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The missing (A, D, r) diagram

Alexandre Delyon∗ Antoine Henrot† Yannick Privat‡

May 12, 2020

Abstract
In this paper we are interested in "optimal" universal geometric inequalities involving the area, diameter

and inradius of convex bodies. The term "optimal" is to be understood in the following sense: we tackle
the issue of minimizing/maximizing the Lebesgue measure of a convex body among all convex sets of
given diameter and inradius. This allows us to completely determine the so-called 2-dimensional Blaschke-
Santaló diagram for planar convex bodies with respect to the three magnitudes area, diameter and inradius
in euclidean spaces, denoted (A, D, r). Such a diagram is used to determine the range of possible values
of the area of convex sets depending on their diameter and inradius. Although this question of convex
geometry appears quite elementary, it had not been answered until now. This is likely related to the fact
that the diagram description uses unexpected particular convex sets, such as a kind of smoothed nonagon
inscribed in an equilateral triangle.

Keywords: shape optimization, diameter, inradius, convex geometry, 2-cap bodies, Blaschke-Santaló diagram.

AMS classification: 49Q10, 52A40, 28A75, 49K15.

1 Introduction
Let n ∈ N∗. In the whole article, we will denote by Kn the set of all convex bodies (i.e. compact convex sets
with non-empty interior) in Rn.

In convex geometry, the search for optimal inequalities between the six standard geometrical quantities
which are the surface A (or volume V ), the perimeter P , the diameter D, the radius r, the circumradius R and
the (minimal) width1 w of any convex body, is a very old activity that dates back to the work of W. Blaschke
([2], [3]) and has been extensively studied by L. Santaló in [14]. For a list of such inequalities known in 2000,
we refer to the classical review paper [16].

The general idea is to consider three of the aforementioned quantities (q1, q2, q3) and to determine a complete
system of inequalities relating them, in other words a system of inequalities describing the set

{(q1(K), q2(K), q3(K)), K ∈ Kn}.

In general, it is convenient to summarize it into a diagram, usually called Blaschke-Santaló diagram. It
represents the set of possible values of the triple that can be reached by a convex set (suitably normalized).
Among the 20 possible choices of this three geometric quantities, L. Santaló completely solved in his work the
6 cases (A,P,w), (A,P, r), (A,P,R), (A,D,w), (P,D,w), (D, r,R) and gave a partial solution to (D,R,w)
and (r,R,w). These two last cases were eventually solved by M. Hernandez Cifre and S. Segura Gomis in [12].
In a series of papers with collaborators, M. Hernandez Cifre has also been able to prove complete systems
of inequalities in the cases (A,D,R), (P,D,R) [10], in the cases (A, r,R), (P, r,R) [5] and finally in the case
(D, r, w) [9].

In spite of all these efforts, several Blaschke-Santaló diagrams (or complete systems of inequalities) remain
unknown. To the best of our knowledge, this is the case for the diagrams (A,P,D), (A,D, r), (A, r, w),
∗Université de Lorraine, CNRS, Institut Elie Cartan de Lorraine, BP 70239 54506 Vandœuvre-lès-Nancy Cedex, France

(alexandre.delyon@univ-lorraine.fr).
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1In other words, the smallest distance between any two different parallel supporting hyperplanes of a convex body.
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(A,R,w), (P,D, r), (P, r, w) and (P,R,w). Let us mention that several interesting inequalities for (P,D, r)
and (P,R,w) can be found in [11].

In this paper, we focus on the case (A,D, r) and completely solve it in the two-dimensional case (n = 2), and
partially in the general case n > 3. More precisely in the case n = 2, we obtain universal inequalities involving
the area of a plane convex set, its diameter and inradius, and we plot the corresponding Blaschke-Santaló
diagram:

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

To this aim, we will introduce two families of optimization problems for the area (or the volume in higher
dimension) and then solve them. More precisely, we will tackle the issue of maximizing and minimizing the
area with prescribed diameter and inradius. It turns out that the minimization problem has already been
solved in the two dimensional case by M. Hernandez Cifre and G. Salinas [11]. The optimal set is known to
be a two-cap body defined as the convex hull of a disk of radius r with two points that are symmetric with
respect to the center of the ball and at a distance D. This result has been extended in three dimensions in
[17] but with an additional assumption. In this paper, we solve this minimization problem in full generality
(see Theorem 1).

Regarding the maximization problem, it is much harder and we are only able to solve it in the two-
dimensional case. At first glance, it seems intuitive that the optimal shape should be a spherical slice defined
as the intersection of a disk of diameter D with a strip of width 2r (symmetric with respect to the center of
the disk). Surprisingly, this is only true for "large" values of D (more precisely for D > αr with α ' 2.388, see
Theorem 2), while the optimal set is some kind of nonagon made of 3 segments and 6 arcs of circle inscribed
in an equilateral triangle for small values of D. For the precise definition of this set, we refer to Definition 2
hereafter. It is likely that this unexpected solution explains why this elementary shape optimization problem
remained unsolved up to now.

The article is organized as follows. Section 1.1 is devoted to introducing the optimization problems we
will deal with and stating the main results. In Section 1.2, the Blaschke-Santaló diagram D for the triple
(A,D, r) is plotted. The whole sections 2 and 3 are respectively concerned with the proofs of Theorems 1 and
2. Because of the variety and complexity of optimizers, the proofs appear really difficult and involve several
tools of convex analysis, optimal control and geometry.

Let us end this section by gathering some notations used throughout this article:

• Hn−1 is the n− 1 dimensional Hausdorff measure.

• if K is a convex set of R2, we call respectively A(K), D(K) and r(K) (or alternatively A, D and r if
there is no ambiguity) the area, diameter and inradius of K.

• in the more general n-dimensional case, we keep the same notations, except for the volume of K which
will be either denoted V (K) or |K|.

• x · y is the Euclidean inner product of two vectors x and y in Rn.

• B(O, r) denotes the ball of center O and radius r while S(O, r) is the sphere (its boundary).

• The boundary of the biggest ball included into a convex set will be called incircle in dimension 2, insphere
in higher dimension.

1.1 Optimization problems and main results
Let us first make the notations precise. Let r > 0, D > 2r be given and let Knr,D be the set of convex bodies
of Rn having as inradius r and as diameter D, namely

Knr,D = {K ∈ Kn | r(K) = r and D(K) = D}.

We are interested in the following maximization problem

sup
K∈K2

r,D

|K| (Pmax)

and minimization problem
inf

K∈Kn
r,D

|K|. (Pmin)
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Note that the condition D > 2r guarantees that the set Knr,D is non-empty. If D = 2r, problems are
obvious since only the ball belongs to the set of constraints Knr,D. Without loss of generality, by using an easy
rescaling argument, one can deal with sets of constraints with unitary inradius, in other words r = 1 and with
diameter D > 2.

Let us first observe, since we are working with convex sets, that existence of solutions for Problems (Pmax)
and (Pmin) is straightforward.

Proposition 1. Let (r,D) be two given parameters such that D > 2r. Problems (Pmax) and (Pmin) have a
solution.

Proof. Let us deal with the minimization problem (Pmin), the case of the maximization problem (Pmax) being
exactly similar. Let us consider a minimizing sequence (Km)m∈N. Since we are working with sets of diameter
D, up to applying a well-chosen translation to each element of the sequence, on can assume that every convex
set Km is included in a (compact) box B of Rn. Since the set of convex sets included in a given box is known
to be compact for the Hausdorff distance [8], there exists a subsequence (still denoted (Km)m∈N) converging
to a convex set K. It remains to prove that the objective function (the area) is continuous with respect to the
Hausdorff distance and that the diameter and inradius constraints are stable for the Hausdorff convergence.
it is well-known that the volume and diameter functionals are not continuous for the Hausdorff distance.
Nevertheless, when dealing with convex sets, the continuity property becomes true (see [8, 15]). Let us show
that the inradius constraint is in some sense stable. Assume, without loss of generality, that r(Km) = 1 for
every m ∈ N. By applying well-chosen translations of Km, one can moreover assume that B(0, 1) ⊂ Km for
every m ∈ N. By stability of the inclusion for the Hausdorff convergence, one gets B(0, 1) ⊂ K and r(K) > 1.
Assume by contradiction that r(K) > 1. Hence, there exists x ∈ K and α > 1 such that B(x, α) ⊂ K. Let us
consider the closed disk B̂ = B(x, (1 + α)/2. By stability of the Hausdorff convergence [8], one has B ⊂ Km

whenever m is large enough, which implies that r(Kn) > (1+α)/2. We have then reached a contradiction.

As underlined in the Introduction, Problem (Pmin) has already been solved in the two-dimensional case in
[11]. In what follows, we will generalize it to the general case Rn, by proving that the two-cap body is the
only solution in any dimension.

Theorem 1. The (unique) optimal shape for Problem (Pmin) is the convex hull of a ball of radius 1 and two
points apart of distance D and whose middle is the center of the ball. In other words, any convex set in Rn
with volume V , diameter D and inradius r satisfies:

V > 2ωn−1r
n

∫ π/2

arccos(2r/D)
sinn tdt+ ωn−1r

n−1

nDn

(
D2 − 4r2)(n+1)/2 (1)

where ωn−1 is the volume of the unit ball in dimension n − 1. In particular, any convex set in R2 with area
A, diameter D and inradius r satisfies:

A > r
√
D2 − 4r2 + r2

(
π − 2 arccos

(
2r
D

))
. (2)

Let us turn to the maximization Problem (Pmax). Let us introduce particular convex sets of Knr,D that will
be shown to be natural candidates to solve the maximization problem.

Definition 1 (The symmetric spherical slice KS(D)). Let D > 2. We call symmetric spherical slice and
denote by KS(D) the convex set defined as the intersection of the disc D(O,D/2) with a strip of width 2
centered at O (see Fig. 1). We have

|KS(D)| =
√
D2 − 4 + D2

2 arcsin
(

2
D

)
.

Definition 2 (The smoothed regular nonagon KE(D)). Let D ∈]2, 2
√

3[. We denote by KE(D) the convex
set enclosed in an equilateral triangle ∆E of inradius 1 and made of segments and arcs of circle of diameter D
in the following way (see Fig. 2): let ηi be the normal angles to the sides of ∆E (where one sets for example
η1 = −π/2). Let us introduce

τ = (3 +
√
D2 − 3)/2 and h =

√
D2 − τ2
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D/2

1

O

Figure 1: The symmetric slice KS(D) and its (non unique) incircle.

and the points Ai, Bi and Mi, i = 1, 2, 3 defined through their coordinates by

Ai =
(

cos ηi + τ sin ηi
sin ηi − τ cos ηi

)
, Bi =

(
cos ηi − h sin ηi
sin ηi + h cos ηi

)
, Mi = (1− τ)×

(
cos ηi
sin ηi

)
, i = 1, 2, 3.

The set KE(D) is then obtained as follows:

• the points A1, B1, M3, A2, B2, M1, A3, B3, M2, A1 belong to its boundary;

•
>
B1M3 and >M1A3 are diametrally opposed arcs of the same circle of diameter D, and similarly for the
two other pairs of arcs of circle >B2M1 and >M2A1,

>
M2B3 and >M3A2.

