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Abstract

Background: In mid April 2020, with more than 2 · 5 billion people in the

world following social distancing measures due to COVID-19, governments are

considering relaxing lock-down. We combined individual clinical risk predictions

with epidemic modelling to examine simulations of isolation and exit policies.

Methods: We developed a method to include personalised risk predictions in

epidemic models based on data science principles. We extended a standard

susceptible-exposed-infected-removed (SEIR) model to account for predictions

of severity, defined by the risk of an individual needing intensive care in case

of infection. We studied example isolation policies using simulations with the

risk-extended epidemic model, using COVID-19 data and estimates in France

as of mid April 2020 (4 000 patients in ICU, around 7 250 total ICU beds occu-

pied at the peak of the outbreak, 0·5% percent of patients requiring ICU upon

infection). We considered scenarios varying in the discrimination performance

of a risk prediction model, in the degree of social distancing, and in the severity
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rate upon infection. Confidence intervals were obtained using an Approximate

Bayesian Computation approach. The framework may be used with other epi-

demic models, with other risk predictions, and for other epidemic outbreaks.

Findings: Based on the data for France as of mid April 2020, simulations in-

dicated that an exit policy considering clinical risk predictions starting on May

11, as planned by the government, could enable to immediately relax restric-

tions for an extra 10% (6 700 000 people) or more of the lowest-risk population,

and consequently relax the restrictions on the remaining population up to two

times (or several months) faster, with only a small proportion of the popula-

tion remaining in isolation for an extended period of time – while abiding to

the current ICU capacity. In contrast, implementing the same exit policy with-

out risk predictions would exceed the ICU capacity by a multiple. Sensitivity

analyses showed that when the assumed percentage of severe patients among

the population decreased, or the prediction model discrimination improved, or

ICU capacity increased, policies based on risk models had a greater impact

on the results of epidemic simulations. At the same time, sensitivity analyses

also showed that differential isolation policies require that higher risk individu-

als comply with recommended restrictions. In general, our simulations showed

that risk prediction models could always improve policy effectiveness, keeping

everything else constant, in line with value of information arguments, even for

models with moderate discrimination power.

Interpretation: Clinical risk prediction models should be considered to man-

age outbreaks using a framework as the one developed. They can inform per-

sonalised isolation policies, for example by gradually restricting (relaxing) isola-

tion from the highest (lowest) to the lowest (highest) predicted risk individuals,

when such policies are considered. This may lead to both safer and faster out-

comes than what can be achieved without such prediction models. They enable

personalisation of policies, which are known to improve effectiveness in other

non-healthcare contexts.

Funding: No funding was used for this research.

2



Research in context

Evidence before this study

Several countries have implemented non-pharmaceutical interventions based on

social distancing and isolation measures in order to limit the spread of COVID-

19. There has been limited differentiation in the degree of isolation measures, ex-5

cept for those critical for the functioning of the healthcare system and other key

services. There is limited evidence about the impact of relaxing these measures

as this has happened only recently and in only a few countries. Investigating the

potential impact of differential restrictions depending on medical factors, such

as the risk of severe symptoms if infected by Sars-Cov-2, may inform policies10

for imposing or relaxing isolation policies when these are considered.

Added value of this study

This study investigates incorporating clinical risk predictions in epidemic mod-

els, allowing to explore isolation policies that consider individual clinical risks

using simulations.15

Implications of all the available evidence

Epidemic simulations of isolation policies that consider predicted clinical risks

in order to differentiate restrictions depending on risks indicate the feasibility

of new, possibly gradual, policies that may be riskier to implement without

undertaking this type of risk-based approach.20
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1. Introduction

As of April 2020, many countries have adopted non-pharmaceutical inter-

ventions, such as isolation restrictions,1 to control the spread of COVID-19.

Epidemic models have been used to inform such policies.2,3, 4 Governments

now consider relaxing these restrictions. Immunity tests5 and technology6 may25

support such policy decisions. We considered an application of predictive tech-

nologies, such as machine learning, that can be used to better understand out-

breaks using epidemic simulations: using personalised predictions of severity

risk, defined as requiring ICU if infected, in epidemic simulations to examine

differential risk based isolation policies. Other clinical risks can be considered30

similarly.

We extended standard epidemic models, namely a version of SEIR,7 to in-

corporate personalised risk predictions. Using simulations, we investigated how

prediction models for patient severity may inform policy in two scenarios. First,

when there is an ongoing outbreak as it was the case in France on the 17th35

of March, 2020, when lock-down started. Second, when the outbreak has been

curbed by lock-down and progressive loosening of isolation policies (”exit”) may

take place, as planned in France starting from the 11th of May, 2020.

