by a contact point. Note that it is
also a support line of CK?.

Observe that the relative interior of a segment of ∂K? is necessarily made of non diametral points.
Note that the incircle is a priori not unique. Let us consider all the possibilities:

• case 1: the incircle is not unique. In that case the convex K? is necessarily included in a strip
of width 2, and every incircle touches both lines of the strip.
Indeed, let C1 and C2 be two incircle and O1 and O2 their center. We consider a basis in which
the coordinates of O1 are (−a, 0) and those of O2 are (a, 0). Let Ni (resp Si) be the north (resp.
south) pole of Ci. By convexity the rectangle N1N2S2S1 is included in K?. Now suppose that
K? is not included in the strip formed by the lines (N1N2) and (S1S2). Then there exist a
point M(x, y) ∈ K? with −a 6 x 6 a and y > 1. By construction, the pentagon N1MN2S2S1
is convex, included in K?, and its inradius is larger than 1 (see Fig. 6) which contradicts the
inradius constraint.

N2N1

S1 S2

M

C1 C2

Figure 6: The middle circle is larger than the others, so the inradius is larger than 1.

• case 1bis: the incircle is unique, but still inscribed between two strips. In this case it is even
included in a square, which is covered by the case 1.

• case 2 : the incircle is unique, and there are exactly three contact lines, forming a triangle
containing both the circle and the convex.

Figure 7: A convex set with three contact points
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We sum-up these information in the following lemma.

Lemma 4. Any segment of ∂K? contains a contact point. Furthermore, ∂K? contains at most three
segments.

Proof. If a segment of ∂K? does not touch an incircle, it would be possible to inflate this part without
changing the inradius nor violating the diameter constraint. The upper bound on the number of
segments is a direct consequence of the previous analysis: if K has more than the minimal numbers
of segments that are useful to prescribe the incircle, then some are useless and can be inflated without
consequences on the constraints.

In what follows, we will work separately on the cases 1 and 2. Section 3.1 deals with the first
case, whereas Section 3.2 is devoted to the investigation of the second case.

Thanks to an easy renormalization argument, we will assume without loss of generality that the
inradius of the considered convex sets is equal to 1 (r = 1).

Diam(K) = D but |K| > |K?|, leading to a contradiction with the optimality of K?.

3.1 First case: K? is included in a strip

Let CK? be an incircle of K?. To investigate the case where K? is included in a strip, we consider
a basis B whose origin O is the center of CK? and such that the equations of the two contact
points support lines are x = 1 and x = −1 (see Fig. 8). Let us denote by S, the closed strip
{(x, y) ∈ R2 | |x| 6 1}.

We investigate in this section a constrained version of Problem (Pmax), namely

sup
K∈K2

r,D

K⊂S

|K|. (P ′)

Proposition 2. The symmetric slice B(O,D/2)∩S, where B(O,D/2) denotes the open ball centered
at O with radius D/2, is the unique solution of Problem (P ′). The optimal area is

max
K∈K2

r,D

K⊂S

|K| =
√
D2 − 4 + D2

2 arcsin
( 2
D

)
.

The set K? is plotted on Fig 8 right.

K
K?

Figure 8: Left: a convex set K whose (non unique) incircle has two parallel contact lines. Right: the
optimal domain K? among convex sets included in a slice.
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The end of this section is devoted to the proof of Prop. 2. It is straightforward that, if a convex
set K belongs to K2

r,D and is included in S, then there exist two concave nonnegative functions f
and g on [−1, 1] such that

K = {(x, y) ∈ R2, x ∈ [−1, 1],−g(x) 6 y 6 f(x)}. (5)

With these notations, the optimal set K? introduced in Prop. 2 corresponds to the choices

f = yD, g = yD where yD(x) =
√
D2/4− x2.

The proof consists of two steps: first, we provide necessary optimality conditions on an optimal
pair (f, g) and show in particular that the aforementioned symmetric slice is a solution. Then, we
investigate uniqueness properties of the optimum.

Lemma 5. Let K? be a solution of Problem (P ′). Then, K? is of the form (5) and satisfies

f(x) + g(x) + f(−x) + g(−x) = 4yD(x), x ∈ [−1, 1]. (6)

Furthermore, the convex set K̃ of the form (5) with f = g = yD solves Problem (P ′).

Proof. We already know that K? writes as (5) for some positive concave functions f and g.
First, by lemma 3, every point of the free boundary part ∂K?

free := ∂K? ∩ {(x, y) ∈ R2 | x ∈
(−1, 1)} is necessarily diametral. As a consequence, the functions f and g are strictly concave.
Indeed, observe that a segment of the boundary of a convex set contains at most two diametral
points.

From the parametrization of K?, we get

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 + (f(x) + g(x′))2 and |K?| =
∫ 1

−1
(f + g). (7)

We are going to prove the result by performing two consecutive Steiner symmetrizations, the first
in the horizontal axis, the second in the vertical axis. Note that those two particular symmetrizations
do not change the inradius.

Let us introduce the set K̂ of the form (5) where f and g are both replaced by (f+g)/2. In other
words, K̂ is the Steiner symmetrized of K? with respect to the horizontal axis. Hence, one gets easily
that |K?| = |K̂|, and D(K̂) 6 D(K?). Moreover, if D(K̂) < D(K?), then K̂ is a convex set having
the same area as K?, but a strictly lower diameter. Mimicking the argument used in the proof of
Lemma 1 allows us to obtain a convex set in K2

1D with a larger area than K?, which is impossible.
It follows that one has necessarily D(K̂) = D(K?).

Let us set f? = (f + g)/2 and let x ∈ [−1, 1]. Let Kf̃ be a set of the form (5) where f and g are
both replaced by f̃ defined by

f̃(x) = f?(x) + f?(−x)
2 , x ∈ [−1, 1].

In other words, Kf̃ corresponds to the Steiner symmetrization of K̂ with respect to the vertical
axis. Then, using one more time standard properties of the Steiner symmetrization, one gets that
|K?| = |Kf̃ | and for the same reasons as before, we have D(K?) = D(Kf̃ ). Therefore, we have
constructed a solution with two axes of symmetry.

It follows that Kf̃ solves Problem (P ′). Furthermore, using that f̃ is even and that each point
(x, f̃(x)) is diametral, associated to (−x,−f̃(x)), we finally infer that x2 + f̃(x)2 = D2/4 for all
x ∈ [−1, 1]. Noting that

f̃(x) = 1
4(f(x) + g(x) + f(−x) + g(−x)),

every solution K? is of the form (5) satisfies (6). Proposition 2 thus follows.
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It remains to investigate the uniqueness of the optimal set, which is the purpose of the next result.

Lemma 6. Let K? be a solution of Problem (P ′). Then, K? is of the form (5), and for every
parametrization (f, g), there exists ε > 0 such that:

f(x) = yD(x) + ε, g(x) = yD(x)− ε, x ∈ [−1, 1].

Proof. Let (f, g) be a pair of concave positive functions solving Problem (P ′). In particular, (f, g)
satisfies (6). It follows from the proof of Lemma 5 that there exists a continuous odd function ϕo on
[−1, 1] such that

f(x) + g(x)
2 = yD(x) + ϕo(x).

Let K be the convex set defined by (5) where f and g are both replaced by (f + g)/2. Recall that,
according to the proof of Lemma 5, K is also a solution of Problem (P ′). Let us focus on the diameter
constraint. Since K solves Problem (P ′), then one has necessarily

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 +
(
yD(x) + yD(x′) + ϕo(x) + ϕo(x′)

)2
> max

x∈[−1,1]
(2x)2 + (yD(x) + yD(−x))2 = D2.

