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Introduction

The complete unfolding [START_REF] Abello | On the complexity and combinatorics of covering finite complexes[END_REF] of a directed graph equipped with a distinguished "root" vertex is a rooted tree that is infinite if the graph has directed cycles. This notion has been introduced in the study of abstract programs called transition systems, in order to represent their semantics [4, 11, 14]. The complete unfolding of the graph representing a transition system S encodes all computations of the program abstracted into S. If the graph is finite, its complete unfolding is a regular tree, i.e., a tree that has finitely subtrees up to isomorphism, we mean by this, finitely many isomorphism classes of subtrees. Precise definitions will be given in Section 2.

The theory of distributed computing uses the similar notion of universal covering of an undirected graph. A network N is represented by an undirected graph whose edges represent communication channels. The question is whether certain problems such as the election problem (consisting in distinguishing a [START_REF] Abello | On the complexity and combinatorics of covering finite complexes[END_REF] Simply called unfolding in [4, 11, 14]. 1 unique node of the network) can be solved by a distributed algorithm (of a certain type). This is possible if the graph N is minimal for the covering relation, equivalently if the universal coverings of N defined from any two different nodes are not isomorphic trees. Precise definitions will be given in Section 3. The application of covering to distributed computing has been initiated by Angluin in [2].

We are interested in unfoldings and coverings from a graph theoretical point of view. Both notions are defined in terms of surjective graph homomorphisms that are bijective on the neighbourhoods of vertices related by the considered homomorphisms. The notion of neighboorhoud is thus a parameter that gives rise to unfoldings, to coverings or even to other similar notions [14]. For unfoldings of directed graphs, the neighbourhood of a vertex x is the set of edges outgoing from x. For coverings of undirected graphs, it is the set of edges incident to x. We study unfoldings and coverings by means of graph homomorphisms, quotient graphs, infinite trees and, in particular, regular ones. One of our objectives is to highlight the similarities between the two notions.

However, we also generalize them in the following ways. We define unfoldings of weighted directed graphs, where each directed edge has a weight, that is a positive integer or the infinite cardinal ω. A directed edge of weight 3 (resp. ω) unfolds into 3 directed edges (resp. countably many) with same origin. In this way, we obtain trees, even regular ones, with nodes of countable degree [START_REF] Angluin | Local and global properties in networks of processors[END_REF] . We call complete unfolding what is usually called the unfolding (this tree is unique up to isomorphism), and we define as unfolding of a weighted directed graph H a weighted directed graph that lies inbetween H and its complete unfolding. "Inbetween" is formally defined in terms of surjective homomorphisms that are locally bijective as explained above. The complete unfoldings of finite weighted directed graphs are the regular rooted trees. Regularity means that they have finitely many subtrees up to isomorphism. In this way, we extend the classical notion of a regular tree as we can obtain trees of infinite degree [START_REF] Angluin | Finite common coverings of pairs of regular graphs[END_REF] , arising from directed edges of weight ω. Each regular tree is the complete unfolding of a finite unique canonical weighted directed graph, that can be used as a finite description of it. We prove two results similar to theorems by Leighton and Norris for coverings of graphs described below [START_REF] Arnold | Finite transition systems[END_REF] .

Similarly, we extend the notion of covering to weighted undirected graphs. In this case, weights in N + ∪ {ω} are attached to half-edges: an edge that is not a loop has two half-edges and thus two weights. A loop is a half-edge (without matching opposite half-edge) and a single weight. Each such graph H has a unique universal covering (unicity is up to isomorphism), a tree T without root that we call strongly regular if H is finite. This means that T yields finitely many regular rooted trees T x , up to isomorphism, by taking its different nodes x as roots. This is a new notion [START_REF] Bass | Uniform tree lattices[END_REF] . Each strongly regular tree is the universal covering of a canonical (unique up to isomorphism) finite weighted graph, and thus, also has a finitary description. Some regular trees are not strongly regular.

A theorem by Norris [20] states that two regular rooted trees T x and T y , arising from the universal covering T of a finite undirected graph with p vertices are isomorphic if their truncations at a depth p-1 are isomorphic. We extend it to universal coverings of finite weighted graphs. Another theorem by Leighton [17] states that, if two finite undirected graphs have a common covering, then they have a common one that is finite. We could not extend it to weighted graphs. However, we prove a special case of it for unweighted graphs that subsumes the known case of regular graphs [3].

Summary of the article: Basic definitions are in Section 1. Unfoldings of weighted directed graphs are studied in Section 2. Coverings of weighted undirected graphs are in Section 3.

Basic definitions

This section reviews notation and some easy lemmas. Definitions for graphs and trees are standard, but we make precise some possibly ambigous terminological points.

Sets, multisets and weighted sets. All sets, graphs and trees are finite or countably infinite (of cardinality ω). The cardinality of a set X is denoted by |X| ∈ N ∪ {ω}. This latter set is equipped with an addition + that is the standard one on N together with the rule ω + x = x + ω = ω for all x in N ∪ {ω}.

We denote by [p] the set {1, ..., p} and by N + the set of positive integers.

A weighted set is a pair (X, λ) where X is a set and λ is a mapping X → N + ∪ {ω}. We call λ(x) the weight of x, and, for Y ⊆ X, we define6 λ(Y ) := Σ{λ(x) | x ∈ Y }. A weighted set can be seen as a multiset, where λ(x) is the number of occurrences of x in X. From a set X, we get a weighted set denoted by (X, 1) with all weights equal to 1.

We define Set(X, λ)

:= {(x, i) | x ∈ X, 1 ≤ i ≤ λ(x)} so that λ(X) = |Set(X, λ)| .
We denote by ⊎ the union of multisets, equivalently of weighted sets: (X, λ)⊎ (Y, λ ′ ) := (X ∪ Y, λ ′′ ) where λ ′′ (x) is λ(x) + λ ′ (x) if x ∈ X ∩ Y and λ(x) or λ ′ (x) otherwise. Let (X, λ) and (Y, λ ′ ) be weighted sets. A surjective mapping κ : X → Y is a weighted surjection or a surjection of multisets : (X, λ) → (Y, λ ′ ) if, for every y ∈ Y , we have λ ′ (y) = λ(κ -1 (y)).

Figure 1 (with comments in Example 1.2(1)) illustrates this notion. Lemma 1.1 : 1) Let (X, λ) and (Y, λ ′ ) be weighted sets. A mapping κ : X → Y is a weighted surjection if and only if there exists a bijection κ ′ : Set(X, λ) → Set(Y, λ ′ ) such that7 κ ′ (x, i) = (y, j) implies κ(x) = y.

2) If there are weighted surjections κ : (X, λ) → (Y, λ ′ ) and α : Z = (Z, 1) → (Y, λ ′ ), there exists a weighted surjection β : Z = (Z, 1) → (X, λ) such that α ′ = κ ′ • β ′ , where α ′ , κ ′ , β ′ are related to α, κ, β is as in 1).

3) Let (X, λ), (Y, λ ′ ) be weighted. Then λ(X) = λ ′ (Y ) if and only if there exists a set S ⊆ X × Y and a weight function µ on S such that µ(S) = λ(X) = λ ′ (Y ) and for every x ∈ X, λ(x) = µ(S ∩ {(x, y) | y ∈ Y }) and similarly, for every y ∈ Y , λ ′ (y) = µ(S ∩ {(x, y) | x ∈ X}).

Proof : Let (X, λ) and (Y, λ ′ ) be weighted sets. 1) Assume that we have a bijection κ ′ : Set(X, λ) → Set(Y, λ ′ ) as in the statement. Then, κ : X → Y is surjective. For each y ∈ Y , the mapping κ ′ induces a bijection Set(κ -1 (y), λ) → Set({y}, λ ′ ), hence λ ′ (y) = λ(κ -1 (y)). Hence, κ is a weighted surjection.

Conversely, let κ : X → Y be a weighted surjection. For each y in Y , since λ ′ (y) = λ(κ -1 (y)), we can define a bijection:

Set(κ -1 (y), λ) → Set({y}, λ ′ ).
The union of all these bijections defines κ ′ as desired.

2) Let κ and κ ′ be as in 1). We have a bijection

α ′ : Z = Set(Z, 1) → Set(Y, λ ′ ). We define β ′ : Z = Set(Z, 1) → Set(X, λ) by β ′ := κ ′-1 • α ′ , from which we get the desired weighted surjection : (Z, 1) → (X, λ) such that α ′ = κ ′ • β ′ .
3) Assume we have λ(X) = λ ′ (Y ). Consider any bijection µ ′ : Set(X, λ) → Set(Y, λ ′ ). Then, we define µ(x, y) as the cardinality of the set {((x, i), (y, j)) | µ ′ (x, i) = (y, j)} if it is not empty. We let S ⊆ X ×Y be the set of all pairs (x, y) such that µ ′ (x, i) = (y, j) for some i, j. We obtain the desired weight function on S. The converse is clear.

In Assertion 3), we call S a witness of the equality of weights λ(X) = λ ′ (Y ). We consider it as a bipartite graph whose edges are between X and Y , and are weighted by µ. The weight λ(x) of vertex x is the sum of the weights of its incident edges. See Figure 2. 

(a, i) -→ (u, i) for i = 1, 2, (b, i) -→ (u, i+2) for i = 1, 2, 3, (c, i) -→ (v, i) for i = 1, ..., 4, (d, i) -→ (v, i+4) for i ≥ 1.
(2) Let X, Y, κ, κ ′ be as above and Z := N + . Let α : Z → Y that maps i → u for i = 1, ..., 5 and i → v for i > 5 (cf. Assertion (2) of Lemma 1.1). We obtain β ′ that maps i → (a, i) for i = 1, 2, i → (b, i -2) for i = 3, 4, 5, i → (c, i -5) for i = 6, ..., 9, and i → (d, i -9) for i > 9. We deduce the weighted surjection β : Z → Y.

(3) To illustrated Assertion (3), we use X consisting of a, b, c, d of respective weights ω, 4, 2 and ω and Y consisting of u, v, w, x, y of respective weights ω, 4, 3, 5, 1. We can take S to consist of (a, u), (d, u) of weight ω, (a, v), (c, v), (c, w) and (d, y) of weight 1, (b, v) and (b, w) of weight 2 and (d, x) of weight 5. See Figure 2. This is clearly not the unique way to define S.

If, with the same weighted set X, we take Y consisting of y 1 , ..., y n , ... all of weight ω, then we can take S to consist of (b, y 1 ) of weight 4, (c, y 1 ) of weight 2 and, for all i, (a, y i ) and (d, y i ) of weight ω.

Graphs

By a graph we mean an undirected graph, and we call digraph a directed graph, for shortness sake.

A graph is defined as a triple G = (V, E, Inc) where V is the set of vertices, E is the set of edges, and Inc is the incidence relation. The notation e : xy indicates that edge e links vertices x and y, equivalently, that (e, x) and (e, y) belong to the set Inc ⊆ E × V . A pair in Inc is called a half-edge. We write e : xx if e is a loop at x, i.e., incident with x. We denote by E(x) the set of edges incident with x, and by N (x) the set {y ∈ V | x -y}. We have x ∈ N (x) if there is a loop at x. A graph is simple if no two edges have the same set of ends.

A walk starting at a vertex x is a possibly infinite sequence x 0 , e 1 , x 1 , ..., e n , x n , ... such that x = x 0 , x 1 , ..., x n , ... are vertices and each e i is an edge whose ends are x i-1 and x i . It is a path if the vertices x 0 , ..., x n , ... are pairwise distinct. In both cases, we say that each x i is accessible from x 0 .

A directed graph (a digraph) is defined similarly as a triple G = (V, E, Inc). Its edges are called arcs. An arc a is directed from its tail x to its head y, and we denote this by a : x → y. Its two half-arcs are (x, a) and (a, y), which encodes the direction of a. Hence Inc ⊆ (V ×E)∪(E ×V ). A loop at x has two half-arcs (x, e) and (e, x). A digraph is simple if, for any x, y, it has no two arcs from x to y. In that case, it can be defined as a pair (V, E) where E ⊆ V × V .

We denote by E + (x) the set of arcs outgoing from x, and by N + (x) the set of heads of the arcs in E + (x). We have x ∈ N + (x) if there is a loop at x.

A directed walk starting at a vertex x is a possibly infinite sequence x = x 0 , e 1 , x 1 , ..., e n , x n , ... as above such that x = x 0 and e i : x i-1 → x i for each i. Without ambiguity unless it is reduced to such x 0 , it can be specified as the sequence of arcs e 1 , ..., e n , .... It is a directed path if the vertices x 0 , ..., x n , ... are pairwise distinct. We say that each x i is accessible from x 0 . We denote by G/x the induced subgraph of G whose vertices are those accessible from x by a directed path. We denote by Und(G) the graph underlying G : each arc e : x → y of G is made into an edge e : xy of U nd(G).

We write

V G , E G , E G (x), E + G (x), N + G (x)
, Inc G etc. to specify, if necessary, the relevant graph or digraph G.

A homomorphism η : G → H of graphs or of digraphs maps V G to V H , E G to E H , Inc G to Inc H and preserves incidences in the obvious way. It maps loops to loops but can map a nonloop edge or arc to a loop. It preserves labels if any. We extend the notion of homomorphism by allowing "forgetful" operations. A homomorphism U nd(G) → H where G is directed and H is not is also considered as a homomorphism G → H. Similar conventions concern labelled graphs.

If η : G → H is a homomorphism of graphs or of digraphs, we make G into a labelled graph or digraph G η by attaching η(x) to each vertex, edge or arc x. Hence, G η encodes G and η. We will use this labelling when H is finite.