• the boundary contains the segments [AiBi], i = 1, 2, 3. Note that the contact point Ii with the incircle is
precisely the middle of [AiBi],

Moreover, setting

t1 = arccos
(√

3
D

)
= arcsin

(
2τ − 3
D

)
, t2 = arccos

(√
3(τ − 2)
D

)
= arcsin

( τ
D

)
one has

|KE(D)| = 3
4D

2(t2 − t1) + 3
√

3
2 (

√
D2 − 3− 1) = 3

2D
2
(π

3 − t1
)

+ 3
√

3
2

(√
D2 − 3− 1

)
. (3)
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M1

M2 M3

Figure 2: The set KE(D) and its incircle

In a nutshell, we will prove that the set is KE(D) is optimal for small values of D whereas the solution is
the symmetric slice for bigger values of D.

Theorem 2. There exists D? ' 2.3888 such that if D < D?, the (unique) solution of Problem (Pmax) is
KE(D), and for D > D? the unique solution is KS(D). For D = D? the two solutions coexist.

In other words, for every plane convex set with area A, diameter D and inradius r, one has

A 6 ψ(D, r) where ψ(D, r) =
{

3
√

3r
2
(√
D2 − 3r2 − r

)
+ 3D2

2

(
π
3 − arccos

(√
3r
D

))
if D 6 rD?

r
√
D2 − 4 + D2

2 arcsin
( 2r
D

)
if D > rD?.

(4)

1.2 The Blashke-Santaló Diagram for (A, D, r)
Usually, Blaschke-Santaló diagrams are normalized to fit into the unit square [0, 1]× [0, 1]. Thus, starting from
the straightforward inequalities D > 2r and A > πr2 (where A, D and r denote respectively the area, diameter
and inradius of any two-dimensional convex set), drives us to choose the system of coordinates x = 2r/D and
y = πr2/A. We then define the Blashke-Santaló diagram D as the set of points

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

The point (1, 1) corresponds to the disk, while the point (0, 0) corresponds to an infinite strip. The solution of
the minimization problem (Pmin) provided in Theorem 1 leads to the upper curve of D. Using (2), we claim
that the upper curve is the graph of y+, defined by

y+(x) = πx

x(π − 2 arccosx) + 2
√

1− x2
, x ∈ [0, 1].

According to Theorem 2, the lower curve is the graph of y−, piecewisely defined by

y−(x) =


πx

2
√

1− x2 + 2 arcsin x
x

if x 6 2/D?

πx2

2π − 6 arccos(
√

3x
2 ) + 3

√
3x

2
(√

4− 3x2 − x
) if x > 2/D?.

Were already known the inequalities

• 4A 6 πD2 (see [13]) which corresponds to the inequality y > x2 on the diagram,

• A 6 2rD (see [7]) which is equivalent to y > πx
4 on the diagram.
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These two inequalities are shown with a dotted line on the diagram hereafter.

To plot the Blaschke-Santaló diagram, it remains to prove that the whole zone between the two graphs
{(x, y−(x)), x ∈ [0, 1]} and {(x, y+(x)), x ∈ [0, 1]} is filled, meaning that each point between these two graphs
corresponds to at least one plane convex domain.

Let us start with the part of the diagram on the left of x 6 x? := 2/D?. For a given diameterD and inradius
r, let K− denote the convex set with minimal area (the two-cap body) and K+ the convex set with maximal
area (the symmetric slice). We have K− ⊂ K+ and for any t ∈ [0, 1] the convex set Kt : constructed according
to the Minkowski sum Kt = tK+ + (1− t)K− with t ∈ [0, 1], is known to satisfy K− ⊂ Kt ⊂ K+. Therefore,
all the sets Kt share the same diameter D, the same inradius r and their area is increasing from A(K−) to
A(K+). This way, it follows that the whole vertical segment joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) is
included in D as soon as 2r/D 6 2/D?.

Let us consider the remaining case x > x? := 2/D?. Starting from the optimal domainK+ which maximizes
the area with given D and r (recall that K+ is the convex set inscribed in the equilateral triangle introduced
in Definition 2), we fix one of its diameter, say [A,B] and we shrink continuously K+ to the set KAB defined
as the convex hull of the points A,B and the disk of radius r contained in K+. Then, in a second time, we
move the points A,B continuously to the points A′, B′ at distance D, oppositely located with respect to the
center of the disk (in the sense that the center is the middle of A′, B′) by keeping the convex hull with the
disk at each step. The final step is therefore the two-cap body K− and we have constructed a continuous
path between K+ and K− keeping the diameter and the inradius fixed: it follows that the whole segment
joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) for 2r/D > 2/D? is included in D. At the end, D has only one
connected component.

The complete Blaschke-Santaló diagram is plotted on Fig. 3 below.

Figure 3: The Blaschke-Santaló diagram D for (A,D, r) (colored picture). The dotted lines represents the
known inequalities 4A 6 πD2 and A 6 2rD.

Remark 1. It is notable that the two-cap body has been showed to solve a shape optimization problem
motivated by the understanding of branchiopods eggs geometry in biology, and involving packings (see [6]).

2 Proof of Theorem 1
Let us first introduce several notations. For a generic convex set K, we will denote by A and B the points of
K realizing the diameter, and respectively by O and r the center and radius of an insphere (the boundary of
the biggest ball included in K). Introduce B = (e1, ..., en) an orthonormal basis such that e1 = −−→AB/AB, so
that the coordinates of A and B in B are

A = (0, 0, ..., 0) and B = (D, 0, ..., 0).

6



More generally, we will denote by (x1, . . . , xn) the coordinates of a generic vector X in B.
First, in order to relax the conditions D(K) = D and r(K) = r in Problem (Pmin), we show that it is

equivalent to deal with the conditions r(K) > r and D(K) > D, which are always saturated at the optimum.

Lemma 1. Let r > 0 and D > 2r. Let us consider the minimization problem

inf
K∈K̂n

r,D

|K|. (P̂min)

where K̂nr,D = {K ∈ Kn | r(K) > r and D(K) > D}. Then, Problem (P̂min) has at least a solution K? and
moreover, one has D(K?) = D and r(K?) = r.

Proof. Existence of K? follows by an immediate adaptation of the proof of Proposition 1 (if the diameter goes
to +∞ it is easy to prove that the volume must blow up).

Regarding the second part of the statement, let us argue by contradiction, assuming that r(K?) > r. We
use the coordinate system associated to the basis B introduced above, constructed from a diameter [AB] of K?.
Defining λ = r/r(K?) < 1 and applying to K? the linear transformation whose matrix in B is diag(1, λ, ..., λ),
we obtain a new convex set K ′ with diameter D and inradius r. Moreover, its volume is λn−1|K?| < |K?|.
this is in contradiction with the minimality of K?.

Similarly, arguing still by contradiction, let us assume that D(K?) > D. Since D > 2r = 2r(K?), there
exist A′ and B′ in [A,B] such that A′B′ = D. Given O, the center of an insphere, we consider the set K ′
defined as the convex hull of A′, B′ and B(O, r). From this construction and by convexity, K ′ is strictly
included in K, D(K ′) > D and r(K ′) > r. Therefore, one has K ′ ∈ K̂nr,D and |K ′| < |K|, which is in
contradiction with the optimality of K. The conclusion follows.

It follows in particular from this result that the solutions of Problems (Pmin) and (P̂min) coincide.
Furthermore, if K is a general convex body in Knr,D, by repeating the argument used to deal with the

diameter constraint in the proof of Lemma 1, one sees that the convex hull of A, B and B(O, r) also belongs
to Knr,D and has a lower measure than the one of K.

Therefore, any minimizer K? is necessarily the convex hull of two points A and B realizing its diameter,
and B(O, r), whose boundary is an insphere. The next result proves a symmetry property of K?.

Lemma 2. Let us denote by xO ∈ [0, D] the first coordinate of O in the basis B introduced above. Let us
introduce K ′ as the convex hull of A, B and B(O′, r) where the coordinates of O′ in B are (xO, 0, .., 0) (in
other words, O′ is the orthogonal projection of O on the axis (A; e1)). then K ′ belongs to Knr,D and there holds
|K ′| 6 |K?| with equality if, and only if O = O′.

Proof. Assume by contradiction that O 6= O′. Two cases may happen.

1. The ball B(O, r) does not meet the diameter [AB].

2. The ball meets the diameter [AB].

In the first case let a = OO′ − r > 0, and assume that e2 =
−−→
OO′/OO′. Let us consider S(K) the Steiner

symmetrization of K? with respect to the hyperplane with normal vector e2 and containing A and B. It is a
well known result (see [4]) that S(K) is still convex with same Area as K. Furthermore it contains B(O′, R), A
and B. So it contains K ′. Let us finally remark that K? ∩ (OO′) has length 2r + a, and so S(K) contains
the point C = (xO, r + a/2, 0, .., 0) which is not in K ′. This proves that |K ′| < |K?| and then case 1. cannot
occur.

In the second case, consider the upper part K?
+ of K?, namely K? ∩ {X ∈ Rn | X · e1 ∈ [xO, D]}. Let ΓB

be the set of points of S(O, r) whose tangent hyperplane contains B, and Γ′B be the set of points of S(O′, r)
whose tangent hyperplane contains B. By symmetry, all the points of Γ′B share the same first coordinate x′.
Let x1 and x2 denote respectively the minimal and maximal first coordinate of points of ΓB . Hence, one has
xO + r > x2 > x1 > xO and moreover, x′ ∈ (x1, x2).

Let us distinguish between three zones of K?
+:

• On K?
+ ∩ {X ∈ Rn | X · e1 ∈ [xO, x1]}. It is easy to see that B(O′, r) ∩ {X ∈ Rn | X · e1 ∈ [xO, x1] is

exactly the image of

K?
+ ∩ {X ∈ Rn | X · e1 ∈ [xO, x1]} = B(O′, r) ∩ {X ∈ Rn | X · e1 ∈ [xO, x1]}.

by the translation vector
−−→
O′O. These two sets have therefore the same measure.
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• On K?
+ ∩ {x ∈ [x1, x

′]}. For x ∈ R, let Hx be the affine hyperplane whose equation in B is {X ∈ Rn |
X · e1 = x}, and introduce Kx = K? ∩Hx. If x ∈ [xO − r, xO + r], let Bx be the n− 1 dimensional ball
B(O′, r) ∩Hx. By construction, one has Hn−1(Bx) < Hn−1(Kx) for all x > x1 . As a consequence

|B(O, r) ∩ {X ∈ Rn | X · e1 ∈ [x1, x
′]}| < |K ∩ {X ∈ Rn | X · e1 ∈ [x1, x

′]}|.

• On K?
+∩{X ∈ Rn | X ·e1 ∈ [x′, D]}. Define Cx′ as the cone with vertex B and basis Bx′ = B(O′, r)∩Hx′ .

Since Cx′ is the convex hull of Bx′ and B, it follows that |Cx′ | < |K? ∩ {X ∈ Rn | X · e1 ∈ [x′, D]}|.