In particular, since every point of ∂K ∩ {(x, y) ∈ R2 | x ∈ (−1, 1)} is diametral, the function
[−1, 1] 3 x′ 7→ (x− x′)2 + (yD(x) + yD(x′) + ϕo(x) + ϕo(x′))2 is maximal at x′ = −x. Note that the
function yD +ϕo is (concave and therefore) differentiable almost everywhere in (−1, 1), and therefore
so is ϕo. Let us consider x ∈ [−1, 1] at which ϕo is differentiable. One has

d

dx′

(
(x− x′)2 +

(
yD(x) + yD(x′) + ϕo(x) + ϕo(x′)

)2)∣∣∣∣
x′=−x

= 0

which reads −4x+ 4yD(x)(−y′D(x) + ϕ′o(x)) = 0, and after calculation, implies that ϕ′o(x) = 0. We
infer that ϕ′o(x) = 0 for a.e. x ∈ (−1, 1). Since ϕo is absolutely continuous (and even belongs to
W 1,∞(−1, 1)), we infer that ϕo is constant on (−1, 1), equal to ϕo(0) = 0. It follows that (f +g)/2 =
yD and we infer that

f(x) = yD(x) + ϕe(x) and g(x) = yD(x)− ϕe(x),

where ϕe denotes a continuous function on [−1, 1]. One has for every x ∈ [−1, 1],

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 +
(
yD(x) + yD(x′) + ϕe(x)− ϕe(x′)

)2
> D2 + 4yD(x) (ϕe(x)− ϕe(−x)) + (ϕe(x)− ϕe(−x))2 .

and therefore, 4yD(x) (ϕe(x)− ϕe(−x)) + (ϕe(x)− ϕe(−x))2 6 0 so that

−4yD(x) 6 ϕe(x)− ϕe(−x) 6 0.

Inverting the roles played by x and −x in this relation yields that ϕe(x) − ϕe(−x) = 0 and ϕe is
therefore even.

By using the same reasoning as above, one shows that for almost every x in (−1, 1), the derivative
of the diameter functional vanishes at x′ = −x, so that one has ϕ′e(x) = 0 a.e. x in (−1, 1). Since ϕe
belongs to W 1,∞(−1, 1) and is in particular absolutely continuous, we infer that ϕe is constant on
[−1, 1]. The expected conclusion follows noticing that the converse sense is immediate: every pair
(f, g) chosen as in the statement of Lemma 6 obviously drives to a solution of Problem (P ′).
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Remark 2 (Geometric interpretation of the proof). The proof of Lemma 5 can be understood geo-
metrically: indeed, from a solution, we performed two Steiner symmetrizations: one along the strip,
and the other in an orthogonal direction. From the standard properties of Steiner symmetrization
(we proved some of them for the sake of completeness) and because of the specific choice of the
symmetrization axes, the inradius remains unchanged in this particular case, as well as the area, but
the diameter decreases. The difficulty here lies in proving that the diameter is strictly decreasing,
whence the uniqueness.

3.2 Second case: K∗ is included in a triangle

In that case, the incircle is unique (see Fig 7). We assume without loss of generality that it is the
unit circle. There are exactly three contact lines (see Def. 4), forming a triangle called T (K).

Definition 5. We will call “free boundary γ of ∂K?” the union of all non flat parts of ∂K? and
“free zone” every connected component of the free boundary. D is the full disk.

Recall that according to Lemma 4, there are at most three free zones located between the contact
segments.

A crucial tool for the analysis is the so-called support function of the convex body K denoted hK .
Recall that hK is defined for every θ ∈ T by

hK(θ) = sup
y∈K

y · uθ (8)

where uθ = (cos(θ), sin(θ), and T is the torus R/[0, 2π). We will systematically choose the center of
the circle as the origin. angle θ: The straight line Dθ whose cartesian equation is x cos(θ)+y sin(θ) =
hK(θ) is precisely the support line of the convex body K in the direction uθ (in what follows, we will
also name this direction θ with a slight abuse of language).

Let us introduce the sets Fθ := Dθ ∩K. Note that Fθ is either a segment or a single point. In
the latter case, we will denote this point by M(θ).

Let us finally recall some basic facts on the support function. For a complete survey about this
notion, we refer for instance to [16]. When there will be no ambiguity, we will sometimes write h
instead of hK .

The support function h associated to a convex body K is periodic, belongs to H1(T) and is C1 on
the strictly convex parts of K. Furthermore, the diameter D(K), area |K| and radius of curvature
RK are respectively given in terms of h by

D(K) = sup
(0,2π)

(h(θ) + h(θ + π)) , |K| = 1
2

∫
(0,2π)

(h2 − h′2), RK = h+ h′′ (9)

where h′′ has to be understood in the sense of distributions.
Let T be the set of triangles with unit inradius enclosing K. In this section, we will investigate

the optimization problem
sup
T∈T

sup
K∈K2

r,D

K⊂T

|K|, (10)

which can be recast in terms of support functions as

sup
h∈H

1
2

∫
(0,2π)

(h2 − h′2) (Ph)

with

H = {h ∈ H1(0, 2π), h+ h′′ > 0 in D′(T), ∃T ∈ T | 1 6 h 6 hT , sup
θ∈T

h(θ) + h(θ + π) 6 D},
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where hT is its support function of T . Note that h+ h′′ is a positive Radon measure. It is essential
to ensure that h is the support function of a convex set. The condition 1 6 h 6 hT simply means
that K, whose support function is h, contains the disk B(0, 1) and is included in the triangle T .

Before stating the main result of this section, let us introduce another particular smoothed
nonagon, denoted KC(D).

Definition 6 (The smoothed nonagon KC(D)). Let D ∈]2, 2
√

3[. We denote by KC(D) the convex
set enclosed in an isosceles triangle ∆I of inradius 1 and made of segments and arcs of circle of
diameter D in the following way (see Fig. 9): the normal angles to the sides of ∆I are

η1 = −π/2, η2 = arcsin(τ/2− 1) and η3 = π − η2,

where τ is the unique root in [2, 3] of the equation

−τ3 +
(
D2/2 + 5

)
τ2 −

(
2D2 + 4

)
τ +D2 = 0.

Let us introduce the points Ai, Bi, i = 1, 2, 3 and M3 defined through their coordinates by

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
, i = 1, 2, 3, M1 = (1− τ)×

(
cos(η1)
sin(η1)

)
.

with h1 =
√
D2 − τ2 and h2 = h3 = h1

4 (τ − 2). The set KC(D) is then obtained as follows:

• the points A1, B1, A2, B2, M1, A3, B3 belong to its boundary;

• >
B2M1 (resp. >M1A3) and >A1B3 (resp. >B1A2) are diametrally opposed arcs of the same circle
of diameter D.

• the boundary contains the segments [AiBi], i = 1, 2, 3. Note that the contact point Ii with the
incircle is precisely the middle of [AiBi],

Moreover, setting

t1 = arcsin
(2(sin η1 + h1 cos η1)− τ + 2

D

)
and t2 = arcsin

(
τ

D

)
,

we have the formula

|KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1). (11)
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I1

I2I3

S1

S2 S3
A1 B1

A2

B2A3

B3

M1

Figure 9: The set KC(D) and its incircle.

Proposition 3. Let D > 2 be given and assume that Problem (10) has a solution K?. Then, K? is
either the set KC(D) or KE(D).

The end of this section is devoted to proving Proposition 3. Hence, let us assume that Problem
(10) has a solution denoted K (instead of K?) for the sake of simplicity. Let T be the triangle of
inradius 1 containing K. Let Dηi be the three tangent lines to the unit circle defining T , where ηi
is the angle between the horizontal axis and the normal vector to each side of T . We assume that
η1 < η2 < η3 and we introduce the contact points Ii between the lineDηi and the unit circle. We
also define ϕ1, ϕ2, ϕ3 as the demi angles at the center (see Fig. 10). The problem being rotationally
invariant, we will impose without loss of generality that η1 = −π/2, and ϕ1 6 ϕ2 6 ϕ3. Identifying
the index i with the index i+ 3, one has

ϕi = ηi+2 − ηi+1
2 , i = 1, 2, 3.

The set K∩Dηi is a segment (possibly reduced to the point Ii) denoted [Ai, Bi]. The free boundary γ
being strictly convex according to Lemma 4, we parametrize it with the help of a function θ 7→M(θ)
defined on Iγ= (0, 2π)\{ηi}i=1,2,3, where θ is the angle between the normal to the support line of the
point M(θ) and the abscissa axis. A point M of the free boundary may have several support lines.
More precisely, two cases may arise: either a point has a unique supporting line or a point has at
least two supporting lines.