Isomorphism (b) The definition is similar for a digraph G: we require that if e and f are equivalent arcs, then the tail (resp. the head) of e is equivalent to that of f . The quotient graph is defined as for graphs.

(c) A quotient graph or digraph can be defined from an equivalence relation ∼ on vertices only. The associated equivalence relation is defined on edges or arcs as follows : two edges are equivalent if and only if each end of one is equivalent to some end of the other; two arcs are equivalent if and only if their tails are equivalent and so are their heads.

(d) In all cases, we have a surjective homomorphism η ∼ : G → G/ ∼ that maps a vertex, an edge or an arc to its equivalence class. An edge e : xy is mapped to a loop e ′ in G/ ∼ if x ∼ y. The same holds for arcs.

Trees

A tree is a nonempty simple graph that is connected and has neither loops nor cycles. We call nodes its vertices. This convention is useful in the frequent case where we discuss simultaneously a graph and a tree constructed from it.

The set of nodes of a tree T is denoted by N T . A subtree of a tree T is a connected subgraph, hence, it is a tree.

A tree has (locally) finite degree if each node has finite degree. It has bounded degree if the degrees of its nodes are bounded by an integer.

A rooted tree is a tree T equipped with a distinguished node r called its root. We denote it sometimes by T r to specify simultaneously the root and the underlying undirected tree. In a way depending on r, we direct its edges so that every node is accessible from r by a directed path. If x → y in T r , then y is called a son of x, and x is the (unique) father of y. The depth of a node is its distance to the root (the root has depth 0). The height of a rooted tree is the least upper-bound of the depths of its nodes. A star is a rooted tree of height 1.

Let R be a rooted tree. By forgetting its root and making its arcs undirected, we get a tree T := U nr(R). Hence, R = T rootR . If x is a node of R, then the digraph R/x is a rooted tree with root x, called the subtree of R issued from x. It is induced on the set of nodes accessible from x by a directed path. If i ∈ N, the truncation at depth i of R, denoted by R ↾ i, is the induced subgraph of R whose nodes are at distance at most i of the root. It is a rooted tree with same root as R and R ↾ 0 is the tree reduced to root R .

A homomorphism of rooted trees : R → R ′ maps root R to root R ′ . A homomorphism from a rooted tree R to a tree T is defined as a homomorphism of trees : Unr(R) → T . Lemma 1.4 : An isomorphism of rooted trees η : R → R ′ induces, for each u ∈ N R , an isomorphism : R/u → R ′ /η(u) and, in particular, a bijection

N + R (u) → N + R ′ (η(u)) such that R/v ≃ R ′ /η(v) if v ∈ N + R (u).

Unfoldings of directed graphs

Certain abstract programs, formalized as transition systems, are finite directed graphs with information attached to vertices and arcs. In particular, an initial vertex (or state) r is specified. The tree of directed paths starting at r collects all possible computations of the corresponding transition system. It is called its unfolding [4, 11, 14]. We will consider unfoldings from a graph theoretical point of view. We will generalize them and define unfoldings of digraphs whose arcs have weights. In particular, an arc of weight ω with tail x unfolds into countably many outgoing arcs with tail x. We obtain a notion of regular tree that generalizes the classical one in that the nodes can have infinite outdegrees. These trees are the unfoldings of finite, weighted and rooted digraphs.

In this section, all trees are rooted and thus directed in a canonical way. In [4, 11, 14] the unfolding of a rooted digraph G is what we will call its complete unfolding. We will call unfolding of such a digraph G a rooted digraph that lies inbetween, via surjective homomorphisms, the digraph G and its complete unfolding, denoted by Unf (G). This terminology is thus similar to that concerning coverings and universal coverings.

Equality of trees and digraphs will be understood in the strict sense : same nodes or vertices, and same arcs. Equality via isomorphism is specified explicitely in statements and proofs, and denoted by ≃.

Weighted directed graphs and their unfoldings Definition : Weighted digraphs.

A weighted digraph is a triple G = (V, E, λ) such that (V, E) is a simple8 digraph whose set of arcs E is weighted, that is, equipped with a labelling λ : E → N + ∪ {ω}. Simple digraphs can have loops, and E is (or can be defined as) a subset of V × V. Actually, we can handle parallel arcs by means of weights: an arc (x,y) with weight λ(x, y) > 1 encodes λ(x, y) parallel arcs from x to y. A simple digraph is a weighted one whose arcs have all weight 1. We denote by E + (u) the weighted set (E + (u), λ G ) and similarly for N + (u).

A weighted digraph G is rooted if it has a distinguished vertex called its root, denoted by rt G such that every vertex is accessible from the root by a directed path, i.e., G = G/rt G . If x is a vertex of a weighted digraph G, we denote by G x the rooted and weighted digraph G/x with root x. It consists of the vertices accessible from x by a directed path. If G is strongly connected, the rooted digraphs G x have all V G as vertex set.

Definition 2.2: Unfolding

Let H and G be rooted and weighted digraphs. (a) A surjective homomorphism η : G → H is an unfolding of H if it satisfies the following condition :

(U) If (x, y) ∈ E H , u ∈ V G , and η(u) = x, then λ H (x, y) = Σ{λ G (u, v) | η(v) = y},
equivalently, the weight of an arc a of H is the sum of the weights of the arcs in η -1 (a).

If η(u) = x, then η induces a weighted surjection:

E + G (u) → E + H (x). If all weights in G and H are 1, Condition (U) means that η is a bijection of E + G (u) onto E + H (x) hence, a bijection of N + G (u) onto N + H (x)
since we consider simple digraphs.

We will also say that G is an unfolding of H or that H unfolds into G. From the accessibility condition in the definition of a rooted digraph, unfoldings only concern connected graphs. They are called op-fibrations by Boldi and Vigna [8].

(b) An unfolding : G → H is complete if G is a rooted tree. We will also say that G is a complete unfolding of H or that H unfolds completely into G.

Examples 2.3 : (1) A loop with weight 1 (resp. 2) unfolds completely into an infinite directed path (resp. into an infinite complete binary rooted tree).

(2) An arc x → y with weight ω such that x is taken as root unfolds (not completely) into a finite star, where at least one arc has weight ω. It unfolds completely into a star S ω , i.e., any tree whose root has ω sons that are leaves [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF] . If in addition, there is a loop y → y of weight 1, this rooted and weighted digraph unfolds completely into the union of ω infinite directed paths with same origin, and that are otherwise disjoint. The following theorem says in particular that every rooted and weighted digraph H has, up to isomorphism, a unique complete unfolding. Theorem 2.5 : Let H be a rooted and weighted digraph. 1) H has a complete unfolding.

2) If β : T → H is a complete unfolding, then : (W) For every unfolding κ : G → H, there is a complete unfolding η : T → G such that β = κ • η.

3) Any two complete unfoldings of H are isomorphic. 4) If β : T → H is an unfolding such that Condition (W) holds, then T is a rooted tree, hence a complete unfolding of H.

Properties 1) and 3) are well-known for transition systems, hence for finite rooted digraphs. Properties 2) and 4) show that the complete unfoldings of H are characterized by a universality property in the sense of Category Theory. One can speak of the complete unfolding of H, well-defined up to isomorphism. Definition 2.6 : Depth-limited unfoldings. Let T be a rooted tree of height at most i and H be a rooted and weighted digraph. An i-unfolding η : T → H is a homomorphism satisfying Condition (U) of Definition 2.2 for all (x, y) ∈ E H and node u of T such that η(u) = x and x is at depth at most i -1.

Definition 2.7 :

The expansion of a weighted digraph.

Let H = (V, E, λ) be a weighted digraph. Its expansion is the digraph Exp(H) = (V, Set(E, λ))
where (e, i) : x → y if e : x → y. (The mapping Set applied to a weighted set is defined in Section 1).

Proof of Theorem 2.5 : Let H be a rooted and weighted digraph. 1) The rooted digraph (without weights) Exp(H) is an unfolding of H, and we denote by ε the corresponding homomorphism. By Lemma 2.4, we need only construct a complete unfolding T of Exp(H). We define it as the tree of directed walks in Exp(H) that start from rt H , the common root of Exp(H) and H. The father of a node (e 1 , ..., e p ) is (e 1 , ..., e p-1 ).

Let α : T → Exp(H) map (e 1 , ..., e p ) to the head of e p ; if p = 0, then (e 1 , ..., e p ) is the empty walk, mapped to rt H ; the arc from (e 1 , ..., e p-1 ) to (e 1 , ..., e p ) is mapped to e p . Then α is a complete unfolding : T → Exp(H) and β := ε• α : T → H is a complete unfolding of H that we will denote by Unf (H).

If H is rooted tree, then Exp(H) = H and one checks easily that α and β are isomorphisms.

2) We let β : Unf (H) → H be the complete unfolding of 1) and κ : G → H be an unfolding. By induction on i, we construct for each i, an i-unfolding

η i : Unf (H) ↾ i → G such that κ • η i is the restriction of β to Unf (H) ↾ i
and the mappings η i such that η i+1 extends η i . Their union will be a complete unfolding η :

Unf (H) → G such that β = κ • η.
We construct η i+1 from η i as follows. Let u = (e 1 , ..., e i ) ∈ N T ↾i be mapped to w ∈ V G by η i . There is a weighted surjection µ u :

N + Unf (H) (u) → N + G (w) such that κ•µ u is the restriction of β to N + Unf (H) (u). Its existence follows from Lemma 1.1(2), as N + Unf (H) (u) is a set, equivalently, the weighted set N + Unf (H) (u) = (N + Unf (H) (u), 1)
. Then, we let η i+1 be the union of η i and all such mappings µ u for all nodes u of Unf (H) at depth i.

To prove 3) and to complete the proof of 2), we let κ : G → H be a complete unfolding, hence, G is a tree. Then, the complete unfolding η : Unf (H) → G is an isomorphism. Hence, any two complete unfoldings of H are isomorphic and 2) holds for any complete unfolding β of H.

4) Let β : T → H be an unfolding such that Condition (W) holds. Let G be a complete unfolding of H. There is an unfolding γ : T → G. Since G is a tree, T is also a tree, hence a complete unfolding of H.

We reserve the notation Unf (H) to the complete unfolding defined as a set of walks in H.

As a small digression, we define local unfoldings, built by duplication of a single vertex. By taking iteratively local unfoldings, possibly countably many times, one obtains the complete unfolding. By contrast, the local coverings to be defined in Section 3, will not yield universal coverings by iteration. Definition 2.8 : Local unfolding (a) Let H be a rooted digraph. Case 1 : The root has indegree 0 and every other vertex has indegree 1. Then H is a rooted tree, hence is its own complete unfolding, and there is nothing to do.

In the following cases, we transform H into G by local modifications and we let the root of G be that of H.

Case 2 : A vertex x that is not the root has p > 1 incoming arcs from y 1 , ..., y i , .... , q incident loops and s outgoing arcs towards towards z 1 , ..., z i , ... We may have p, q, s = ω.

We replace x by p vertices x 1 , ..., x i ,..., its incoming arcs by arcs y i → x i for all i; we replace the outgoing arcs from x to z 1 , ..., z i , ... by arcs x i → z j for all i, j; finally we set q loops at each x i .

Case 3 : A vertex x that is not the root has one incoming arc from y, q incident loops and s outgoing arcs towards towards z 1 , ..., z i , ... We may have q, s = ω.

We remove the loops at x, we add q vertices x 1 , ..., x i ,..., with q incident loops at each of them, we add an arc x → x i for each i, and arcs x i → z j for all i, j.

In these two cases, we obtain a rooted graph G and an unfolding from G to H that maps to x all vertices x i .

Case 4 : The root r has p incoming arcs from y 1 , ..., y i , .... , q incident loops and s outgoing arcs towards towards z 1 , ..., z i , ... where p + q > 0.

We apply the transformation of Case 2. We omit details.

Examples 2.9 : We illustrate Case 4 of the definition. (a) Let H be the digraph with root a, that consists of the path a → b → c and the arcs b → a and c → a and a loop at a. We transform it into G by adding a vertex a ′ , arcs a → a ′ and a ′ → b, and we replace the loop at a and the arcs b → a and c → a by a loop at a ′ and arcs b → a ′ and c → a ′ .

(b) Let H be a rooted digraph that is not a tree. If we apply these transformations successively to the root, to the vertices accessible from the root by one arc, then to those accessible in the resulting digraph by a path of length 2, etc... we obtain the first levels of the complete unfolding of H. By continuing to the infinite, we obtain the complete unfolding. This is not our purpose to develop this observation.

Complete unfoldings and regular trees

Definition 2.10 : Regular trees.

A rooted, possibly labelled, tree T is regular [START_REF] Courcelle | Recursive applicative program schemes[END_REF] if it has finitely many subtrees T/x (inheriting the possible labels of T ), up to isomorphism, which we will denote by

u.t.i.. That is, if the set of isomorphism classes {[T /x] ≃ | x ∈ N T } is finite.
In the latter case, its cardinality is the regularity index of T, denoted by Ind(T ).

If T is regular, then each subtree T /x is regular of no larger index because (T /x)/y = T /y for y ≤ T x, which means that x is on the directed path from the root to y.

