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Abstract. In this paper, we propose two important improvements of an
existing approach for automatically segmenting the walls of retinal arter-
ies of healthy / pathological subjects in adaptive optics images. We illus-
trate the limits of the previous approach and propose to (i) modify the
pre-segmentation step, and (ii) embed additional information through
coupling energy terms in the parallel active contour model. The interest
of these new elements as well as the pre-segmentation step is then evalu-
ated against manual segmentations. They improve the robustness against
low contrasted walls and morphological deformations that occur along
vessels in case of pathologies. Noticeably, this strategy permits to obtain
a mean error of 13.4% compared to an inter-physicians error of 17%, for
the wall thickness which is the most sensitive measure used. Additionally,
this mean error is in the same range than for healthy subjects.

Keywords: Active contour model, adaptive optics, retina imaging.

1 Introduction

Arterial hypertension and diabetes mainly and precociously a�ect the physiol-
ogy and the structure of retinal blood vessels of small diameter (i.e. less than
150µm). According to the Public Health Agency of Canada, these chronic dis-
eases a�ected 15 to 20% of the world's adult population in 2009. Hypertensive
retinopathy (HR) and diabetic retinopathy (DR) are common ocular complica-
tions of the above diseases. The lesions caused by these complications include
di�use or focal narrowing, or dilation of the vessel and of the wall. Although
HR and DR do not present early warning signs, they are predictive of end-
organ damage such as stroke or visual loss [1,4]. In [8], the authors estimate that
98% of visual damages could be avoided if DR was treated in time. Accurate
measurements of walls are therefore necessary to better prevent the DR and the
complications of the HR. Fundus photographs and Doppler-based measurements
cannot however resolve the vessel walls due to their limited spatial resolution.
Adaptive Optics (AO) is a recent opto-electronic technology that improves the
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(a) 924× 947 (b) 218× 218 (c) 218× 218 (d) 900× 900

Fig. 1: Examples of images acquired by the AO camera [9] and a detailed view
of them for an healthy subject (a),(b) and a pathological one (c),(d). The sizes
below each image are expressed in pixels.

resolution of fundus photographs. AO-based cameras permit to visualize mi-
crostructures such as vascular walls [2], noninvasively. In the present study, the
rtx1 camera [9] is used to acquire 2D images by �ood illumination at 10Hz using
a 850nm LED light source with a pixel-resolution of 0.8µm. These images are
registered and averaged to increase the signal-to-noise ratio [6]. In the resulting
images, blood vessels appear as dark elongated structures with a bright linear
axial re�ection, over a textured background. Outer borders of walls are however
only visible along arteries and the present study will focus on them. Parietal
structures (arterial walls) appear as a gray line along both sides of the lumen
(blood column), with a thickness of about 15% of it [5] (see Figure 1).

Segmenting the artery walls in these images is a challenging problem. For
both pathological and healthy subjects, (i) the background of the related im-
ages is highly textured, (ii) signi�cant intensity changes can occur along axial
re�ections, (iii) the outer borders of walls are low contrasted, and (iv) some
vessel segments can be locally blurred due to the geometry of the retina. This
problem is by far more challenging for images from pathological cases since a
large variability of morphological deformations can locally occur along arter-
ies, which generally present a poor contrast on walls. Since AO-based fundus
cameras remain uncommon yet, only few papers have addressed this issue. Re-
cently, an automatic procedure was proposed where the walls are modeled as
four curves approximately parallel to a common reference line located near axial
re�ections [7]. Once the line is detected, the artery walls are pre-segmented using
a tracking procedure to cope with morphological deformations. Then, they are
segmented using an active contour model embedding a parallelism constraint
to both control their distance to the reference line and improve the robustness
against the noise and lack of contrast. The accuracy of this approach on patho-
logical cases has however not been assessed.

In this paper, we propose two important improvements to this approach: (i) a
piecewise constant estimation of the vessel diameter in the �rst stage of the pre-
segmentation, and (ii) coupled energy terms in the active contours model. The
purpose of these new elements is to improve the robustness against noise, low
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contrasted walls and morphological deformations in case of pathologies, while
keeping a computational cost similar to the one of [7].