Each pointM of the second kind is a kind of vertex of K called “angular point” of ∂K. Moreover,
considering the smallest and the largest angle made by its supporting lines, one can associate to M
a closed interval JM ⊂ Iγ . Notice that two consecutive vertices M and N cannot admit overlapping
intervals JM and JN since it would mean that γ contains a violating the property that every point
in γ saturates the diameter constraint. It also implies that angular points of γ are isolated, whereas
points of ∂K of the first kind are represented by a unique angle.

This remark rewrites in the following way in terms of the support function h of K:

(i) if M(θ) has a unique supporting line, then θ + π ∈ Iγ and h(θ) + h(θ + π) = D;

(ii) in the converse case, there exists θ ∈ JM such that θ + π ∈ Iγ and h(θ) + h(θ + π) = D.
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ϕ3

ϕ1

ϕ2

Figure 10: Example of a convex K and the triangle T (K).

Regarding the segments [Ai, Bi]i=1,2,3, one has

Ai = M(η−i ) = lim
θ→ηi,θ<ηi

M(θ) and Bi = M(η+
i ) = lim

θ→ηi,θ>ηi

M(θ).

For i = 1, 2, 3, let αi and βi be such that M(θ) = Ai for all θ ∈ [ηi − αi, ηi) and M(θ) = Bi for
all θ ∈ (ηi, ηi + βi]. Since angular points are isolated, the free boundary γ near Ai and Bi is made
of points of ∂K having a unique supporting line. An easy continuity argument shows that Ai and
Bi saturate the diameter constraint. Let us make their diametral point(s) precise. Recall that we
introduced Fθ as Dθ ∩K and let us characterize Fηi+π. Since ηi+1 − ηi < π, ηi + π cannot belong
to {ηj}j=1,2,3, then Fηi+π is a point denoted M(ηi + π) or more simply Mi. Considering for instance
the point M1, we have to distinguish between three cases:

• if η1 + π ∈ (η2 + β2, η3 − α3), meaning that M1 lies in the interior of the free boundary, then
M1 is diametral with both A1 and B1

• if η1 + π ∈ (η2, η2 + β2), then M1 = B2 and one easily infers that M1A1 = D

• if η1 + π ∈ (η3 − α3, η3), then M1 = A3 and it follows that M1B1 = D

3.2.1 Geometrical description of optimizers

Lemma 7. Let i ∈ J1, 3K. The contact points Ii between the line Dηi and the incircle is the middle
of the segment [Ai, Bi].

Proof. To prove this, we will use a small perturbation of an angle ηi and get optimality conditions.
Without loss of generality, consider I1 and introduce the lengths lA = I1A1 and lB = I1B1. Let us
consider the following perturbation: we replace η1 by η1 + ε for ε > 0 small, and denote by Tε the
triangle whose incircle is B(0, 1), and whose angles are η1 + ε, η2, and η3. We denote by Lη1+ε the
corresponding tangent line of the unit disk. We now define Jε as the intersection point between Dη1

and Lη1+ε. This point satisfies Jε = I1 + ε
2(− sin η1, cos η1). We build a new convex set included in

the triangle Tε by slightly modifying the previous one : replace A1 and B1 by Aε and Bε located
on Lη1+ε in such a way that the diameter constraint is still fulfilled (see Fig. 11). We explicit the
construction of Aε below as the intersection of Lη1+ε with a well chosen line issued from A1, while
Bε is the intersection of Lη1+ε with the boundary of K. We have to make the balance between
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• the area we gain: this is triangle T (A1JεAε)

• the area we lose: this is the intersection of K with the half-space {x ·uη1+ε > 1}. At first order,
this area is the same than the area of the triangle T (B1JεBε)

Iε

I

Jε

A

B

Bε

Aε

Figure 11: Gain of area (strips) vs loss of area (dots)

The two triangles share the same angle ε, therefore the balance of area is

δA := 1
2 sin ε (JεA1.JεAε − JεB1.JεBε)

Now we can explicitly compute these lengths and get the expansions

JεA1 = lA +O(ε), JεB1 = lB +O(ε),

Let us introduce the angle θεA = ̂JεA1Aε. Using elementary trigonometry, we can rewrite the length
JεAε as

JεAε = A1Jε
cos ε+ sin ε cot θεA

= lA(1− ε cot θεA + o(ε)).

Now let us prove that we can choose an angle θεA which does not go to zero while keeping the
diameter constraint satisfied. Suppose η1 ∈ [0, π/2]. Recall that A1 is represented by an interval of
angles IA1 = [η1−α, η1]. Let DA1 be the set of points that are diametrical to A1 and ΘA1 ⊂ IA1 + π
the set of angles representing elements of DA1 :

ΘA1 = {θ ∈ Iγ ,M(θ) ∈ DA1 and h(θ) + h(θ + π) = D} ⊂ [0, 2π).

We claim that there exists γ > 0 such that for all θ′ ∈ [η1 +π−γ, η1 +π], θ′ /∈ ΘA. Otherwise the
diameter constraint on I1 would be broken. Let ζ = max(ΘA1) < π+η1. Choosing θεA = (π+η1−ζ)/2
fulfills the desired condition for ε small enough and provides a gain of area as l2Aε/2 + o(ε)).

neighborhood of A on this flat portion does not saturate the diameter constraint. one can prove
that at the first order in ε, it consists in taking the line with vector ζ+π. Take Aε as the intersection of
this line with the tangent of the unit circle with angle η1+ε. The desired angle is θ = η1−ζ−π = O(1).
This construction is such that K ∪ T (AJεAε) still fulfills the diameter constraint as well as the
convexity constraint. since δ − π > η1 − α

On the side of B there is no problem with the diameter constraint, thus we simply observe that
JεBε = lB +O(ε) by construction. Therefore we get a loss of area as l2Bε/2 + o(ε)).

Thus we infer that the difference of areas is equal to δA = ε
2(l2A − l2B) + o(ε) which has to be

non-positive, which leads to lA 6 lB at the optimum. We repeat the argument with ε < 0 to get
lB 6 lA, whence the equality.
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Now we are going to prove that the free boundary is made of arcs of circle of radius D/2 by
working on the radius of curvature R. It consists of three steps. We show first that this radius can
only take the values 0, D/2 or D on the free boundary. Then we prove that the set {R = D} is
necessarily of empty interior to finally deduce that the radius of curvature on non angular points can
only be D/2.

Lemma 8. On the free boundary γ of K, the radius of curvature is almost everywhere equal to either
0, D/2 or D.

Proof. According to the above discussion, we will distinguish between points of the free boundary
γ having a unique support line, and angular points. Since angular points are isolated on ∂K, it
means that points of γ having a unique support line define an open subset γ1 of γ or equivalently
that their angle parametrization define an open subset I1 of Iγ= (0, 2π)\{ηi}i=1,2,3. Any point of
the complement set of γ1 is an angular point, and therefore its radius of curvature is zero. Thus, it
remains to look at points of γ1.

Recall that, since K is a convex set, its radius of curvature defines a nonnegative Radon measure.
For any θ ∈ I1 one has h(θ) +h(θ+π) = D. Differentiating twice this equality and since R = h+h′′,
one gets that R+ τπR = D in the sense of measures in I1, where τπ is the translation operator given
by τπ(f) = f(π + ·) for every continuous function f . It follows that 0 6 R(θ) 6 D for a.e. θ in T
and thus, R is a bounded function, allowing us to write

∀θ ∈ I1, R(θ) +R(θ + π) = D. (12)

Let us now prove that for almost every θ ∈ I1, one has R(θ) ∈ {0, D/2, D}. Let us assume that
the set ω = {θ ∈ I1 | 0 < R(θ) < D} has a positive measure, otherwise it means that R = 0 or
R = D a.e. and we are done. Let us first show that R is necessarily constant on ω. Let us argue by
contradiction: assume there exist two subsets ω1 and ω2 such that |ω1| = |ω2| > 0 and∫

ω1
R(θ) dθ >

∫
ω2
R(θ) dθ. (13)

Let us consider a regularization ξ of the function v defined by

v(θ) =
{

+1 if θ ∈ ω1, −1 if θ ∈ ω1 + π
−1 if θ ∈ ω2, 1 if θ ∈ ω2 + π

and we will deal with the perturbation h + εv of the support function h for ε > 0 small. In what
follows, we should deal with the regularization ξ, work on a subset of ω on which 0 < η 6 h(θ), and
finally pass to the limit η ↘ 0. To avoid technicalities, we will directly write the asymptotic of the
derivative of the area under this perturbation, with a slight abuse of notation.