Every finite tree is regular. A star S n or S ω is regular of index 2. We will prove that the complete unfolding of a finite, rooted and weighted digraph H, that may have infinite weights, is regular of index at most |V H | . Definition 2.11 : The canonical quotient of a rooted and weighted digraph. (a) Let G be a weighted digraph. Let ≈ be the equivalence relation on V G such that x ≈ y if and only if Unf (G/x) ≃ Unf (G/y). Its quotient H := G/ ≈ is defined as follows:

V H := {[x] ≈ | x ∈ V G }, E H := {([x] ≈ , [y] ≈ ) | (u, v) ∈ E G for some u ∈ [x] ≈ , v ∈ [y] ≈ }, λ H ([x] ≈ , [y] ≈ ), the weight of an arc ([x] ≈ , [y] ≈ ), is the number of arcs of the form (x, v) in H, for some v ∈ [y] ≈ . If G is rooted, we take rt H := [rt G ] ≈ .
The weight function λ H is well-defined by Lemma 1.4. By the definition of H, the mapping η :

V G → V H such that η(x) := [x] ≈ is a surjective homomorphism.
Condition (U) is easy to check by using Lemma 1.4. Hence, η : G → H is an unfolding if G is rooted. In particular, every rooted tree R is a complete unfolding of R/ ≈. (See Theorem 2.13 for the case of regular trees). 

G → H is an unfolding, then H is isomorphic to G/ ≈ ′ where x ≈ ′ y if and only if η(x) = η(y).
If G is finite, then G/ ≈ (where ≈ is as in (a)) is the unique rooted and weighted digraph of minimal size of which G is an unfolding. We will prove in Theorem 2.14 that ≈, whence G/ ≈, are computable.

(c) If G is labelled, then x ≈ y implies that x and y have same label. The quotient digraph H := G/ ≈ is labelled and the unfolding mapping η : G → H preserves labels.

Example 2.12 : Figure 3 shows to the left a weighted digraph G with vertex set {s, u, v, w, x, y, z}. The weights that are not shown are equal to 1. We have s ≈ w ≈ y and u ≈ v ≈ x ≈ z. The quotient G/ ≈ is shown to the right. Theorem 2.13 : (1) A rooted tree T is regular of index at most p if it is the complete unfolding of a finite, rooted and weighted digraph with p vertices.

(2) Conversely, a regular tree T is the complete unfolding of a unique rooted and weighted digraph with Ind(T ) vertices.

(3) If η : T → H is a complete unfolding of a rooted and weighted digraph with p vertices, then, the labelled rooted tree T η (where each node u is labelled by η(u)) is regular of index at most p.

Proof : (1) Let η : T = Unf (H) → H where H is a rooted and weighted digraph with p vertices.

Claim :

If α : G → H is a complete unfolding, u ∈ N G , and x = α(u), then η is a complete unfolding 11 : G/u → H/x.
Proof of the claim: The image under α of a directed path in G from u to a node v is a directed walk in H from x to α(v). It follows that α induces a surjective homomorphism : G/u → H/x. Furthermore, the "local" condition (U) is satisfied.

Back to the main proof: if u, v ∈ N T and η(u) = η(v) = x, then T /u ≃ T/v because these two trees are complete unfoldings of H/x by the claim. It follows that T is regular and its index is at most the number of vertices of H.

(2) Conversely, let T be a regular tree of index p. Let ≈ be the equivalence relation on N T such that u ≈ v if and only if T/u ≃ T /v. We have T /u ≃ Unf (T /u). The quotient construction of Definition 2.11 shows that T is the complete unfolding of the finite, rooted and weighted digraph T / ≈, that has p vertices.

(3) Easy extension of (1).

Finite, rooted and weighted digraphs can be used as finite descriptions of regular trees. Athough an arc of weight p ∈ N + can be replaced (cf. Definition 2.7) by p parallel edges and a loop of weight q ∈ N + by q loops, the use of weights gives more concise descriptions. Furthermore, the weight ω makes it possible to describe trees of infinite degree in finitary ways, by means of finite labelled digraphs [START_REF] Courcelle | Regular and strongly regular infinite trees[END_REF] . The following result shows that this description is effective.

Theorem 2.14 : Given a finite weighted digraph H and two vertices x, y ∈ V H , one can decide if Unf (H/x) ≃ Unf (H/y).

We need a few technical definitions and lemmas. 

∈ Y such that λ([x] R ∩ X) = λ ′ ([y] R ∩ Y
) and (x, y) ∈ R, and similarly, for every y ∈ Y , there is x ∈ X such that (x, y) satisfies the same property.

(b) A witness of the property X ∼ Y (mod R) is a set S ⊆ X ×Y with weight function µ, that is the (disjoint) union of witnesses of the weight equalities

λ(C ∩ X) = λ ′ (C ∩ Y ) (cf. Lemma 1.1(3). It follows that for each x in X, λ(x) = µ(S ∩ {(x, y) | y ∈ Y }) and similarly for each y in Y .
We say that an equivalence relation R refines an equivalence relation R ′ on the same set if each class of R ′ is a union of classes of R. This is written R ⊆ R ′ . Lemma 2.16 : Let V, R, X and Y be as above and Lemma 2.17 : Let V, R, X and Y be as in Lemma 2.16. Let κ and η be weighted surjections U → X and W → Y respectively, where U and W are sets. There is a bijection ℓ : U → W such that (κ(u), η(ℓ(u)) ∈ R for all u in U. Furthermore, for any u 0 ∈ U and w 0 ∈ W such that (κ(u 0 ), η(w 0 )) ∈ R, one can find ℓ as above such that ℓ(u 0 ) = w 0 .

X ∼ Y (mod R). If R ⊆ R ′ , then X ∼ Y (mod R) implies X ∼ Y (mod R ′ ). Proof : Each class C ′ of R ′ is the union of (disjoint) classes C 1 , C 2 , ... of R. Hence, λ(C ′ ∩ X) = λ(C 1 ∩ X) + λ(C 2 ∩ X) + ...
Proof : We have a bijection γ : Set(X, λ) → Set(Y, λ ′ ) such that 13 γ(x, i) = (y, j) implies (x, y) ∈ R.

We have bijections κ ′ :U → Set(X, λ) and η ′ :W → Set(Y, λ ′ ). We define

ℓ := η ′-1 • γ • κ ′ .
For proving the last assertion, we can choose γ such that γ(κ(u 0 ), i) = (η(w 0 ), j) for some i, j.

The bijection ℓ is uniquely defined if λ([x] R ∩ X) = λ ′ ([y] R ∩ Y ) = 1 for all x ∈ X and y ∈ Y , but not otherwise.
Proof of Theorem 2.14 : Let H be a finite weighted digraph [START_REF] Courcelle | Monadic second-order logic, graph coverings and unfoldings of transition systems[END_REF] and ≈ be the equivalence relation on V H such that x ≈ y if and only if Unf (H/x) ≃ Unf (H/y). We recall that N + H (x) is the set of heads of the arcs with tail x and that Proof : This follows from Lemma 1.4 and the definitions.

N + H (x) = (N + H (x), η), cf. Definition 2.
Claim 2 : If R is an equivalence relation on V H that satisfies Property (E), then R ⊆ ≈.
Proof : We consider (x, y) ∈ R, and we let κ : T = Unf (H/x) → H/x and κ ′ : T ′ = Unf (H/y) → H/y be the unfolding homomorphisms.

For each i, we construct an isomorphism η i : T ↾ i → T ′ ↾ i such that (u, η i (u)) ∈ R for every node u of T ↾ i, and η i+1 extends η i . The common extension of these isomorphisms will be an isomorphism T → T ′ , proving that x ≈ y.

We let η 0 map x to y. We now define η i+1 extending η i . Let v in T ↾ (i + 1) be at depth i + 1 and u be its father. Let w := η i (u): it is a node of T ′ ↾ i.

Let u := κ(u) and w := κ ′ (w). Then κ induces a weighted surjection of the set N + T (u) onto the weighted set N + H (u), and similarly, κ ′ induces a weighted surjection of N + T (w) onto N + H (w). By induction, we have (u, w) ∈ R. Hence, by Property (E), we have

N + H (u) ∼ N + H (w)(mod R)
. By Lemma 2.17, there is a bijection ℓ u :

N + T (u) → N + T (w) such that (κ(s), κ ′ (ℓ u (s)) ∈ R for all s in N + T (u).
We define thus η i+1 (s) := ℓ u (s) for every son s of u in T (hence s is in T ↾ (i + 1)). We do that for all nodes u at depth i in T . We obtain the desired extension with the property (t, η i+1 (t)) ∈ R for every node t of T ↾ (i + 1), that is useful for the next step of induction.

There are finitely many equivalence relations R on V H . For each of them, one can check if it satisfies Property (E) and contains the pair (x, y). Then x ≈ y if and only if one of them has these two properties.

Here is a more efficient algorithm similar to the minimization of finite deterministic automata.

Algorithm 2.18 : Deciding the isomorphism of complete unfoldings. Input: A finite weighted digraph [START_REF] Fiala | Locally constrained graph homomorphismsstructure, complexity, and applications[END_REF] H. Output: The equivalence relation ≈ on V H such that x ≈ y if and only if Unf (H/x) ≃ Unf (H/y).

Method : We define a decreasing [START_REF] Krebs | Universal covers, color refinement, and twovariable counting logic: Lower bounds for the depth[END_REF] sequence of equivalence relations R i , i ≥ 0 on V H as follows:

R 0 = V H × V H ; R i+1 = R i ∩ {(x, y) | N + H (x) ∼ N + H (y)(mod R i )}.
We have R i+1 = R i for some i := i max , and we output R i as the desired result.

Proposition 2.19: Algorithm 2.18 is correct and terminates with i max ≤ |V H | -1.

Proof: Let R be the intersection of the relations R i . It is clear that if R i+1 = R i , then R i+2 = R i+1 etc... so that, R i = R. This guarantees termination.

Each step such that R i+1 = R i splits at least one equivalence class of R i . Such a splitting cannot be done more than |V H | -1 times.

We now prove the correctness, i.e., that ≈= R. We prove that ≈ ⊆ R i for all i. This is clear for 16, and so, (x, y) ∈ R i+1 .

i = 0. Assume now ≈ ⊆ R i . If x ≈ y, then N + H (x) ∼ N + H (y)(mod ≈), hence N + H (x) ∼ N + H (y)(mod R i ) by Lemma 2.
The relation R satisfies Property (E), hence R ⊆ ≈ by Claim 2 in the proof of Theorem 2.14.

The following result is similar to a theorem by Norris [20] about universal coverings that we will recall and generalize in Section 3. It implies that, for every regular tree, there is a first-order sentence using the generalized quantifier "there exists ω elements x that satisfy..." of which it is the unique model that is a rooted tree. See [12].

Theorem 2.20: Let H be a finite weighted digraph with p vertices. If x, y ∈ V H we have :

Unf (H/x) ≃ Unf (H/y) if Unf (H/x) ↾ (p-1) ≃ Unf (H/y) ↾ (p-1).
Proof : We have ≈ = R p-1 by the previous results.

Claim : Unf (H/x) ↾ (p -1) ≃ Unf (H/y) ↾ (p -1) implies (x, y) ∈ R p-1 .
Proof : We prove by induction on i that for every i,

Unf (H/x) ↾ i ≃ Unf (H/y) ↾ i implies (x, y) ∈ R i .
If i = 0, this fact holds because (x, y) ∈ R 0 for all x, y. We consider the case i + 1 and assume that we have an isomorphism α : Unf (H/x) ↾ (i + 1) → Unf (H/y) ↾ (i + 1). Hence Unf (H/x) ↾ i ≃ Unf (H/y) ↾ i, and (x, y) ∈ R i by the induction hypothesis.

We now check that N

+ H (x) ∼ N + H (y)(mod R i ) in order to get (x, y) ∈ R i+1 . Let η : Unf (H/x) → H and η ′ : Unf (H/y) → H be complete unfoldings. Hence, η(rt Unf (H/x) ) = x and η ′ (rt Unf (H/y) ) = y.
For each son u of rt Unf (H/x) , α defines an isomorphism : Unf (H/x)/u ↾ i to Unf (H/y)/α(u) ↾ i, where α(u) is a son of rt Unf (H/y) .But Unf (H/x)/u = Unf (H/η(u)) and Unf (H/y)/α(u) = Unf (H/η ′ (α(u))).Hence (η(u), η ′ (α(u))) ∈ R i by induction.

Then N + H (x) is the set of such η(u), and N + H (y) is that of such η ′ (α(u)).By counting occurrences, we obtain

N + H (x) ∼ N + H (y)(mod R i ).
We know that R p-1 = R ⊆≈ by Claim 2 in the proof of Theorem 2.14. Then x ≈ y implies Unf (H/x) ↾ (p -1) ≃ Unf (H/y) ↾ (p -1), hence (x, y) ∈ R p-1 by the claim.

Remark 2.21. Two rooted trees R and R ′ of finite degree are isomorphic if R ↾ i ≃ R ′ ↾ i for each integer i. The proof uses König's Lemma, as in the proof of Lemma 2.7 of [16]. This implication may be false for trees with nodes of infinite degree. (Take for R the union of the finite paths 0 → (1, i) → (2, i) → ... → (i, i) for all i ∈ N + , and R ′ the union of R and the infinite path

0 → 1 → 2 → ... → i → ...).
In the proof of Theorem 2.14, we do not use this lemma because the trees Unf (H/x) and Unf (H/y) need not have finite degree. Instead, we construct a sequence of isomorphisms η i : Unf (H/x) ↾ i → Unf (H/y) ↾ i such that η i+1 extends η i . Their common extension yields an isomorphism: Unf (H/x) → Unf (H/y).

The following theorem is similar to that of Leighton about coverings (see below Theorem 3.8), and much easier to prove. Theorem 2.22 : Given two finite, rooted and weighted digraphs G and H, the following properties are equivalent:

1) G and H are unfoldings of a finite rooted and weighted digraph K, 2) G and H have isomorphic complete unfoldings, 3) G and H have a common finite unfolding. They are decidable.