There has already been research indicating differential impact of COVID-

19 across patients, for example depending on hypertension, diabetes or other40

factors,8,9, 10 but there is currently no standard risk prediction model consid-

ering all factors, although some early versions are available.11,12 Therefore we

assumed hypothetical risk prediction models and studied the sensitivity of the

simulation results with respect to model discrimination.

To populate the models, we used available COVID-19 estimates and data45

from France as of mid April 2020.13 At the time, there were about 4 000 beds

occupied by people with COVID-19, with a peak at 7 148 people in intensive

care, to be compared to the overall roughly 10 000 capacity recently reached

by the French health system. We used current estimates with a reproduction

number value of R0 = 3 · 3 prior to lock-down, and an estimate of 2 · 5 million50
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people who had been infected (immune or infected at the time) when it started

on March 17.14

Simulations indicated that, keeping other factors constant, using risk pre-

dictions can allow lower percentage of the population under stricter isolation

restrictions, or equivalently differential relaxing of restrictions earlier or safer.55

The results were robust for a wide range of model discrimination assumptions,

and stronger when the proportion of severe cases in the population was lower.

Sensitivity analysis was also performed on 2 parameters capturing the degree of

social distancing in the high and low risk populations, and on the availability

of ICUs.60

Related work

Since its outbreak in December 2019, a number of papers have attempted

to forecast the COVID-19 spread15 using epidemic models. The most common

approach uses compartmental models,16 i.e. assumes that the population is

divided into compartments, relative to their infection state, and that individuals65

belonging to the same compartment exhibit similar behaviour.

Among them, the susceptible-infected-removed (SIR) model is perhaps the

most commonly adopted, mainly due to its simple computation and quick adap-

tation to new diseases, as it relies on solving a set of ordinary differential equa-

tions (ODEs). Each individual typically progresses from healthy (’S’ for suscep-70

tible to get infected), to infectious (’I’) and finally to the recovered state (’R’)

also seen as a permanent immunity state (at least, at a reasonable time scale).

In the COVID-19 case, consistent SIR variants have been used as alternatives

to the standard model, as they make for a better fit of the actual diffusion of the

virus. In particular, the SEIR model includes, in addition to the standard states,75

an incubation state (’E’ for exposed/latent).17,18 Finer versions have been also

explored, namely SEAIR (’A’ for asymptomatic infectious),19,1 SEIR-SD (’SD’

for social distancing),20,21 and many others,22,23,24 each of which implies a

subdivision of the standard S, I and R compartments.

Accurate estimation of the model parameters and data collection are critical80
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for the aforementioned models, especially as the number of compartments (and

therefore of parameters) increases.25,26 Two other approaches, though less com-

monly used in the COVID-19 case, are agent-based,27,28,3 and network-based,29

the latter being intermediate in complexity between agent-based and compart-

mental models.85

Numerous containment/lock-down strategies have been proposed to flatten

the predicted curve of the number of severe cases by means of non-pharmaceutical

interventions such as strict quarantine,30 social distancing, strict hygiene, pop-

ulation screening, etc.4,31,19,32 Although social distancing might be applied to

each individual in a similar way, a different policy consists of adjusting it to90

the seriousness of the symptoms one has if infected.33,34,35 However, severity

of symptoms upon infection is not known a priori and, at best, can only be pre-

dicted. Such predictions may be possible using predictive models, for example

using data science and machine learning methods and principles, based on data

related to infection symptoms.11,1295

2. Methods

Risk-Extended SEAIR Model

The model introduced extends the standard SEAIR model in two directions.

First, it considered an additional compartment, denoted by U , to account for

people admitted in ICU. Second, it considered that any individual may fall100

into four different categories depending on the risk prediction made (high or

low) and the isolation restrictions recommended (high or low). More precisely,

each individual may be considered: (a) high risk and submitted to high isola-

tion recommendations (true positive), (b) high risk and submitted to low iso-

lation restrictions (false negative), (c) low risk and submitted to high isolation105

recommendations (false positive), (d) low risk and submitted to low isolation

restrictions (true negative). As a whole, this led to 22 possible compartments.

We considered that the control parameter of a policy applying differentiated

isolation restriction w.r.t. to the predicted risk of developing severe symptoms is
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the proportion ρ of individuals categorised in the low isolation restrictions group.

We denote with p the fraction of individuals with symptoms not requiring ICU

if infected. Depending on the accuracy of the prediction model, the rates of

false positives and false negatives, denoted by qFP and qFN respectively, vary

but obey the following equation, for given p and ρ:

(1− qFP )p+ qFN (1− p) = ρ. (1)

We assumed that people change their behaviour depending on the restrictions

introduced by the differentiated policy, modelled using two behavioural variables

denoted by δr (for the group with low isolation restrictions/low predicted risk)

and δc (for the group with high isolation restrictions/high predicted risk), in

[0, 1], with δr < δc. Variables δr and δc capture a level of protection, which

may aggregate several factors such as respiratory and hand hygiene, how much

a person has lowered the number of exits from home and the social interactions,

etc. How individuals of a given category reduce their contacts not only depends

on δc and δr but also on the proportion ρ of people with less strict restrictions.