Since the area of the domain is

|K| = J(h) where J(h) = 1
2

∫ 2π

0
(h2(θ)− h′2(θ)) dθ,

the first derivative of the area under the perturbation above reads as

〈dJ(h), ξ〉 =
∫
ω1∪ω2∪(ω1+π)∪(ω2+π)

hξ − h′ξ′ =
∫
ω1∪ω2∪(ω1+π)∪(ω2+π)

(h+ h′′)ξ.

By definition of ξ, one gets

〈dJ(h), ξ〉 =
∫
ω1
R−

∫
ω2
R−

∫
ω1+π

R+
∫
ω2+π

R
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and according to (12), it comes

〈dJ(h), ξ〉 =
∫
ω1
R−

∫
ω2
R−

∫
ω1

(D −R) +
∫
ω2

(D −R) = 2
(∫

ω1
R−

∫
ω2
R

)
> 0

leading to a contradiction. It follows that R is necessarily constant on ω. Let us moreover show that
the constant value of R is precisely D/2. We proceed similarly: let us choose a perturbation ξ equal
to 1 on a subset ω1 and −1 on ω1 + π. The same computation as above leads to

〈dJ(h), ξ〉 =
∫
ω1
R−

∫
ω1

(D −R) =
∫
ω1

(2R−D),

and we conclude since this derivative must be zero (indeed, if this derivative would not vanish, either
the admissible perturbation ξ or −ξ would make the area increase). We conclude that necessarily
R ∈ {0, D/2, D} on I1.
{R = D} are unions of intervals and to locate them. For that purpose we will now study the

perturbation on R = h + h′′. By definition of R, it is a radon measure such that
∫

(0,2π) cos dR =∫
(0,2π) sin dR = 0 . Now Suppose that R is optimal. Let J ⊂ I1 and consider a perturbation ξ on
J ∪ J + π such that C1 and h′′ ∈ L∞ with h + h′′ = R. Differentiating twice and adding yields
ψ + ψ′′ = R −D/2. suppose for example that JD = J ∩ SD has nonempty interior. Then ψ > 0 on
JD and ψ + ψ′′ = D. Let ψ evolve freely along the differential equation until ψ vanishes and goes
below 0. Then psi becomes negative and is ruled by the differential equation ψ + ψ′′ = 0

From this lemma we deduce that if the boundary ∂K contains an arc of circle of radius D/2,
it also contains its antipodal part (in other words the set of points of ∂K diametrically opposed to
those of the arc of circle), and if it contains an arc of circle of radius D, it also contains its center.
Let us show that this second case cannot occur, following an idea in [1].

Lemma 9. The two assertions are incompatible:

• the free boundary γ contains an arc of circle of radius D;

• its center belongs to ∂K.

Proof. Let us argue by contradiction. Let us denote by C the circle of radius D one arc of which
belongs to γ and by P ∈ ∂K its center. Note that since C saturates the diameter constraint, according
to lemma 3, it belongs to the free boundary γ or lies in the intersection of two segments. In this last
case K has only two free zones and C is an edge of T . Anyway C is not in the neighborhood of any
contact point. By choosing adequately an orthonormal basis, assume that the coordinates of P are
(−D/2, 0) and the coordinate of the center of the arc, denoted by Q, are (D/2, 0). Now for ε > 0
consider Qε whose coordinates are (D/2 + ε, 0) and define

Kε = hull(K ∪Qε) ∩B(Qε, D).

where B(Qε, D) is the disc of center Qε and radius D.
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Figure 12: Left: gain of area (red crosshatch) vs loss of area (blue horizontal lines). Right: calculus
of the gain.

Since the free boundary is modified locally, far from the contact point, the inradius remains
unchanged and the diameter also by construction. This transformation drives to a gain of area on
the right part, and a loss on the left part (see Fig. 12). Let us show that the gain is O(ε

√
ε) and the

loss is O(ε2).

• gain: using the notations on the right part of Fig. 12, one determine a lower bound of the
area gain by computing the area of the triangle B1QεB2. Here x = ε/ tan(θε) with cos(θε) =
D/(D + ε), and therefore, x = O(

√
ε), and thus, a lower bound on the area gain is O(ε

√
ε).

• loss: note that if the radius of curvature is D on an open interval, thus it is equal to 0 on its
antipodal interval. It means that the center of the corresponding arc of circle is an angular
point, and hence it admits two different tangent lines. By convexity, the loss area is less than
the one of the triangle formed by the point P , and the two intersection points of the tangent
with the circle C(Qε, D). Now the angle of the tangents does not depend on ε, and the same
kind of calculus shows that the area loss is O(ε2).

Hence, choosing ε > 0 small enough guarantees that |Kε| > |K| and we have thus reached a contra-
diction.

Let us complete the description of the free boundary with the help of two lemmas.

Lemma 10. The free boundary γ of K is the union of arc of circles of diameter D (i.e. the radius
of curvature is equal almost everywhere to D/2 on γ), that are mutually antipodal.

Proof. either 0, D/2 or D on the free boundary, and lemma 9 shows that on every interval I where
the relation h(θ)+h(θ+π) = D holds, the curvature cannot be 0 or D in any subinterval. Otherwise
we would have an arc of circle of diameter D, which is impossible. As usual, we denote the optimal
set by K in this proof. We will consider its radius of curvature R as a variable. Recall that, globally,
R is a Radon measure on T such that

〈R, cos〉M(T),C 0(T) = 0 = 〈R, sin〉M(T),C 0(T) = 0 (14)

(we choose here to fix the origin at the Steiner point of the convex set K). Its associated support
function h solves the ODE {

h+ h′′ = R in T∫ 2π
0 h(θ)eiθ dθ = 0 (15)

Let F be the associated resolvent operator, in other words,

F : RD 3 R 7→ F [R] = h ∈ H1(T),
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where h is the unique solution to System (15) and

RD =
{
R ∈M(T) | 〈R, cos +i sin〉M(T),C 0(T) = 0 and F [R](θ) + F [R](θ + π) 6 D, θ ∈ T

}
.

In what follows and for the sake of notational simplicity, we will denote the quantity 〈R, f〉M(T),C 0(T),
where f is a continuous function in T, by

∫ 2π
0 R(θ)f(θ) dθ with a slight abuse.

We recall that the area of K is given by

|K| = J(R) where J(R) =
∫ 2π

0
F [R](θ)R(θ) dθ. (16)

Let R be the radius of curvature function of the optimal set K, and h = F (R). Let I denote a
subset of (0, π) of positive measure (assumed to contain an interval without loss of generality since
angular points are isolated) on which there holds h(θ) + h(θ + π) = D. According to Lemma 8, R is
bounded on I, such that R(θ) +R(θ + π) = D and R ∈ {0, D/2, D} a.e. on I. Moreover, according
to Lemma 9, the interiors of I ∩ {R = 0} and I ∩ {R = D} are empty.

We want to write the optimality conditions satisfied by R locally on the interval I. For that
purpose we need to use admissible deformations: these are precisely deformations ξ belonging to the
tangent cone at R, we recall this definition: the tangent cone to the set L∞(I; [0, D]) at R, (also
called the admissible cone) denoted TR is the set of functions ξ ∈ L∞(I) such that, for any sequence
of positive real numbers (ηn)n∈N decreasing to 0, there exists a sequence of functions ξn ∈ L∞(I)
converging to ξ as n→ +∞, and R+ ηnξn ∈ L∞(I; [0, D]) for every n ∈ N.