It follows that |K ′ ∩ {x ∈ [x0, D]}| < |K ∩ {x ∈ [x0, D]}|. Doing the same construction on the lower part of
K? yields at the end that |K ′| < |K?|. The expected result follows.

A

B

O

M2

M1

A

B

O ′

M

Figure 4: Illustration of the proof of Lemma 2. The convex set on the right has the same inradius and diameter
as the one on the left but a lower volume.

To sum-up, we know that any minimizer K? is the convex hull of A, B and B(O, r), where AB = D and
A, B and O are collinear. it remains to show that the minimum is reached whenever O is in the middle of the
segment [AB]. This can be done by an explicit computation, but we propose a more geometrical proof based
again on Steiner symmetrization.

Let us argue by contradiction, considering O ∈ [AB]\{I}, where I is the middle of [AB] and assuming
that K? = hull(A,B,B(O, r)). Let H be the hyperplane containing I with normal vector −−→AB. Let K ′ be
the Steiner symmetrized of K? with respect to H. We claim that K ′ ∈ Knr,D. Indeed, by monotonicity
of the Steiner symmetrization with respect to the inclusion and since the range of B(O, r) by the Steiner
symmetrization is B(I, r), one has necessarily r(K ′) > r(K?). In the same way, observe that the strip
S := {x ∈ Rn | xn ∈ [−r/2, r/2]} is invariant by the Steiner symmetrization and contains K?. By using again
the aforementioned monotonicity property, one has also K ′ ⊂ S, and therefore, r(K ′) 6 r = r(S). Therefore,
one has r(K ′) = r.

It is standard that Steiner symmetrization reduces diameter. By using the aforementioned monotonicity
property, since [AB] is invariant by the Steiner symmetrization and contains K?, we get [AB] ⊂ K ′ and
thus, D(K ′) = D. Since |K ′| = |K?| by property of the Steiner symmetrization, it follows that K ′ solves
Problem (Pmin).

In the basis B, let x∗n ∈ (0, r) be such that hull(A,B,B(I, r)) ∩ {xn > x?n} = B(I, r) ∩ {xn > x?n} and
B(O, r) ∩ {xn > x?n} ( hull(A,B,B(O, r)) ∩ {xn > x?n}. The existence of x?n follows from the dissymmetry
of hull(A,B,B(O, r)) with respect to H. Using one more time the monotonicity property of the Steiner
symmetrization with respect to the inclusion, one has

B(I, r) ∩ {xn > x?n} ( K ′ ∩ {xn > x?n},
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which implies that the volume of K ′ is strictly larger than the one of hull(A,B,B(I, r)). We have thus reached
a contradiction and it follows that one has necessarily O = I, meaning that K? = hull(A,B,B(I, r)), which
concludes the proof.

3 Proof of Theorem 2
In the whole proof, for a given set K ∈ K2, we will denote by CK an incircle of K. It is standard that K is
tangent to CK at two points at least.
Definition 3. Let K ∈ K2. A point x ∈ K is said to be diametral if there exists y ∈ K such that ‖x − y‖ =
D(K)

Obviously, if x is diametral, then it belongs necessarily to ∂K. Denoting by y its counterpart, if the
boundary of K is C 1 at x, the outward unit normal vector at x on ∂K is n(x) = (x− y)/‖x− y‖.

In what follows, we will consider a solution K? to Problem (Pmax), whose existence is provided by Propo-
sition 1.

Since the area is maximized, it seems natural to look for the largest possible set and thus to saturate
the diameter constraint at each point. Nevertheless, the inradius constraint tends to stick the convex body
onto the circle. M. Belloni and E.Oudet in [1] worked on the minimal gap between the first eigenvalue of the
Laplacian λ2 and the first eigenvalue of the∞−Laplacian λ∞. Since λ∞(Ω) = 1/r(Ω) and λ2 is decreasing for
the inclusion, some of their results were obtained by constructing bigger sets while maintaining the inradius
and the diameter. The following lemma is an example.
Lemma 3 ([1]). Let x ∈ ∂K?. Then, one has the following alternative:

1. x is non diametral and belongs to the interior of a segment of ∂K?.

2. x is diametral and is not in the interior of a segment of ∂K?.

3. x is in the intersection of two segments of ∂K?.
To locate the flat parts of ∂K? and provide an estimate of their numbers, we need the notion of contact

point.
Definition 4. A contact point of ∂K? is a point x at the intersection of ∂K? and an incircle CK? of K?.
Similarly, a contact line is a support line of K? passing by a contact point. Note that it is also a support line
of CK?

Observe that the relative interior of a flat portion of ∂K? is necessarily made of non diametral points.
Note that the incircle is a priori not unique. Let us consider all the possibilities:
• case 1: The incircle is not unique. In that case the convex K? is necessarily included in a strip of

width 2, and every incircle touches both lines of the strip.
Indeed, let C1 and C2 be two incircle and O1 and O2 their center. We consider a basis in which the
coordinates of O1 are (−a, 0) and those of O2 are (a, 0). Let Ni (resp Si) be the north (resp. south)
pole of Ci. By convexity the rectangle N1N2S2S1 is included in K?. Now suppose that K? is not
included in the strip formed by the lines (N1N2) and (S1S2). Then there exist a point M(x, y) ∈ K?

with −a 6 x 6 a and y > 1. By construction, the pentagon N1MN2S2S1 is convex, included in K?, and
its inradius is larger than 1 (see Fig. 5) which contradicts the inradius constraint.

N2N1

S1 S2

M

C1 C2

Figure 5: The middle circle is larger than the others, so the inradius is larger than 1.
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• case 1bis: The incircle is unique, but still inscribed between two strips. In this case it is even included
in a square, which is covered by the case 1.

• case 2 : The incircle is unique, and there are exactly three contact lines, forming a triangle containing
both the circle and the convex.

Figure 6: A convex set with three contact points

We sum-up these information in the following lemma.

Lemma 4. Any segment of ∂K? contains a contact point. Furthermore, ∂K? contains at most three segments.

Proof. If a segment of ∂K? does not touch an incircle, it would be possible to inflate this part without changing
the inradius nor violating the diameter constraint. The upper bound on the number of segment is a direct
consequence of the previous analysis: if K has more than the minimal numbers of segments that are useful to
prescribe the incircle, then some are useless and can be inflated without consequences on the constraints.

In what follows, we will work separately on the cases 1 and 2. Section 3.1 deals with the first case, whereas
Section 3.2 is devoted to the investigation of the second case.

Thanks to an easy renormalization argument, we will assume without loss of generality that the inradius
of the considered convex sets is equal to 1 (r = 1).

3.1 First case: K? is included in a strip
Let CK? be an incircle of K?. To investigate the case where K? is included in a strip, we consider a basis B
whose origin O is the center of CK? and such that the equations of the two contact points support lines are
x = 1 and x = −1 (see Fig. 7). Let us denote by S, the closed strip {(x, y) ∈ R2 | |x| 6 1}.

We investigate in this section a constrained version of Problem (Pmax), namely

sup
K∈K2

r,D

K⊂S

|K|. (P ′)

Proposition 2. The symmetric slice B(O,D/2) ∩ S, where B(O,D/2) denotes the open ball centered at O
with radius D/2, is the unique solution of Problem (P ′). The optimal area is

max
K∈K2

r,D

K⊂S

|K|. =
√
D2 − 4 + D2

2 arcsin
(

2
D

)

The set K? is plotted on Fig 7 right.
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Figure 7: Left: a convex set whose (non unique) incircle has two parallel contact lines. Right: the optimal
domain among convex sets included in a slice.

The end of this section is devoted to the proof of Prop. 2. It is straightforward that, if a convex set K
belongs to K2

r,D and is included in S, then there exist two concave nonnegative functions f and g on [−1, 1]
such that

K = {(x, y) ∈ R2, x ∈ [−1, 1],−g(x) 6 y 6 f(x)}. (5)

With these notations, the optimal set K? introduced in Prop. 2 corresponds to the choices

f = yD, g = yD where yD(x) =
√
D2/4− x2.

The proof consists of two steps: first, we provide necessary optimality conditions on an optimal pair (f, g)
and show in particular that the aforementioned symmetric slice is a solution. Then, we investigate uniqueness
properties of the optimum.

Lemma 5. Let K? be a solution of Problem (P ′). Then, K? is of the form (5) and satisfies

f(x) + g(x) + f(−x) + g(−x) = 4yD(x), x ∈ [−1, 1]. (6)

Furthermore, the convex set K̃ of the form (5) with f = g = yD solves Problem (P ′).

Proof. We already know that K? writes as (5) for some positive concave functions f and g.
First, by lemma 3, every point of the free boundary part ∂K?

free := ∂K? ∩ {(x, y) ∈ R2 | x ∈ (−1, 1)} is
necessarily diametral. As a consequence, the functions f and g are strictly concave. Indeed, observe that a
flat part of the boundary of a convex set contains at most two diametral points.

From the parametrization of K?, we get

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 + (f(x) + g(x′))2 and |K?| =
∫ 1

−1
(f + g). (7)

Let us introduce the set K̂ of the form (5) where f and g are both replaced by (f + g)/2. Hence, one has
obviously |K?| = |K̂| and moreover, by using an easy convexity argument,

D(K̂)2 = max
(x,x′)∈[−1,1]2

(x− x′)2 + ((f(x) + g(x))/2 + (f(x′) + g(x′)/2))2

= max
(x,x′)∈[−1,1]2

(x− x′)2 + ((f(x) + g(x′))/2 + (f(x′) + g(x)/2))2

6
1
2 max

(x,x′)∈[−1,1]2
(x− x′)2 + (f(x) + g(x′))2 + 1

2 max
(x,x′)∈[−1,1]2

(x− x′)2 + (f(x′) + g(x))2

= max
(x,x′)∈[−1,1]2

(x− x′)2 + (f(x) + g(x′))2 = D2

11



Moreover, if D(K̂) < D(K?), then K̂ is a convex set having the same area as K?, but a strictly lower diameter.
Mimicking the argument used in the proof of Lemma 1 allows us to obtain a convex set in K2

1D with a larger
area than K?, which is impossible. It follows that one has necessarily D(K̂) = D(K?).

Let us set f? = (f + g)/2 and let x ∈ [−1, 1]. Let Kf? be a set of the form (5) where f and g are both
replaced by f̃ defined by

f̃(x) = f?(x) + f?(−x)
2 , x ∈ [−1, 1].

Then, one has obviously |K?| = |Kf? | and moreover,

D(Kf?)2 = max
(x,x)′∈[−1,1]2

(x− x′)2 + (f̃(x) + f̃(x′))2

= max
(x,x′)∈[−1,1]2

(x− x′)2 + ((f?(x) + f?(x′))/2 + (f?(−x) + f?(−x′))/2)2

6
1
2 max

(x,x′)∈[−1,1]2
(x− x′)2 + (f?(x) + f?(x′))2 + 1

2 max
(x,x′)∈[−1,1]2

(−x+ x′)2 + (f?(−x) + f?(−x′))2

= max
(x,x′)∈[−1,1]2

(x− x′)2 + (f?(x) + g?(x′))2 = D2

If D(Kf?) < D, then Kf? is a convex set having the same area as K?, but a strictly lower diameter. Mimicking
the argument used in the proof of Lemma 1 yields a contradiction and we therefore infer that one has necessarily
D(Kf?) = D. Therefore, we have constructed a solution with two axis of symmetry.

