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Abstract

Background: In early May 2020, following social distancing measures due to

COVID-19, governments consider relaxing lock-down. We combined individual

clinical risk predictions with epidemic modelling to examine simulations of risk-

based differential isolation and exit policies.

Methods: We extended a standard susceptible-exposed-infected-removed (SEIR)

model to account for personalised predictions of severity, defined by the risk of

an individual needing intensive care if infected, and simulated differential iso-

lation policies using COVID-19 data and estimates in France as of early May

2020. We also performed sensitivity analyses. The framework may be used

with other epidemic models, with other risk predictions, and for other epidemic

outbreaks.

Findings: Simulations indicated that, assuming everything else the same, an

exit policy considering clinical risk predictions starting on May 11, as planned

by the French government, could enable to immediately relax restrictions for an

extra 10% (6 700 000 people) or more of the lowest-risk population, and con-
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sequently relax the restrictions on the remaining population significantly faster

– while abiding to the current ICU capacity. Similar exit policies without risk

predictions would exceed the ICU capacity by a multiple. Sensitivity analyses

showed that when the assumed percentage of severe patients among the popu-

lation decreased, or the prediction model discrimination improved, or the ICU

capacity increased, policies based on risk models had a greater impact on the re-

sults of epidemic simulations. At the same time, sensitivity analyses also showed

that differential isolation policies require the higher risk individuals to comply

with recommended restrictions. In general, our simulations demonstrated that

risk prediction models could improve policy effectiveness, keeping everything

else constant.

Interpretation: Clinical risk prediction models can inform new personalised

isolation and exit policies, which may lead to both safer and faster outcomes

than what can be achieved without such prediction models.

Funding: No funding was used for this research.
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Research in context

Evidence before this study

Several countries have implemented non-pharmaceutical interventions based on

social distancing and isolation measures in order to limit the spread of COVID-

19. There has been limited differentiation in the degree of isolation measures, ex-5

cept for those critical for the functioning of the healthcare system and other key

services. There is limited evidence about the impact of relaxing these measures

as this has happened only recently and in only a few countries. Investigating the

potential impact of differential restrictions depending on medical factors, such

as the risk of severe symptoms if infected by Sars-Cov-2, may inform policies10

for imposing or relaxing isolation policies when these are considered.

Added value of this study

This study investigates incorporating clinical risk predictions in epidemic mod-

els, allowing to explore isolation policies that consider individual clinical risks

using simulations.15

Implications of all the available evidence

Epidemic simulations of isolation policies that consider predicted clinical risks in

order to differentiate restrictions indicate the feasibility of policies that may be

otherwise impossible to implement without undertaking this type of risk-based

approach.20
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1. Introduction

As of May 2020, many countries have adopted non-pharmaceutical interventions,

such as isolation restrictions,1 to control the spread of COVID-19. Epidemic

models have been used to inform such policies.2,3 Governments now consider

relaxing these restrictions. Immunity tests4 and technology5 may support such25

policy decisions. We considered an application of predictive technologies, such

as machine learning, that can be used to better understand outbreaks using

epidemic simulations: using personalised predictions of severity risk, defined as

requiring ICU if infected, in epidemic simulations to examine differential risk

based isolation policies. Other clinical risks can be considered similarly.30

We extended standard epidemic models, namely a version of SEIR,6 to incorpo-

rate personalised risk predictions. Using simulations, we investigated how pre-

diction models for patient severity may inform policy in two scenarios. First,

when there is an ongoing outbreak as it was the case in France on the 17th

of March, 2020, when lock-down started. Second, when the outbreak has been35

curbed by lock-down and progressive loosening of isolation policies (”exit”) may

take place, as planned in France starting from the 11th of May, 2020.

There has already been research indicating differential impact of COVID-19

across patients, for example depending on hypertension, diabetes or other fac-

tors,7 but there is currently no standard risk prediction model considering all40

factors, although some early versions are available.8,9 Therefore we assumed hy-

pothetical risk prediction models and studied the sensitivity of the simulation

results with respect to model discrimination.