Proof : Without loss of generality, we assume that G and H are disjoint. 1) =⇒2) If G and H are unfoldings of a finite rooted and weighted digraph K, then the complete unfolding of K is a complete one of both G and H by Theorem 2.5.

2) =⇒3) Let γ : T → G and η : T → H be complete unfoldings of G and H.

If x ∈ N T , then T /x ≃ Unf (G/γ(x)) ≃ Unf (H/η(y)).
We define ≈ as the equivalence relation on V G ∪ V H such that x ≈ y if and only if Unf ((G∪H)/x) ≃ Unf ((G∪H)/y)), where Unf ((G∪H)/x) = Unf (G/x) if x ∈ V G and similarly for H as G and H are disjoint.

For helping to understand the technical details, we first present a simplified proof for the case where there are no two distinct nodes u, v in T with same father, and such that T/u ≃ T /v. In such a case : (*) if x ∈ N T , the relation T /z ≃ Unf (G/w) defines by Lemma 1.4 a bijection between the sons z of x in T and the vertices w in N + G (γ(x)). A similar fact holds for H. We define a digraph L as follows. Its set of vertices is V L = {(x, y) | x ∈ V G , y ∈ V H and Unf (G/x) ≃ Unf (H/y)}. For each (x, y) ∈ V L , the relation ≈ defines, by Fact (*) above, a bijection between N + G (x) and N + H (y).We define in L an arc (x, y) → (u, v) (of weight 1) if u ∈ N + G (x) and v ∈ N + H (y). We now define K := L/(rt G , rt H ). It is a finite and rooted digraph. The projection π 1 such that π 1 (x, y) := x is an unfolding K → G. The other projection is an unfolding K → H.

We now consider the general case. The construction is similar, but the definition of the arcs (x, y) → (u, v) of L is more complicated because the relation ≈ is not necessarly a bijection between N + G (x) and N + H (y). We define V L as above. For each (x, y) ∈ V L , we have

N + G (x) ∼ N + H (y)(mod ≈) by Lemma 1.4. We choose a witness (S x,y , µ x,y ) of N + G (x) ∼ N + H (y)(mod ≈), cf. Definition 2.15(b). We define in L an arc (x, y) → (u, v) of weight µ x,y (u, v) for each (u, v) in S x,y . We now define K := L/(rt G , rt H ). It is rooted and weighted with at most |V G |.|V H | vertices.
Claim : K is an unfolding of G, and, similarly, of H. Proof of claim: Let π map a vertex (x, y) of K to the vertex x of G, and an arc (x, y) → (u, v) of weight µ(u, v) to the arc x → u of same weight. We make a few observations.

(1) If (x, y) ∈ V L and xu is an edge of G, there is an arc (x, y) → (u, v) in L. If (x, y) ∈ V K then (u, v) and the arc (x, y) → (u, v) are in K.

(2) If x is a vertex in G, there is a directed path from rt G to x and, by (1), a directed path in L from the root (rt G , rt H ) to (x, y) ∈ V L for some y ∈ V H . All vertices and arcs of this path are in K.

It follows that π is a surjective homomorphism : K → G. We now consider weights. We check Condition (U) of Definition 2.2. It reads :

(**) For every (x, y) ∈ V K and u ∈ N + G (x), we have :

λ G (x, u) = Σ{λ K ((x, y), (u, v)) | (u, v) ∈ V K }.
By the definition of K, λ K ((x, y), (u, v)) = µ x,y (u, v), and the pairs (u, v) are in S x,y . The weighted set (S x,y , µ x,y ) is chosen so that λ G (x, u) = Σ{µ x,y (u, v) | (u, v) ∈ S x,y }. This proves (**).

3) =⇒1) Assume that γ : T → G and η : T → H are complete unfoldings. Let ≈ be the equivalence relation on N T such that x ≈ y if and only if T/x ≃ T /y. We define K as the weighted graph T / ≈, cf. Definition 2.11 and the proof of Theorem 2.13. There are unfoldings : γ ′ : G → K and η ′ : H → K. We omit details. This completes the proof.

The decidability follows from Theorem 2.20.

Remarks 2.23 : (1) In the proof of 2) =⇒3), Theorem 2.5 shows that T is a complete unfolding of K. Note however that, in this proof, K is not defined in a unique way, in particular because the weighted relations (S x,y , µ x,y ) are not uniquely defined. It is however in the special case we first considered.

(2) A result for coverings similar to Theorem 2.20, that extends the result by Norris [20] will be proved in the next section.

Open question 2.24 : Assume that G and H, as in Theorem 2.22, have isomorphic unfoldings. Do they have a unique common finite unfolding with a minimal number of vertices ?

Coverings

We consider undirected graphs, simply called graphs, and their coverings. They may be infinite and have parallel edges and loops. We will use trees (undirected and without root) and rooted trees, in particular the regular trees considered in the previous section. Trees and graphs may be labelled.

As in Section 2, equality of trees and graphs is understood in the strict sense : same nodes or vertices, and same edges or arcs. Equality up to isomorphism is specified explicitely and denoted by ≃.

Coverings of graphs: definitions and known results

We mainly review known definitions and facts from [2, 3, 6, 7, 15, 16, 17, 20]. Our main reference for all assertions is [15] by Fiala and Kratochvil.

We define as follows the adjacency matrix A G of a finite graph G such that

V G = [p] : A G [x, y] = A G [y, x]
is the number of edges between x and y and A G [x, x] is the number of loops at x. Definition 3.1 : Covering. (a) Let G, H be graphs. A covering γ : G → H is a surjective homomorphism such that, if γ(x) = y, then γ defines a bijection : E G (x) → E H (y). We will also say that G is a covering of H. Here are some examples: an edge covers a loop incident to a single vertex; more generally, a k-regular graph covers k loops incident to a single vertex.

(b) Assume that V G = [p] and V H = [q]. A surjective mapping γ : V G → V H can be represented by a p × q-matrix B γ such that B γ [i, j] := if α(i) = j then 1 else 0. Each row of this matrix has a unique 1 and each column has at least one 1. Then, γ defines a covering if and only if

A G B γ = B γ A H . Proposition 3.2 : Let γ : G → H be a covering. (1) If δ : H → K is a covering, then δ • γ : G → K is a covering.
(2) If G and H are finite and connected, then, either γ is an isomorphism or

|V G | > |V H | and |V G | is a multiple of |V H |.
(3) If H is a tree and G is connected, then γ is an isomorphism, hence G is also a tree. Assertion (2) is due to Redemeister (see [6, 7]). Definition 3.3 : Degree matrix (a) For every finite graph G, there is a unique partition (B 1 , ..., B p ) of V G having a minimum number of classes, such that for every i, j ∈ [p], every vertex x in B i has the same number of neighbours, say r i,j , in B j . It is called the degree (refinement) partition. It can be computed in polynomial time (cf. [15, 16]).

(b) Let α : V G → [p] maps a vertex x to the integer i such that x ∈ B i . We call α a good indexing of V G . The numbers r i,j can be organized into a p × p matrix M G,α such that and M G,α [i, j] = r i,j . It is called the degree (refinement) matrix of G. This matrix may not be symmetric. (b) We recall its construction. For a vertex x of H, we define U C(H, x) as the rooted tree of all finite walks in H that start at x and do not use a same edge twice in a row. The tree Unr(U C(H, x)) is obtained by forgetting the root of U C(H, x) and its orientation. It is a covering of H, hence a universal one. We have U nr(UC(H, x)) ≃ Unr(U C(H, y)) for any two vertices x and y.

If γ : T → H is a universal covering and u ∈ N T , then T u ≃ U C(H, γ(u)).

(c) If there is an automorphism of H that maps x to y, then U C(H, x) is isomorphic to U C(H, y): this is clear from the descriptions in terms of walks. However, the converse does not hold : take as counter-example the union of the two graphs of Figure 4 with an edge between the two vertices marked a, that we call x and y. Then U C(H, x) ≃ U C(H, y) but there exists no automorphism of H that maps x to y.

The relevance to distributed computing can be stated as follows: if x and y are two nodes of a network represented by a graph H and U C(H, x) ≃ UC(H, y), then no computation in H can distinguish x from y. It follows that an election algorithm that would select x would also select y, hence would not be correct.

Examples 3.7 : (1) The universal covering of a single loop or of a single edge is an edge.

(2) If H consists of two parallel edges, then U nr(U C(H, x)) is a biinfinite path, i.e., the union of two infinite paths originating from a node x. Equivalently, it is the unique tree u.t.i. (up to isomorphism) whose nodes have all degree 2. It is also the universal covering of two loops at a same vertex or of any cycle.

(3) The universal covering of a connected k-regular graph is the infinite tree whose nodes have all degree k. This is clear from the construction recalled in Definition 3.6. Theorem 3.8 [17] : Let G, H be finite and connected graphs. The following properties are equivalent.

(i) G and H have a common finite covering, (ii) G and H have isomorphic universal coverings, (iii) M G,α = M H,β for some good indexings α and β of V G and V H .

The implication (iii)=⇒(i) is difficult to prove. We will prove it in an easy special case (Theorem 5.2) that generalizes that of regular graphs, known from [3].

In the next section, we will interpret a degree matrix M G,α as a covering α : G → M where M is a finite weighted graph. Furthermore, we will allow infinite weights and obtain universal coverings that are trees of infinite degree, as in Section 2 for unfoldings.

We now present some technical facts. We recall from Section 1 that an equivalence relation ∼ on a graph G = (V, E, Inc) is an equivalence relation on V ∪ E such that: each equivalence class is a set of vertices or of edges, and, if e and e ′ are equivalent edges, then, each end of e is equivalent to an end of e ′ .

An edge e : xy and a loop f : zz may be equivalent: in this case x ∼ y ∼ z.

The quotient graph is defined as

G/ ∼:= (V / ∼, E/ ∼, Inc G/∼ ) such that ([e], [v]) ∈ Inc G/∼ if and only if (e ′ , v ′ ) ∈ Inc G for some e ′ ∼ e and v ′ ∼ v.
We will use the following additional condition on ∼ and a graph G :

(A) : if x and x ′ are equivalent vertices, then ∼ defines a bijection between E G (x) and E G (x ′ ).

Proposition 3.9 : (1) If ∼ is an equivalence on a graph G that satisfies Condition (A), then the surjection α :

V ∪ E → (V / ∼) ∪ (E/ ∼) that maps x to its equivalence class [x] is a covering G → G/ ∼.
(2) Every connected graph H is isomorphic to T / ∼ where T is its universal covering and ∼ is an equivalence relation satisfying Condition (A).

Proof : (1) The proof is straightforward.

(2) We let γ : T → H be a universal covering where T = (N, E, Inc). We define x ∼ y for x, y ∈ N ∪E if and only if γ(x) = γ(y). Then T / ∼ is isomorphic to H.

Quotients of trees relative to weaker equivalence relations will be defined below in Sections 4.2 and 5.

Definition 3.10 : Coverings of bipartite graphs.

A bipartite graph is defined as a 4-tuple

G = (V 1 G , V 2 G , E G , Inc G ) such that (V 1 G , V 2 G ) is the bipartition of the set of vertices. Its edges link a vertex of V 1 G to one of V 2 G (hence, it has no loop). A homomorphism : G -→ H of bipartite graphs maps V 1 G to V 1 H and V 2 G to V 2 H .
A bipartite covering is a homomorphism of bipartite graphs that is a covering. Lemma 3.11 : Every graph H is covered by a bipartite graph. Proof : We define a bipartite graph [START_REF] Mohar | A common cover of graphs and 2-cell embeddings[END_REF] H bip as follows. Its vertex set is V H × {1, 2}. For each edge e of H between x and y = x, H bip has edge e x,y : (x, 1) -(y, 2) (and also e y,x : (y, 1) -(x, 2)). A loop e yields a unique non-loop edge e x,x : (x, 1) -(x, 2).

The mapping α: (x, i) -→ x, e x,y -→ e is a covering. If H is connected and bipartite, then H bip has two connected components, that are isomorphic. Each of them is a covering of H.

From this lemma, Theorem 3.8 need only be proved for bipartite graphs. This reduction is used in [17].

Coverings of weighted graphs

We recall that a graph G is undirected and defined as a triple (V, E, Inc) and that the elements of Inc (a subset of E × V ) are its half-edges. This description allows graphs with parallel edges and loops. An edge e is a loop at a vertex x if and only if (e, x) ∈ Inc and there is no pair (e, y) in Inc such that y = x. We denote by Inc(x) the set of half-edges (e, x) for some e ∈ E. Definitions 3.12 : Weighted graphs (a) A weighted graph is a quadruple G = (V, E, Inc, λ) such that (V, E, Inc) is a simple graph (no two parallel edges and no two loops at a same vertex) and λ is a weight function on the set Inc of half-edges [START_REF] Neumann | On Leighton's graph covering theorem[END_REF] .

A graph G is made into a weighted graph W (G) as follows: p parallel edges between x and y are fused into a single edge whose two half-edges have weight p; similarly, p loops at x are fused into a single one at x of weight p. 

(S) λ H (e, y) = Σ{λ G (e ′ , x) | e ′ ∈ E G (x), γ(e ′ ) = e}, equivalently, γ induces a weighted surjection (Inc G (x), λ G ) → (Inc H (y), λ H ).
We will also say that G is a covering of H. (b) If, furthermore, all half-edges and loops of H have weight 1 (H is a simple graph), then the same holds for G and Condition (S) means that γ is injective on each set Inc G (x), whence bijective: we get the notion of covering of Section 3.1. Each graph G covers the weighted graph W (G).