As we have seen at the beginning of the proof, any point of coordinates (x, f̃(x)) is diametral. Let
x′ ∈ [−1, 1] be such that ‖(x, f̃(x)) − (x′,−f̃(x′))‖ = D. We claim that one has necessarily x′ = −x.
Indeed, assume by contradiction that x′ 6= −x. By strict concavity of f̃ , one has

D2 = (x− x′)2 + (f̃(x) + f̃(x′))2 = (x− x′)2 + (f̃(x) + f̃(−x′))2

< ((x− x′)/2 + (x− x′)/2)2 + (f̃((x− x′)/2) + f̃((x− x′)/2))2

= ((x− x′)/2− (x′ − x)/2)2 + (f̃((x− x′)/2) + f̃((x′ − x)/2))2

6 max
(x,x′)∈[−1,1]2

(x− x′)2 + (f̃(x) + f̃(x′))2 = D2,

by using that f̃ is even. We have thus obtained a contradiction, which proves that necessarily, x′ = −x.
It follows that Kf? solves Problem (P ′). Furthermore, using that f̃ is even and that each point (x, f̃(x)) is

diametral, associated to (−x,−f̃(x)), we finally infer that x2 + f̃(x)2 = D2/4 for all x ∈ [−1, 1]. Noting that

f̃(x) = 1
4(f(x) + g(x) + f(−x) + g(−x)),

every solution K? is of the form (5) satisfies (6).
Proposition 2 follows.

It remains to investigate the uniqueness of the optimal set, which is the purpose of the next result.

Lemma 6. Let K? be a solution of Problem (P ′). Then, K? is of the form (5), and for every parametrization
(f, g), there exists ε > 0 such that:

f(x) = yD(x) + ε, g(x) = yD(x)− ε, x ∈ [−1, 1].

Proof. Let (f, g) be a pair of concave positive functions solving Problem (P ′). In particular, (f, g) satisfies
(6). It follows from the proof of Lemma 5 that there exists a continuous odd function ϕo on [−1, 1] such that

f(x) + g(x)
2 = yD(x) + ϕo(x).

Let K be the convex set defined by (5) where f and g are both replaced by (f + g)/2. Recall that, according
to the proof of Lemma 5, K is also a solution of Problem (P ′). Let us focus on the diameter constraint. Since
K solves Problem (P ′), then one has necessarily

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 + (yD(x) + yD(x′) + ϕo(x) + ϕo(x′))
2

> max
x∈[−1,1]

(2x)2 + (yD(x) + yD(−x))2 = D2.
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In particular, since every point of ∂K ∩ {(x, y) ∈ R2 | x ∈ (−1, 1)} is diametral, the function [−1, 1] 3 x′ 7→
(x − x′)2 + (yD(x) + yD(x′) + ϕo(x) + ϕo(x′))2 is maximal at x′ = −x. Note that the function yD + ϕo is
(concave and therefore) differentiable almost everywhere in (−1, 1), and therefore so is ϕo. Let us consider
x ∈ [−1, 1] at which ϕo is differentiable. One has

d

dx′

(
(x− x′)2 + (yD(x) + yD(x′) + ϕo(x) + ϕo(x′))

2
)∣∣∣∣
x′=−x

= 0

which reads −4x+ 4yD(x)(−y′D(x) + ϕ′o(x)) = 0, and after calculation, implies that ϕ′o(x) = 0. We infer that
ϕ′o(x) = 0 for a.e. x ∈ (−1, 1). Since ϕo is absolutely continuous (and even belongs to W 1,∞(−1, 1)), we infer
that ϕo is constant on (−1, 1), equal to ϕo(0) = 0. It follows that (f + g)/2 = yD and we infer that

f(x) = yD(x) + ϕe(x) and g(x) = yD(x)− ϕe(x),

where ϕe denotes a continuous function on [−1, 1]. One has for every x ∈ [−1, 1],

D2 = max
(x,x′)∈[−1,1]2

(x− x′)2 + (yD(x) + yD(x′) + ϕe(x)− ϕe(x′))
2

> D2 + 4yD(x) (ϕe(x)− ϕe(−x)) + (ϕe(x)− ϕe(−x))2
.

and therefore, 4yD(x) (ϕe(x)− ϕe(−x)) + (ϕe(x)− ϕe(−x))2 6 0 so that

−4yD(x) 6 ϕe(x)− ϕe(−x) 6 0.

Inverting the roles played by x and −x in this relation yields that ϕe(x)−ϕe(−x) = 0 and therfore, ϕe is even.
By using the same reasoning as above, one shows that for almost every x in (−1, 1), the derivative of the

diameter functional vanishes at x′ = −x, so that one has ϕ′e(x) = 0 a.e. x in (−1, 1). Since ϕe belongs to
W 1,∞(−1, 1) and is in particular absolutely continuous, we infer that ϕe is constant on [−1, 1]. The expected
conclusion follows noticing that the converse sense is immediate: every pair (f, g) chosen as in the statement
of Lemma 6 obviously drives to a solution of Problem (P ′).

Remark 2 (Geometric interpretation of the proof). The proof of Lemma 5 can be understood geometrically:
indeed, from a solution, we performed two Steiner symmetrizations: one along the strip, and the other in an
orthogonal direction. From the standard properties of Steiner symmetrization (that we proved for the sake of
completeness), the inradius remains unchanged, as well as the area, but the diameter decreases. The difficulty
lies in proving that the diameter is strictly decreasing, whence the uniqueness.

3.2 Second case: the convex is included in a triangle
In that case, the incircle is unique (see Fig 6). We assume without loss of generality that it is the unit circle.
There are exactly three contact lines (see Def. 4), forming a triangle called T (K).

Definition 5. We will call “free boundary γ of ∂K?” the union of all non flat parts of ∂K? and “free zone”
every connected component of the free boundary.

Recall that according to Lemma 4, there are at most three freezones located between the contact segments.

A crucial tool for the analysis is the so-called support function of the convex body K denoted hK . Recall
that hK is defined for every θ ∈ T by

hK(θ) = sup
y∈K

y · uθ (8)

where uθ = (cos(θ), sin(θ), and T is the torus R/[0, 2π). The straight line Dθ whose cartesian equation is
x cos(θ) + y sin(θ) = hK(θ) is precisely the support line of the convex body K in the direction uθ (in what
follows, we will also name this direction θ with a slight abuse of language).

It follows that Fθ := Dθ ∩K. Fθ is a segment, possibly reduced to a point. Furthermore, Fθ is a segment
if, and only if K is flat on this portion. In the case where Fθ is reduced to a point, we will denote this point
by M(θ).

Let us finally recall some basic facts on the support function. For a complete survey about this notion, we
refer for instance to [15]. When there will be no ambiguity, we will sometimes write h instead of hK .
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The support function h associated to a convex bodyK is periodic, belongs toH1(T) and is C1 on the strictly
convex parts of K. Furthermore, the diameter D(K), area |K| and radius of curvature RK are respectively
given in terms of h by

D(K) = sup
(0,2π)

(h(θ) + h(θ + π)) , |K| = 1
2

∫
(0,2π)

(h2 − h′2), RK = h+ h′′ (9)

where h′′ has to be understood in the sense of distributions.
Let T be the set of triangles with unit inradius enclosing K. In this section, we will investigate the

optimization problem
sup
T∈T

sup
K∈K2

r,D

K⊂T

|K|, (10)

which can be recast in terms of support functions as

sup
h∈H

1
2

∫
(0,2π)

(h2 − h′2) (Ph)

with
H = {h ∈ H1(0, 2π), h+ h′′ > 0 in D′(T), ∃T ∈ T | 1 6 h 6 hT , sup

θ∈T
h(θ) + h(θ + π) 6 D},

where hT is its support function of T . Note that h+ h′′ is a positive Radon measure. It is essential to ensure
that h is the support function of a convex set. The condition 1 6 h 6 hT simply means that K, whose support
function is h, contains the disk D(0, 1) and is included in the triangle T .

Before stating the main result of this section, let us introduce another particular smoothed nonagon,
denoted KC(D).

Definition 6 (The smoothed nonagonKC(D)). Let D ∈]2, 2
√

3[. We denote by KC(D) the convex set enclosed
in an isosceles triangle ∆I of inradius 1 and made of segments and arcs of circle of diameter D in the following
way (see Fig. 8): the normal angles to the sides of ∆I are

η1 = −π/2, η2 = arcsin(τ/2− 1) and η3 = π − η1

where τ is the unique root of the equation

−τ3 +
(
D2/2 + 5

)
τ2 −

(
2D2 + 4)

)
τ +D2 = 0.

Let us introduce the points Ai, Bi, i = 1, 2, 3 and M3 defined through their coordinates by

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
, i = 1, 2, 3, M1 = (1− τ)×

(
cos(η1)
sin(η1)

)
.

with h1 =
√
D2 − τ2 and h2 = h3 = h1

4 (τ − 2). The set KC(D) is then obtained as follows:

• the points A1, B1, A2, B2, M1, A3, B3 belong to its boundary;

•
>
B2M1 (resp. >M1A3) and

>
A1B3 (resp. >B1A2) are diametrally opposed arcs of the same circle of diameter

D.

• the boundary contains the segments [AiBi], i = 1, 2, 3. Note that the contact point Ii with the incircle is
precisely the middle of [AiBi],

Moreover, setting

t1 = arcsin
(

2(sin η1 + h1 cos η1)− τ + 2
D

)
and t2 = arcsin

( τ
D

)
,

we have the formula

|KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1). (11)
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I1
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S1

S2 S3
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B2A3

B3

M1

Figure 8: The set KC(D) and its incircle.

Proposition 3. Let D > 2 be given and assume that Problem (10) has a solution K?. Then, K? is either the
set KC(D) or KE(D).

The end of this section is devoted to proving Proposition 3. Hence, let us assume that Problem (10) has a
solution denoted K (instead of K?) for the sake of simplicity. Let T be the triangle of inradius 1 containing K.
Let Dηi be the three tangent lines to the unit circle defining T , where ηi is the angle between the abscissa axis
and the normal vector to each side of T . We assume that η1 < η2 < η3 and we introduce the contact points
Ii between the lineDηi

and the unit circle. We also define ϕ1, ϕ2, ϕ3 as the demi angles at the center (see
Fig. 9). The problem being rotationally invariant, we will impose without loss of generality that η1 = −π/2,
and ϕ1 6 ϕ2 6 ϕ3. Identifying the index i with the index i+ 3, one has

ϕi = ηi+2 − ηi+1

2 , i = 1, 2, 3.

