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Abstract—In this paper, we present a method for automatically
segmenting the walls of retinal arteries in adaptive optics images.
To our best knowledge, this is the first method addressing this
problem in such images. To achieve this goal, we propose to model
these walls as four curves approximately parallel to a common
reference line located near to the center of vessels. Once this
line detected, the curves are simultaneously positioned as near
as possible to the borders of walls using an original tracking
procedure to cope with deformations along vessels. Then, their
positioning is refined using a deformable model embedding a
parallelism constraint. Such an approach enables us to control
the distance of the curves to their reference line and improve the
robustness to image noise. This model was evaluated on healthy
subjects by comparing the results against segmentations from
physicians. Noticeably, the error introduced by this model is
smaller or very near to the inter-physicians error.

Keywords: Active contours model, adaptive optics, ap-
proximate parallelism, retina imaging.

I. INTRODUCTION

Arterial hypertension (AH) and diabetic retinopathy (DR)
mainly and precociously affect the physiology and structure of
retinal blood vessels of small diameter (i.e. less than 150µm).
According to the Public Health Agency of Canada, AH and
DR affected 15 to 20% of the world’s adult population in 2009.
These modifications can result in a thickening or a narrowing
of walls and are predictive of end-organ damage such as stroke
or visual loss [1], [2]. For instance, the authors of [3] estimate
that 98% of visual damages could be avoided if DR was treated
in time. Accurate measurements such as WLR (Wall-to-Lumen
Ratio) are therefore necessary to better prevent the DR and the
complications of AH. However, classical fundus photographs
and Doppler-based measurements cannot capture such level of
details due to their limited spatial resolution [4].

Adaptive-Optics (AO) based cameras improve the lateral
resolution of fundus photographs, thus enabling the visualiza-
tion of microstructures such as photoreceptors [6], capillar-
ies [7] and vascular walls [8], noninvasively. In the present
study, the camera rtx1 [9] is used to acquire 2D images by
flood illumination at 10Hz using a 850nm LED light source
with a pixel-resolution of 0.8µm. Flood-illumination systems
usually produce noisy images making walls hardly visible.
A commonly used solution is to register these images and
average them to increase the signal-to-noise ratio [5]. In the
latter, blood vessels appear as dark elongated structures with a
bright linear axial reflection, over a textured background. Outer
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Figure 1: A mean image from [5] (left) and a detailed view of
an artery (right). The size of each image is indicated below.

borders of walls are however only visible along arteries and the
present study will therefore focus on them. Parietal structures
(arterial walls) appear as a gray line along both sides of the
lumen (blood column), with a typical thickness of about 15%
of the latter [10] (see Figure 1).

In this paper, we propose an automatic procedure for
segmenting arterial walls in a selected region of interest 1 in
the mean images produced by [5]. To our best knowledge,
this is the first method adressing this problem in such images.
This task is challenging for multiple reasons: (i) background
is highly textured, (ii) lumens are globally dark but with
significant intensity variation along them, (iii) axial reflections
may locally show discontinuities or poor contrast, (iv) outer
borders of walls are low-contrasted, (v) segments can be
locally blurred due to the geometry of the retina, and (vi)
deformations can occur along vessels in case of pathologies.

To overcome these difficulties, we propose a strategy
exploiting geometric, radiometric and topological a priori
information of vessels. More precisely, we model arterial walls
as four curves approximately parallel to a common reference
line located near to the axial reflection. Once this line detected,
the curves are simultaneously positioned as near as possible to
the borders of walls using a tracking procedure to cope with
deformations along vessels. Then, their positioning is refined
using an active contours approach [11] where curves evolve
towards large image gradients under a parallelism constraint.
Such an approach enables us to control the distance of the
curves to their reference line and improve the robustness to
image noise. Finally, we also want to mention that this work
has recently permitted us to establish relationships between
morphometric measurements and clinical parameters [12].

1In particular, we do not aim at segmenting the whole vascular tree. This
problem will be the subject of a forthcoming paper.



The rest of this paper is organized as follows. In Section II,
we first summarize the steps for detecting axial reflections.
Then, we detail in Section III the procedure for segmenting
the arterial walls. Finally, we evaluate the relevance of the
approach against manual segmentations in Section IV.