(c) Coverings of finite weighted graphs that can have infinite weights can also be expressed in terms of weight matrices (as for graphs in terms of adjacency matrices, cf. Definition 3.1). Let G and H be finite weighted graphs and α : V G → V H be surjective, where V G = [p] and V H = [q]. This mapping is represented by the matrix B α such that:

B α [i, j] := if α(i) = j then 1 else 0. Then α is a covering : G → H if and only if M G B α = B α M H .
This is straightforward from the definition. For defining the product of two matrices, we use the rules ω + x = ω for every x, ω.x = ω if x > 0 and ω.0 = 0. We need no substractions. As for graphs (Proposition 3.2(1)), we have : Proposition 3.14 : If γ : G → H and δ : H → K are coverings of weighted graphs, then so is δ • γ : G → K.

Remark 3.15 : If two disjoint weighted graphs are coverings of H, then, their union is a covering of H. If γ : G → H is a covering and G is connected, then H is connected because γ maps every path in G to a walk in H. If H is not connected, then G is the union of (disjoint) coverings of its connected components.

It follows from these facts that we need only consider connected coverings of connected weighted graphs.

Examples 3.16 : 1) The complete bipartite graph K 3,4 (with 3+4 vertices) covers an edge whose half-edges have weights 4 and 3.

2) Three parallel edges cover H consisting of an edge whose two half-edges have weight 3. Then, H covers a loop of weight 3.

3) If H has a loop of weight p at a vertex x, then H is covered by the weighted graph built as follows : we remove the loop at x, obtaining thus H ′ ; we take the union of H ′ and a disjoint copy of it where x ′ is the copy of x and we add p edges between x and x ′ .

4) The two graphs of Figure 4, Example 3.4, cover both the weighted graph consisting of the edge e : xy and the loop f : yy such that (e, x) has weight 6, (e, y) has weight 1 and (f, y) has weight 2. As they have both 7 vertices, a prime number, they do not cover any graph apart themselves, by Proposition 3.2(2). This example shows that this proposition does not extend (at least immediately) to weighted graphs.

5) The graph G consisting of two vertices, x and y, an edge e : xy and loops f and g at x and y with weights λ(e, x) = 3, λ(e, y) = 2, λ(f, x) = 4 and λ(g, y) = 5, covers H consisting of a single vertex with a loop of weight 7. 

B α =       1 0 1 0 0 1 0 1 0 1       , M G =       0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0      
and

M G B α =       1 3 1 3 2 0 2 0 2 0       = B α M H .
The following theorem is stated without proof in [17] but is essential in that article. (See also [15], Section 3.1). Theorem 3.18 : Given a finite weighted graph H with finite weights, one can decide if it is covered by a finite (unweighted) graph and one can construct one if possible.

Proof : Let H = (V, E, Inc, λ) be a finite weighted graph without weights ω. Assume that γ : G → H is a covering, where G is a finite graph. We first assume that H has no loops.

Let V = [p]. For each i, let w i := γ -1 (i) . Let e i,j : ij be an edge of H, with i < j. Let m i,j = λ(e i,j , i) and m j,i = λ(e i,j , j). We have γ -1 (e i,j ) = m i,j .w i = m j,i .w j .

Consider the system Σ H of equations of the form m i,j .x i = m j,i .x j , with one equation for each edge e i,j . It is satisfied by the numbers (w 1 , ..., w p ).

For some weighted graphs H, this system may have no solution. We give an example after the proof.

Claim 1 : If Σ H has a solution (w 1 , ..., w p ) in positive integers, then this p-tuple is the vector ( γ -1 (1) , ..., γ -1 (p) ) for some finite covering γ of H by a graph G.

Proof of Claim 1 : We define G from (w 1 , ..., w p ).

Its vertices are the pairs (i, s) where i

∈ [p] = V and s ∈ [w i ].
For each edge e i,j of H, we let m := m i,j .w i = m j,i .w j . We define m edges f 1 , ..., f m between the vertices (i, s) and (j, s ′ ) where s ∈ [w i ] and s ′ ∈ [w j ] as follows. We partition [m] into pairwise disjoint intervals [START_REF] Norris | Universal covers of graphs: Isomorphism to depth n -1 implies isomorphism to all depths[END_REF] ;

[m] = I 1 ∪ I 2 ∪ ... ∪ I wi , with all intervals I q of size m i,j , and also

[m] = J 1 ∪ J 2 ∪ ... ∪ J w j , with all intervals J q of size m j,i .

For k ∈ [m], we define an edge f i,j,k between (i, s) and (j, s ′ ) if and only if k ∈ I s ∩ J s ′ . We define γ(f i,j,k ) := e i,j . It is clear that γ is a surjective homomorphism.

For each vertex (i, s), if e i,j is an edge in H, then the edges f i,j,k such that γ(f i,j,k ) := e i,j are those such that k ∈ I s ∩ J s ′ for some s ′ . There are m i,j such edges. Similarly for each vertex (j, s ′ ) such that e i,j is an edge in H (hence where i < j) , there are m j,i edges f i,j,k such that γ(f i,j,k ) := e i,j : they are those such that k ∈ I s ∩ J s ′ for some s. Hence, G is a finite covering of H. Claim 2 : A system Σ H has a solution in positive integers if and only if it has one in rational numbers. This is decidable and a solution in positive integers can be computed if there is one. If H is a tree, then Σ H has a solution.

Proof of Claim 2: We first decide if Σ H has a solution in real numbers. We eliminate unknowns one by one.

To eliminate an unknown x, we list the equations where it occurs : say ax = by, cx = dz, ..., ex = f u. Then, any solution must satisfy ba -1 y = dc -1 z = ... = f e -1 u. We replace the equations containing x by the new equations ba -1 y = dc -1 z = ... = fe -1 u. The new system has one less unknown and has a solution if and only if Σ H has one. From it, we get the value of x. We may obtain two equations concerning the same variables, say gy = hz, and g ′ y = h ′ z, where g, h, g ′ , h ′ are positive rational numbers. We have no solution if gh ′ = g ′ h: we can stop the construction and report a negative answer. Otherwise, we discard one of these two equations.

If there is a solution, there is one in positive rational numbers. To obtain one in positive integers, it suffices to multiply all its components by the least common multiple of the denominators.

If H is a tree, then, at each step, we can eliminate an unknown that belongs to a single equation, equivalently, that corresponds to a leaf. Hence, this step does not create any new equation. The resulting system still corresponds to a tree. We continue in the same way and we get a solution.

We now consider weighted graphs with loops. Loops do not create constraints : if we add to a weighted graph K a loop of weight q incident with vertex x, and if a covering γ of K by a graph G has been found, then we need only add q loops to G, incident to each vertex in γ -1 (x). We do that for all loops of the given graph H and we get a covering as wanted.

If we replace the obtained graph G by G bip of Lemma 3.11, we obtain a loop-free graph that covers G hence also H.

Example 3.19 :

Let H be the cycle C 3 with vertices 1,2,3 and weights on its half-edges such that we get the equations 2x 1 = 3x 2 , 4x 2 = 3x 3 , x 3 = 5x 1 . This system has no solution in positive integers. This means that H is not covered by any finite graph. It is covered by the infinite tree described as follows. Its set of nodes is N 1 ∪ N 2 ∪ N 3 where N 1 , N 2 , N 3 are infinite and pairwise disjoint; each node in N 1 has 2 neighbours in N 2 and 5 in N 3 , each node in N 2 has 3 neighbours in N 1 and 4 in N 3 , and each node in N 3 has 1 neighbour in N 1 and 3 in N 3 . This tree does not cover any graph.

One can also construct an infinite graph that covers H and is not a tree, by using the fact that the union of two disjoint countable sets is countable. Corollary 3.20 : Let H be as in Theorem 3.18 with vertex set [p]. If it has finite coverings by graphs, then there is a unique p-tuple (n 1 , ..., n p ) ∈ (N + ) p such that {(kn 1 , ..., kn p ) | k ∈ N + } is the set of p-tuples ( γ -1 (1) , ..., γ -1 (p) ) such that γ : G -→ H is a covering such that G is a finite graph. This corollary is a key fact in the proof of Theorem 3.8 given by Leighton.

It is an immediate consequence of the proof of Theorem 3.18. If H is a graph, then the corresponding p-tuple is (1,...,1) by Proposition 3.2(2). Definition 3.21 : Expanding a single vertex. Let H be a simple weighted graph. Let x be a vertex whose incident edges are e i : xy i for i ≥ 1 (we may have infinitely many). Let us assume that λ H (e i , y i ) > 1 for each i. We first assume that x has no loop.

We define a simple weighted graph G as follows: we add to H a new vertex x ′ and new edges e ′ i : x ′y i . The weight function λ ′ of G is defined in such a (non unique) way that :

λ ′ (e ′ i , x ′ ) := λ(e i , x) for each i, λ ′ (e ′ i , y i ) + λ ′ (e i , y i ) = λ(e i , y i ), λ ′ (e, z) := λ(e, z
) for all other half-edges (e, z). It is clear that the mapping that maps x and x ′ to x, the edges e i and e ′ i to e i for each i, and is otherwise the identity is a covering.

Assume now that there is a loop e at x of weight a, so that λ(e, x) = a > 0. In addition to the above transformations, we do one of the following transformations.

Method 1 : We add a loop e ′ at x ′ of weight a and we add no edge between x and x ′ .

Method 2 : We add an edge f between x and x ′ . We choose λ ′ as follows. We obtain a covering G of H. . Such a "local" construction concerning a single vertex is not possible for unweighted graphs by Proposition 3.2(2).

λ ′ (f, x) := b, λ ′ (f, x ′ ) := b ′

Characteristic polynomials

It is known (see [15], Theorem 4) that if G is a covering of H where G and H are finite graphs, then the characteristic polynomial of H is a factor of that of G. We extend this result to finite weighted graphs. Definitions 3.22 : Characteristic polynomials. (a) The characteristic polynomial P M of a p × p matrix M with coefficients in a ring with multiplicative unit, typically Z,R or C, is defined as det(M -xI p ), the determinant of the matrix M -xI p where I p is the p × p (diagonal) unity matrix. It is a polynomial in x of degree p. The characteristic polynomial P G of a finite graph G is defined as that of its adjacency matrix A G that is symmetric with coefficients in N. The coefficients of P G are in Z.

(b) We define the characteristic polynomial of a finite weighted graph H with finite weights as P H := det(M H -xI p ) where M H is its weight matrix, having coefficients in N. For an example, if H is as in Example 3.16(4), then

P H = -x(2 -x) -6 = x 2 -2x -6.
Theorem 3.23 : If G and H are finite weighted graphs with finite weights and G covers H, then P H is a factor of P G .

Proof : Immediate consequence of Definition 3.13(c) and the following proposition.

Proposition 3.24 : Let M and N be, respectively, q × q and p × p matrices over a ring with multiplicative unit. Let α : [q] -→ [p] be surjective represented by the matrix B α (Definition 3.1(b)). If M B α = B α N , then P N is a factor of P M .

Proof : We transform the matrix M -xI q by row and column operations into a matrix M ′′ such that det(M -xI q ) = det(M ′′ ).

We do that in such a way that M ′′ has the block structure

N -xI p R 0 S .
It follows that det(M -xI q ) = det(N -xI p ). det(S), hence P M = P N . det(S).

We can organize M in such a way that i ∈ α(i) for each i ∈ [p]. This means that i is the smallest element of each set α(i). For each such i, we add to the i-th column of M, all its j-th columns, for j ∈ α(i), j > i.

We obtain a matrix M ′ with same determinant as M -xI q . Since MB α = B α N, the first p elements of the j-th line of M ′ are the same as those of the α(j)-th one . By substracting the i-th line from each j-th line, for all i ∈ [p], j ∈ α(i), j > i, we get a matrix M ′′ of the desired form, with same determinant as M -xI q and M ′′ . This concludes the proof.

Example 3.25 : For Example 3.17, we have q = 5, p = 2, M = M G and N = N H . Then :

M -xI 5 =       -x 1 1 1 1 1 -x 1 0 0 1 1 -x 1 1 1 0 1 -x 0 1 0 1 0 -x       , M ′ =       1 -x 3 1 1 1 2 -x 1 0 0 1 -x 3 -x 1 1 2 -x 1 -x 0 2 -x 1 0 -x       , M ′′ =       1 -x 3 1 1 1 2 -x 1 0 0 0 0 -1 -x 0 0 0 0 0 -x 0 0 0 0 0 -x       = N -xI 2 R 0 S
so that det(M -xI 5 ) = det(N -xI 2 ). det(S). One can check [START_REF] Th | Some topological graph theory for topologists: A sampler of covering space construction[END_REF] that :

det(N -xI 2 ) = (x + 2)(x -3), det(S) = -x 2 (x + 1) and det(M -xI 5 ) = -x 2 (x + 1)(x + 2)(x -3).

Remark 3.26 : Special cases of Theorem 3.23.

(1) Let G be obtained from H by expanding a single vertex x, as in Definition 3.21. This expansion uses numbers b, b ′ . The proof of this proposition shows that:

P G = -(x + a -b -b ′ ).P H
We have a = b = b ′ = 0 if the vertex x has no loop e. This formula does not depend on the way a weight λ(e i , y i ) is decomposed into λ ′ (e ′ i , y i ) + λ ′ (e i , y i ).

(2) If G is a graph with p vertices and, possibly, with multiple edges and loops, then: P G bip (x) = (-1) p P G (x).P G (-x).