The set K ∩Dηi is a segment (possibly reduced to the point Ii) denoted [Ai, Bi]. The free boundary γ being
strictly convex according to Lemma 4, we parametrize it with the help of a function θ 7→ M(θ) defined on
Iγ= (0, 2π)\{ηi}i=1,2,3, where θ is the angle between the normal to the support line of the point M(θ) and the
abscissa axis. A point M of the free boundary may have several support lines. More precisely, two cases may
arise: either a point has a unique supporting line or a point has at least two supporting lines.

Each point M of the second kind is a kind of vertex of K called “angular point” of ∂K. Moreover,
considering the smallest and the largest angle made by its supporting lines, one can associate to M a closed
interval JM ⊂ Iγ . Notice that two consecutive vertices M and N cannot admit overlapping intervals JM and
JN since it would mean that γ contains a segment violating the property that every point in γ saturates the
diameter constraint. It also implies that angular points of γ are isolated, whereas points of ∂K of the first
kind are represented by a unique angle.

This remark rewrites in the following way in terms of the support function h of K:

(i) if M(θ) has a unique supporting line, then θ + π ∈ Iγ and h(θ) + h(θ + π) = D;

(ii) in the converse case, there exists θ ∈ JM such that θ + π ∈ Iγ and h(θ) + h(θ + π) = D.
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Figure 9: Example of a convex K and the triangle T (K).

Regarding the flat parts [Ai, Bi]i=1,2,3, one has

Ai = M(η−i ) = lim
θ→ηi,θ<ηi

M(θ) and Bi = M(η+
i ) = lim

θ→ηi,θ>ηi

M(θ)

For i = 1, 2, 3, let αi and βi be such thatM(θ) = Ai for all θ ∈ [ηi−αi, ηi) andM(θ) = Bi for all θ ∈ (ηi, ηi+βi].
Since angular points are isolated, the free boundary γ near Ai and Bi is made of points of ∂K having a unique
supporting line. An easy continuity argument shows that Ai and Bi saturate the diameter constraint. Let us
make their diametral point(s) precise. Recall that we introduced Fθ as Dθ ∩K and let us characterize Fηi+π.
Since ηi+1 − ηi < π, ηi + π cannot belong to {ηj}j=1,2,3, then Fηi+π is a point denoted M(ηi + π) or more
simply Mi. Considering for instance the point M1, we have to distinguish between three cases:

• if η1 + π ∈ (η2 + β2, η3 − α3), meaning that M1 lies in the interior of the free boundary, then M1 is
diametral with both A1 and B1

• if η1 + π ∈ (η2, η2 + β2), then M1 = B2 and one easily infers that M1A1 = D

• if η1 + π ∈ (η3 − α3, η3), then M1 = A3 and it follows that M1B1 = D

3.2.1 Geometrical description of optimizers

Lemma 7. Let i ∈ J1, 3K. The contact points Ii between the line Dηi
and the incircle is the middle of the

segment [Ai, Bi].

Proof. To prove this, we will use a small perturbation of an angle ηi and get optimality conditions. Let us
consider I1 and introduce the lengths lA = I1A1 and lB = I1B1. Let us do the following perturbation: replace
η1 by η1 + ε for ε > 0 small. We denote by Lη1+ε the corresponding tangent line of the unit disk. Now
introduce Jε the intersection point between Dη1 and Lη1+ε. This point satisfies Jε = I1 + ε

2 (− sin η1, cos η1).
Let Tε be this new triangle. We build a new convex set included in the triangle Tε by slightly modifying the
previous one : replace A and B by Aε and Bε located on Lη1+ε in such a way that the diameter constraint is
still fulfilled (see Fig. 10). We explicit the construction of Aε below as the intersection of Lη1+ε with a well
chosen line issued from A; while Bε is the intersection of Lη1+ε with the boundary of K We have to make the
balance between

• the area we gain: this is triangle T (AJεAε)

• the area we lose: this is the intersection of K? with the half-space {x · uη1+ε > 1}. At first order, this
area is the same than the area of the triangle T (BJεBε)
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Figure 10: Gain of area (strips) vs loss of area (dots)

The two triangles share the same angle ε, therefore the balance of area is

δA := 1
2 sin ε (JεA.JεAε − JεB.JεBε)

Now we can explicitly compute these lengths and get the expansions

JεA = lA +O(ε), JεB = lB +O(ε),

Let us introduce the angle θεA = ĴεAAε. Using elementary trigonometry, we can rewrite the length JεAε as

JεAε = AJε
cos ε+ sin ε cot θεA

= lA(1− ε cot θεA + o(ε)).

Now let us prove that we can choose an angle θεA which does not go to zero while keeping the diameter
constraint satisfied. Suppose η1 ∈ [0, π/2]. Recall that A is represented by an interval of angles IA = [η1−α, η1].
Let DA be the set of points that are diametrical to A and ΘA ⊂ IA +π the set of angles representing elements
of DA:

ΘA = {θ ∈ Iγ ,M(θ) ∈ DA and h(θ) + h(θ + π) = D} ⊂ [0, 2π).

We claim that there exists γ > 0 such that for all θ′ ∈ [η1 +π−γ, η1 +π], θ′ /∈ ΘA. Otherwise the diameter
constraint on I1 would be broken. Let ζ = max(ΘA) < π + η1. Choosing θεA = (π + η1 − ζ)/2 fulfills the
desired condition for ε small enough and provides a gain of area as l2Aε/2 + o(ε)).

On the side of B there is no problem with the diameter constraint, thus we simply observe that JεBε =
lB +O(ε) by construction. Therefore we get a loss of area as l2Bε/2 + o(ε)).

Thus we infer that the difference of areas is equal to δA = ε
2 (l2A − l2B) + o(ε) which has to be non-positive,

which leads to lA 6 lB at the optimum. We repeat the argument with ε < 0 to get lB 6 lA, whence the
equality.

Now we are going to prove that the free boundary is made of arc of circle of radius D/2 by working on
the radius of curvature R. It consists of three steps. We show first that this radius can only take the values
0, D/2 or D on the free boundary. Then we prove that the set {R = D} is necessarily of empty interior to
finally deduce that the radius of curvature on non angular points can only be D/2.

Lemma 8. On the free boundary γ of K?, the radius of curvature is almost everywhere equal to either 0, D/2
or D.

Proof. According to the above discussion, we will distinguish between points of the free boundary γ having a
unique support line, and angular points. Since angular points are isolated on ∂K?, it means that points of γ
having a unique support line define an open subset γ1 of γ or equivalently that their angle parametrization
define an open subset I1 of Iγ= (0, 2π)\{ηi}i=1,2,3. Any point of the complement set of γ1 is an angular point,
and therefore its radius of curvature is zero. Thus, it remains to look at points of γ1.
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Recall that, since K? is a convex set, its radius of curvature defines a nonnegative Radon measure. For any
θ ∈ I1 one has h(θ) + h(θ + π) = D. Differentiating twice this equality and since R = h + h′′, one gets that
R+ τπR = D in the sense of measures in I1, where τπ is the translation operator given by τπ(f) = f(π+ ·) for
every continuous function f . It follows that 0 6 R(θ) 6 D for a.e. θ in T and thus, R is a bounded function,
allowing us to write

∀θ ∈ I1, R(θ) +R(θ + π) = D. (12)

Let us now prove that for almost every θ ∈ I1, one has R(θ) ∈ {0, D/2, D}. Let us assume that the set
ω = {θ ∈ I1 | 0 < R(θ) < D} has a positive measure, otherwise it means that R = 0 or R = D a.e. and we
are done. Let us first show that R is necessarily constant on ω. Let us argue by contradiction: assume there
exist two subsets ω1 and ω2 such that |ω1| = |ω2| > 0 and∫

ω1

R(θ) dθ >
∫
ω2

R(θ) dθ. (13)

Let us consider a regularization ξ of the function v defined by

v(θ) =
{

+1 if θ ∈ ω1, −1 if θ ∈ ω1 + π
−1 if θ ∈ ω2, 1 if θ ∈ ω2 + π

and we will deal with the perturbation h+ εv of the support function h for ε > 0 small. In what follows, we
should deal with the regularization ξ, work on a subset of ω on which 0 < η 6 h(θ), and finally pass to the
limit η ↘ 0. To avoid technicalities, we will directly write the asymptotic of the derivative of the area under
this perturbation, with a slight abuse of notation.

Since the area of the domain is

|K| = J(h) where J(h) = 1
2

∫ 2π

0
(h2(θ)− h′2(θ)) dθ,

the first derivative of the area under the perturbation above reads as

〈dJ(h), ξ〉 =
∫
ω1∪ω2∪(ω1+π)∪(ω2+π)

hξ − h′ξ′ =
∫
ω1∪ω2∪(ω1+π)∪(ω2+π)

(h+ h′′)ξ.

By definition of ξ, one gets

〈dJ(h), ξ〉 =
∫
ω1

R−
∫
ω2

R−
∫
ω1+π

R+
∫
ω2+π

R

and according to (12), it comes

〈dJ(h), ξ〉 =
∫
ω1

R−
∫
ω2

R−
∫
ω1

(D −R) +
∫
ω2

(D −R) = 2
(∫

ω1

R−
∫
ω2

R

)
> 0

leading to a contradiction. It follows that R is necessarily constant on ω. Let us moreover show that the
constant value of R is precisely D/2. We proceed similarly: let us choose a perturbation ξ equal to 1 on a
subset ω1 and −1 on ω1 + π. The same computation as above leads to

〈dJ(h), ξ〉 =
∫
ω1

R−
∫
ω1

(D −R) =
∫
ω1

(2R−D),

and we conclude since this derivative must be zero (indeed, if this derivative would not vanish, either the
admissible perturbation ξ or −ξ would make the area increase). We conclude that necessarily R ∈ {0, D/2, D}
on I1.

From this lemma we deduce that if the boundary ∂K∗ contains an arc of circle of radius D/2, it also
contains its antipodal part (in other words the set of points of ∂K? diametrically opposed to those of the arc
of circle), and if it contains an arc of circle of radius D, it also contains its center. Let us show that this second
case cannot occur, following an idea in [1].

Lemma 9. The two assertions are incompatible:
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• the free boundary γ contains an arc of circle of radius D;

• its center belongs to ∂K?.

Proof. Let us argue by contradiction. Let us denote by C the circle of radius D one arc of which belongs to
γ and by P ∈ ∂K? its center. Note that since C saturates the diameter constraint, according to lemma 3, it
belongs to the free boundary γ or lies in the intersection of two segments. In this last case K has only two
free zones and C is an edge of T . Anyway C is not in the neighborhood of any contact point. By choosing
adequately an orthonormal basis, assume that the coordinates of P are (−D/2, 0) and the coordinate of the
center of the arc, denoted by Q, are (D/2, 0). Now for ε > 0 consider Qε whose coordinates are (D/2 + ε, 0)
and define

Kε = hull(K? ∪Qε) ∩B(Qε, D).

where B(Qε, D) is the disc of center Qε and radius D.

Qε

B1

B2

x θε

ε

Figure 11: Left: gain of area (red crosshatch) vs loss of area (blue horizontal lines). Right: calculus of the
gain .