Let us now give the first order optimality condition. This is a quite classical result in control
theory, but for sake of completeness, we postpone the proof of the following Lemma to Appendix A.

Lemma 11. There exist three real numbers (µ, α, β) (Lagrange multipliers), which are not all zero,
such that the radius of curvature R of the optimal domain and its support function h satisfy

∀ξ ∈ TR,
∫
I

(µ(2h(θ)−D) + α cos θ + β sin θ) ξ(θ) dθ 6 0. (17)

To finish the proof of Lemma 10, let us introduce the switching function

ΨR : θ 7→ µ(2h(θ)−D) + α cos θ + β sin θ,

where h is the solution to (15) associated to R. The first order necessary condition can be recast as

∀ξ ∈ TR,
∫
I

ΨRξ 6 0.

Let y0 ∈ I be a Lebesgue point of I ∩ {R = 0} and let (Gn)n∈N denote a subset of I ∩ {u? = 0}
containing y0. Then, ξ = 1Gn belongs to TR and therefore∫

Gn

ΨR 6 0.

By dividing this inequality by |Gn| and letting Gn shrink to y0 as n→ +∞, we infer that ΨR(y0) 6 0
according to the Lebesgue density theorem.

Generalizing this reasoning to the sets I ∩ {R = D} and I ∩ {0 < R < D}, it follows that

• on I ∩ {R = 0}, ΨR 6 0;

• on I ∩ {R = D}, ΨR > 0;

• on I ∩ {0 < R < D}, ΨR = 0.
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Note that ΨR is continuous. Let us distinguish between two cases. If µ = 0, then ΨR(θ) = α cos θ +
β sin θ with (α, β) 6= (0, 0) and then, {ΨR = 0} has zero measure. It follows that R is bang-bang,
equal to 0 and D almost everywhere in I. By continuity, since I contains an interval, one has either
R = 0 or R = D on an interval, which is in contradiction with Lemma 9. In the same way, if ψR < 0
(or ψR > 0) somewhere, it will remain negative (or positive) on an interval, implying that R = 0 on
that interval, in contradiction with Lemma 9. Therefore, we deduce that ψR is identically zero which
implies that

h = D

2 + α

µ
cos +β

µ
sin on I.

The same identities hold true on I+π, which corresponds to an antipodal arc of circle. The expected
result follows. Notice finally that, since angular points are isolated (which allowed us to assume that
I contained an open interval), γ is the union of arcs of circle of diameter D.

Another necessary point is to determine when ones switches from an arc of circle to another one.

Lemma 12. Arc of circles only end at an angular point of the free boundary. Furthermore, the only
angular points in the interior of the free boundary are the points Mi, i = 1, 2, 3.

Proof. We have seen that a piece of γ whose points have a unique supporting line corresponds to
an arc of a given circle with diameter D. All such points are represented by a unique angle. Hence,
denoting by I the corresponding interval of angles, the relation h(·) + h(· + π) = D holds true on
I. It follows that an arc of circle breaks in the interior of γ if, and only if there exists an angular
point M represented by an interval JM on which the relation h(·) + h(· + π) = D is not satisfied
(otherwise we would necessarily have R = D on JM because of Lemma 8, which is impossible because
of Lemma 10). Therefore, only an angular point can break an arc of circle and we claim that such a
point is necessarily one of the points M1, M2, M3. Indeed, let us write JM = [α, β] with α 6 β and
recall that for ε > 0 small enough, θ ∈ [α − ε, α] (and respectively θ ∈ [β, β + ε]) is associated to a
point on an arc of circle with diameter D. Let A (resp. B) be the points of ∂K? corresponding by
α + π (resp. β + π). If A = B, there are two pairs of arc of circle with same center, same radius
meeting with a nonzero angle, which is impossible. Thus, one has A 6= B and there is a point in the
boundary between A and B which does not saturate the diameter constraint (otherwise, using the
same arguments as above, there would exist an arc of circle of radius D between A and B). This
point belongs necessarily to a contact line, which proves that JM contains one of the angles ηi + π,
i = 1, 2, 3. It follows that M corresponds to a point Mi, i = 1, 2, 3.

According to Lemma 10 and Lemma 12, each free zone of γ is made of one or two arc of circles,
and for each one, the antipodal arc of circle is in γ.

We end our study by distinguishing between two cases, depending on whether γ is made of two
or three free zones.

3.2.2 Case of two free zones

First of all, let us remark that the case where the boundary contains only one free zone cannot occur.
Indeed, it would mean that all the points in this free zone, that we know to be diametral, would
be at the distance D of one vertex of the triangle. But this is impossible, according to Lemma 9.
Thus, it remains to look at the case of two free zones. In that case, one of the vertices of the triangle
belongs to the boundary ∂K?. Exactly for the same reason, it is impossible that one piece of the
free boundary is diametral to this vertex. Therefore, the two remaining free zones that we denote
Z1 and Z2 are mutually diametral, which means that for each M1 in Z1 there exists M2 in Z2 with
M1M2 = D.

The case of two free zones arises whenever some points Ai and Bi on Fig. 10 coincide with a vertex
Si. According to Lemma 7, the contact point are the middle of the contact segments. Moreover,
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Figure 13: A convex set with two free zones

two segments have a vertex as endpoint, and it is necessary for the contact segment to be included
in the edges of the triangle that this vertex is closer to the contact points than the other vertices.
With the notations previously introduced (and summed-up on Fig. 10), we have SiIj = tanϕi for
i 6= j. Since we assumed that 0 < ϕ1 6 ϕ2 6 ϕ3 < π/2, the vertex is necessarily S1 and one has
I2A2 = I3B3 = tanϕ1.

Assume hence without loss of generality that Z1 contains A1. Since A1 is diametral, there exists
M ∈ Z2 such that MA1 = D. We are going to prove that M is unique and equal to A2. Assume
by contradiction that it is not the case. Then there exists an angle θ /∈ [η2 − α2, η2] representing M
with θ + π ∈ [η1 − α1, η1] and h(θ) + h(θ + π) = D. Consider ε > 0 small such that η2 − α2 − ε > θ.
Since the only angular point is a point Mi, every angle θ′ ∈]η2 − α2 − ε, η2 − α2[ uniquely represents
a point that is diametral. We deduce that for all θ′ ∈]η2 − α2 − ε, η2 − α2[, h(θ′) + h(θ′ + π) = D.
From the inequalities: θ + π > η1 − α1 and θ′ > θ we obtain that θ′ + π > η1 − α1. The inequality
η2 − η1 < π guarantees that θ′ + π ∈ [η1 − α1, η1], which means that every point represented by the
angles θ′ ∈]η2−α2− ε, η2−α2[ are diametral to A1, hence the existence of an arc of radius D, which
is impossible.

Assume hence without loss of generality that Z1 contains A1. Since A1 is diametral, there exists
M ∈ Z2 such that MA1 = D. Assume by contradiction that A2 is not diametral to A1, hence there
is a unique supporting line at M . Let θ be the angle associated to this support line. By uniqueness
of the supporting line, one has necessarily h(θ) + h(θ + π) = D with θ + π ∈ [η1 − α1, η1]. Then,
every point "above" M is represented by a unique angle θ′ > θ and we have h(θ′) + h(θ′ + π) = D
but θ′ + π > θ + π, so the angle θ′ + π also represents A1. It shows that every point above M is
diametral to A1. In particular, A1 and A2 are diametral, whence the contradiction. Similarly, one
shows that B3B1 = D.

Recall that the free zones are only made of arc of circles of diameter D. Let us show that each
free zone is one arc of circle, that is antipodal to the other free zone. If it were not the case, one point
Mi with i = 2, 3 would be in the interior of the free zone. Let us consider without loss of generality
that M3 belongs to the interior of the free boundary. Let N be a point of γ strictly between B1
and M3. Let θ be the corresponding angle of the associated supporting line, which is unique. Then,
θ < η3 + π and N is diametral with a point whose angles set of its supporting line(s) is included in
(η2, η3). It is necessarily S1. But this is impossible according to Lemma 9 since γ cannot contain an
arc of circle of radius D whose center is a vertex of T .