The decrease in contact rates, cr and cc for the two groups, may be obtained

with the following formula:

1− ca = (1− δa) ((1− δr)ρ+ (1− δc)(1− ρ)) , a ∈ {r, c}.

These parameters have been used in the literature modelling the current lock-

down.36,13 We also denote by c and δ the containment and protection pa-

rameters after a complete lock-down as it happened in France on March 17110

(c = 1− (1− δ)2).

The full description of the ODE model is given in the Appendix, a simplified

version of which is presented in Figure 1.

Estimation of key parameters

When fitting available data, the key parameters driving the simulation re-115

sults are: the fraction p of individuals with mild symptoms if infected, the

reduction of contact rates during lock-down c, and the numbers of people ex-

posed/asymptomatic/infected at the beginning of lock-down, on March 17. In
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Figure 1: Simplified compartmental model used. Corresponding notations are given in the

Appendix.

order to reduce the parameter space, we have estimated the total number of

people exposed/asymptomatic/infected and inferred the number in each state120

by using the fractions of the mean time spent in each category, as given in Ta-

ble 1. These parameters were estimated by comparing model predictions to the

actual data of ICU occupation from March 17 to April 23 in France.

Uniform draws for the reduction of contact rates c during lock-down, between

60 and 80%,13 led to very peaked estimates at about c = 69% regardless of p125

and the total number of people exposed/asymptomatic/infected.

Keeping this value for c, we used the Approximate Bayesian Computation

method (ABC)37 to derive estimates and confidence intervals for the other two

parameters of interest. The ABC method was implemented with the mean

standard error as a distance function,38 and an acceptance rate of 20%, which130

corresponds to an error of about 1 250 beds on average over the 38 data points.

We assumed the prior distributions to be independent with the following choices:

Beta distribution for p with parameters 2 390, 11 · 29, fitting the mean and 95%

confidence interval observed,14 and uniform distribution for the total number

of people exposed/asymptomatic/infected on March 17th with range between 0135

and 2 million.

Using personalised Risk Predictions

A policy based on simulations with a risk-extended epidemic model requires

identifying individuals at highest risk of severity (or other risks) and corre-
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spondingly advising them to remain in strict isolation, while relaxing isolation140

restrictions for individuals at lower risk. Such identification is done by risk-

“scoring” models using common data science and machine learning techniques:

logistic regression, random forest, and the likes. A standard metric to assess

the discriminating power of such models is the Area Under the Curve (AUC) of

the Receiver Operating Characteristic (ROC) curve.39145

Combining the model’s ROC curve, with the more strictly isolated fraction,

1 − ρ, and the prevalence of severe symptoms in the population, p, results in

the false positive and false negative error rates qFP , qFN . When ρ is small, the

number of negative predictions is small (most people are in strict isolation), but

the number of false negatives is also small, meaning that the vast majority of150

people in low isolation conditions will not experience severe symptoms.

A key question is to select a tolerable fraction of people (ρ) being submitted

to lower isolation as a function of the performance of a risk prediction model so

that to subject only few people to stricter isolation, yet not to violate the ICU

bed capacity due to the errors made by the model in identifying such people.155

Technical details are provided in the Appendix.

Summary of Key Parameters and Data

The simulations were run with SEAIR parameters for the mean time spent

in different phases of the disease, the basic reproduction number R0, and the

transmission rate β, as listed in Table 1.160

For the purpose of illustration, the class-conditional distributions w.r.t. to

high/low risk were modelled with Beta distributions. Risk predictions, ROC

curves and AUC were derived accordingly.

Parameters for the initial conditions S0, E0, A0, I0, U0 and R0 were taken

depending on the investigated scenario: either one with “day 0” of March 17 –165

the first day of country-wide lock-down in France, or one with “day 0” of May

11 – the announced day for the beginning of the post lock-down exit.
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Table 1: Simulation parameters used with relevant 95% confidence intervals.

Symbol Description Value(s) Reference

N0 total initial number of people in the population 6 · 7 107

S0 total initial number of infected people in the population computed

E0 total initial number of exposed people in the population case-dependent estimated

A0 total initial number of asymptomatic people in the population case-dependent estimated

I0 total initial number of infected people in the population case-dependent estimated