To populate the models, we used available COVID-19 estimates and data from

France as of early May 2020.10 At the time, there were about 4 000 beds45

occupied by people with COVID-19, with a peak at 7 148 people in intensive

care, compared to the total roughly 10 000 capacity recently reached by the

French health system. We used current estimates with a reproduction number

value of R0 = 3 · 3 prior to lock-down, and an estimate of 2 · 5 million people

who had been immune or infected when it started on March 17.1150
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Numerous containment/lock-down strategies have been proposed to flatten the

predicted curve of the number of severe cases by means of non-pharmaceutical

interventions such as strict quarantine,12 social distancing, strict hygiene, pop-

ulation screening, etc.3,13,14,15 Although social distancing might be applied to

each individual in a similar way, a different policy consists of adjusting it to55

the seriousness of the symptoms one has if infected.16,17,18 However, severity

of symptoms upon infection is not known a priori and, at best, can only be pre-

dicted. Such predictions may be possible using predictive models, for example

using rules, data science, and machine learning methods and principles, based

on data related to infection symptoms.8,960

2. Methods

2.1. Risk-Extended SEAIR Model

The model extends a standard compartmentalised SEAIR model with an added

compartment for people in ICU by introducing four subcategories for each com-

partment. The risk model classifies each individual into the “high” versus “low”65

risk group, where risk refers to an individual experiencing severe symptoms re-

quiring ICU.

Any prediction model makes mistakes. As a result, each individual would fall

into exactly one of four groups which form a so-called “confusion matrix”: (a)

he/she would actually need ICU bed upon infection and was classified as high-70

risk (true positive), (b) would need ICU bed upon infection but classified low-

risk (false negative), (c) would not need ICU bed upon infection but classified

high-risk (false positive), (d) would not need ICU bed upon infection and clas-

sified low-risk (true negative). As a whole, this led to 22 possible compartments

in the extended SEAIR model.75

For the control parameter of a policy applying differentiated isolation restric-

tion w.r.t. to the predicted risk of developing severe symptoms we considered

the proportion ρ of individuals subject to low isolation restrictions, i.e. those

classified by the risk-model as the low-risk group. We denote with p the fraction
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of individuals who are actually in the low-risk group (that is, those who would

actually have mild symptoms and not require ICU if infected.) Depending on

the characteristics of the risk prediction model and on p and ρ, the false posi-

tive and false negative rates, denoted by qFP and qFN , vary per the following

implicit function equation:

(1− qFP )p+ qFN (1− p) = ρ. (1)

We assumed that the differentiated isolation restrictions change people’s be-

haviour per two behavioural parameters δr (for the group with low isolation

restrictions, i.e. released) and δc (for the group with high isolation restrictions,

i.e. confined); 0 ≤ δr < δc ≤ 1. Variables δr and δc capture a level of ”protec-

tion”, which may aggregate several factors such as respiratory and hand hygiene,

how much a person has lowered the number of exits from home and social in-

teractions, etc. How individuals of a given category reduce their contacts not

only depends on δc and δr but also on the proportion ρ of people with less strict

restrictions. The decrease in contact rates, cr and cc for the two groups, may

be obtained with the following formula:

1− ca = (1− δa) ((1− δr)ρ+ (1− δc)(1− ρ)) , a ∈ {r, c}.

These parameters have been used in the literature modelling the current lock-

down.19,10 We also denote by c and δ the containment and protection pa-

rameters after a complete lock-down as it happened in France on March 17

(c = 1− (1− δ)2).

The full description of the ODE model is given in the Appendix, a simplified80

version of which is presented in Figure 1.

2.2. Estimation of key parameters

When fitting available data, the key parameters driving the simulation re-

sults are: the fraction p of individuals with mild symptoms if infected, the

reduction of contact rates during lock-down c, and the numbers of people85

exposed/asymptomatic/infected at the beginning of lock-down, on March 17.
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Figure 1: Simplified compartmental model used. Corresponding notations are

given in the Appendix.

These parameters were estimated by comparing model predictions to the actual

data of ICU occupation from March 17 to May 2 in France.

We used the Approximate Bayesian Computation method (ABC)20 to derive

estimates and confidence intervals for the three parameters of interest. The90

ABC method was implemented with the root mean standard error as a dis-

tance function,21 with a maximum error set at 1 000 beds on average over the

47 data points, which corresponds to an acceptance rate of about 13%. We

assumed the prior distributions to be independent with the following choices:

Beta distribution for p with parameters 2 390, 11 · 29, fitting the mean and95

95% confidence interval observed,11 uniform distribution for the total number

of people exposed/asymptomatic/infected on March 17 with range between 1

and 2 million, and uniform distribution for c between 65% and 75%.

2.3. Using personalised Risk Predictions

A policy based on simulations with a risk-extended epidemic model requires100

identifying individuals at highest risk of severity and correspondingly advising

them to remain in strict isolation, while relaxing isolation restrictions for indi-

viduals at lower risk. Such identification is done by risk-“scoring” models using

common data science and machine learning techniques: logistic regression, ran-

dom forest, and the likes. A standard metric to assess the discriminating power105

of such models is the Area Under the Curve (AUC) of the Receiver Operating
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Characteristic (ROC) curve.22

Combining the model’s ROC curve, with the more strictly isolated fraction, 1−ρ,

and the prevalence of severe symptoms in the population, p, results in the false

positive and false negative error rates qFP , qFN . When ρ is small, the number of110

negative predictions is small (most people are in strict isolation), but the fraction

of false negatives is also small, meaning that the vast majority of people in low

isolation conditions will not experience severe symptoms. Increasing ρ not only

releases more people from isolation, but also increases the false negative rate.