Since the free boundary is modified locally, far from the contact point, the inradius remains unchanged
and the diameter also by construction. This transformation drives to a gain of area on the right part, and a
loss on the left part (see Fig. 11). Let us show that the gain is O(ε

√
ε) and the loss is O(ε2).

• gain: using the notations on the right part of Fig. 11, one determine a lower bound of the area gain
by computing the area of the triangle B1QεB2. Here x = ε/ tan(θε) with cos(θε) = D/(D + ε), and
therefore, x = O(

√
ε), and thus, a lower bound on the area gain is O(ε

√
ε).

• loss: note that if the radius of curvature is D on an open interval, thus it is equal to 0 on its antipodal
interval. It means that the center of the corresponding arc of circle is an angular point, and hence it
admits two different tangent lines. By convexity, the loss area is less than the one of the triangle formed
by the point P , and the two intersection points of the tangent with the circle C(Qε, D). Now the angle
of the tangents does not depend on ε, and the same kind of calculus shows that the area loss is O(ε2).

Hence, choosing ε > 0 small enough guarantees that |Kε| > |K?| and we have thus reached a contradiction.

Let us complete the description of the free boundary with the help of two lemmas.

Proposition 4. The free boundary γ of K? is the union of arc of circles of diameter D (i.e. the radius of
curvature is equal almost everywhere to D/2 on γ), that are mutually antipodal.

Proof. As usual, we denote the optimal set by K in this proof. We will consider its radius of curvature R as
a variable. Recall that, globally, R is a Radon measure on T such that

〈R, cos〉M(T),C 0(T) = 0 = 〈R, sin〉M(T),C 0(T) = 0 (14)

(we choose to fix the origin at the Steiner point of the convex set K). Its associated support function h solves
the ODE {

h+ h′′ = R in T∫ 2π
0 h(θ)eiθ dθ = 0 (15)
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Let F be the associated resolvent operator, in other words,

F : RD 3 R 7→ F [R] = h ∈ H1(T),

where h is the unique solution to System (15) and

RD =
{
R ∈M(T) | 〈R, cos +i sin〉M(T),C 0(T) = 0 and F [R](θ) + F [R](θ + π) 6 D, θ ∈ T

}
.

In what follows and for the sake of notational simplicity, we will denote the quantity 〈R, f〉M(T),C 0(T), where
f is a continuous function in T, by

∫ 2π
0 R(θ)f(θ) dθ with a slight abuse.

We recall that the area of K is given by

|K| = J(R) where J(R) =
∫ 2π

0
F [R](θ)R(θ) dθ. (16)

Let R be the radius of curvature function of the optimal set K, and h = F (R). Let I denote a subset
of (0, π) of positive measure (assumed to contain an interval without loss of generality since angular points
are isolated) on which there holds h(θ) + h(θ + π) = D. According to Lemma 8, R is bounded on I, such
that R(θ) + R(θ + π) = D and R ∈ {0, D/2, D} a.e. on I. Moreover, according to Lemma 9, the interiors of
I ∩ {R = 0} and I ∩ {R = D} are empty.

We want to write the optimality conditions satisfied by R locally on the interval I. For that purpose we
need to use admissible deformations: these are precisely deformations ξ belonging to the tangent cone at R, we
recall this definition: the tangent cone to the set L∞(I; [0, D]) at R, (also called the admissible cone) denoted
TR is the set of functions ξ ∈ L∞(I) such that, for any sequence of positive real numbers (ηn)n∈N decreasing to
0, there exists a sequence of functions ξn ∈ L∞(I) converging to ξ as n→ +∞, and R+ ηnξn ∈ L∞(I; [0, D])
for every n ∈ N.

Let us now give the first order optimality condition. This a quite classical result in control theory, but for
sake of completeness, we postpone the proof of the following Lemma to Appendix A.

Lemma 10. There exist three real numbers (µ, α, β) (Lagrange multipliers), which are not all zero, such that
the radius of curvature R of the optimal domain and its support function h satisfy

∀ξ ∈ TR,
∫
I

(µ(2h(θ)−D) + α cos θ + β sin θ) ξ(θ) dθ 6 0. (17)

To finish the proof of Proposition 4, let us introduce the switching function

ΨR : θ 7→ µ(2h(θ)−D) + α cos θ + β sin θ,

where h is the solution to (15) associated to R. The first order necessary condition can be recast as

∀ξ ∈ TR,
∫
I

ΨRξ 6 0.

Let y0 ∈ I be a Lebesgue point of I ∩ {R = 0} and let (Gn)n∈N denote a subset of I ∩ {u? = 0} containing y0.
Then, ξ = 1Gn

belongs to TR and therefore ∫
Gn

ΨR 6 0

By dividing this inequality by |Gn| and letting Gn shrink to y0 as n→ +∞, we infer that ΨR(y0) 6 0 according
to the Lebesgue density theorem.

Generalizing this reasoning to the sets I ∩ {R = D} and I ∩ {0 < R < D}, it follows that

• on I ∩ {R = 0}, ΨR 6 0;

• on I ∩ {R = D}, ΨR > 0;

• on I ∩ {0 < R < D}, ΨR = 0.

Note that ΨR is continuous. Let us distinguish between two cases. If µ = 0, then ΨR(θ) = α cos θ + β sin θ
with (α, β) 6= (0, 0) and then, {ΨR = 0} has zero measure. It follows that R is bang-bang, equal to 0 and
D almost everywhere in I. By continuity, since I contains an interval, one has either R = 0 or R = D on
an interval, which is in contradiction with Lemma 9. In the same way, if ψR < 0 (or ψR > 0) somewhere, it
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will remain negative (or positive) on an interval, implying that R = 0 on that interval, in contradiction with
Lemma 9. Therefore, we deduce that ψR is identically zero which implies that

h = D

2 + α

µ
cos +β

µ
sin on I.

The same identities hold true on I + π, which corresponds to an antipodal arc of circle. The expected result
follows. Notice finally that, since angular points are isolated (which allowed us to assume that I contained an
open interval), γ is the union of arcs of circle of diameter D.

Another necessary point is to determine when ones switches from an arc of circle to another one.

Lemma 11. Arc of circles only end at an angular point of the free boundary. Furthermore, the only angular
points in the interior of the free boundary are the points Mi, i = 1, 2, 3.

Proof. We have seen that a piece of γ whose points have a unique supporting line corresponds to an arc of a
given circle with diameter D. All such points are represented by a unique angle. Hence, denoting by I the
corresponding interval of angles, the relation h(·) + h(· + π) = D holds true on I. It follows that an arc of
circle breaks in the interior of γ if, and only if there exists an angular point M represented by an interval JM
on which the relation h(·) + h(· + π) = D is not satisfied (otherwise we would necessarily have R = D on
JM because of Lemma 8, which is impossible because of Proposition 4). Therefore, only an angular point can
break an arc of circle and we claim that such a point is necessarily one of the points M1, M2, M3. Indeed,
let us write JM = [α, β] with α 6 β and recall that for ε > 0 small enough, θ ∈ [α − ε, α] (and respectively
θ ∈ [β, β + ε]) is associated to a point on an arc of circle with diameter D. Let A (resp. B) be the points of
∂K? corresponding by α + π (resp. β + π). If A = B, there are two pairs of arc of circle with same center,
same radius meeting with a nonzero angle, which is impossible. Thus, one has A 6= B and there is a point in
the boundary between A and B which does not saturate the diameter constraint (otherwise, using the same
arguments as above, there would exist an arc of circle of radius D between A and B). This point belongs
necessarily to a contact line, which proves that JM contains one of the angles ηi +π, i = 1, 2, 3. It follows that
M corresponds to a point Mi, i = 1, 2, 3.

According to Proposition 4 and Lemma 11, each free zone of γ is made of one or two arc of circles, and for
each one, the antipodal arc of circle is in γ.

We end our study by distinguishing between two cases, depending on whether γ is made of two or three
free zones.

3.2.2 Case of two free zones

First of all, let us remark that the case where the boundary contains only one free zone cannot occur. Indeed,
it would mean that all the points in this free zone, that we know to be diametral, would be at the distance D
of one vertex of the triangle. But this is impossible, according to Lemma 9. Thus, it remains to look at the
case of two free zones. In that case, one of the vertices of the triangle belongs to the boundary ∂K?. Exactly
for the same reason, it is impossible that one piece of the free boundary is diametral to this vertex. Therefore,
the two remaining free zones that we denote Z1 and Z2 are mutually diametral, which means that for each
M1 in Z1 there exists M2 in Z2 with M1M2 = D.

The case of two free zones arises whenever some points Ai and Bi on Fig. 9 coincide with a vertex Si.
According to Lemma 7, the contact point are the middle of the contact segments. Moreover, two segments have
a vertex as endpoint, and it is necessary for the contact segments to be included in the edges of the triangle that
this vertex is closer to the contact points than the other vertices. With the notations previously introduced
(and summed-up on Fig. 9), we have SiIj = tanϕi for i 6= j. Since we assumed that 0 < ϕ1 6 ϕ2 6 ϕ3 < π/2,
the vertex is necessarily S1 and one has I2A2 = I3B3 = tanϕ1.

Assume hence without loss of generality that Z1 contains A1. Since A1 is diametral, there exists M ∈ Z2
such that MA1 = D. Assume by contradiction that A2 is not diametral to A1, hence there is a unique
supporting line at M . Let θ be the angle associated to this support line. By uniqueness of the supporting line,
one has necessarily h(θ) +h(θ+π) = D with θ+π ∈ [η1−α1, η1]. Then, every point "above" M is represented
by a unique angle θ′ > θ and we have h(θ′) + h(θ′ + π) = D but θ′ + π > θ + π, so the angle θ′ + π also
represents A1. It shows that every point above M is diametral to A1. In particular, A1 and A2 are diametral,
whence the contradiction. Similarly, one shows that B3B1 = D.

Recall that that the free zones are only made of arc of circles of diameter D. Let us show that each free zone
is one arc of circle, that is antipodal to the other free zone. If it were not the case, one point Mi with i = 2, 3
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Figure 12: A convex set with two free zones

would be in the interior of the free zone. Let us consider without loss of generality that M3 belongs to the
interior of the free boundary. Let N be a point of γ strictly between B1 and M3. Let θ be the corresponding
angle of the associated supporting line, which is unique. Then, θ < η3 + π and N is diametral with a point
whose angles set of its supporting line(s) is included in (η2, η3). It is necessarily S1. But this is impossible
according to Lemma 9 since γ cannot contain an arc of circle of radius D whose center is a vertex of T .

Therefore, the free zones are antipodal arcs of circle of radius D/2. Since the points A1, B1, A2, B3 belong
to the same circle and are two by two diametral, they are the vertices of a rectangle, meaning that T is an
isosceles triangle (we use here the fact that the incircle and the rectangle share the same axis of symmetry).
Taking the convention that η1 = −π/2, we have η3 = π − η2 and ϕ1 = π/2− η2 (see Fig 13).