U0 total initial number of people in ICU case-dependent known/estimated

R0 total initial number of immune people in the population case-dependent 14

Imax hospital capacity for COVID-19 ICU beds 7 250 assumed

p proportion with mild symptoms (prior) 0 · 9953 [0 · 9918− 0 · 9975] 14

β transmission rate computed 36

R0 basic reproduction number 3 · 3 13

ε waiting rate to viral shedding 1/3 · 7 day−1 13

σ waiting rate to symptom onset 1/1.5 day−1 13

η waiting rate from symptom onset to ICU 1/7 day−1 14

γm recovery rate from mild symptoms 1/2 · 3 day−1 13

γs recovery rate for people in ICU 1/17 day−1 14

α mortality rate for people in ICU 1/11 · 7 day−1 14

3. Results

Figure 2 displays the number of individuals requiring an ICU bed w.r.t.

time t. The March 17 scenario is in the left column, the May 11 scenario is in170

the right. Two risk models are considered: one with AUC of 95 · 99% (top row)

and another, with AUC of 75 · 71% (bottom row), bracketing the performance

of initial risk models developed for COVID-19.11,12

In each plot, ρ represents the maximal percentage of the population that

is submitted to lighter restrictions (δr = 0 · 1) in such a way that the 95%175

confidence interval of the number of individuals requiring an ICU bed when

using the risk prediction model (green and orange curves) remains below the

maximum number of ICU beds assumed (7 250). In these first simulations, the

rest of the population is confined with stricter restrictions, δc = 0 · 9. Finally,

the red curves show the number of individuals requiring an ICU bed w.r.t. time180

if the same ρ of population is in lower isolation, but selected at random without

any risk prediction model.

Figure 2 shows that a high-AUC model (green curve) allows for having 61%
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in low isolation (δr = 0 · 1, corresponding to a decrease of social interaction by

47%) from March 17 on, while a low-AUC model (orange curve) enables only185

51%. In France, with a population of 67 million, these percentage differences

correspond to 6 700 000 people. Plots for lock-down exit strategies (May 11)

investigate the effect of the same risk prediction accuracies. All differences (61%

vs 51% for March 17, 72% vs 60% for May 11) are statistically significant at the

5% level. Lastly, without a risk prediction model, the ICU beds demand greatly190

exceeds the current capacity at either ρ.

high AUC model

no model

(a) ρ = 61%

high AUC model

no model

(b) ρ = 72%

low AUC model

no model

(c) ρ = 51%

low AUC model

no model

(d) ρ = 60%

Figure 2: Number of individuals requiring an ICU bed w.r.t. time t (days). Left column starts

on March 17 (the day of the initial lock-down in France), right column starts on May 11 (the

day when lock-down ends). The dotted line on the left column shows the actual data for

France from March 17 to April 23. Top row uses a risk prediction model with AUC 95 · 99%,

bottom row uses a risk prediction model with AUC 75 · 71%.

Figure 3 presents sensitivity analysis of the difference between the max-

imal percentage of people which may be in low isolation without exceeding
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ICU capacity for several risk-prediction models, relative to the same maximal

percentage, but with no risk-prediction model. The results are shown for sce-195

narios both for March 17 and for May 11. Sensitivity is tested with respect to

the discrimination performance of the risk prediction models used for the risk-

extended SEAIR simulations and the degree of isolation of the more strictly

isolated population. We also alter the degree of isolation for the less strictly

isolated population across different plots.200

As expected, the higher the discrimination of the prediction model, the big-

ger the difference. The degree of isolation restrictions has different effects de-

pending on who is considered: for the more strictly isolated population (the

higher risk one) the stricter the isolation (parameter δc) the larger the impact

of the risk prediction model. For the less strictly isolated population (the lower205

risk one – δr = 0 · 1 or 0 · 2 in Figure 3), the results are more intricate. It is

also better to isolate more strictly, except when the risk prediction model is of

very high quality and people of high risk are in stricter isolation. It is therefore

important to both assume in models and encourage in practice (for example

by focusing distribution of masks and other resources, strictly isolating nursing210

homes, etc.) realistic isolation practices for the high risk population.

Sensitivity analyses regarding the percentage p of the population with se-

vere symptoms upon infection as well as the number of ICU beds available are

included in the Appendix. As expected, the lower p the less the impact of a risk

prediction model keeping AUC constant: given the limited ICU – and possibly215

other – resources, larger p allows for a smaller range of percentages of the popula-

tion being under less strict isolation restrictions, making all differences between

policies smaller in absolute terms. On the other hand, the more ICUs avail-

able the larger the impact of using a risk-prediction model, keeping everything

else constant. More available resources allow for a larger range of percentage220

of people in less strict isolation making the differences between policies – risk

based vs not – larger in absolute terms. Note that in all cases a risk prediction

model approach allows for less people in strict isolation: this is consistent with

value of information related arguments, as any test provides information which
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Figure 3: Difference in maximum possible percentage of people in low isolation

without hospital saturation. Maximal number of people in the low isolation group without

exceeding the limit of 7 250 beds, with a margin of 2 000 beds as imposed by typical 95%

confidence intervals, compared to the case of not using a risk prediction model. Plotted

as a function of the AUC of a risk prediction model and the protection level δc for people

recommended to be in isolation with stricter restrictions.

can be beneficial assuming everything else (including behavioural aspects) kept225

constant.