Technical details are provided in the Appendix.115

A key question is to select a tolerable fraction of people (ρ) being submitted to

lower isolation as a function of the performance of a risk prediction model so

that to subject only few people to stricter isolation, yet not to violate the ICU

bed capacity due to the errors made by the model in identifying such people.

2.4. Summary of Key Parameters and Data120

All parameters used in simulations are listed in Table 1.

For the purpose of illustration, the class-conditional distributions w.r.t. to high/low

risk were modelled with Beta distributions. Risk predictions, ROC curves and

AUC were derived accordingly.

Parameters for the initial conditions S0, E0, A0, I0, U0 and R0 were taken125

depending on the investigated scenario: in the first one the “day 0” is set on

March 17 2020 – the first day of country-wide lock-down in France, while in the

second one “day 0” is set on May 11 2020 – the announced day for the beginning

of the post lock-down exit.

3. Results130

Figure 2 displays the number of individuals requiring an ICU bed w.r.t. time t.

The March 17 scenario is in the left column, the May 11 scenario is in the

right. Two risk models are considered: one with AUC of 95 · 99% (top row)
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Table 1: Simulation parameters used with relevant 95% confidence intervals.

Symbol Description Value(s) Reference

N0 total initial number of people in the population 6 · 7 107

S0 total initial number of infected people in the population computed

E0 total initial number of exposed people in the population case-dependent estimated

A0 total initial number of asymptomatic people in the population case-dependent estimated

I0 total initial number of infected people in the population case-dependent estimated

U0 total initial number of people in ICU case-dependent known/estimated

R0 total initial number of immune people in the population case-dependent 11/estimated

Imax hospital capacity for COVID-19 ICU beds 7 250 assumed

p proportion with mild symptoms (prior) 0 · 9953 [0 · 9918− 0 · 9975] 11

β transmission rate computed 19

R0 basic reproduction number 3 · 3 10

ε waiting rate to viral shedding 1/3 · 7 day−1 10

σ waiting rate to symptom onset 1/1.5 day−1 10

η waiting rate from symptom onset to ICU 1/7 day−1 11

γm recovery rate from mild symptoms 1/2 · 3 day−1 10

γs recovery rate for people in ICU 1/17 day−1 11

α mortality rate for people in ICU 1/11 · 7 day−1 11

and another, with AUC of 75 · 71% (bottom row), bracketing the performance

of initial risk models developed for COVID-19.8,9135

In each plot, ρ represents the maximal percentage of the population that is

submitted to lighter restrictions (δr = 0·1) in such a way that the 95% confidence

interval of the number of individuals requiring an ICU bed when using the

risk prediction model (green and orange curves) remains below the maximum

number of ICU beds assumed (7 250). In these first simulations, the rest of140

the population is confined with stricter restrictions, δc = 0 · 9. Finally, the red

curves show the number of individuals requiring an ICU bed w.r.t. time if the

same ρ of population is in lower isolation, but selected at random without any

risk prediction model.

Figure 2 shows that a high-AUC model (green curve) allows for having 60% in145

low isolation (δr = 0 · 1, corresponding to a decrease of social interaction by

47%) from March 17 on, while a low-AUC model (orange curve) enables only

51%. In France, with a population of 67 million, these percentage differences

correspond to 6 700 000 people. Plots for lock-down exit strategies (May 11)
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investigate the effect of the same risk prediction accuracies. All differences (60%150

vs 51% for March 17, 70% vs 59% for May 11) are statistically significant at the

5% level. Lastly, without a risk prediction model, the ICU beds demand greatly

exceeds the current capacity at either ρ.

0 25 50 75 100 125 150 175 200
t

0

5000

10000

15000

20000

25000

Saturation of hospitals
high AUC model
no model

(a) ρ = 60%
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(b) ρ = 70%
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(c) ρ = 51%
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Figure 2: Number of individuals requiring an ICU bed w.r.t. time t (days). Left

column starts on March 17 (the day of the initial lock-down in France), right

column starts on May 11 (the day when lock-down ends). The dotted line on

the left column shows the actual data for France from March 17 to May 2. Top

row uses a risk prediction model with AUC 95 · 99%, bottom row uses a risk

prediction model with AUC 75 · 71%.