2 1 By using https://www.dcode.fr/matrix-characteristic-polynomial 29 These two facts can be proved by using the algorithm of the previous proposition. They show the relationship between the polynomial P G /P H and the way G is constructed from H.

Universal coverings of weighted graphs

Our objective is to study universal coverings of weighted graphs. We first give a construction for graphs that is based on unfoldings of digraphs. The relation Inc ′ is defined accordingly and Sym(H) is strongly connected. We let ι : E ′ → E be such that ι(e) = ι(e) := e and be the identity on V . It is a surjective homomorphism 23 : Sym(H) → H. If (x 0 , f 1 , x 1 , ..., f n , x n ) is a walk in Sym(H), then (x 0 , ι(f 1 ), x 1 , ..., ι(f n ), x n ) is a walk in H where an edge may be traversed twice consecutively. Definition 4.2 : Pruning complete unfoldings of symmetric digraphs. (a) The rooted tree R := Unf (Sym(H), x) has no leaf and is infinite, unless H is reduced to x. Furthermore if u is a son of a node w, then u has a son v such that R/v ≃ R/w. We call this the grandson property. If u, v, w are so, the pruning operation P r will delete exactly one of such sons v, and the subtree issued from it.

Universal coverings constructed from unfoldings

(b) We define P r(Unf (Sym(H), x)) as the rooted tree obtained by deleting nodes and arcs as follows:

If a node v of Unf (Sym(H), x) is a walk (e 1 , e 2 , ..., e n ) in Sym(H) that starts from x, n > 1, and, either e n-1 = e n (hence is a loop), or e n-1 ∈ E and e n = e n-1 , or e n ∈ E and e n-1 = e n , then, we remove from Unf (Sym(H), x) the arc from u := (e 1 , e 2 , ..., e n-1 ) to v and the subtree issued from v.

For later use, we denote v := s(u).

We perform these removals for all relevant nodes v of Unf (Sym(H), x). Actually, we need only do that for the first pair of arcs (e n-1 , e n ) as above on a walk (e 1 , e 2 , ..., e p ) defining a node because the other possible pairs on this walk and the corresponding nodes disappear in the removal of Unf (Sym(H), x)/v.

Note that the tree P r(Unf (Sym(H), x)) is defined for the concrete tree Unf (Sym(H), x). Hence, P r(R) is not defined for a rooted tree R isomorphic to Unf (Sym(H), x) because it uses the definition of the nodes as walks in Sym(H).

With the above hypotheses and notation:

Proposition 4.3 : (1) We have U C(H, x) ≃ P r(Unf (Sym(H), x)). (2) Unf (Sym(U C(H, x)) x ) ≃ Unf (Sym(H), x).
Proof : (1) The nodes of Unf (Sym(H), x) are directed walks in Sym(H) starting from x. These walks are mapped by ι to walks in H starting from x, that can traverse twice consecutively a same edge. Those walks in H that do not are precisely the nodes of U C(H, x) (cf. Definition 3.6). However the mapping P r eliminates the nodes of Unf (Sym(H), x) that are not mapped by ι to nodes of U C(H, x). Hence, ι is an isomorphism P r(Unf (Sym(H), x)) → U C(H, x).

(2) Let γ : U C(H, x) → H be the covering homomorphism 24 . It is actually a homomorphism : U C(H, x) → Sym(H), (because E H ⊆ E Sym(H) ) that is not surjective on arcs. We add "up-going" arcs to U C(H, x) as follows: if e : u → v is an arc of U C(H, x), we add an arc e ′ : v → u to U C(H, x). In this way, we obtain the digraph Sym(U C(H, x)). We extend γ into a surjective homomorphism γ : Sym(U C(H, x)) → Sym(H) by defining γ(e) for e ∈ E Sym(U C(H,x)) -E U C(H,x) as follows:

if e : u → v where v is the father of u in U C(H, x) and the last arc of the walk defining u is f ∈ E Sym(H) , then, we define:

γ(e) = f if f is a loop in H, γ(e) = f if f : xy in H and x < y, γ(e) = g if f = g and g : xy in H and x > y.

Then γ : Sym(U C(H, x)) x → Sym(H) x is an unfolding. It follows from Theorem 2.5 that Unf (Sym(U C(H, x)) x ) is a complete unfolding of Sym(H) x . Hence, Unf (Sym(U C(H, x)) x ) ≃ Unf (Sym(H), x).

Example 4.4 : Figure 5 shows a graph H and the digraph Sym(H) defined from the ordering x < y < z. The drawing of the loop h recalls that we count an undirected loop for 1 in the degree of its vertex. The pruning operation removes in particular the subtree Unf (Sym(H), x))/u ′ because of the directed path from x to u ′ that uses arcs whose images by γ are e and next, e.

The graph H has an automorphism that exchanges y and z. Hence, UC(H, y) ≃ UC(H, z). Theorem 4.5 : Let H be a graph. For every two vertices x and y, we have:

U C(H, x) ≃ U C(H, y) if and only if Unf (Sym(H), x) ≃ Unf (Sym(H), y).
If H is finite, this property is decidable. Proof : Let α : UC(H, x) → UC(H, y) be an isomorphism that maps x to y. It extends into an isomorphism Sym(UC(H, x)) → Sym(UC(H, y)). Hence:

Unf (Sym(UC(H, x)) x ) ≃ Unf (Sym(U C(H, y)) y ) and Unf (Sym(H), x) ≃ Unf (Sym(H), y) by Proposition 4.3 (2).

For the converse, observe that U C(H, x) is defined from R := Unf (Sym(H), x) by the transformation P r that uses the description of nodes as walks, cf. Definition 4.2(b). The definition of P r uses a mapping s such that : any node u of R that is not the root is mapped by s to one of its sons such that R/s(u) ≃ R/w where w is the father of u.

Let S := {s(u) | u ∈ N R , u = rt R }. Then P r(Unf (Sym(H), x)
) is obtained from R by deleting the subtrees R/v for all v ∈ S. However, let S ′ be any subset of N R such that : each node v in S ′ is at depth at least 2, each node u = rt R has a unique son v in S ′ , and R/v ≃ R/w where w is the father of u that is the father of v. Then, the labelled trees (R, S) and (R, S ′ ) are isomorphic 25 . It follows that P r(Unf (Sym(H), x)) is isomorphic to the tree obtained from R by deleting the subtrees R/v for all v ∈ S ′ . Hence UC(H, x) can be constructed, up to isomorphism, from any rooted tree isomorphic to Unf (Sym(H), x) and any appropriate set S ′ , that is, without using the concrete desciption of the nodes of Unf (Sym(H), x). It follows that U C(H, x) ≃ U C(H, y) if Unf (Sym(H), x) ≃ Unf (Sym(H), y).

The last assertion follows from Theorem 2.14 applied to Sym(H).

Universal coverings of weighted graphs

We extend to weighted graphs the notion of universal covering recalled in Section 3.1. We will construct universal coverings by using unfoldings of digraphs, as in Definition 4.2. Definition 4.6 : Universal coverings of weighted graphs.

A covering of weighted graphs γ : G → H is universal if G is a tree (without weights), which implies that H is connected. We also say that G is a universal covering of H.

We will prove soon that any two universal coverings of a connected and weighted graph are isomorphic. We first give some examples.

Examples 4.7 : 1) An infinite tree whose nodes have all degree p where 1 < p ≤ ω is a universal covering of a loop of weight p > 1. All nodes of the tree are mapped to the vertex at the loop. It is also a universal covering of an edge whose half-edges have both weight p.

2) A tree such that every node of degree 3 is adjacent to a node of degree 4 and vice-versa is a universal covering of K 3,4 and also, of an edge whose half-edges have weights 4 and 3.

3) A star K 1,ω consisting of one node adjacent to ω leaves is a universal covering of an edge whose half-edges have weights 1 and ω.

4) A universal covering γ of the graph H consisting of a path xyz with a loop at x, all weights being 1, is the path z

1 -y 1 -x 1 -x 2 -y 2 -z 2 with γ(x 1 ) = γ(x 2 ) = x, γ(y 1 ) = γ(y 2 ) = y and γ(z 1 ) = γ(z 2 ) = z.
5) A biinfinite path (cf. Example 3.7(2)), is a universal covering of the following weighted graphs:

(a) a cycle (in particular two parallel edges) whose half-edges have weight 1, or an edge with both half-edges of weight 2, (b) the weighted graph H as in 4) except that the weight of the half-edge at z is 2, (c) one loop of weight 2 or two loops of weight 1 incident to a same vertex, (d) a path P with ends x and y such that, either x and y have both a loop of weight 1, or x has a loop of weight 1 and the half-edge (f, y) on 26 P has weight 2, or the half-edges (e, x) and (f, y) on P has both weight 2.

We will describe a construction of a universal covering for weighted graphs. We will prove a characterization similar to that of complete unfoldings of Theorem 2.5, that entails unicity u.t.i.of universal coverings. (a) Let H = (V, E, Inc, λ) be a connected and weighted graph, for which we fix a linear order ≤ on V . The associated symmetric weighted digraph is Sym(H) := (V, E ′ , Inc ′ , λ ′ ) defined as follows. For each edge e : xy of E, we define the following arcs of E ′ : e + : x → y and e -: y → x, of respective weights λ(e, x) and λ(e, y) if x < y (e is not a loop), e ℓ : x → x if x = y (e is a loop) of weight λ(e, x).

The set Inc ′ and the weight function λ ′ are defined accordingly. (b) We define ES(H) as the expansion of Sym(H) (cf. Definition 2.7). It is the digraph (V, E ′′ , Inc ′′ ) defined as follows directly from H. For each edge e : xy of E we define the following arcs of E ′′ :

(e + , i) : x → y if x < y, for i ∈ N + , 1 ≤ i ≤ λ(e, x), (e -, i) : y → x if x < y, for i ∈ N + , 1 ≤ i ≤ λ(e, y), (e ℓ , i) : x → x if x = y (e is a loop) for i ∈ N + , 1 ≤ i ≤ λ(e, x).
The set Inc ′′ is defined accordingly. The digraphs Sym(H) and ES(H) are strongly connected.

The following operation generalizes that of Definition 4.2(b). Definition 4.9 : The pruning operation. For x ∈ V H , Unf (ES(H), x) is a rooted tree. The pruned rooted tree P r(Unf (ES(H), x)) is obtained by deleting nodes and arcs as follows:

if a node u of Unf (ES(H), x) is a walk (e 1 , e 2 , ..., e n ) in ES(H) (that starts from x), n > 1, and, for some f ∈ E, either e n-1 = (f + , i), e n = (f -, 1), or e n-1 = (f -, i), e n = (f + , 1), or e n-1 = (f ℓ , i), e n = (f ℓ , 1), then, we remove from Unf (ES(H), x) the arc from w := (e 1 , e 2 , ..., e n-1 ) to u and the subtree issued from u.

We denote by U C(H, x) the rooted tree P r(Unf (ES(H), x)). If H is a graph, i.e., all weights are 1, then ES(H) is Sym(H), up to the designation of arcs, that is with (e + , 1) instead of e, (e -, 1) instead of e and (e ℓ , 1) instead of e for a loop. Modulo this change, U C(H, x) is the same as in Definition 3.6. Proof: The proof is the same as for Proposition 4.3 (2) with ES(H) instead of Sym(H). We build Sym(U C(H, x)) x by adding an up-going arc u → v to UC(H, x) for each existing arc v → u.

The following extends Theorem 4.5. Theorem 4.13 : Let H be a weighted graph. For every two vertices x and y, we have: Hence, Unf (ES(H), x) ≃ Unf (ES(H), y) by Proposition 4.12. For the converse, observe that U C(H, x) = P r(Unf (ES(H), x)), hence is defined by using the definition of nodes as walks. However, the same technique as in the proof of Theorem 4.5 can be used to prove that UC(H, x) can be defined from Unf (ES(H), x). The result follows.

The decidability follows from 2.14 applied to ES(H) and we can use Algorithm 2.18. 3 Sym(U C(H, x)) that start from x. In the proof of Theorem 4.17, we use this observation for ES(H) where H is weighted.

As a consequence, we obtain a first-order definability result for the strongly regular trees U C(H) similar to that for regular trees follwing from Corollary 2.18 and proved in [12]. Definition 4.19 : Regular trees. We recall that the subtrees of a (labelled) rooted tree R are the (labelled) rooted trees R/x for x ∈ N R . By Definition 2.10, a rooted (labelled) tree R is said to be regular if the set of isomorphism classes [R/x] ≃ for x ∈ N R is finite. In that case, its cardinality is the regularity index Ind(R) of R.

(b) A (labelled) tree T is regular if the rooted (labelled) tree T x is regular for some x ∈ N T . Proposition 4.20 : If a (labelled) tree T is regular, then the rooted (labelled) trees T y are regular for all y ∈ N T .

Proof : Let T x be regular for x ∈ N T . If y is a neighbour of x, then the subtrees of T y are T y , T y /x and the subtrees T x /z for z / ∈ {x, y}. Hence there are finitely many up to isomorphism. If y is at distance n of x, there is a path xz 1 -...z n-1y and each rooted tree T z1 , ..., T zn-1 , T y is regular by the first observation.

α(e) : α(x)α(x ′ ), β(f ) : β(y)β(y ′ ), hence, α(x) = β(y), α(x ′ ) = β(y ′ ), and the two ends of (e, f), namely, (x, y) and (x ′ , y ′ ) are in two different parts of V K . Hence, K is well-defined and bipartite.

We define γ : K → G as the first projection : γ(x, y) := x, γ(e, f ) := e and similarly, η : K → H as the second projection. It is clear from the definition that γ and η are homomorphisms. They are surjective because α and β are so. It remains to prove that they are coverings. We prove that γ is, the proof for η is similar.