Therefore, the free zones are antipodal arcs of circle of radius D/2. Since the points A1, B1,
A2, B3 belong to the same circle and are two by two diametral, they are the vertices of a rectangle,
meaning that T is an isosceles triangle (we use here the fact that the incircle and the rectangle share
the same axis of symmetry). Taking the convention that η1 = −π/2, we have η3 = π − η2 and
ϕ1 = π/2− η2 (see Fig 14).
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Figure 14: Picture of an admissible set with two free zones

Now let us compute the exact value of η2 with respect to D. Since ϕ1 6 π/3, one has necessarily
η2 > π/6.

Let us consider the orthonormal basis (O;
−−−→
A1B1
A1B1

,
−−−→
A1B3
A1B3

) centered at O, the incircle center. Since
the abscissa of A1 is the same as the one of B3 and since I3 is the middle of [S1B3] (and resp. I2 is
the middle of [S1A2]), we infer that the coordinates of A1 and A2 are then

A1 = (−2 cos η2,−1) and A2 =
(

2 cos η2,
cos(2η2)

sin η2

)
.

Solving the equation A1A2 = D leads to the polynomial equation:

P (sin η2) = 0 with P (X) = X3 − D2 − 1
4 X2 − 1

2X + 1
4 . (18)

We need to determine a solution in [1/2, 1]. Assume thatD > 2. Let us observe that P (1) = 4−D2

4 < 0
and P (1/2) = 3−D2

16 < 0. Furthermore, one shows easily that P is either decreasing on (1/2, 1) or
decreasing and then increasing on (1/2, 1). Thus the equation P (sin η2) = 0 has no solution on
[1/2, 1]. We conclude that this is not possible to build an optimal set with two free zones.

3.2.3 Case of three free zones

Let us distinguish between two cases.

Subcase 1: all the points Mi, i = 1, 2, 3 belong to the interior of γ.

In this case, the previous study has shown that the free boundary is as follows (see Fig. 15)

• >
A3M1 and>B1M3 are antipodal arcs of circle of radius D/2,

• >
A2M3 and>B3M2 are antipodal arcs of circle of radius D/2,

• >
A1M2 and>B2M1 are antipodal arcs of circle of radius D/2,

• Ii is on the middle of [Ai, Bi]

• Mi is on the perpendicular bisector of [Ai, Bi] (or Ii, O and Mi are aligned).

We deduce the relationships
−−−→
M3B1 = −−−→M1A3,

−−−→
M1B2 = −−−→M2A1, and −−−→

M2B3 = −−−→M3A2. (19)
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Figure 15: Case of three free zones and the Mi’s belong to the interior of the free zones.

Let τi = MiIi and hi = IiAi. Then necessarily τi > 2 and we have the relationship

hi =
√
D2 − τ2

i (20)

Let us consider the orthonormal basis (O;
−−−→
I1B1
I1B1

,
−−→
I1O
I1O

) centered at O, the incircle center. For i = 1, 2, 3,
the coordinates of Ai, Bi and Mi are

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
, Mi = (1− τi)×

(
cos ηi
sin ηi

)
.

By assimilating the index i with i+ 3, the vector relationships above rewrites

i = 1, 2, 3,
{

2− τi = (2− τi+1) cos(ηi − ηi+1) + hi+1 sin(ηi − ηi+1)
hi = (2− τi+1) sin(ηi − ηi+1)− hi+1 cos(ηi − ηi+1), (21)

from which we infer that 
(2− τ1) tan(η3 − η2) = h1
(2− τ2) tan(η1 − η3) = h2
(2− τ3) tan(η2 − η1) = h3.

(22)

With the value of hi given by (20), we have the quadratic equation on τ1:

(2− τ1)2 tan2(η3 − η2) = D2 − τ2
1 . (23)

and similarly for the others. This yields

2− τ1 = 2 cos2(η3 − η2)± cos(η3 − η2)
√
D2 − 4 sin2(η3 − η2). (24)

Since 2 − τ1 is negative, we can choose the sign depending on the value of cos. Recall that
ηi+1 − ηi ∈ (0, π) and η3 − η2 6 η1 − η3 6 η2 − η1. Furthermore, ηi+1 − ηi ∈ (0, π/2) means that the
triangle has an obtuse angle. This can happen only once, and for η3 − η2. So at least η1 − η3 and
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η2 − η1 are in (π/2, π) and their cosine is negative. Assuming now that we have η3 − η2 > π/2 leads
to 

2− τ1 = 2 cos2(η3 − η2) + cos(η3 − η2)
√
D2 − 4 sin2(η3 − η2)

2− τ2 = 2 cos2(η1 − η3) + cos(η1 − η3)
√
D2 − 4 sin2(η1 − η3)

2− τ3 = 2 cos2(η2 − η1) + cos(η2 − η1)
√
D2 − 4 sin2(η2 − η1).

(25)

By replacing hi by its value (22) in (19), we obtain after calculation
(2− τ3) cos(η3 − η2) = (2− τ1) cos(η1 − η2)
(2− τ2) cos(η2 − η1) = (2− τ3) cos(η3 − η1)
(2− τ1) cos(η1 − η3) = (2− τ2) cos(η2 − η3).

(26)

Finally, replacing 2− τi by his expression in (26) and using that cos(ηi+1 − ηi) 6= 0, we get 2 cos(η2 − η1) +
√
D2 − 4 sin2(η2 − η1) = 2 cos(η3 − η2) +

√
D2 − 4 sin2(η3 − η2)

2 cos(η2 − η1) +
√
D2 − 4 sin2(η2 − η1) = 2 cos(η1 − η3) +

√
D2 − 4 sin2(η1 − η3).

(27)

Let f : x 7→ 2 cosx+
√
D2 − 4 sin2 x. One easily shows that f is decreasing on (π/2, π) and hence

injective (see Fig. 16). We thus infer that

η3 − η2 = η1 − η3 = η2 − η1 = 2π
3 .

The triangle T is therefore equilateral and one has τ1 = τ2 = τ3 = (3 +
√
D2 − 3)/2. We recover the

smoothed nonagon introduced in Def. 2.
Assume now that η3− η2 6 π/2. If η3− η2 = π/2, then τ1 = 2 and M1 is on in the incircle, which

is impossible for D > 2, otherwise the arc of circle would cross the incircle.
Now we have 

2− τ1 = 2 cos2(η3 − η2)− cos(η3 − η2)
√
D2 − 4 sin2(η3 − η2)

2− τ2 = 2 cos2(η1 − η3) + cos(η1 − η3)
√
D2 − 4 sin2(η1 − η3)

2− τ3 = 2 cos2(η2 − η1) + cos(η2 − η1)
√
D2 − 4 sin2(η2 − η1).

(28)

The same computations as above yield

2 cos(η3 − η2)−
√
D2 − 4 sin2(η3 − η2) = 2 cos(η1 − η3) +

√
D2 − 4 sin2(η1 − η3). (29)

Now, let us introduce g : x 7→ 2 cosx −
√
D2 − 4 sin2 x. One easily sees that g is negative while

f is positive and therefore, the equation f(x) = g(y) has no solution. We conclude that this case
cannot happen.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0.5
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2

x

f(x)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−2

−1.5

−1

−0.5

x

g(x)

Figure 16: D2 = 6. Left: plot of the function f . Right: plot of the function g.
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Finally, the solution for this sub-case is KE(D) defined in Def. 2. Observe that since KE(D) is
inscribed in the equilateral triangle, we need to have h <

√
3, ie τ < 3 and D < 2

√
3, whence the

requirement on D for the sake of the definition of KE(D).

Subcase 2: at least one point Mi is on the boundary of the free zone, namely it is one
of the points Aj or Bj.