Figure 3 presents sensitivity analyses of the difference between the maximal per-
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centage of people which may be in low isolation without exceeding ICU capacity155

for several risk-prediction models, relative to the same maximal percentage, but

with no risk-prediction model. The results are shown for both the March 17 and

the May 11 scenarios. Sensitivity is tested with respect to the discrimination

performance of the risk prediction models used for the risk-extended SEAIR

simulations and the degree of isolation of the more strictly isolated population160

(δc). We also alter the degree of isolation for the less strictly isolated population

(δr) across different plots.

As expected, the higher the discrimination of the prediction model, the bigger

the difference. The degree of isolation restrictions has different effects depending

on who is considered: for the more strictly isolated population (the higher risk165

one) the stricter the isolation (parameter δc) the larger the impact of the risk

prediction model. For the less strictly isolated population (the lower risk one –

δr = 0 · 1 or 0 · 2 in Figure 3), the results are more intricate. It is also better

to isolate more strictly, except when the risk prediction model is of very high

quality and people of high risk are in stricter isolation. It is therefore important170

to both assume in models and encourage in practice (for example by focusing

distribution of masks and other resources, strictly isolating nursing homes, etc.)

realistic isolation practices for the high risk population.

Figure 4 shows sensitivity analyses regarding the percentage p of the population

with severe symptoms upon infection, if we were to only decrease (from 0 · 995175

to 0 ·98) the value for p while following the same analysis as before. The results

are shown with a different ICU constraint (15 000 instead of 7 500) than in

Figure 3 to also study how the ICU constraint affects the conclusions.

First, as expected, the lower p the less the impact of a risk prediction model

keeping AUC constant: given the limited ICU – and possibly other – resources,180

larger p allows for a smaller range of percentages of the population being under

less strict isolation restrictions, making all differences between policies smaller

in absolute terms. Second, when we compare Figures 3 (a) and (c) with Figures

4 (a) and (c), where the only difference is in the total ICU assumed (7 500 vs 15

000), we see that the more ICUs available the larger the impact of using a risk-185
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(b) March 17, δr = 0 · 2
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(c) May 11, δr = 0 · 1
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(d) May 11, δr = 0 · 2

Figure 3: Difference in maximum possible percentage of people in low isolation

without hospital saturation. Maximal number of people in the low isolation

group without exceeding the limit of 7 250 beds, with a margin of 2 000 beds as

imposed by typical 95% confidence intervals, compared to the case of not using

a risk prediction model. Plotted as a function of the AUC of a risk prediction

model and the protection level δc for people recommended to be in isolation

with stricter restrictions. p ∼ 0 · 995 for all figures.

prediction model, keeping everything else constant. More available resources

allow for a larger range of percentage of people in less strict isolation making

the differences between policies – risk based vs not – larger in absolute terms.

Note that in all cases a risk prediction model approach allows for fewer people in

strict isolation: this is consistent with value of information related arguments,190

as any test provides information which can be beneficial assuming everything
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Figure 4: Difference in maximum possible percentage of people in low isolation

without hospital saturation. Maximal number of people in the low isolation

group without exceeding the limit of 15 000 beds, with a margin of 2 000 beds

as imposed by typical 95% confidence intervals, compared to the case of not

using a risk prediction model. Plotted as a function of the AUC of a risk

prediction model and the protection level δc for people recommended to be in

isolation with stricter restrictions. δr = 0 · 1 for all figures.

else (including behavioural aspects) kept constant.

Finally, we explored the implications of our simulation for gradual exit strate-

gies. To consider practical and realistic scenarios we solved the resultant optimi-

sation (dynamic program) allowing releases every 30 days at multiples of 5% of195

the population, while ensuring that the maximum number of ICU beds needed

was at most 5 250, being at least 2 000 beds (the typical maximum confidence
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Four waves

High AUC Low AUC No

model model model

δc = 0 · 9 5 7 >12

δc = 0 · 8 6 9 >12

δc = 0 · 7 8 9 >12

Three waves

High AUC Low AUC No

model model model

δc = 0 · 9 5 9 >12

δc = 0 · 8 7 >12 >12

δc = 0 · 7 >12 >12 >12

Four waves

High AUC Low AUC No

model model model

δc = 0 · 9 4 7 11

δc = 0 · 8 5 8 11

δc = 0 · 7 6 8 11

Three waves

High AUC Low AUC No

model model model

δc = 0 · 9 4 7 >12

δc = 0 · 8 6 11 >12

δc = 0 · 7 6 9 >12

Table 2: Minimal time (in months) required for all people to exit high isolation

restrictions, starting from March 17 (upper tables) or May 11 (lower tables),

depending on δc, model quality and the number of waves of gradual relaxations.