Consider (x, y)

∈ (V 1 G × V 1 H
) ∩ V K and its image x in G by γ . Let e 1 , ..., e p be the edges of G incident with x. Let f 1 , ..., f q be the edges of H incident with y. The edges of M incident with α(x) are α(e 1 ), ..., α(e p ) that are pairwise distinct. Those incident with β(y) are β(f 1 ), ..., β(f q ), also pairwise distinct. But α(x) = β(y), hence, q = p, and we can renumber these edges so that α(e i ) = β(f i ) for each i. The edges of K incident with (x, y) are thus (e i , f i ) for i = 1, .., p. Hence γ is a bipartite covering as wanted. We have|V

K | ≤ |V G | . |V H |.
If G and H are connected but K is not, then each of its connected components is a covering as wanted.

Applications 5.3 : We consider cases where this theorem proves that two finite bipartite connected graphs G and H have a common bipartite covering L.

(1) If the common degree matrix of G and H is symmetric, then it is the adjacency matrix of a bipartite graph M , and Theorem 5.2 is applicable.

(2) If G and H are k-regular, then they cover the bipartite graph with two vertices linked by k parallel edges. Theorem 5.2 is applicable, which gives the result proved in [3].

(3) If G and H have exactly one cycle, then they cover a graph and Theorem 5.2 is applicable. We sketch the proof as follows. Let M be the weighted graph corresponding to their common degree matrix. In each case, one can find a graph K and coverings G → K and K → M . This graph is built in a unique way from M and α G (C G ). Hence, we have also M[α G (C G )] = M [α H (C H )] and a covering H → K. The degree matrix of G and H is not always symmetric.

In order to indicate why the proof of Theorem 3.8 is difficult, we explain informally why a natural proof generalizing that of Theorem 5.2 fails. Definition 5.4 : Quotients of strongly regular labelled trees. We adapt as follows Proposition 4.14. Let T be a bipartite tree and α a labelling of the set N 1 T ∪ N 2 T ∪ E T . We let ∼ be an equivalence relation on N 1 T ∪ N 2 T ∪ E T such that each equivalence class is included in N 1 T , in N 2 T or in E T and two equivalent vertices or edges have the same label. We require that if e and e ′ are equivalent edges, then e : xy,

We study unfoldings in parallel with coverings of undirected graphs, a notion that is used in distributed computing [2, 6, 7, 20]. By attaching possibly infinite weights to half-edges, we can describe by finite weighted graphs certain regular trees, that we called strongly regular. They arise as universal coverings, more or less like regular trees arise from complete unfoldings of weighted digraphs.

Unfoldings and coverings can be defined in similar ways as surjective homomorphisms that are locally bijective. Furthermore, we could define universal coverings in terms of complete unfoldings. Corresponding theorems that generalize the one by Norris [20] are corollaries of a single one relative to unfoldings. The associated decidability result for unfoldings, that is, deciding whether Unf (H, x) ≃ U nf(H, y) where H is finite of Theorem 2.20, yields the corresponding one for coverings in Theorem 4. 13.

Rather than for applications in semantics and in distributed computing, our main interest was for finite weighted graphs, either directed or not, and with possibly infinite weights, in order to have finite descriptions of regular trees, possibly of infinite degree. The structure of strongly regular trees will be investigated in [12].

Figure 1 :

 1 Figure 1: A weighted surjection, see Example 1.2(1).

Figure 2 :

 2 Figure 2: The weighted set S of Example 1.2(3).

Examples 1 . 2 :

 12 Weighted relations between weighted sets. (1) Let X consist of a, b, c, d of respective weights 2, 3, 4 and ω and Y consist of u and v of respective weights 5 and ω. The mapping κ: a -→ u, b -→ u, c -→ v, d -→ v is a weighted surjection, illustrated in Figure 1. One possible bijection κ ′ satisfying Assertion (1) of Lemma 1.1 is :

Definition 1 . 3 :

 13 is denoted by ≃ and the isomorphism class of G by [G]. Subgraph inclusion is denoted by ⊆ and induced subgraph inclusion by ⊆ i . Quotient graphs and digraphs (a) An equivalence relation ∼ on a graph G relates either vertices or edges. If e and f are equivalent edges, then each end of e is equivalent to some end of f and vive-versa. The quotient graph G/ ∼ has vertex set V G / ∼ and edge set E G / ∼ with obvious incidence relation.

Lemma 2 . 4 :

 24 If η : G → H and κ : H → K are unfoldings, then κ • η is an unfolding : G → K.

Figure 3 :

 3 Figure 3: A digraph G and its quotient G/ ≈, cf. Example 2.12.

Definition 2 . 15 :

 215 Equivalent weighted sets. (a) Let R be an equivalence relation on a set V . Let X = (X, λ) and Y = (Y, λ ′ ) be weighted sets such that X, Y ⊆ V . We write X ∼ Y (mod R) if:(C) For every equivalence class C of R, we have λ(C∩X) = λ ′ (C∩Y ), Equivalently, for every x ∈ X, there is y

  and similarly for Y . The result follows.

  2, where η(y) is the weight λ H (x, y) of the arc from x to y. Claim 1 : The equivalence relation ≈ satisfies the following property, that we state for an arbitrary equivalence relation R on V H : (E) : If xRy then N + H (x) ∼ N + H (y)(mod R).

Example 3 . 4 :.Lemma 3 . 5 :

 3435 Each of the two graphs of Figure4has a degree partition (B 1 , B 2 ) where B 1 = {a} and B 2 consists of the six other vertices. The corre-By Proposition 3.2, they cover only themselves (an observation made in[8]). If G and H are finite, γ : G → H is a covering and α is a good indexing of V H , then M G,α•γ = M H,α .

Figure 4 :

 4 Figure 4: The two graphs of Example 3.4 that do not cover any graph.

  (b) A finite weighted graph G with vertex set equal to (or indexed by) [p], can be represented by the weight matrix M G : [p] × [p] → N ∪ {ω} such that M G [x, y] := λ G (e, x) if e : xy. Definition 3.13 : Coverings of weighted graphs (a) Let G, H be weighted graphs. A covering γ : G → H is a surjective homomorphism (of unweighted graphs) such that, if γ(x) = y and e ∈ E H (y), then:

Example 3 . 17 :

 317 Weighted graphs, weight matrices and coverings. Every matrix M : [p]×[p] → N∪{ω} such that M [x, y] = 0 implies M[y, x] = 0 is the weight matrix of a finite weighted graph with p vertices. The matrix 1 3 2 0 is the weight matrix of H having one edge e : xy, weights λ(e, x) = 3, and λ(e, y) = 2 and a loop at x of weight 1. It is covered by the graph G equal to K 2,3 with an additional edge between the two vertices of degree 3. Then we have :

  where b, b ′ are positive and each is at most a. If ab > 0, we redefine the weight of the loop e at x as λ ′ (e, x) := ab. If a = b, we delete e. If ab ′ > 0, we create a loop e ′ at x ′ of weight λ ′ (e ′ , x ′ ) := ab ′ .

Definition 4 . 1 :

 41 Symmetric digraphs and their unfoldings (a) Let H = (V, E, Inc) be a connected graph. It is convenient to fix[START_REF] Woodhouse | Revisiting Leighton's theorem with the Haar measure[END_REF] a linear order ≤ on V . The associated symmetric digraph is Sym(H) := (V, E ′ , Inc ′ ) such thatE ′ := E ∪ {e | e ∈ E isnot a loop} and, in Sym(H), we have e : x → y if x ≤ y and e : xy in H (e can be a loop), e : x → y if x > y and e : xy in H.

Figure 6 and 7

 7 show respectively the rooted trees Unf (Sym(H), x)) ↾ 3 and P r(Unf (Sym(H), x)) ↾ 3 = U C(H, x) ↾ 3.

Figure 5 :

 5 Figure 5: The graph H and the digraph Sym(H) of Example 4.4.

Figure 6 :

 6 Figure 6: The rooted tree U nf (Sym(H), x) ↾ 3 of Example 4.4.

Figure 7 :

 7 Figure 7: The rooted tree U C(H, x) ↾ 3 = P r(U nf(Sym(H), x)) ↾ 3.

Definition 4 . 8 :

 48 The symmetric digraph of a weighted graph and its expansion.

Figure 8 :

 8 Figure 8: A weighted graph H and the digraph ES(H), see Example 4.11.

Figure 9 :

 9 Figure 9: The tree U nf (ES(H), x) ↾ 2, cf. Example 4.11.

U

  C(H, x) ≃ U C(H, y) if and only if Unf (ES(H), x) ≃ Unf (ES(H), y).If H is finite, this property is decidable. Proof : If U C(H, x) ≃ UC(H, y), we have:Sym(U C(H, x)) x ≃ Sym(U C(H, y)) y ).

Proposition 4 . 14 :

 414 Let T be a tree and ∼ be an equivalence relation on N T satisfying the following condition:(N) : if v ∼ v ′ ,w is a neighbour of v, and v has exactly p (p may be ω) neighbours equivalent to w, then v ′ has exactly p neighbours equivalent to w, then T is a universal covering of the weighted graph H := T/ ∼ defined as follows :V H := N T / ∼, E H contains an edge e : [v] ∼ -[w] ∼ ifand only if v is adjacent to some vertex of [w] ∼ if and only if, by Condition (N), each vertex of [v] ∼ is adjacent to some vertex of [w] ∼ ; the weight λ(e, [v] ∼ ) is the number of edges of T linking v and a vertex of [w] ∼ where w is adjacent to v. Proof : Condition (N) implies that an edge [v] ∼ -[w] ∼ is defined from an edge vw of T , and that λ(e, [v] ∼ ) is well-defined. The mapping γ such that γ(v) = [v] ∼ and γ(e) is the edge [v] ∼ -[w] ∼ if e : vw is a universal covering of H.

Corollary 4 . 15 :

 415 Every (labelled) rooted tree is a universal covering of a (labelled) weighted graph.

Figure 10 :

 10 Figure 10: The top part of the digraph Sym(U C(H, x)), cf. Examples 3.4 and 4.18.

  Consider the covering α G : G → M. Let C G be the set of vertices of the cycle of G. Then α G (C G ) ∩ α G (V G -C G ) = ∅. The vertices of C G yield a biinfinite path in the universal covering of G. The possible induced subgraphs M[α G (C G )] are listed in Example 4.7(5).

Hence, we extend the notion of regular tree that arises from the theory of recursive program schemes,[START_REF] Courcelle | Fundamental properties of infinite trees[END_REF].

Furthermore, the set of sons of any node is not linearly ordered, as this is the case for trees that represent algebraic terms.

In the forthecoming article[START_REF] Courcelle | Regular and strongly regular infinite trees[END_REF], we will establish the first-order definability of regular trees, among trees, and also of the universal coverings of finite weighted graphs, as described below.

that we will investigate in detail in[START_REF] Courcelle | Regular and strongly regular infinite trees[END_REF].

For typographical reasons, we use the notation Σ{λ(x) | x ∈ Y } rather than x∈Y λ(x) and we will do the same below in Sections 2.1 and 3.2.

To simplify notation, we write κ ′ (x, i) instead of κ ′ ((x, i)) and we do the same below, e.g., for µ ′ (x, i).

We only consider simple digraphs, without parallel arcs. However, definitions and results can be extended to weighted digraphs with parallel arcs. The associated complete unfoldings would be the same trees.

Any two such trees are isomorphic. By thinking of trees up to isomorphism, which is adequate since any two complete unfoldings of a rooted digraph are isomorphic, we could write the star S ω .

0 Slightly different notions of regular trees are studied in[START_REF] Courcelle | Fundamental properties of infinite trees[END_REF][START_REF] Courcelle | The monadic second-order logic of graphs IX: Machines and their behaviours[END_REF][START_REF] Courcelle | Monadic second-order logic, graph coverings and unfoldings of transition systems[END_REF]. However, they have in common the finiteness of the set of subtrees, up to isomorphism.

1 This is a short expression for : "the restriction of α to G/u is an unfolding : G/u → H/x". Similar shortenings will be used at other places.

[START_REF] Angluin | Local and global properties in networks of processors[END_REF] In Section 3, weights on half-edges of graphs will be even more important, as they will allow us to describe, as universal coverings of finite weighted graphs, trees of finite degree that are not universal coverings of any finite graph. Furthermore, weights ω will yield trees with nodes of infinite degree.

[START_REF] Angluin | Finite common coverings of pairs of regular graphs[END_REF] We recall that we write γ(x, i) for γ((x, i)). 1 4 Not necessarly rooted.

[START_REF] Bass | Uniform tree lattices[END_REF] It need not be connected. In order to decide whether Unf (G/x) ≃ Unf (G ′ /y), we can use this algorithm by taking for H the union of G and G ′ that we can assume to be disjoint.1 6 Decreasing for inclusion of binary relations; hence, R i+1 refines R i .

[START_REF] Bodlaender | Simulation of large networks on smaller networks[END_REF] Using boldface letters is intended to recall that U C(H) is only defined up to isomorphism. Most proofs about universal coverings will be done from the concrete trees U nr(U C(H, x)).

[START_REF] Boldi | Fibrations of graphs[END_REF] It is the Kronecker product of H by an edge.1 9 The two halves of an edge may have different weights. A weight may be ω.

0 We use intervals to be easy and concrete, but any two partitions will work. They yield different nonisomorphic graphs.

[START_REF] Angluin | Local and global properties in networks of processors[END_REF] Up to isomorphism, the graphs and trees we will construct will not depend on the chosen order.2

We recall from Section 1 that a homomorphism can map a digraph G to a graph H by forgetting the orientation of G.