II. AXIAL REFLECTION DETECTION

In this section, we consider images as functions mapping
points from Ω ⊂ Z2 into the interval [0, 1].

A. Pre-processing

The original image (see Figure 2(a)) is first enhanced by
applying a median filter followed by a non-linear diffusion
filter [13]. This combination of filters allows us to denoise
the image and smooth the blood vessels while preserving the
contrast along their edges. We denote by IP the resulting image
(see Figure 2(b)).

B. Detection of bright elongated structures

To enhance the bright elongated structures, a white top-
hat transform is applied on the pre-processed image IP with a
binary disk whose radius is about 1/3 of the axial reflection di-
ameter. We denote by IT the resulting image (see Figure 2(c)).
Then, we binarize the image IT by hysteresis thresholding and
denote it by IES (see Figure 2(d)). Parts of the axial reflection
of vessels are thus extracted, but also other bright areas of
the textured background. Further processing steps are therefore
necessary to discard these undesired areas.

C. Detection of the darkest areas

K-means classification (k = 3) is performed on the pre-
processed image IP (see Figure 2(e)) and the cluster of lowest
mean intensity value provides a first binary image of the
darkest regions. It is then post-processed with morphological
operations to get the main connected components correspond-
ing to the dark areas of lumens. We denote by IDA the resulting
image (see Figure 2(f)).

D. Extraction of vascular segments by information fusion

A first selection of vascular segments is performed based
on a simple measure of the tortuosity. Let us denote by ILES the
binary image of a tested connected component of the image
IES . This component is retained if

]ILES

](ILES • S)
> 0.8, (1)

where ] denotes the cardinality of a set, • denotes the closing
operator and S is a binary disk whose radius is 15 pixels.
Moreover, a segment of axial reflection must lie inside a dark
area, and conversely, a dark region of the lumen must contain
at least one axial reflection segment. We denote by IES′ the
binary image made of the components satisfying (1) and ILES′

a tested connected component of it. Such a component is kept
as part of an axial reflection segment if

](IDA ∩ (ILES′ ⊕ S′)) >
]ILES′

5
, (2)

where ⊕ denotes the dilation operator and S′ is a binary disk
whose radius is 15 pixels. Notice that the radius of S and S′
are in accordance to the minimum size of the vessels that are
studied. We denote by IES′′ the binary image made of the
components satisfying (2) (see Figure 2(g)). Morphological
operations are applied to IDA, including reconstruction by
dilation with the marker IES′′ , in order to get the final lumen
mask ILM (see Figure 2(h)).

E. Segment labeling and reconnection

We first compute the skeleton of the image IES′′ to get
the end-points of the retained segments (see Section II-D).
These end-points are then reconnected using minimal path
techniques [14], [15]. These techniques aim at extracting
curves of minimal length, in a Riemannian metric computed
from the image and depending on the targeted application. A
minimal path C connecting two end-points p and q is obtained
by minimizing the following functional:

L[C] =

∫ q

p

P(C(s)) ds,

where s denotes the curvilinear abscissa and P is a potential
inducing the metric defined as

P(x) = w1(1− IT (x))2 +w2(1− ISM (x))2 +w3, ∀x ∈ Ω,

where ISM is the spurred skeleton of the lumen mask ILM fil-
tered by a Gaussian of standard deviation σ and w1, w2, w3 ∈
R+ are free parameters. These parameters are empirically set
with σ = 10, w1 = 0.5, w2 = 0.45 and w3 = 0.05. In the latter
expression, the first term is derived from the top-hat image
IT (considering that the values should ideally be close to one
along the axial reflection) while the second one encourages the
path C to pass near the middle of the lumen mask ILM . The
last term is a regularization constant. The combination of the
above criteria allow for a good robustness against the variety
of the encountered images.

Two end-points form a candidate pair for reconnection if
they belong to the same connected component in the lumen
mask ILM and if they do not belong to the same connected
component in the image IES′′ . The candidate pairs are then
processed by decreasing order of the Euclidian distance (to
start with points that are close to each other) and reconnected
using the above procedure. A new skeleton is then calculated,
providing the axial reflection of the vessels, and the vessel
branches are then labeled (see Figure 2(i)). The vessel branchs
are individually regularized using a classical parametric active
contour [16] with Gradient Vector Flow [17]. The lumen mask
ILM is also labeled such that every non-null pixel receives the
label of the closest branch (see Figure 2(j)).