I1

I2I3

S1

S2 S3
A1 B1

A2B3

Figure 13: Picture of an admissible set with two free zones

Now let us compute the exact value of η2 with respect to D. Since ϕ1 6 π/3, one has necessarily η2 > π/6.
Let us consider the orthonormal basis (O;

−−−→
A1B1
A1B1

,
−−−→
A1B3
A1B3

) centered at O, the incircle center. Since the abscissa
of A1 is the same as the one of B3 and since I3 is the middle of [S1B3] (and resp. I2 is the middle of [S1A2]),
we infer that the coordinates of A1 and A2 are then

A1 = (−2 cos η2,−1) and A2 =
(

2 cos η2,
cos(2η2)

sin η2

)
.

Solving the equation A1A2 = D leads to the polynomial equation:

P (sin η2) = 0 with P (X) = X3 − D2 − 1
4 X2 − 1

2X + 1
4 . (18)

We need to determine a solution in [1/2, 1]. Assume that D > 2. Let us observe that P (1) = 4−D2

4 < 0 and
P (1/2) = 3−D2

16 < 0. Furthermore, one shows easily that P is either decreasing on (1/2, 1) or decreasing and
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then increasing on (1/2, 1). Thus the equation P (sin η2) = 0 has no solution on [1/2, 1]. We conclude that this
is not possible to build an optimal set with two free zones.

3.2.3 Case of three free zones

Let us distinguish between two cases.

Subcase 1: all the points Mi, i = 1, 2, 3 belong to the interior of γ.

In this case, the previous study has shown that the free boundary is as follows (see Fig. 14)

•
>
A3M1 and>B1M3 are antipodal arcs of circle of radius D/2,

•
>
A2M3 and>B3M2 are antipodal arcs of circle of radius D/2,

•
>
A1M2 and>B2M1 are antipodal arcs of circle of radius D/2,

• Ii is on the middle of [Ai, Bi]

• Mi is on the perpendicular bisector of [Ai, Bi] (or Ii, O and Mi are aligned).

We deduce the relationships
−−−→
M3B1 = −−−→M1A3,

−−−→
M1B2 = −−−→M2A1, and −−−→

M2B3 = −−−→M3A2. (19)

I1

I2

I3

S1

S2 S3
A1 B1

A2

B2

A3

B3

M1

M2

M3

h1

τ1

Figure 14: Case of three free zones and the Mi’s belong to the interior of the free zones.

Let τi = MiIi and hi = IiAi. Then necessarily τi > 2 and we have the relationship

hi =
√
D2 − τ2

i (20)

Let us consider the orthonormal basis (O;
−−−→
I1B1
I1B1

,
−−→
I1O
I1O

) centered at O, the incircle center. For i = 1, 2, 3, the
coordinates of Ai, Bi and Mi are

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
, Mi = (1− τi)×

(
cos ηi
sin ηi

)
.

By assimilating the index i with i+ 3, the vector relationships above rewrites

i = 1, 2, 3,
{

2− τi = (2− τi+1) cos(ηi − ηi+1) + hi+1 sin(ηi − ηi+1)
hi = (2− τi+1) sin(ηi − ηi+1)− hi+1 cos(ηi − ηi+1) (21)
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from which we infer that  (2− τ1) tan(η3 − η2) = h1
(2− τ2) tan(η1 − η3) = h2
(2− τ3) tan(η2 − η1) = h3

(22)

With the value of hi given by (20), we have the quadratic equation on τ1:

(2− τ1)2 tan2(η3 − η2) = D2 − τ2
1 (23)

and similarly for the others. This yields

2− τ1 = 2 cos2(η3 − η2)± cos(η3 − η2)
√
D2 − 4 sin2(η3 − η2) (24)

Since 2− τ1 is negative, we can choose the sign depending on the value of cos. Recall that ηi+1−ηi ∈ (0, π)
and η3 − η2 6 η1 − η3 6 η2 − η1. Furthermore, ηi+1 − ηi ∈ (0, π/2) means that the triangle has an obtuse
angle. This can happen only once, and for η3 − η2. So at least η1 − η3 and η2 − η1 are in (π/2, π) and their
cosine is negative. Assuming now that we have η3 − η2 > π/2 leads to

2− τ1 = 2 cos2(η3 − η2) + cos(η3 − η2)
√
D2 − 4 sin2(η3 − η2)

2− τ2 = 2 cos2(η1 − η3) + cos(η1 − η3)
√
D2 − 4 sin2(η1 − η3)

2− τ3 = 2 cos2(η2 − η1) + cos(η2 − η1)
√
D2 − 4 sin2(η2 − η1).

(25)

By replacing hi by its value (22) in (19), we obtain after calculation (2− τ3) cos(η3 − η2) = (2− τ1) cos(η1 − η2)
(2− τ2) cos(η2 − η1) = (2− τ3) cos(η3 − η1)
(2− τ1) cos(η1 − η3) = (2− τ2) cos(η2 − η3)

(26)

Finally, replacing 2− τi by his expression in (26) and using that cos(ηi+1 − ηi) 6= 0, we get{
2 cos(η2 − η1) +

√
D2 − 4 sin2(η2 − η1) = 2 cos(η3 − η2) +

√
D2 − 4 sin2(η3 − η2)

2 cos(η2 − η1) +
√
D2 − 4 sin2(η2 − η1) = 2 cos(η1 − η3) +

√
D2 − 4 sin2(η1 − η3)

(27)

Let f : x 7→ 2 cosx+
√
D2 − 4 sin2 x. One easily shows that f is decreasing on (π/2, π) and hence injective

(see Fig. 15). We thus infer that
η3 − η2 = η1 − η3 = η2 − η1 = 2π

3 .

The triangle T is therefore equilateral and one has τ1 = τ2 = τ3 = (3 +
√
D2 − 3)/2. We recover the smoothed

nonagon introduced in Def. 2.

Assume now that η3 − η2 6 π/2. If η3 − η2 = π/2, then τ1 = 2 and M1 is on in the incircle, which is
impossible for D > 2, otherwise the arc of circle would cross the incircle.

Now we have 
2− τ1 = 2 cos2(η3 − η2)− cos(η3 − η2)

√
D2 − 4 sin2(η3 − η2)

2− τ2 = 2 cos2(η1 − η3) + cos(η1 − η3)
√
D2 − 4 sin2(η1 − η3)

2− τ3 = 2 cos2(η2 − η1) + cos(η2 − η1)
√
D2 − 4 sin2(η2 − η1)

(28)

The same computations as above yield

2 cos(η3 − η2)−
√
D2 − 4 sin2(η3 − η2) = 2 cos(η1 − η3) +

√
D2 − 4 sin2(η1 − η3) (29)

Now, let us introduce g : x 7→ 2 cosx−
√
D2 − 4 sin2 x. One easily sees that g is negative while f is positive

and therefore, the equation f(x) = g(y) has no solution. We conclude that this case cannot happen.
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Figure 15: D2 = 6. Left: plot of the function f . Right: plot of the function g.

Finally, the solution for this sub-case is KE(D) defined in Def. 2. Observe that since KE(D) is inscribed
in the equilateral triangle, we need to have h <

√
3, ie τ < 3 and D < 2

√
3, whence the requirement on D for

the sake of the definition of KE(D).

Subcase 2: at least one point Mi is on the boundary of the free zone, namely it is one of the
points Aj or Bj.

Assume here that a point Mi, say M1 is not in the interior of the free zone. Then M1 = B2 or M1 = A3, say
M1 = B2. The free zone Z1 is an arc of circle of radius D/2 whose antipodal arc is>B1M3. If M3 is also on the
boundary of Z3 then Z1 and Z3 would be antipodal and Z2 would not have any antipodal arc of circle. This
is impossible. So M3 lies in the interior of Z3 and it has a second arc of circle: >M3A2 which antipodal arc is
>
M2B3. We claim that M2 = A1 otherwise>M2A1 would not have antipodal arc.

I1

I2

I3

S1

S2 S3
A1 B1

A2

B2

A3

B3

M3

Figure 16: An approximate illustration of the case of three free zones andM1 in the boundary of the free zone.

Now, in comparison with the first case, only two vector relation are valid, namely
−−−→
B1M3 = −−−→A3B2 and −−−→

A2M3 = −−−→B3A1. (30)

Taking the same notations as in the first case with τ = τ3, one has{
cos η2 − h2 sin η2 − cos η3 − h3 sin η3 = (1− τ) cos η3 − cos η1 + h1 sin η1
sin η2 + h2 cos η2 − sin η3 + h3 cos η3 = (1− τ) sin η3 − sin η1 − h1 cos η1

(31)
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and {
cos η1 + h1 sin η1 − cos η3 + h3 sin η3 = (1− τ) cos η3 − cos η2 − h2 sin η2
sin η2 − h1 cos η1 − sin η3 − h3 cos η3 = (1− τ) sin η3 − sin η2 + h2 cos η2

(32)

The same kind of computations as in the first case lead to the following statements:
η3 − η2 = η1 − η3 = y
h1 = h2
2− τ = 2 cos y < 0
τ2 + h2

3 = D2

2h1 = −h3 cos y.

(33)

Now set η3 = −π/2. then η1 = y − π/2 ∈ [0, π/2] and η2 = π − η1. Observe thatA2M3A1B3 is a rectangle
which leads to the new equation −−−→A1M3 ·

−−−→
A2M3 = 0. It rewrites

(τ − 1)2 − 2(τ − 1) sin η1 + (h2
1 + 1)(2 sin2 η1 − 1) = 0 (34)

and using that

sin η1 = τ/2− 1 and h2
1 + 1 = D2 − τ2

(τ − 2)2 + 1, (35)

Equation (34) becomes
− τ3 +

(
D2/2 + 5

)
τ2 −

(
2D2 + 4)

)
τ +D2 = 0. (36)

Since τ has to be a root of the polynomial in [2, 3], a calculus argument shows that for D ∈ [2, 2
√

3], the
polynomial has a unique root in [2, 3], with τ(2) = 2, τ(2

√
3) = 3 and τ is an increasing function.