[START_REF] Arnold | Finite transition systems[END_REF] It maps x, the root of U C(H, x) that is also that of Unf (Sym(H), x) to x.

[START_REF] Bass | Uniform tree lattices[END_REF] Each node of R is labelled by 1 if it is in S or S ′ and by 0 otherwise.2 6 We mean that f belongs to the path P .

[START_REF] Bodlaender | Simulation of large networks on smaller networks[END_REF] from a digraph to a graph, see Section 1.

[START_REF] Boldi | Fibrations of graphs[END_REF] Similar to the observation that H bip covers H in Lemma

3.11. 

The following theorem is similar to Theorem 2.5. Theorem 4.10 : Let H be a connected and weighted graph. 1) For each x ∈ V H , the tree Unr(U C(H, x)) is a universal covering of H.

2) If µ : T → H is a universal covering, then :

(C) For every covering κ : G → H, where G is connected and weighted, there is a universal covering η : T → G such that µ = κ•η.

3) Any two universal coverings of H are isomorphic. 4) If µ : T → H is a covering such that Condition (C) holds, then T is a tree, hence a universal covering of H.

Proof : 1) By Definition 4.8, we have an unfolding homomorphism α : Unf (ES(H), x) → ES(H) x and another one, β : ES(H) x → Sym(H) x . We have also a homomorphism 27 ι : Sym(H) → H (Definition 4.1).

Then γ := ι • β • α : U C(H, x) = Unf (ES(H), x) → H x is a surjective homomorphism and also one : Unr(U C(H, x)) → H. It is straightforward to check that Condition (S) of Definition 3.13 holds. Hence, U nr(U C(H, x)) is a universal covering of H.

2) We prove the assertion for γ : U C(H, x) → H x instead of µ : T → H.

For each integer i, γ induces a homomorphism γ i : UC(H, x) ↾ i → H x such that Condition (S) holds for all nodes at depth less than i. We call γ i an i-covering (cf. the notion of i-unfolding in Definition 2.6).

For each i, we define an i-covering :

and η i+1 extends η i . The definition is easy by induction on i, cf. the proof of Theorem 2.5. The union of the mappings η i yields a universal covering

If G is a tree, then η is an isomorphism : U C(H, x) to G κ(x) . This completes the proof of 2) and proves 3). 4) As in Theorem 2.5.

Hence, if γ : T → H is a universal covering and x ∈ N T , then T x ≃ UC(H, γ(x)). If x, y ∈ N T and γ(y) = γ(x), then T x ≃ T y .

As in Definition 3.6, we denote by U C(H) the universal covering of H, that is the isomorphism class of the trees Unr(U C(H, x)).

Example 4.11 : Figure 8 shows a weighted graph H and, to the right, the digraph ES(H). Figure 9 shows the first two levels of Unf (ES(H), x)). The red arcs are eliminated by pruning.

The following extends Proposition 4.3 (2). The tree U C(H, x) is defined as P r(Unf (ES(H), x))) hence, the isomorphism of Proposition 4.3( 1) is an equality, by definition. Proposition 4.12 : Let H be a weighted graph and x ∈ V H . We have

Proof : If T is a tree and ≡ is the equivalence relation on N T defined by x ≡ y if and only if T x ≃ T y , then H := T/ ≡ is a weighted graph and T is its universal covering.

If T is labelled, then the definition of ≡ implies that any two equivalent elements have same label. Note that H is strongly connected.

Universal coverings of finite weighted graphs

We now study the universal coverings of finite weighted graphs. We first extend a result by Norris [16, 20] for graphs without weights. Our proof will be based on that of Theorem 2.20, the similar result for complete unfoldings. We call strongly regular trees the universal coverings of finite weighted graphs. They have not been previously identified to our knowledge. Theorem 4.17 : Let T be a universal covering of a finite weighted graph H with p vertices. For every two nodes x, y of T , we have T x ≃ T y if and only if T x ↾ (p -1) ≃ T y ↾ (p -1).

Proof : We prove the property for T := U C(H). The "only if " direction is clear.

For proving the converse, assume U C(H, x) The directed paths of length 3 in the tree Unf (Sym(H), x))/u ′ that start from the root x (see Figure 6) correspond bijectively to the directed walks of length We may have Ind(T y ) > Ind(T x ), as shown in Example 4.22.

Definition 4. 21 ; Strongly regular trees.

A possibly labelled tree T is strongly regular it has finitely many associated rooted trees T x , up to isomorphism, that is, if the set

Example 4.22 : The rooted tree P such that N P := N and x ≤ P y if and only if y ≤ x is an infinite path P . It is regular, hence, the tree Unr(P ) is regular. The rooted trees U nr(P ) x are all regular but pairwise non isomorphic. Hence, U nr(P ) is not strongly regular. 

Note that γ maps U nf (ES(H), x) to Sym(H) rather than to ES(H). We may have e = (f + , i) and e ′ = (f + , j) so that γ(e) = γ(e ′ ) = f + .

It follows that U C(H, x)/u ≃ UC(H, x)/u ′ and that the subtrees of U C(H, x) are U C(H, x) itself and those associated as above with the arcs of Sym(H). Hence, up to isomorphism, there are at most 1 + 2. |E H | such subtrees and UC(H, x) is regular.

If η: T → H is a universal covering, then for each node x of T , we have T x ≃ UC(H, η(x)). Hence, T is strongly regular. Theorem 4.24 : A tree T is strongly regular if and only if it is the universal covering of a finite connected and weighted graph if and only if it is the universal covering of such a graph without loops.

Proof: The "if" part is by Proposition 4.23.

Conversely, let T be a strongly regular tree. Let ∼ be the equivalence relation on N T such that x ∼ y if and only if T x ≃ T y . This equivalence relation satisfies Condition (N) of Proposition 4.14 and has finitely many classes. Hence, by this proposition, T is a universal covering of the finite weighted graph H := T / ∼.

A loop of weight p arises in H if a node has p neighbours equivalent to it. To avoid loops, we define on T a proper 2-coloring. We define ∼ ′ such that x ∼ ′ y if and only if T x ≃ T y and x and y have the same color. Then T is a universal covering of the finite weighted graph H ′ := T/ ∼ ′ that has no loop 28 .

Examples and remark 4.25 : 1) Let T consist of a biinfinite path B where each node x has, in addition, an incident pendent edge xx ′ . The rooted trees T x for x ∈ N B are all isomorphic, and so are the trees T x ′ . The quotient graph is ss ′ has a loop at s of weight 2, that represents [T x ] . The two other half-edges have weight 1.

2) For the tree of Example 3.16(1), we get an edge with weights 3 and 4.

3) Finite weighted graphs can be used as finite descriptions of strongly regular trees, even of infinite degree. The construction of Theorem 4.24 defines a minimal and canonical one.

4) It follows from Theorem 4.24 that certain strongly regular trees are not the universal covering of any graph. The characterization of those that are is arithmetical, byTheorem 3.18, rather than graph theoretical. Corollary 4.26 : Every strongly regular, possibly labelled, tree is regular. Proof: Immediate from Theorem 4.24 and Proposition 4.23. The article [12] will develop the study of regular and strongly regular trees.

Common coverings of finite graphs

Our aim is to discuss Theorem 3.8 proved by Leighton in [17]. Alternative proofs have been given of the results by Angluin, Gardiner [3] and Leighton. They use tools from combinatorics, topology and group theory : [1, 5, 18, 19, 21, 22].

We give an easy proof for particular cases, including that of k-regular graphs proved in [3]. We will use the bipartite graph G bip that covers a graph G, see Definition 3.10 and Lemma 3.11.

We consider graphs rather than weighted graphs.

Lemma 5.1 : If two graphs G and H have a common covering K, then G bip and H bip have a common bipartite covering K bip .

Proof : Straightforward.

Hence, as done in [17], it suffices to prove Theorem 3.8 for finite bipartite graphs, because if G, H have a common universal covering T , then T covers also G bip and H bip that are finite. A common finite covering of G bip and H bip is also one for G and H. Proof : Let α : G → M and β : H → M bipartite coverings. We construct K, bipartite, as follows:

Since α and β are homomorphisms, we have e ′ : x ′y ′ for some x, y, x ′ , y ′ such that x ∼ x ′ and y ∼ y ′ . Furthermore, we rewrite Condition (A) of Proposition 4.14 as follows:

If x and y are equivalent vertices, then, ∼ defines a bijection

One obtains a quotient graph T/ ∼ and a covering T → T / ∼ that preserves labels.

Let γ : T → G be a universal bipartite covering where G is a finite graph. Let us label T as follows. A node x ∈ N T is labelled by γ(x) and an edge e ∈ E T by γ(e). We get a labelled tree T γ that is strongly regular.

Assume now that η : T → H is a universal bipartite covering where H is also finite. We define a labelled tree T γ,η that combines the labels of T γ and T η : a node x ∈ N T is labelled by (γ(x), η(x)) and an edge e is labelled by (γ(e), η(e)).

Letting T, G, H, γ, η and T γ,η be as above: Proposition 5.5 : If T γ,η is strongly regular, there exists a finite bipartite graph K that is a covering of both G and H.

Proof : Let ≈ be the equivalence relation on N Tγ,η such that x ≈ y if and only if (T γ,η ) x ≃ (T γ,η ) y . Two equivalent nodes have same labels (in V G × V H ). (However, Example 5.6 below shows that two nodes may have the same label in T γ,η without being equivalent for ≈).

Without assuming that T γ,η is strongly regular, we first examine the neighbourhood of a node x. Its incident edges have labels (e 1 , f 1 ), ...., (e p , f p ) and respective other ends z 1 , ...., z p . In G, the vertex γ(x) has incident edges e 1 , ...., e p and respective other ends γ(z 1 ), ...., γ(z p ). In H, the vertex η(x) has incident edges f 1 , ...., f p and respective other ends η(z 1 ), ...., η(z p ).

If x ′ ≈ x, then, since (T γ,η ) x ≃ (T γ,η ) x ′ , the edges incident to x ′ have labels (e 1 , f 1 ), ...., (e p , f p ) and respective other ends z ′ 1 , ...., z ′ p . Consider an isomorphism α: (T γ,η ) x → (T γ,η ) x ′ . Since the edge labels (e 1 , f 1 ), ...., (e p , f p ) are pairwise distinct, it maps z i to z ′ i for each i. Hence, it is an isomorphism (T γ,η ) zi → (T γ,η ) z ′ i and z i ≈ z ′ i . It follows that we get a quotient graph K := T γ,η / ≈ that inherits the labels of T γ,η / ≈ .

A vertex [x] ≈ has label (γ(x), η(x)). An edge of K coming from g : xy in T γ,η (it links [x] ≈ and [y] ≈ in K) has label (γ(g), η(g)) ∈ E G × E H . This is well-defined by the above remarks about neighbourhoods in T γ,η .

We claim that K is a covering of both G and H. We let κ :

Claim : κ : K → G is a covering. Proof : κ is a surjective homomorphism. To prove that it is a covering, we consider a vertex [x] ≈ of K where x is a node in T γ,η . We recapitulate the above observations.

The edges of T γ,η incident with x are g 1 , ...., g p with respective ends y 1 , ...., y p and labels (e 1 , f 1 ), ...., (e p , f p ). The edges of G incident with γ(x) are e 1 , ...., e p . We get edges [x] ≈ -[y i ] ≈ in K, each with label (e i , f i ).They yield by κ the edges e 1 , ...., e p . Hence, κ is a bijection of E

Similarly, we have a covering K → H. Finally, if T γ,η is strongly regular, the equivalence ≈ has finitely many classes and K is finite.

We do not obtain a proof of Theorem 3.8 because the tree T γ,η is not necessarly strongly regular.

Example 5.6 : A tree T γ,η that is not strongly regular. We let G be the bipartite graph such that We choose adjacent nodes r and s of T such that γ(r) = a, γ(s) = b and γ(e) = 1 where e : rs. We get a labelled tree T γ . We will enrich its labelling so as to obtain a tree T γ,η for some covering η : T → H.

For this purpose, we replace each node label a of T γ by (a, c), each label b of T γ by (b, d), each edge label 1 by (1,5) and each label 2 by (2,6). Then for each edge in the rooted tree T r -T r /s (obtained by deleting T r /s from T r ), we replace 3 by (3,7) and 4 by (4,8); for each edge in the subtree T s -T s /r, we replace 3 by (3,8) and 4 by (4,7).

In this way, we get a labelled tree T γ,η for a bipartite universal covering η : T → H.

It is clear that it is not strongly regular because the edge labels (3,7) are present in the part T r -T r /s, but not in the other part T s -T s /r, and these two parts are infinite.

Questions 5.7 : Does Theorem 3.8 extend to finite weighted graphs ? It does in a somewhat trivial way for graphs whose weights are all ω . Let G and H be two such connected weighted graphs. Let K be their product with V K := V G × V H and (x, y) -(x ′ , y ′ ) in K if and only if xx ′ and yy ′ in G and H respectively. Since ω + ω = ω the two projections π 1 : V K → V G and π 2 : V K = V H are coverings.

The next case to consider would be when weights are 1 or ω.

Conclusion

There are several notions of a regular tree. The one studied in [9, 10] is motivated by the study of recursive program schemes. Another one arises from complete unfoldings of finite rooted digraphs, representing transition systems. These two notions are motivated by the study of program semantics [4, 11, 14].

We generalize the latter one to weighted digraphs, which yields a third notion of regular tree, whose nodes may have infinite degree.