Although the above described steps rely on a number of
parameters, we empirically found that they are stable for the
images studied (including those presented in Section IV).

III. SEGMENTATION OF ARTERIAL WALLS

For convenience, we detail the procedure for segmenting
arterial walls on a single regularized vessel branch obtained at
the end of the axial reflection detection step (see Section II).
We denote this regularized branch as the reference line V (s) =
(x(s), y(s))T of the vessel, parameterized by s. Once obtained,
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Figure 2: Steps for axial reflection detection: The source image (a) is first pre-processed (b). Dark elongated structures are
detected from (b) by top-hat filtering (c) followed by hysteresis thresholding (d). Darkest areas are detected from (b) by k-means
(e) followed by post-processing (f). Axial segments (g) and lumens (h) are extracted from (d) and (f). Axial segments (i) and
lumens (j) are labeled from (c), (g) and the spurred skeleton of (h).

Figure 3: Parametric representation of the proposed model.

this line is considered to be fixed and will therefore no longer
evolve in the subsequent steps. Additionally, we choose to
model the walls as four curves approximately parallel to this
line. We respectively denote by V1, V2 and V3, V4 the inner
and outer borders of walls, and define them by

V1(s) = V (s) + b1(s)~n(s)
V2(s) = V (s) − b2(s)~n(s)
V3(s) = V (s) + b3(s)~n(s)
V4(s) = V (s) − b4(s)~n(s),

where ~n(s) is the normal vector to the curve V and bk(s) is
the local distance between the reference line V and the curve
Vk, ∀k ∈ {1, . . . , 4} (see Figure 3). This model allows a direct
correspondence between each curve Vk and the reference line
V . In what follows, we first detail how these curves are roughly
positioned near to the borders of walls. Next, we describe the
model used to refine their positioning.

A. Pre-segmentation

First, we discretize the reference line V in m equally
spaced points and denote by Vi = (x(s = ih), y(s = ih))T

the discrete coordinates at the point Vi and ~ni the associated
normal vector (h is the discretization step). We also discretize
the curves representing the walls with

V 1
i (binti ) = Vi + binti ~ni
V 2
i (binti ) = Vi − binti ~ni
V 3
i (bexti ) = Vi + bexti ~ni
V 4
i (bexti ) = Vi − bexti ~ni,

(3)

where bint and bext respectively denote the half-diameter of the
inner and outer borders. The model (3) assumes that the inner
and outer borders lie at the same distance from the reference
line V . Although this assumption could appear to be strong,
it is verified for a large number of the images presented in
Section I. Also, the presegmentation described below leads to
a preliminary result which will be refined in Section III-B.

Let us now denote by I a grayscale image with values in
[0, 1]. We denote by D~uI(p) the derivative of I in the direction
~u at the point p. Moreover, for an half-diameter b ∈ R+, a
point Vi and a window of size (2r + 1), we define the mean
intensity along the curves V 1 and V 2 by

Īint(b, i, r) =
1

2(2r + 1)

+r∑
j=−r

(
I(V 1

i+j(b)) + I(V 2
i+j(b))

)
,

(4)
the mean local gradient along the curves V 1 and V 2 by

D̄int(b, i, r) =
1

2(2r + 1)

+r∑
j=−r

(
D~ni+j

I(V 1
i+j(b))+

D−~ni+j
I(V 2

i+j(b))
)
, (5)

and the mean local gradient along the curves V 3 and V 4 by

D̄ext(b, i, r) =
1

2(2r + 1)

+r∑
j=−r

(
|D~ni+j

I(V 3
i+j(b))|+

|D−~ni+j
I(V 4

i+j(b))|
)
. (6)

Increasing the window radius r makes gradient measures more
robust to noise but less reliable where strong deformations
occur along vessels. This parameter therefore requires a trade-
off. Due to the profile of lumens and since we do not use
absolute values in (5), we expect this quantity to be larger near
to the inner borders of walls than near to the axial reflection.
We now summarize the steps necessary to estimate the half-
diameters bint and bext in (3).