δr = 0 · 1

range in Figure 2) below the maximum ICU capacity assumed.

Table 2 shows the total number of months to release the entire population for

different scenarios, keeping all other parameters constant: no model, low-AUC200

model, high-AUC model, and for 3 different values of δc. We considered only

gradual releases in 3 or 4 waves – the ICU system was overwhelmed when using

only 2 waves for most simulations. The main insight is that using no risk model

would require more than a year in all scenarios, while exit based on risk-based

models would lead to relaxing restrictions for the entire population as fast as205

over 5 (March 17) or 4 (May 11) months.

Figure 5 shows example gradual policies for May 11 corresponding to the four

waves part of Table 2, and assuming δc = 0 ·9 as in Figure 2. The insights com-

plement those for single release policies: with risk-prediction models, a smaller

percentage of the population may need to be subject to stricter isolation poli-210

cies. Consequently, one could also reach the moment when isolation measures

could be lifted sooner.
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For example, using the high-AUC model and without exceeding the ICU capac-

ity at any point, 70% of the lowest-risk population could be released on May 11

(“day 0”), followed by another 5% on July 10 (“day 60”), and yet another 15%215

on August 9 (“day 90”), and finally releasing the remaining 10% on September

8 (“day 120”). The resultant ICU demand is shown as a green line on Figure

5a. Implementing the same exit schedule without a model would lead to ICU

demand of over 25 000 beds (red line). In contrast, a capacity-abiding exit

strategy without a model (blue line) would put only 50% of population in low220

isolation on “day 0” (May 11), another 10% on “day 90” (August 9), additional

10% on “day 180” (November 7), and the last 30% only on “day 330” (April

6, 2021), – 7 months later than the similar risk-model-based strategy. Such an

extended isolation would also apply to many more people: 10% with the model

versus 30% without; for France this means the additional ∼13.5 million people225

in isolation for the additional 7 months.

For both scenarios, Figure 5b shows the percentage of the population that be-

comes immune over time. Because model-based policies release larger portions

of the low-risk population and do so faster, they also achieve the levels of ”herd

immunity” (1 − 1
R0
≈ 0.7), allowing for the ultimate protection against the230

disease. In contrast, herd immunity is not achieved by a policy without the

risk-model: the disease is suppressed, but could explode again. In other words,

assuming everything else constant, the simulations indicated that, using risk

prediction models, isolation restriction may be relaxed faster and safer.

4. Discussion235

Simulations indicated that considering differential relaxation of isolation re-

strictions depending on predicted severity risk can decrease the immediate per-

centage of the population in France under strict restrictions by 10% or more

relative to not using such risk predictions, and fasten the complete exit by sev-

eral months. This result was robust to changes in risk prediction accuracy,240

percentage of severe-if-infected cases in the population, availability of resources
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Figure 5: Examples of gradual schedules of relaxing isolation restrictions with

and witout model-based risk predictions. High AUC model (green) and no

model (red) ρ = [0 · 7, 0 · 75, 0 · 9, 1] and t = [60, 90, 120, 600], no model (blue):

ρ = [0.5, 0 · 6, 0 · 7, 1] and t = [90, 180, 330, 600]. Vectors t = [t1, t2] give the

population release schedules ρ = [ρ1, ρ2] as follows: ρ1 · 100% of the population

is released on day 0, then (ρ2 − ρ1) · 100% are released on day t1, etc.

(such as ICUs), and social distancing. Benefits increased when risk prediction

accuracy increased, percentage of severe-if-infected cases in the population de-

creased, availability of resources (such as ICUs) increased, and social distancing

increased. All results were developed using hypothetical risk prediction models245

for COVID-19, with discrimination ranges in line with early indications from

initial models developed as of early May 2020.8,9

The proposed approach can also be adopted for other epidemic models, and

personalisation can further be explored using this approach for policies other

than isolation restrictions. Moreover, predicted risk based isolation restrictions250

can be combined with other policies such as test-based ones,4,5 possibly also

using other relevant prediction models, to limit the impact of outbreaks such

as COVID-19. Finally, the same analysis can be done focusing on mortality or

other outcomes instead of ICU demand.