Finally, we explored examples of gradual shift of the population from stricter

to less strict isolation restrictions. In the simulations, using the risk-enhanced

SEAIR model and gradually releasing the population from the lowest to the

highest predicted risk individuals allowed for a gradual increase of immunity230

in the population (results in Appendix) in a safer way than following the same

policy without any risk prediction model.

Figure 4 shows example gradual policies, designed to ensure that the 95%
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confidence interval of the simulated infections does not exceed the ICU con-

straint. As in Figure 2, confidence intervals are computed by sampling according235

to the posterior distribution for p and the total number of people who had been

infected on March 17. The insights complement those for single release policies.

Simulations indicated that with risk-prediction models, a smaller percentage of

the population may need to be subject to strict isolation policies. One could also

reach the moment when isolation measures could be lifted sooner. For example,240

considering the May 11 exit using the high-AUC model and without exceeding

the ICU capacity at any point, per Figure 4b, 72% of population could be in low

isolation on ”day 0” (May 11), followed by another 25% on ”day 70” (July 20),

and the remaining 3% on ”day 120” (September 8). Implementing the same

exit schedule without a model would lead to ICU demand of over 25 000 beds.245

In contrast, a capacity-abiding exit strategy without a model (Figure 4f) would

put only 51% of population in low isolation on ”day 0” (May 11), another 11%

on ”day 80” (July 30), additional 18% on ”day 180” (November 7), and the

last 20% only on ”day 270” (February 5, 2021), – or 5 months later than the

similar risk-model-based strategy. A similar pattern is observed for planning250

the initial lock-down on March 17, and the insight qualitatively remains when

a lower-quality prediction model is used. For both scenarios, simulation of the

percentage of the population that becomes immune over time are shown in the

Appendix. Because model-based policies release larger portions of the low-risk

population and do so faster, they also achieve the levels of ”herd immunity”255

(1 − 1
R0
≈ 0.7) faster, allowing for the release of the high-risk population ear-

lier as well. In other words, assuming everything else constant, the simulations

indicated that isolation restriction may be relaxed faster or safer using risk

prediction models, when such policies are considered.

4. Discussion260

Data-driven prediction models, which made large impacts in many areas the

past decades, can enable, among others, personalisation of policies for manag-
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high AUC model

no model

(a) ρ = [0.61, 0.85, 1] and t = [60, 120]

high AUC model

no model

(b) ρ = [0.72, 0.97, 1] and t = [70, 120]

low AUC model

no model

(c) ρ = [0.51, 0.66, 0.85, 1] and t = [80, 160, 230]

low AUC model

no model

(d) ρ = [0.6, 0.8, 1] and t = [90, 180]

no model

(e) ρ = [0.45, 0.55, 0.71, 1] and t = [80, 180, 290]

no model

(f) ρ = [0.51, 0.62, 0.8, 1] and t = [80, 180, 270]

Figure 4: Examples of gradual schedules of relaxing isolation restrictions with model-based

risk predictions. Vectors t = [t1, t2] give the population release schedules ρ = [ρ1, ρ2] as

follows: ρ1 · 100% of the population is released on day 0, then (ρ2 − ρ1) · 100% are released

on day t1, etc. The left column starts with day 0 on March 17, right column starts with day

0 on May 11. The ”No model” lines in sub-figures (a) - (d) correspond to situations where

the schedule is constructed based on the risk prediction model, but is implemented without

the model, and in sub-figures (e) and (f) they correspond to situations where the schedule is

constructed without a risk prediction model.
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ing epidemic outbreaks. We studied how prediction models for the severity of

symptoms upon infection could be used in epidemic simulations to study the

effect of non-pharmaceutical policies, particularly isolation restrictions, during265

an outbreak. We used COVID-19 data from France as of mid April 2020 as an

example, and provided sensitivity analyses to understand how different param-

eters could impact epidemic simulations.

Simulations indicated that considering differential relaxation of isolation re-

strictions depending on predicted severity risk can decrease the percentage of270

the population in France under strict restrictions by 10% or more relative to not

using such risk predictions, even when a moderate quality prediction model is

available (e.g., AUC below 0 · 8). This result was robust to changes in risk pre-

diction accuracy, percentage of severe-if-infected cases in the population, avail-

ability of resources (such as ICUs), and social distancing. Benefits increased275

when risk prediction accuracy increased, percentage of severe-if-infected cases

in the population decreased, availability of resources (such as ICUs) increased,

and social distancing increased. All results were developed using hypothetical

risk prediction models for COVID-19, with discrimination ranges in line with

early indications from initial models developed as of mid April 2020.11,12280

The proposed approach can also be adopted for other epidemic models, and

personalisation can further be explored using this approach for policies other

than isolation restrictions. Moreover, predicted risk based isolation restrictions

can be combined with other policies such as test-based ones,5,6 possibly also

using other relevant prediction models, to limit the impact of outbreaks such as285

COVID-19.