Assume here that a point Mi, say M1 is not in the interior of the free zone. Then M1 = B2 or
M1 = A3, say M1 = B2. The free zone Z1 is an arc of circle of radius D/2 whose antipodal arc is
>
B1M3. If M3 is also on the boundary of Z3 then Z1 and Z3 would be antipodal and Z2 would not
have any antipodal arc of circle. This is impossible. So M3 lies in the interior of Z3 and it has a
second arc of circle: >M3A2 which antipodal arc is >M2B3. We claim that M2 = A1 otherwise >M2A1
would not have antipodal arc.

I1

I2

I3

S1

S2 S3
A1 B1

A2

B2

A3

B3

M3

Figure 17: An approximate illustration of the case of three free zones and M1 in the boundary of the
free zone.

Now, in comparison with the first case, only two vector relation are valid, namely
−−−→
B1M3 = −−−→A3B2 and −−−→

A2M3 = −−−→B3A1. (30)

Taking the same notations as in the first case with τ = τ3, one has{
cos η2 − h2 sin η2 − cos η3 − h3 sin η3 = (1− τ) cos η3 − cos η1 + h1 sin η1
sin η2 + h2 cos η2 − sin η3 + h3 cos η3 = (1− τ) sin η3 − sin η1 − h1 cos η1

(31)

and {
cos η1 + h1 sin η1 − cos η3 + h3 sin η3 = (1− τ) cos η3 − cos η2 − h2 sin η2
sin η2 − h1 cos η1 − sin η3 − h3 cos η3 = (1− τ) sin η3 − sin η2 + h2 cos η2

(32)

The same kind of computations as in the first case lead to the following statements:

η3 − η2 = η1 − η3 = y
h1 = h2
2− τ = 2 cos y < 0
τ2 + h2

3 = D2

2h1 = −h3 cos y.

(33)
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Now set η3 = −π/2. then η1 = y − π/2 ∈ [0, π/2] and η2 = π − η1. Observe thatA2M3A1B3 is a
rectangle which leads to the new equation −−−→A1M3 ·

−−−→
A2M3 = 0. It rewrites

(τ − 1)2 − 2(τ − 1) sin η1 + (h2
1 + 1)(2 sin2 η1 − 1) = 0 (34)

and using that

sin η1 = τ/2− 1 and h2
1 + 1 = D2 − τ2

(τ − 2)2 + 1, (35)

Equation (34) becomes

− τ3 +
(
D2/2 + 5

)
τ2 −

(
2D2 + 4

)
τ +D2 = 0. (36)

Since τ has to be a root of the polynomial in [2, 3], a calculus argument shows that for D ∈ [2, 2
√

3],
the polynomial has a unique root in [2, 3], with τ(2) = 2, τ(2

√
3) = 3 and τ is an increasing function.

Finally this leads to the construction of the set KC(D) shown in Fig. 9.
Furthermore, if we set t1 = arcsin

(
2(sin η1+h1 cos η1)−τ+2

D

)
and t2 = arcsin(τ/D) then we have the

formula
|KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1). (37)

Let us remark that, using (35), we have cos2 t2 = (D2 − τ2)/D2 and (τ − 2)2 = 4 sin2 η1, thus

h2
1 = D2 − τ2

(τ − 2)2 = D2 cos2 t2
4 sin2 η1

=⇒ h1 = D cos t2
2 sin η1

,

and replacing in the definition of t1, it provides the alternative formula

t1 = arcsin
( cos t2

tan η1

)
. (38)

3.3 Comparison

Now we have to determine what is the optimal shape for a given D. Previous analysis show that for
D > 2

√
3 it is not possible to construct the sets KE and KC . Hence the stadium KS is optimal for

such D. Let us have a look to the graphics of the area of the three domain for D ∈ [2, 2
√

3]. Now let
us investigate the case D ∈ [2, 2

√
3]. Graphics 18 suggest that, the inradius r being prescribed, the

set KE is optimal for small values of D and KS is optimal for large values of D. In the following we
prove two facts:

1. The domain KC(D) is never optimal,

2. the existence of D? such that for D 6 D?, |KE(D)| > |KS(D)| and for D > D?, |KS(D)| >
|KE(D)|.
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Figure 18: Comparison of the three areas

3.3.1 Proof that KC(D) is never optimal

We are going to prove that KC(D) < KS(D) for D ∈ (2, 2
√

3] by comparing their derivatives (we
know that KC(2) = KS(2) = π). Let us write Equation (36) in the following way

D2 = τ
τ2 − 5τ + 4
τ2

2 − 2τ + 1
:= τg(τ) (39)

where the function g : x 7→ (x2 − 5x+ 4)/(x2/2− 2x+ 1) is increasing. Thus we make the change of
variable D → τ and rewrite the areas KC(D) and KS(D) in terms of τ ∈ [2, 3]. More precisely, we
write τ = 2 + h with h ∈ [0, 1] and we write all quantities in term of h. Let us observe that

g(2 + h) = 2 + h

1− h2/2 . (40)

We start with KC(D) given by (37). By (40)

D2 − τ2 = (2 + h)g(2 + h)− (2 + h)2 = h2h+ h2/2
1− h2/2

and then the first term of KC(D) is

τ

τ − 2
√
D2 − τ2 = (2 + h)

√
h+ h2/2
1− h2/2 . (41)

A simple computation gives its derivative with respect to h:

d

dh

(
τ

τ − 2
√
D2 − τ2

)
=
√

2 + h

2h(1− h2/2)
1 + 2h+ h2/2− h3/2

1− h2/2 . (42)

Now we look at the other term in KC(D):

t2 = arcsin
(√

τ

g(τ)

)
= arcsin

√2 + h− h2 − h3/2
2 + h− h2

 . (43)

Now, let us express t1 using (38):

cos t2 =

√
1− τ2

D2 =
√

1− 2 + h

g(2 + h) = h

√
h/2

2 + h− h2
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while , from sin η1 = h/2, we get

tan η1 =
√

1
1− sin2 η1

− 1 = h

4− h2 .

From this, we infer:

t1 = arcsin
(√

h(2 + h)
2(1 + h)

)
. (44)

Now using the formula arcsin b − arcsin a = arcsin
(
b
√

1− a2 − a
√

1− b2
)
(all numbers a and b are

between 0 and 1), we finally get thanks to (43) and (44):

t2 − t1 = arcsin

(1− h)
√

2 + h

2− h

 . (45)

In particular, we have
d

dh
(t2 − t1) = h2 − 2h− 2

(2− h)
√

2h(2 + h)(1− h2/2)
.

Thus, one has

D2

2
d

dh
(t2 − t1) = (1 + h)(2− h)(2 + h)

2(1− h2/2)
h2 − 2h− 2

(2− h)
√

2h(2 + h)(1− h2/2)
=

=
√

2 + h

2h(1− h2/2)
−1− 2h− h2/2 + h3/2

1− h2/2

which is exactly the opposite of (42). Therefore

d

dh
KC(2 + h) = D

dD

dh
arcsin

(1− h)
√

2 + h

2− h

 .
On the other hand, since

d

dD
KS(D) = D arcsin

( 2
D

)
we have

d

dh
KS(2 + h) = D

dD

dh
arcsin

( 2
D

)
and to compare the derivatives, it suffices to compare the arguments in the arcsin. Now

2
D

=
√

2(1− h2/2)
(1 + h)(2− h)(2 + h)

and squaring and simplifying amounts to prove

4(1− h2/2)
(1 + h)(2 + h) > (1− h)2(2 + h)⇔ h2(5 + h− 3h2 − h3) > 0

which is true for 0 < h 6 1. This finishes the proof of KS(D) > KC(D) for D > 2.
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3.3.2 Existence of D?