Several caveats should be noted. First, epidemic models – and the conclusions255

they may support – rely on a number of parameters, for example virus incuba-
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tion and recovery times and the basic reproduction number R0, while the effects

of policies also depend on healthcare system factors such as the availability of

relevant resources (e.g., trained personnel). Second, these parameters are uncer-

tain and evolve dynamically;23 the resultant policies are therefore contingent.260

Observing an ICU demand that is closer to an upper boundary of the confidence

interval may require the next wave to be delayed or involve a smaller release

percentage than out current simulations built from day zero suggest. Third, pol-

icy decisions require careful context-specific robustness analysis; however, using

risk prediction models can at worst make no significant difference while at best265

improve policies by a significant margin, fixing all other conditions. Fourth, risk

prediction models cannot be used when, or for people, for whom the necessary

data is unavailable. In this case, simple models (e.g., based only on age and

some reliable chronic disease data) may need to be used, which may limit the

benefits of the approach. Finally, risk-predictions based policies using epidemic270

simulations should be developed taking into account behavioural aspects that

may prove any model predictions and policy actions wrong; ethical issues, fear,

widespread non-compliance to isolation measures, and the likes.

In conclusion, combining prediction models using data science and machine

learning principles may improve outbreak management policies and should be275

considered when developing isolation and exit policies.
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Appendix A. Extended SEAIR model

Appendix A.1. Complete version

We first break down the 5 compartments S, E, A, I and R in 2 subcategories,

depending on whether people are going to have mild (”m”) or severe (”s”)280

symptoms requiring ICU, upon infection. An added compartment for people in

the ”s” category is that of people in ICU, denoted U .

These people are also labelled depending on whether they are considered low-

risk and submitted to low isolation (”r”), or are considered high-risk and rec-

ommended to be in high isolation (”c”).285

The notations are as follows: for a given category Q ∈ {S,E,A, I, U,R}, we

use superscripts for risk prediction, and subscripts for actual status. In other

words:

• Q(r)
m : would not require ICU if infected, submitted to low isolation restric-

tions, i.e. true negative,290

• Q(c)
m : would not require ICU if infected, submitted to high isolation rec-

ommendations, i.e. false positive,

• Q(r)
s : would require ICU if infected, submitted to low isolation restrictions,

i.e. false negative,

• Q(c)
s : would require ICU if infected, submitted to high isolation recom-295

mendations, i.e. true positive.

We also denote in category Q ∈ {S,E,A, I, U,R}

• Q(r) = Q
(r)
m +Q

(r)
s : submitted to low isolation restrictions,

• Q(c) = Q
(c)
s +Q

(c)
m : submitted to high isolation recommendations,

• Qm = Q
(r)
m +Q

(c)
m : having mild symptoms if infected,300

• Qs = Q
(c)
s +Q

(r)
s : requiring ICU if infected,

• Q = Qm +Qs = Q(r) +Q(c): total number of people in category Q.
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We define the effective number of contagious people as

Ie = (1− δr)(A(r) + I(r)) + (1− δc)(A(c) + I(c)).

The equations read

Ṡ(r)
m = −(1− δr)βIeS(r)

m

Ė(r)
m = (1− δr)βIeS(r)

m − εE(r)
m

Ȧ(r)
m = εE(r)

m − σA(r)
m

İ(r)m = σA(r)
m − γmI(r)m

Ṙ(r)
m = γmI

(r)
m

Ṡ(c)
m = −(1− δc)βIeS(c)

m

Ė(c)
m = (1− δc)βIeS(c)

m − εE(c)
m

Ȧ(c)
m = εE(c)

m − σA(c)
m

İ(c)m = σA(c)
m − γmI(c)m

Ṙ(c)
m = γmI

(c)
m

Ṡ(c)
s = −(1− δc)βIeS(c)

s

Ė(c)
s = (1− δc)βIeS(c)

s − εE(c)
s

Ȧ(c)
s = εE(c)

s − σA(c)
s

İ(c)s = σA(c)
s − ηI(c)s

U̇ (c) = ηI(c)s − (γs + α)U (c)

Ṙ(c)
s = γsI

(c)
s

Ṡ(r)
s = −(1− δr)βIeS(r)

s

Ė(r)
s = (1− δr)βIeS(r)

s − εE(r)
s

Ȧ(r)
s = εE(r)

s − σA(r)
s

İ(r)s = σA(r)
s − ηI(r)s

U̇ (r) = ηI(r)s − (γs + α)U (r)

Ṙ(r)
s = γsU

(r)
s .
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The number of deaths is obtained by

Ḋ = α (U (c) + U (r)).