Step 1
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Figure 4: Benefit of using a presegmentation with varying half-
diameters (a),(b) against constant ones (c),(d) for a pathologi-
cal case. Here, we set r = 10 and α = 0.95. In (a) and (c), the
image is superimposed with the presegmentations while it is
superimposed in (b) and (d) with the segmentations obtained
using the model described in Section III-B.

We jointly search for a constant half-diameter of inner and
outer borders maximizing the mean gradient divided by the
mean intensity along the curves V 1, V 2, V 3 and V 4. Using
Equations (4), (5) and (6), such half-diameters are given by

(b′int
∗
, b′ext

∗
) = argmax

b′int,b′ext

b′int<b′ext

[∑
i D̄

int(b′int, i, r)∑
i Ī

int(b′int, i, r)
+

1

m

∑
i

D̄ext(b′ext, i, r)

]
, (7)

where we remind that m is the number of discrete points
on V . Dividing by the intensity encourages gradients in dark
areas. To speed up this step, the search interval for b′ext

is restricted to typical WLR values [10]. Such a simplistic
approach can however fail to accurately segment the walls
when deformations occur along vessels. Estimating varying
half-diameters for inner and outer borders is therefore crucial
to take into account these deformations (see Figure 4).

Step 2

We search for the position along the vessels having the
largest contrast along the curves defined by the half-diameters
b′int

∗
and b′ext

∗
found at Step 1. This position is given by

i∗ = argmax
i

1

2

(
D̄int(b′int

∗
, i, r) + D̄ext(b′ext

∗
, i, r)

)
.

Step 3

Finally, we jointly search for a variable half-diameter of
inner and outer borders whose difference (the wall thickness)
is constant and having the largest contrast along the curves
defined by the half-diameters b′int

∗
and b′ext

∗
found at Step 1.

These half-diameters are constructed iteratively under a regu-
larity constraint from each side of the position i∗ found at Step
2. For a fixed gap e, the half-diameter of inner borders b′′int

∗

is constructed as follows:

b′′int
∗

i =


b′int

∗
if i = i∗

argmaxb′′int
i

E(b′′inti , b′′int
∗

i−1 , i, e, r) if i > i∗

argmaxb′′int
i

E(b′′inti , b′′int
∗

i+1 , i, e, r) if i < i∗,
(8)

with

E(b′′inti , b′′int
∗

j , i, e, r) = α

(
D̄int(b′′inti , i, r)

Īint(b′′inti , i, r)

+ D̄ext(b′′inti + ē+ e, i, r)

)
+ (1− α)(b′′inti − b′′int

∗

j )2,

(9)

where ē = (b′ext
∗ − b′int

∗
) and α ∈ [0, 1] a parameter

controlling the amount of regularity. In (9), notice that the
term on the left has the same form as (7), except that it only
concerns a single point. Finally, we search the best gap with

e∗ = argmax
e

∑
i>0

E(b′′int
∗

i , b′′int
∗

i−1 , i, e, r), (10)

and where b′′int
∗

is constructed using (8) and (9). Notice that
the discretization step of the search intervals of (8) and (10)
is divided by two. The half-diameters estimates of inner and
outer borders are finally respectively given by bint = b′′int

∗

and bext = b′′int
∗

+ (b′ext
∗ − b′int∗) + e∗. Rough estimates of

inner and outer borders are now fully defined using (3).

B. Refined segmentation

The model proposed in [11] simultaneously evolves two
curves under a parallelism constraint. In what follows, we
describe an extension of this model for extracting four curves
V1, V2, V3 and V4 almost parallel to a reference line V . Since
this line is fixed in our situation, the energy becomes

E(V1, . . . , V4, b1, . . . , b4) =

4∑
k=1

(
EImage(Vk) +R(Vk, bk)

)
,

(11)
where the term

EImage(Vk) =

∫ 1

0

P (Vk(s)) ds

is designed to attract the curve Vk towards large intensity
gradients (see [16]). In this context, the term EImage is based
on the Gradient Vector Flow [17]. The role of the term R
in (11) is to control the variation of the distance bk, thus
imposing a local parallelism. The authors of [11] proposed
a function of the derivative of bk with

R(Vk, bk) =

∫ 1

0

Q(s, b′k) ds =

∫ 1

0

ϕk(s)(b′k(s))2 ds,

where ϕk(s) ∈ R+ are application-dependent parameters that
locally control the strength of the parallelism of the curve Vk
with respect to the reference line V . More precisely, the larger
the parameter ϕk(s) is, the more strict is the parallelism to
the reference line V . It is worth underlying that the distance
between both curves has not to be known. It is adjusted during
the evolution process and can vary along boundaries. Notice
also that the energy (11) does not ensure that b1(s) < b3(s) and
b2(s) < b4(s). However, we never encountered such behavior
in our experiments (and in particular, for those detailed in
Section IV).