Several caveats should be noted. First, epidemic models – and the conclu-

sions they may support – rely on a number of parameters, for example virus

incubation and recovery times and the basic reproduction number R0, while the

effects of policies also depend on healthcare system factors such as the avail-290

ability of relevant resources (e.g., trained personnel), or behavioural aspects

of medical personnel and of the population. Second, the quality of a predic-

tion model was assessed using AUC; other measures may be used for ranking
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based on risk.40 Third, making policy decisions using either standard models

or risk-enhanced models studied in this work require careful context-specific ro-295

bustness analysis. However, using risk prediction models can at worst make no

significant difference while at best improve policies by a significant margin, with

appropriate behavioural parameters. Finally, risk-predictions based policies us-

ing epidemic simulations should be developed taking into account behavioural

aspects that may prove any model predictions wrong.300

In conclusion, combining prediction models using data and data science

and machine learning principles may improve outbreak management policies

and should be considered when developing isolation policies. We studied how

the benefits of these models depend on a number of outbreak, model, and be-

havioural parameters. As governments are considering relaxing isolation policies305

for COVID-19 in April 2020, models that use already known factors that affect

the severity of symptoms of COVID-19 patients may prove useful.
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Appendix A. ODE model

Appendix A.1. Complete version

We first break down the 5 compartments S, E, A, I and R in 2 subcategories,335

depending on whether people are going to have mild (”m”) or severe (”s”)

symptoms requiring ICU, upon infection. An added compartment for people in

the ”s” category is that of people in ICU, denoted U .

These people are also labelled depending on whether they are considered

low-risk and submitted to low isolation (”r”), or are considered high-risk and340

recommended to be in high isolation (”c”).

The notations are as follows: for a given category Q ∈ {S,E,A, I, U,R}, we

use superscripts for risk prediction, and subscripts for actual status. In other

words:

• Q(r)
m : low risk and submitted to low isolation restrictions, i.e. true nega-345

tive.

• Q(c)
m : low risk and submitted to high isolation recommendations, i.e. false

positive.

• Q(r)
s : high risk and submitted to low isolation restrictions, i.e. false neg-

ative.350

• Q(c)
s : high risk and submitted to high isolation recommendations, i.e. true

positive.

We also denote in category Q ∈ {S,E,A, I, U,R}

• Q(r) = Q
(r)
m +Q

(r)
s : submitted to low isolation restrictions,

• Q(c) = Q
(c)
s +Q

(c)
m : submitted to high isolation recommendations,355

• Qm = Q
(r)
m +Q

(c)
m : having mild symptoms if infected,

• Qs = Q
(c)
s +Q

(r)
s : requiring ICU if infected,

• Q = Qm +Qs = Q(r) +Q(c): total number of people in category Q.
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We define the effective number of contagious people as

Ie = (1− δr)(A(r) + I(r)) + (1− δc)(A(c) + I(c)).

The equations read

Ṡ(r)
m = −(1− δr)βIeS(r)

m

Ė(r)
m = (1− δr)βIeS(r)

m − εE(r)
m

Ȧ(r)
m = εE(r)

m − σA(r)
m

İ(r)m = σA(r)
m − γmI(r)m

Ṙ(r)
m = γmI

(r)
m

Ṡ(c)
m = −(1− δc)βIeS(c)

m

Ė(c)
m = (1− δc)βIeS(c)

m − εE(c)
m

Ȧ(c)
m = εE(c)

m − σA(c)
m

İ(c)m = σA(c)
m − γmI(c)m

Ṙ(c)
m = γmI

(c)
m

Ṡ(c)
s = −(1− δc)βIeS(c)

s

Ė(c)
s = (1− δc)βIeS(c)

s − εE(c)
s

Ȧ(c)
s = εE(c)

s − σA(c)
s

İ(c)s = σA(c)
s − ηI(c)s

U̇ (c) = ηI(c)s − (γs + α)U (c)

Ṙ(c)
s = γsI

(c)
s

Ṡ(r)
s = −(1− δr)βIeS(r)

s

Ė(r)
s = (1− δr)βIeS(r)

s − εE(r)
s

Ȧ(r)
s = εE(r)

s − σA(r)
s

İ(r)s = σA(r)
s − ηI(r)s

U̇ (r) = ηI(r)s − (γs + α)U (r)

Ṙ(r)
s = γsU

(r)
s .
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The number of deaths is obtained by

Ḋ = α (U (c) + U (r)).