Appendix A.2. Compact version

Although all compartments are needed, whether it is for the purpose of compu-

tations (see the definition of Ie) or for tracking the numbers in each category,

the model may be written in a more compact form for convenience:

Ṡ(r) = −(1− δr)βIeS(r)

Ė(r) = (1− δr)βIeS(r) − εE(r)

Ṡ(c) = −(1− δc)βIeS(c)

Ė(c) = (1− δc)βIeS(c) − εE(c)

Ȧ = εE − σA

İm = σAm − γmIm

İs = σAs − ηIs

U̇ = ηIs − (γs + α)U

Ṙm = γmIm

Ṙs = γsIs

The number of deaths is obtained by

Ḋ = αU.

Computed parameters. The initial number of susceptibles S0 is computed as

follows:

S0 = N0 − (E0 +A0 + I0 +R0 + U0),

and the transmission rate β is given by the following formula:

β =
R0

Sinit

1

p(σ−1 + γ−1m ) + (1− p)(σ−1 + η−1)
,

20



which can be obtained by stability analysis.19 Here Sinit stands for the initial

number of susceptible people for the period during whichR0 has been estimated.305

As all estimates for R0 have been obtained for the period prior to lock-down,

we chose Sinit = N0 where N0 is the total number of people in the population

of interest.

Appendix A.3. Simulations

All simulations were run using Python. The number of time discretisation points310

per day was fixed at 500.

A given strategy of gradually relaxing restrictions is defined by N fractions of

individuals put in the low-risk group

(ρ0, ρ1, . . . , ρN−1),

together with the times at which the policy changes

(T0, T1, . . . TN−1, TN )

with T0 = 0 and T = TN a final horizon of interest.

The corresponding solution

y = (S(r)
m , E(r)

m ,A(r)
m , I(r)m , R(r)

m , S(c)
m , E(c)

m , A(c)
m , I(c)m , R(c)

m ,

S(c)
s , E(c)

s , A(c)
s , I(c)s , U (c), R(c)

s , S(r)
s , E(r)

s , A(r)
s , I(r)s , U (r), R(r)

s ),

was computed up until the final time T - further details below.

Each ρi uniquely determines how many people will be considered to be high or

low risk, through

(1− qFP
i )p+ qFN

i (1− p) = ρi.

Assume that the solution at time Ti has been computed for a given i. Since the

number of individuals in the low-risk group changes at time Ti, the ODE must315

be integrated for a corrected initial condition on the interval [Ti, Ti+1].

This initial condition was obtained from reallocating people depending on their

new labelling. Denoting yold and ynew the value of y(Ti) before and after rela-
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belling, the new value is given as a function of the previous one by

ynewj = (1− qFP
i )(yoldj + yoldj ), j = 1, . . . , 5

ynewj+5 = qFP
i (yoldj + yoldj ), j = 1, . . . , 5

ynewj = (1− qFN
i )(yoldj + yoldj ), j = 11, . . . , 16

ynewj+6 = qFN
i (yoldj + yoldj ), j = 11, . . . , 16.

Appendix A.4. Further details for Figure 2

The number of samples for the prior distribution for p and the initial number

of exposed/asymptomatic/infected at the beginning of lock-down E0 +A0 + I0

was set at n = 10 000 (resp. 100 000 for robustness when computing means).320

This led to around 1 300 (resp. 13 000) posterior samples as the acceptance rate

was at 13%. In order to reduce the parameter space, we have estimated the total

number of people exposed/asymptomatic/infected and inferred the number in

each state by using the fractions of the mean time spent in each category, as

given in Table 1.325

In all figures showing the evolution of the number of people in ICU, the initial

condition E0 + A0 + I0 and the proportion of people p not requiring ICU were

sampled according to their posterior distribution.

Subsequent 95% confidence intervals were derived by removing the 2 · 5% and

2·5% upper and lower values for the computed number of ICU beds, respectively.330

Appendix A.5. Synthetic risk prediction distributions

For all figures, the risk prediction was obtained from synthetic data. Distri-

butions for people having critical symptoms requiring ICU and people having

milder symptoms were assumed to follow Beta-distributions.

More precisely, denoting am, bm and as, bs the parameters for the respective335

distributions for people with mild symptoms and for people with severe symp-

toms, we fixed bs = am = 2 and made the other two parameters vary from

as = bm = 2 · 5, with a maximum at as = bm = 6 · 5 used for Figures 3 and 4.
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In Figures 2, 5 and Table 3, no model refers to am = bm = as = bs = 1, low

AUC model refers to bs = am = 2, as = bm = 3 and high AUC model refers to340

bs = am = 2, as = bm = 5.