Since the energy (11) does not have crossing terms involv-
ing different curves, the minimization can be independently



done for each curve Vk. For any k ∈ {1, . . . , 4}, the Euler-
Lagrange equation expresses the minimization of (11) with
respect to bk(s)

∂P (Vk(s))

∂bk
− d

ds

∂Q(s, b′k)

∂b′k
= 0,

and the evolution of the distance bk to the line V is driven by

〈~n,−∇P (Vk(s))〉 − 2[ϕk(s)b′′k(s) + ϕ′k(s)b′k(s)] = 0. (12)

The latter equation is solved by discretizing it and introducing
the time variable using standard numerical approximations of
derivatives (central difference in space, backward difference in
time). The resolution of the above equations stops when

max
k∈{1,...,4}

{max
s
|bnk (s)− bn−1k (s)|} ≤ ε.

In the latter expression, bnk (s) is the estimate of the distance of
the curve Vk to the reference line V at iteration n and ε ' 0
is an accuracy parameter. An example of resolution using this
model is illustrated in Figure 4(c).

IV. EVALUATION

Thirteen images from healthy subjects were manually de-
lineated by three physicians. These physicians have several
years of experience in the field of AO image interpretation.
The images were selected to ensure the representativeness of
the quality and the noise levels encountered by physicians
during routine clinical. Let us denote resp. by VM and V A a
manual segmentation and an automatic segmentation. For each
image, using the same axial reflection, we measure the absolute
relative difference on the inner diameter, the outer diameter and
the total wall thickness (i.e. the difference between outer and
inner diameters), resp. defined for each point by

δint(V
M , V A) =

|dint(VM )− dint(V A)|
dint(VM )

× 100, (13)

δext(V
M , V A) =

|dext(VM )− dext(V A)|
dext(VM )

× 100, (14)

δwt(V
M , V A) =

|dwt(V
M )− dwt(V

A)|
dwt(VM )

× 100, (15)

where dint, dext and dwt denote resp. the inner diameter,
the outer diameter and the total wall thickness. The measure
δwt is of great importance for us due to its high sensitivity.
Also, measurements were only taken into account where no
vessel bifurcation occurs (see Figure 5). For the parameters,
we use ε = 0.1, α = 0.9, r = 10 and ϕk = 100,
∀k ∈ {1, . . . , 4}. Also, we choose manual segmentations
from the most experienced physician as a reference (denoted
by PhysRef ). For each image, we then compute the mean
and standard deviation of (13), (14) and (15) between the
segmentations obtained by the automatic procedure and the
those from the physician PhysRef . The same statistics are
also computed between the segmentations from physicians
(different of PhysRef ) and those from the physician PhysRef .
The results of these experiments are detailed in Table I and
illustrated in Figure 5. To put in perspective these results, we
provide between parentheses in Table I, the above statistics but
for a displacement of one pixel all along a curve. In that case,
the numerators of (13), (14) and (15) become equal to one.

Due to the size of arterial walls, we first remark that
the error (i.e. mean and standard deviation) is much more
larger on total wall thickness compared to inner and outer
diameters. Noticeably, the error introduced by the automatic
procedure is globally smaller than the inter-physicians error
on total wall thickness and outer diameter. Although this is
not the case concerning the inner diameter, the errors remain
globally very near from it. For inner / outer diameters and total
wall thickness measurements between the automatic procedure
and the physician PhysRef , the standard deviation is globally
smaller than the mean. This means a good robustness of the
proposed approach. For some subjects, the error introduced
by the automatic procedure is larger than the inter-physicians
error. For some of them, we do believe that this is due to
a lack of accuracy in manual segmentations. Due to the poor
contrast along walls and the size of these structures, it is indeed
difficult for physicians to delineate them all along a vessel
with high accuracy (see Subject 5). For other subjects, the
outer border of walls computed by the automatic procedure
slightly differ from manual segmentations. This is for instance
the case for the Subject 3 where a kind of double contour
occur all along the vessel. However, there is currently no
consensus among physicians about the ideal location of the
outer border of walls in such situation. Finally, we are currently
evaluating the proposed approach on pathological subjects.
First experiments show a good robustness with respect to
morphological deformations.
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Figure 5: From top to bottom: positive (half-up) and negative
(half-down) results against the reference physician PhysRef