Appendix A.2. Compact version

Although all compartments are needed, whether it is for the purpose of

computations (see the definition of Ie) or for tracking the numbers in each

category, the model may be written in a more compact form for convenience:

Ṡ(r) = −(1− δr)βIeS(r)

Ė(r) = (1− δr)βIeS(r) − εE(r)

Ṡ(c) = −(1− δc)βIeS(c)

Ė(c) = (1− δc)βIeS(c) − εE(c)

Ȧ = εE − σA

İm = σAm − γmIm

İs = σAs − ηIs

U̇ = ηIs − (γs + α)U

Ṙm = γmIm

Ṙs = γsIs

The number of deaths is obtained by

Ḋ = αU.

Computed parameters. The initial number of susceptibles S0 is computed

as follows:

S0 = N0 − (E0 +A0 + I0 +R0 + U0),

and the transmission rate β (computed in a situation without any policy aiming

at reducing contacts and at the very beginning of the epidemic) is obtained

through the following formula:

β =
R0

N0

γmσ

(γm + pσ)
.
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which follows from stability analysis, after neglecting the terms in 1− p since p360

is very close to 1.36

Appendix A.3. Simulations

All simulations were run using Python. The number of time discretisation

points per day was fixed at 500.

A given strategy of gradually relaxing restrictions is defined by N fractions

of individuals put in the low-risk group

(ρ0, ρ1, . . . , ρN−1),

together with the times at which the policy changes

(T0, T1, . . . TN−1, TN )

with T0 = 0 and T = TN a final horizon of interest.365

The corresponding solution

y = (S(r)
m , E(r)

m ,A(r)
m , I(r)m , R(r)

m , S(c)
m , E(c)

m , A(c)
m , I(c)m , R(c)

m ,

S(c)
s , E(c)

s , A(c)
s , I(c)s , U (c), R(c)

s , S(r)
s , E(r)

s , A(r)
s , I(r)s , U (r), R(r)

s ),

was computed up until the final time T - further details below.

Each ρi uniquely determines how many people will be predicted to be in

high or low risk, through

(1− qFPi )p+ qFNi (1− p) = ρi.

Assume that the solution at time Ti has been computed for a given i. Since

the number of individuals in the low-risk group changes at time Ti, the ODE

must be integrated for a corrected initial condition on the interval [Ti, Ti+1].

This initial condition was obtained from reallocating people depending on

their new labelling. Denoting yold and ynew the value of y(Ti) before and after
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relabelling, the new value is given as a function of the previous one by

ynewj = (1− qFPi )(yoldj + yoldj ), j = 1, . . . , 5

ynewj+5 = qFPi (yoldj + yoldj ), j = 1, . . . , 5

ynewj = (1− qFNi )(yoldj + yoldj ), j = 11, . . . , 16

ynewj+6 = qFNi (yoldj + yoldj ), j = 11, . . . , 16.

Appendix A.4. Further details on Figure 2 and 4370

The number of samples for the prior distribution for p and the initial number

of exposed/asymptomatic/infected at the beginning of lock-down E0 +A0 + I0

was set at n = 10 000, which leads to 2 000 posterior samples as the acceptance

rate was at 20%.

In all figures showing the evolution of the number of people in ICU, the375

initial condition E0 +A0 + I0 and the proportion of people p not requiring ICU

were sampled according to their posterior distribution.

Subsequent 95% confidence intervals were derived by removing the 2·5% and

2·5% upper and lower values for the computed number of ICU beds, respectively.

Appendix A.5. Synthetic risk prediction distributions380

For all figures, the risk prediction was obtained from synthetic data. Distri-

butions for people having critical symptoms requiring ICU and people having

milder symptoms were assumed to follow Beta-distributions.

More precisely, denoting am, bm and as, bs the parameters for the respective

distributions for people with mild symptoms and for people with severe symp-385

toms, we fixed bs = am = 2 and made the other two parameters vary from

as = bm = 2 (equivalent to not using a risk prediction model), with a maximum

at as = bm = 6 · 5 used for Figure 3.

In Figure 2, no model refers to am = bm = as = bs = 1, low AUC model

refers to bs = am = 2, as = bm = 3 and high AUC model refers to bs = am = 2,390

as = bm = 5.
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Appendix A.6. Further details on Figure 3

Since Figure 3 is obtained by grid search along the variables δc and the risk

prediction AUC, we did not sample according to the posterior distribution for

each scenario, but rather computed mean values in order to ease the computa-395

tional burden.

March 17: For March 17, simulations are obtained as follows:

• the initial condition for ICU beds is known, and we used the estimate for

the total number of infected people at that date. With our notations, the

number E0 +A0 + I0 +R0 is about 2.6.106 people.14 We only needed an400

estimate for E0 + A0 + I0 and we did so by averaging over the posterior

for this variable,

• p was taken as the mean along posterior samples,

• the ODE was then integrated on T = 200 days.