Note that |KS(2)| = |KE(2)| = π. Now we compute the derivative of D 7→ |KE(D)|− |KS(D)| which
is given by

d

dD
(|KE(D)| − |KS(D)|) = 3

2 ×D
(

2π
3 − 2 arccos(

√
3
D

)
)
−D arcsin

( 2
D

)
,

which has the same sign as π − 3 arccos(
√

3
D ))− arcsin(2/D) = g(D).

Now, we have

g′(D) = − 3
√

3
D
√
D2 − 3

+ 2
D
√
D2 − 4

which is positive if and only if D ∈ [2,
√

96
23 ]. Together with g(0) = 0 and g(2

√
3) = − arcsin( 1√

3) < 0
we get that g is positive then negative. Finally we deduce that D 7→ |KE(D)|− |KS(D)| is increasing
then decreasing with value 0 at 2 and taking negative value at 2

√
3. We finally get the existence of

some D? ∈ [2, 2
√

3] such that for D 6 D?, |KE(D)| > |KS(D)| and for D > D?, |KE(D)| 6 |KS(D)|.
This conclude the proof.

A Proof of Lemma 11

To prove the Lemma, we will introduce an auxiliary problem whose unknown is the restriction of R
to the set I. Let us introduce J = [0, 2π]\(I ∪ (I + π)). Let us decompose R as R = R01J + u?1I +
(D − u?(· − π))1I+π, and observe that

J(R) =
∫
I
(2F [R]u? −DF [R]−Du? +D2) +

∫
J
F [R]R0.

and ∫
I
u?(θ) cos θ dθ = α and

∫
I
u?(θ) sin θ dθ = β,

with α = −1
2
∫
J R0(θ) cos θ dθ + D

2
∫
I cos θ dθ and β = −1

2
∫
J R0(θ) sin θ dθ + D

2
∫
I sin θ dθ.

We will now characterize u? by exploiting that it solves the optimization problem

sup
u∈R̃D

J̃(u) where J̃(u) =
∫
I
(2hu−Dh−Du+D2) +

∫
J
hR0, (46)

where h solves the ODE
h+ h′′ = R01J + u1I + (D − u(· − π))1I+π in (0, 2π)∫ 2π

0 h(θ)eiθ dθ = 0
h(0) = h(2π), h′(0) = h′(2π)

(47)

and
R̃D =

{
u ∈ L∞(I; [0, D]) |

∫
I
u(θ)eiθ dθ = α+ iβ

}
.

Let us now derive the first order necessary optimality conditions for this problem. Since the method is
standard, we briefly comment on the method allowing us to write such conditions: first, the mapping
R̃D 3 u 7→ h, where h solves (47), being linear it is Gâteaux-differentiable at u? in every direction
ξ belonging to the tangent cone to the set R̃D at u?. Furthermore, its differential ḣ is the unique
solution of the ODE 

ḣ+ ḣ′′ = ξ1I − ξ(· − π)1I+π in (0, 2π)∫ 2π
0 ḣ(θ)eiθ dθ = 0
ḣ(0) = ḣ(2π), ḣ′(0) = ḣ′(2π).
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It follows that R̃D 3 u 7→ J̃(u) is Gâteaux-differentiable at u? and its differential reads

〈dJ̃(u?), ξ〉 = lim
η↘0

J̃(u? + ηξ)− J̃(u?)
η

=
∫
I
(2ḣu? + 2hξ −Dḣ−Dξ) +

∫
J
ḣR0

=
∫
I
(2h−D)ξ +

∫
I
ḣ(2u? −D) +

∫
J
ḣR0 = 2

∫
I
(2h−D)ξ,

by using several times integration by parts and the relation h(θ) + h(θ + π) = D on I.
We now have to deal with two kinds of constraints in R̃D: a global L1 one and point-wise ones,

since u belongs to [0, D] almost everywhere. Although such constraints are standard, we briefly
explain how to derive the Euler inequation for this problem with the help of a penalization approach,
for the sake of completeness. For ε > 0, let us introduce J̃ε as the penalized functional

J̃ε(u) = J̃(u) + 1
ε

∣∣∣∣∫
I
u(θ)eiθ dθ − (α+ iβ)

∣∣∣∣2 .
We consider the optimization problem

sup
u∈L∞(I;[0,D])

J̃ε(u). (48)

On what follows, we will need to consider an element ξ to the tangent cone Tu to L∞(I; [0, D]) at u,
that we describe hereafter.

Since they follow from a basic variational analysis, we do not provide all the details to the following
claims:

• Since L∞(I; [0, D]) is compact for the weak-star convergence in L∞, the resolvent operator
R̃D 3 u 7→ h ∈ L2(T) is compact and therefore, the penalized problem (48) has a solution
uε ∈ L∞(I; [0, D]).

• Let hε be the solution to (47) associated to uε. There exists a sequence (εn)n∈N decreasing to
0, there exists ũ ∈ L∞(I; [0, D]) such that (uεn)n∈N converges weakly-star to ũ in L∞(I; [0, D])
and (hεn)n∈N converges strongly to h̃ ∈ H1(0, 2π) and uniformly in C 0([0, 2π]) as n → +∞.
Furthermore, one has necessarily

∫
I uεn(θ)eiθ dθ = α+ iβ) + O(εn) and therefore, ũ belongs to

R̃D.

• Let ξ ∈ Tũ. There exists ξn ∈ Tuεn
such that (ξn)n∈N converges weakly-star to ξ as n → +∞

(this follows from the definition of the tangent cone and the fact that pointwise inequalities are
preserved by the weak-star convergence).

Let ξ ∈ Tũ. According to the computations above, the necessary first order optimality conditions
for the penalized problem (48) read: for every n ∈ N, since ξ ∈ Tuεn

, one has∫
I

(2hεn(θ)−D + αn cos θ + βn sin θ) ξn(θ) dθ 6 0,

where
αn = 1

εn

(∫
I
uεn(s) cos s ds− α

)
and βn = 1

ε

(∫
I
uεn(s) sin s ds− β

)
.

Let us divide the inequality above by
√

1 + α2
n + β2

n. Since the quantities
√

1 + α2
n + β2

n,
αn/

√
1 + α2

n + β2
n and βn/

√
1 + α2

n + β2
n are uniformly bounded with respect to n, one can assume

that they respectively converge (up to a new extraction) to µ > 0, ᾱ ∈ R and β̄ ∈ R such that
(µ, ᾱ, β̄) 6= (0, 0, 0). Since ξ was arbitrarily chosen, by passing to the limit as n→ +∞, we get at the
end that the first order necessary conditions associated to Problem (47) read

x∀ξ ∈ Tũ,
∫
I

(
µ(2h̃(θ)−D) + ᾱ cos θ + β̄ sin θ

)
ξ(θ) dθ 6 0. (49)
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Now, since J̃εn(u) = J̃(u) for every u ∈ R̃D, it follows that

J̃εn(uε) = max
u∈L∞(I;[0,D])

J̃εn(u) > max
u∈L∞(I;[0,D])

J̃(u) = J̃(u?) > J̃(uεn).

Passing to the limit in this inequality yields J̃(u?) > J̃(ũ). Using that ũ belongs to R̃D, we infer
that ũ solves Problem (46). Therefore, we can assume without loss of generality that ũ = u?.
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[14] I. M. Jaglom and V. G. Boltjanskĭı. Convex figures. Translated by Paul J. Kelly and Lewis F.
Walton. Holt, Rinehart and Winston, New York, 1960.

[15] L. A. Santaló. On complete systems of inequalities between elements of a plane convex figure.
Math. Notae, 17:82–104, 1959/61.

[16] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition,
2014.

[17] P. R. Scott and P. W. Awyong. Inequalities for convex sets. JIPAM. J. Inequal. Pure Appl.
Math., 1(1):Article 6, 6, 2000.

[18] Y. Yang and D. Zhang. Two optimisation problems for convex bodies. Bull. Aust. Math. Soc.,
93(1):137–145, 2016.

36


	Introduction
	Optimization problems and main results
	The Blaschke-Santaló Diagram for (A,D,r)

	Proof of Theorem 1
	Proof of Theorem 2
	First case: K is included in a strip
	Second case: K* is included in a triangle
	Geometrical description of optimizers
	Case of two free zones
	Case of three free zones

	Comparison
	Proof that KC(D) is never optimal
	Existence of D


	Proof of Lemma 11