for Subjects 7, 11, 3 and 5 (see Table I). The manual and the
automatic segmentation are drawn in blue and red, respectively.
The green dashed line is the reference line. The original images
are provided in the left column while they are superimposed
to the segmentations in the right column. Yellow and cyan
arrows point misplacement of borders in automatic and manual
segmentations, respectively.

Subject Inter-physicians Our method / PhysRef

1 2.29± 1.54 (1.13± 0.04) 2.07± 1.06 (1.13± 0.04)
2 3.50± 2.37 (2.47± 0.16) 4.17± 3.29 (2.47± 0.16)
3 2.86± 2.57 (1.37± 0.04) 1.63± 1.31 (1.37± 0.04)
4 2.29± 1.7 (0.75± 0.03) 3.16± 1.65 (0.75± 0.03)
5 2.79± 1.91 (0.89± 0.05) 3.21± 2.09 (0.89± 0.05)
6 3.75± 2.8 (1.13± 0.05) 2.14± 2.34 (1.13± 0.05)
7 2.82± 2.38 (0.87± 0.04) 2.51± 2.64 (0.87± 0.04)
8 2.84± 2.41 (0.97± 0.03) 3.78± 2.92 (0.97± 0.03)
9 3.26± 2.65 (0.87± 0.03) 4.58± 3.19 (0.87± 0.03)
10 3± 2.08 (0.8± 0.02) 1.87± 1.96 (0.8± 0.02)
11 2.75± 1.8 (0.84± 0.02) 2.36± 1.88 (0.84± 0.02)
12 2.7± 2.26 (0.9± 0.04) 2.51± 2.05 (0.9± 0.04)
13 3.38± 2.27 (0.84± 0.05) 6.07± 4.25 (0.84± 0.05)

Overall 2.92± 2.24 (0.99± 0.35) 3.06± 2.73 (0.99± 0.35)

Subject Inter-physicians Our method / PhysRef

1 2.08± 1.69 (0.91± 0.02) 2.06± 1.83 (0.91± 0.02)
2 2.2± 1.76 (1.7± 0.07) 3.86± 1.92 (1.7± 0.07)
3 2.16± 1.53 (1.05± 0.03) 5.64± 2.82 (1.05± 0.03)
4 2.8± 1.94 (0.6± 0.02) 1.57± 1.04 (0.6± 0.02)
5 2.94± 2.19 (0.67± 0.03) 2.28± 1.66 (0.67± 0.03)
6 5.11± 3.81 (0.74± 0.03) 3.05± 2.1 (0.74± 0.03)
7 4.05± 2.59 (0.65± 0.01) 1.96± 1.38 (0.65± 0.01)
8 1.93± 1.36 (0.69± 0.02) 2.23± 1.34 (0.69± 0.02)
9 2.93± 1.84 (0.62± 0.01) 2.33± 1.01 (0.62± 0.01)
10 3.03± 1.97 (0.6± 0.01) 1.67± 1.45 (0.6± 0.01)
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Overall 2.83± 2.31 (0.74± 0.24) 2.7± 2.16 (0.74± 0.24)

Subject Inter-physicians Our method / PhysRef

1 10.57± 8.1 (4.68± 0.59) 9.12± 6.33 (4.68± 0.59)
2 8.78± 6.59 (5.53± 0.58) 9.79± 6.03 (5.53± 0.58)
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10 13.17± 8.52 (2.36± 0.23) 7.4± 5.87 (2.36± 0.23)
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12 12.58± 10.11 (2.88± 0.22) 25.52± 8.41 (2.88± 0.22)
13 15.69± 10.53 (3.5± 0.4) 14.68± 11.8 (3.49± 0.4)

Overall 14.09± 11.34 (3.1± 0.98) 13.84± 10.52 (3.1± 0.98)
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denote a unit displacement all along the curve (see text).
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