May 11: For May 11, simulations were obtained as follows:405

• sampling according to the posterior for p and E0+A0+I0, and integrating

the ODE system from March 17 to May 11, we obtained a sample of initial

conditions for May 11, of which we took the average,

• the ODE was then integrated on T = 200 days.

Appendix B. Risk Prediction Models410

The purpose of this section is to provide details about the practical use of

ROC curves to calibrate the discrimination threshold in the personalised risk

predictions. The key objective is to target the individuals at highest risk and

apply differential policies to protect them from the risk of infection. Assuming

that there is a constraint on the resources (for instance the number of ICU beds)415

and that even without constraints intensive care may not prevent death of all

patients admitted (mortality rates for patients with mechanical ventilation may
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high AUC model

low AUC model

no model

high AUC model

low AUC model

no model

Figure A.5: Percentage of people in the ’R’ compartment – immune – over time for the policy

examples in Figure 4. Left is for policies starting on March 17th (Figures 4(a, c, e)); right is

for policies starting on May 11th (Figures 4(b, d, f)). Note, ”herd immunity” is achieved for

March 17th (May 11th) at 1− 1
R0

≈ 0.7, which happens at approximately day 170 (140) with

the high-AUC model, day 300 (300) with low-AUC model, and not until day 400 (370) when

no prediction model is used.

be higher than 50%), the questions underlying the implementation of large-scale

risk predictions are the following: (i) how to rank the population with respect

to their risk (e.g., of being eventually transferred to ICU), (ii) how to select the420

threshold value on this risk in order to further prevent individuals deemed at

high risk being in contact with other individuals who may infect them, (iii) how

sensitive will these estimates (ranking, threshold) be w.r.t. to sampling bias and

to prediction accuracy. Here we only discuss the practical aspects related to (i)

and (ii), and briefly comment on the sources of uncertainty (iii).425

Building a personalised risk predictions. Personalised risk predictions are build

upon past data which correlate individually a vector X of known factors with

the outcome Y materialising the risk (e.g. the patient needing to be transferred

to the intensive care unit, ICU) which is represented as a binary event (Y = +1

is a positive instance vs. Y = −1 is a negative instance). Such data are430

usually obtained after clinical studies. The fraction of high risk individuals in

the population is denoted by p = P(Y = +1). Typical examples of methods

to estimate personalised risk predictions are, for example, logistic regression

in parametric statistics, or random forests, regularisation methods, or bipartite

ranking algorithms in machine learning. In order to compare different estimation435
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(a) March 17, p ∼ 0 · 995
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(d) May 11, p = 0 · 98

Figure A.6: Difference in maximum possible percentage of people in low isolation

without hospital saturation. Higher ICU capacity and varying p. Maximal number

of people in the low isolation group the limit of 15 000 beds, with a margin of 2 000 beds as

imposed by typical 95% confidence intervals, compared to the baseline case of not using a risk

prediction model. Plotted as a function of the AUC of the risk prediction model used, and

the protection level δc for people recommended to be in isolation. δr = 0 · 1 for all figures.

strategies, it is standard to assess performance using the ROC curve,39 defined

as the parametric curve which maps, for a given risk prediction level s, each

threshold value t to a point in the unit square with coordinates
(
P(s(X) > t |

Y = −1),P(s(X) > t | Y = +1)
)

(plot of the true positive rate against the false

positive rate).440

Discriminating high risk individuals. personalised risk predictions can be

used to discriminate high versus low risk individuals based on the knowledge

of individual values of relevant factors such as comorbidities. The decision is

binary and it is taken after having calibrated the threshold t with respect to
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control parameters of a policy which are essentially driven by the constraints445

on the resources. Such constraints are for example: (a) the ICU capacity, which

induces a constraint on the precision P(Y = 1 | s(X) > t) and such quantity is

directly related to the true positive rate thanks to the Precision-Recall curve, or

(b) the economic and psychological consequences of isolation measures on the

population, which gives a constraint on P(s(X) > t).41450

Sources of uncertainty. The previous estimates (risk predictions, decision thresh-

old) are subject to uncertainties which can be due to sampling bias (e.g. clinical

trial data used are not reflecting population data or electronic medical records

failing to account for the part of the population who was never admitted to the

hospital) or methodological bias (model misspecification, suboptimal machine455

learning/statistical method used). In order to provide statistical guarantees on

the estimators obtained, it is necessary to compute confidence bands on the

estimated ROC curve which will then lead to explicit confidence bands on the

decision parameters of the risk prediction strategy. Typical approaches to derive

confidence bands are to perform error propagation on distribution parameters460

(in a parametric framework), or to generate several ROC curves and Precision-

Recall curves through resampling and provide some bootstrap estimate of the

confidence band.42 Resampling strategies may include label flipping (prediction

uncertainty), sample perturbation or shifting (sampling bias).
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