Finally this leads to the construction of the set KC(D) shown in Fig. 8.
Furthermore, if we set t1 = arcsin

(
2(sin η1+h1 cos η1)−τ+2

D

)
and t2 = arcsin(τ/D) then we have the formula

|KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1) (37)

Let us remark that, using (35), we have cos2 t2 = (D2 − τ2)/D2 and (τ − 2)2 = 4 sin2 η1, thus

h2
1 = D2 − τ2

(τ − 2)2 = D2 cos2 t2

4 sin2 η1
=⇒ h1 = D cos t2

2 sin η1

and replacing in the definition of t1, it provides the alternative formula

t1 = arcsin
(

cos t2
tan η1

)
. (38)

3.3 Comparison
Now we have to determine what is the optimal shape for a given D. Previous analysis show that for D > 2

√
3

it is not possible to construct the sets KE and KS . Hence the stadium KS is optimal for such D. Let us
have a look to the graphics of the area of the three domain for D ∈ [2, 2

√
3]. Now let us investigate the case

D ∈ [2, 2
√

3]. Graphics 17 suggest that the set KE is optimal for small values of D and KS is optimal for high
values of D. In the following we prove two facts:

1. The domain KC(D) is never optimal,

2. the existence of D? such that for D 6 D?, |KE(D)| > |KS(D)| and for D > D?, |KS(D)| > |KE(D)|.
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Figure 17: Comparison of the three areas

3.3.1 Proof that KC(D) is never optimal

We are going to prove that KC(D) < KS(D) for D ∈ (2, 2
√

3] by comparing their derivatives (we know that
KC(2) = KS(2) = π). Let us write Equation (36) in the following way

D2 = τ
τ2 − 5τ + 4
τ2

2 − 2τ + 1
:= τg(τ) (39)

where the function g : x 7→ (x2 − 5x+ 4)/(x2/2− 2x+ 1) is increasing. Thus we make the change of variable
D → τ and rewrite the areas KC(D) and KS(D) in terms of τ ∈ [2, 3]. More precisely, we write τ = 2 + h
with h ∈ [0, 1] and we write all quantities in term of h. Let us observe that

g(2 + h) = 2 + h

1− h2/2 . (40)

We start with KC(D) given by (37). By (40)

D2 − τ2 = (2 + h)g(2 + h)− (2 + h)2 = h2h+ h2/2
1− h2/2

and then the first term of KC(D) is

τ

τ − 2
√
D2 − τ2 = (2 + h)

√
h+ h2/2
1− h2/2 . (41)

A simple computation gives its derivative with respect to h:

d

dh

(
τ

τ − 2
√
D2 − τ2

)
=

√
2 + h

2h(1− h2/2)
1 + 2h+ h2/2− h3/2

1− h2/2 . (42)

Now we look at the other term in KC(D):

t2 = arcsin
(√

τ

g(τ)

)
= arcsin

(√
2 + h− h2 − h3/2

2 + h− h2

)
. (43)

Now, let us express t1 using (38):

cos t2 =
√

1− τ2

D2 =

√
1− 2 + h

g(2 + h) = h

√
h/2

2 + h− h2
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while , from sin η1 = h/2, we get

tan η1 =

√
1

1− sin2 η1
− 1 = h

4− h2 .

From this, we infer:

t1 = arcsin
(√

h(2 + h)
2(1 + h)

)
. (44)

Now using the formula arcsin b− arcsin a = arcsin
(
b
√

1− a2 − a
√

1− b2
)
(all numbers a and b are between 0

and 1), we finally get thanks to (43) and (44):

t2 − t1 = arcsin
(

(1− h)
√

2 + h

2− h

)
. (45)

In particular, we have
d

dh
(t2 − t1) = h2 − 2h− 2

(2− h)
√

2h(2 + h)(1− h2/2)
.

Thus, one has

D2

2
d

dh
(t2−t1) = (1 + h)(2− h)(2 + h)

2(1− h2/2)
h2 − 2h− 2

(2− h)
√

2h(2 + h)(1− h2/2)
=

√
2 + h

2h(1− h2/2)
−1− 2h− h2/2 + h3/2

1− h2/2

which is exactly the opposite of (42). Therefore

d

dh
KC(2 + h) = D

dD

dh
arcsin

(
(1− h)

√
2 + h

2− h

)
.

On the other hand, since
d

dD
KS(D) = D arcsin

(
2
D

)
we have

d

dh
KS(2 + h) = D

dD

dh
arcsin

(
2
D

)
and to compare the derivatives, it suffices to compare the arguments in the arcsin. Now

2
D

=

√
2(1− h2/2)

(1 + h)(2− h)(2 + h)

and squaring and simplifying amounts to prove
4(1− h2/2)

(1 + h)(2 + h) > (1− h)2(2 + h)⇔ h2(5 + h− 3h2 − h3) > 0

which is true for 0 < h 6 1. This finishes the proof of KS(D) > KC(D) for D > 2.

3.3.2 Existence of D?

Note that |KS(2)| = |KE(2)| = π. Now we compute the derivative of D 7→ |KE(D)| − |KS(D)| which is given
by

d

dD
(|KE(D)| − |KS(D)|) = 3

2 ×D
(

2π
3 − 2 arccos(

√
3
D

)
)
−D arcsin

(
2
D

)
,

which has the same sign as π − 3 arccos(
√

3
D ))− arcsin(2/D) = g(D).

Now, we have

g′(D) = − 3
√

3
D
√
D2 − 3

+ 2
D
√
D2 − 4

which is positive if and only if D ∈ [2,
√

96
23 ]. Together with g(0) = 0 and g(2

√
3) = − arcsin( 1√

3 ) < 0 we get
that g is positive then negative. Finally we deduce that D 7→ |KE(D)|− |KS(D)| is increasing then decreasing
with value 0 at 2 and taking negative value at 2

√
3. We finally get the existence of some D? ∈ [2, 2

√
3] such

that for D 6 D?, |KE(D)| > |KS(D)| and for D > D?, |KE(D)| 6 |KS(D)|. This conclude the proof.
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A Proof of Lemma 10
To prove the Lemma, we will introduce an auxiliary problem whose unknown is the restriction of R to the set
I. Let us introduce J = [0, 2π]\(I ∪ (I +π)). Let us decompose R as R = R01J +u?1I + (D−u?(· −π))1I+π,
and observe that

J(R) =
∫
I

(2F [R]u? −DF [R]−Du? +D2) +
∫
J

F [R]R0.

and ∫
I

u?(θ) cos θ dθ = α and
∫
I

u?(θ) sin θ dθ = β,

with α = − 1
2
∫
J
R0(θ) cos θ dθ + D

2
∫
I

cos θ dθ and β = − 1
2
∫
J
R0(θ) sin θ dθ + D

2
∫
I

sin θ dθ.
We will now characterize u? by exploiting that it solves the optimization problem

sup
u∈R̃D

J̃(u) where J̃(u) =
∫
I

(2hu−Dh−Du+D2) +
∫
J

hR0 (46)

where h solves the ODE 
h+ h′′ = R01J + u1I + (D − u(· − π))1I+π in (0, 2π)∫ 2π

0 h(θ)eiθ dθ = 0
h(0) = h(2π), h′(0) = h′(2π)

(47)

and
R̃D =

{
u ∈ L∞(I; [0, D]) |

∫
I

u(θ)eiθ dθ = α+ iβ

}
.

Let us now derive the first order necessary optimality conditions for this problem. Since the method is standard,
we briefly comment on the method allowing us to write such conditions: first, the mapping R̃D 3 u 7→ h,
where h solves (47), being linear it is Gâteaux-differentiable at u? in every direction ξ belonging to the tangent
cone to the set R̃D at u?. Furthermore, its differential ḣ is the unique solution of the ODE

ḣ+ ḣ′′ = ξ1I − ξ(· − π)1I+π in (0, 2π)∫ 2π
0 ḣ(θ)eiθ dθ = 0
ḣ(0) = ḣ(2π), ḣ′(0) = ḣ′(2π)

It follows that R̃D 3 u 7→ J̃(u) is Gâteaux-differentiable at u? and its differential reads

〈dJ̃(u?), ξ〉 = lim
η↘0

J̃(u? + ηξ)− J̃(u?)
η

=
∫
I

(2ḣu? + 2hξ −Dḣ−Dξ) +
∫
J

ḣR0

=
∫
I

(2h−D)ξ +
∫
I

ḣ(2u? −D) +
∫
J

ḣR0 = 2
∫
I

(2h−D)ξ,

by using several times integration by parts and the relation h(θ) + h(θ + π) = D on I.
We now have to deal with two kinds of constraints in R̃D: a global L1 one and point-wise ones, since u

belongs to [0, D] almost everywhere. Although such constraints are standard, we briefly explain how to derive
the Euler inequation for this problem with the help of a penalization approach, for the sake of completeness.
For ε > 0, let us introduce J̃ε as the penalized functional

J̃ε(u) = J̃(u) + 1
ε

∣∣∣∣∫
I

u(θ)eiθ dθ − (α+ iβ)
∣∣∣∣2 .

We consider the optimization problem
sup

u∈L∞(I;[0,D])
J̃ε(u). (48)

On what follows, we will need to consider an element ξ to the tangent cone Tu to L∞(I; [0, D]) at u, that we
describe hereafter.

Since they follow from a basic variational analysis, we do not provide all the details to the following claims:

• Since L∞(I; [0, D]) is compact for the weak-star convergence in L∞, the resolvent operator R̃D 3 u 7→
h ∈ L2(T) is compact and therefore, the penalized problem (48) has a solution uε ∈ L∞(I; [0, D]).
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• Let hε be the solution to (47) associated to uε. There exists a sequence (εn)n∈N decreasing to 0, there
exists ũ ∈ L∞(I; [0, D]) such that (uεn)n∈N converges weakly-star to ũ in L∞(I; [0, D]) and (hεn)n∈N
converges strongly to h̃ ∈ H1(0, 2π) and uniformly in C 0([0, 2π]) as n → +∞. Furthermore, one has
necessarily

∫
I
uεn

(θ)eiθ dθ = α+ iβ) + O(εn) and therefore, ũ belongs to R̃D.

• Let ξ ∈ T
ũ
. There exists ξn ∈ Tuεn

such that (ξn)n∈N converges weakly-star to ξ as n → +∞ (this
follows from the definition of the tangent cone and the fact that pointwise inequalities are preserved by
the weak-star convergence).

Let ξ ∈ T
ũ
. According to the computations above, the necessary first order optimality conditions for the

penalized problem (48) read: for every n ∈ N, since ξ ∈ Tuεn
, one has∫

I

(2hεn(θ)−D + αn cos θ + βn sin θ) ξn(θ) dθ 6 0.

where
αn = 1

εn

(∫
I

uεn(s) cos s ds− α
)

and βn = 1
ε

(∫
I

uεn(s) sin s ds− β
)
.

Let us divide the inequality above by
√

1 + α2
n + β2

n. Since the quantities
√

1 + α2
n + β2

n, αn/
√

1 + α2
n + β2

n

and βn/
√

1 + α2
n + β2

n are uniformly bounded with respect to n, one can assume that they respectively converge
(up to a new extraction) to µ > 0, ᾱ ∈ R and β̄ ∈ R such that (µ, ᾱ, β̄) 6= (0, 0, 0). Since ξ was arbitrarily
chosen, by passing to the limit as n → +∞, we get at the end that the first order necessary conditions
associated to Problem (47) read

∀ξ ∈ T
ũ
,

∫
I

(
µ(2h̃(θ)−D) + ᾱ cos θ + β̄ sin θ

)
ξ(θ) dθ 6 0 (49)

Now, since J̃εn
(u) = J̃(u) for every u ∈ R̃D, it follows that

J̃εn
(uε) = max

u∈L∞(I;[0,D])
J̃εn

(u) > max
u∈L∞(I;[0,D])

J̃(u) = J̃(u?) > J̃(uεn
).

Passing to the limit in this inequality yields J̃(u?) > J̃(ũ). Using that ũ belongs to R̃D, we infer that ũ solves
Problem (46). Therefore, we can assume without loss of generality that ũ = u?.
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