Appendix A.6. Further details on Figures 3, 4, 5 and Table 3

Since Figures 3, 4, T and Table 3 require grid searches, we did not sample

according to the posterior distribution for each scenario, but rather computed

mean values in order to ease the computational burden.345

March 17: For March 17, simulations are obtained as follows:

• the initial condition for ICU beds is known, and we used the estimate for

the total number of infected people at that date. With our notations, the

number E0 +A0 + I0 +R0 is about 2.6.106 people.11 We only needed an

estimate for E0 + A0 + I0 and we did so by averaging over the posterior350

for this variable,

• p was taken as the mean along posterior samples,

• the ODE was then integrated on T = 200 days.

May 11: For May 11, simulations were obtained as follows:

• sampling according to the posterior for p and E0+A0+I0, and integrating355

the ODE system from March 17 to May 11, we obtained a sample of initial

conditions for May 11, of which we took the average,

• the ODE was then integrated on T = 200 days.

Figure 5 and Table 3: Table 3 computes the minimal possible time the whole

population may be in low isolation, without breaking the ICU constraint of360

7 250 beds with a 2 000 bed margin taking into account typical sizes of 95%

confidence intervals. The minimal time was computed by searching for strategies

where times of (gradual) relaxations are chosen every month, and percentages

of people in low isolation are multiples of 5%. The initial percentage of people

in low isolation is always chosen to be the highest possible.365
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Appendix B. Risk Prediction Models

The purpose of this section is to provide details about the practical use of

ROC curves to calibrate the discrimination threshold in the personalised risk

predictions. The key objective is to target the individuals at highest risk and

apply differential policies to protect them from the risk of infection. Assuming370

that there is a constraint on the resources (for instance the number of ICU beds)

and that even without constraints intensive care may not prevent death of all

patients admitted (mortality rates for patients with mechanical ventilation may

be higher than 50%), the questions underlying the implementation of large-scale

risk predictions are the following: (i) how to rank the population with respect375

to their risk (e.g., of being eventually transferred to ICU), (ii) how to select the

threshold value on this risk in order to further prevent individuals deemed at

high risk being in contact with other individuals who may infect them, (iii) how

sensitive will these estimates (ranking, threshold) be w.r.t. to sampling bias and

to prediction accuracy. Here we only discuss the practical aspects related to (i)380

and (ii), and briefly comment on the sources of uncertainty (iii).

Building a personalised risk predictions. Personalised risk predictions are build

upon past data which correlate individually a vector X of known factors with

the outcome Y materialising the risk (e.g. the patient needing to be transferred

to the intensive care unit, ICU) which is represented as a binary event (Y = +1385

is a positive instance vs. Y = −1 is a negative instance). Such data are

usually obtained after clinical studies. The fraction of high risk individuals in

the population is denoted by p = P(Y = −1). Typical examples of methods

to estimate personalised risk predictions are, for example, logistic regression

in parametric statistics, or random forests, regularisation methods, or bipartite390

ranking algorithms in machine learning. In order to compare different estimation

strategies, it is standard to assess performance using the ROC curve,22 defined

as the parametric curve which maps, for a given risk prediction level s, each

threshold value t to a point in the unit square with coordinates
(
P(s(X) > t |

Y = −1),P(s(X) > t | Y = +1)
)

(plot of the true positive rate against the false395
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positive rate).

Discriminating high risk individuals. Personalised risk predictions can be

used to discriminate high versus low risk individuals based on the knowledge

of individual values of relevant factors such as comorbidities. The decision is

binary and it is taken after having calibrated the threshold t with respect to400

control parameters of a policy which are essentially driven by the constraints

on the resources. Such constraints are for example: (a) the ICU capacity, which

induces a constraint on the precision P(Y = 1 | s(X) > t) and such quantity is

directly related to the true positive rate thanks to the Precision-Recall curve, or

(b) the economic and psychological consequences of isolation measures on the405

population, which gives a constraint on P(s(X) > t).24

Sources of uncertainty. The previous estimates (risk predictions, decision thresh-

old) are subject to uncertainties which can be due to sampling bias (e.g. clinical

trial data used are not reflecting population data or electronic medical records

failing to account for the part of the population who was never admitted to the410

hospital) or methodological bias (model misspecification, suboptimal machine

learning/statistical method used). In order to provide statistical guarantees on

the estimators obtained, it is necessary to compute confidence bands on the

estimated ROC curve which will then lead to explicit confidence bands on the

decision parameters of the risk prediction strategy. Typical approaches to derive415

confidence bands are to perform error propagation on distribution parameters

(in a parametric framework), or to generate several ROC curves and Precision-

Recall curves through resampling and provide some bootstrap estimate of the

confidence band.25 Resampling strategies may include label flipping (prediction

uncertainty), sample perturbation or shifting (sampling bias). Lastly, the qual-420

ity of a prediction model was assessed using AUC; other measures may be used

for ranking based on risk.26
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