The rest of this paper is organized as follows. In Section 2, we brie�y remind
the approach in [7] for segmenting arterial walls on healthy subjects. Afterwards,
we illustrate the limits of this approach and present the above new elements, in
Section 3. Finally, we evaluate in Section 4 the relevance of the pre-segmentation
step as well as these new elements, against manual segmentations.

2 An approach for segmenting arterial walls and its limits

2.1 Description

In this section, we remind the strategy presented in [7] for segmenting walls of
retinal arteries. Let us consider one artery branch represented by a �xed curve
located on the axial re�ection, resulting of an automatic segmentation process [7].
We denote this branch as the reference line V (s) = (x(s), y(s))T , parameterized
by s. The artery walls are modeled by V1, V2 (inner) and V3, V4 (outer), four
curves approximately parallel to the reference line V , de�ned by:

V1(s) = V (s) + b1(s)n(s)
V2(s) = V (s) − b2(s)n(s)
V3(s) = V (s) + b3(s)n(s)
V4(s) = V (s) − b4(s)n(s),

such that

{
b1(s) < b3(s)
b2(s) < b4(s),

∀s, (1)

where n(s) is the normal vector to V and bk(s) is the local distance (or half-
diameter) of any curve Vk to V . In the above model, notice the direct correspon-
dence between the points of any curve Vk to those of the reference line V . The
segmentation procedure amounts to compute the half-diameters {bk}k=1,...,4.

The artery walls are �rst pre-segmented. This is achieved by simultaneously
positioning the curves using a tracking procedure to cope with morphological
deformations. All along this pre-segmentation, it is assumed that the opposite
curves lie at the same distance from the reference line V (i.e. b1(s) = b2(s) =
bint(s) and b3(s) = b4(s) = bext(s), ∀s) and that the wall thickness is constant
(i.e. bext(s) − bint(s) = cst, ∀s). The reference line V and all the elements that
refer to it are discretized into m equally spaced points. The pre-segmentation is
based on a criterion to be maximized, de�ned for every i ∈ {1, . . . ,m} by:

G(bi, be, i) =
D̄int(bi, i, r)

Īint(bi, i, r)
+ D̄ext(be, i, r), (2)

where D̄int and Īint respectively denote the mean local gradient and the mean
local intensity along inner curves while D̄ext denote the mean local gradient
along outer curves. D̄int, Īint and D̄ext are averaged over a small window of size
(2r + 1). The function G encourages inner and outer curves to be located near
large image gradients. Dividing by the mean intensity also favors inner curves
to be located in dark areas. The pre-segmentation aims at estimating inner and
outer half-diameters bint(s), bext(s) and consists of the following steps:
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1. Constant half-diameters bint0 and bext0 along the artery, are estimated. This
is achieved by maximizing the mean of G(bi, be, i) over (bi, be) ∈ (R+ × R+)
along the curves de�ned by the half-diameters bi and be. We then denote by
ē = (bext0 − bint0) the wall thickness estimated from the resulting curves.

2. The position i∗ maximizing (2) along the curves from Step 1 is determined.
3. Variable half-diameters bint(s) and bext(s) = bint(s) + ē + e are estimated

using tracking by maximizing for any i ∈ {i∗ + 1, . . . ,m} and for j = i− 1:

αG(bint(i), bint(i) + ē+ e, i)− (1− α)(bint(i)− bint(j))2, α ∈ [0, 1], (3)

where α is a regularization parameter. The closer α is to zero, the more the
right term in (3) penalizes large local deviations of bint. The above scheme
is also applied to any i ∈ {i∗−1, . . . , 1} and for j = i+1. Once bint has been
�xed for any error e, the optimal error e∗ is taken as the one that maximizes
the sum of (3) over any i ∈ {2, . . . ,m} and for j = i− 1 (see [7] for details).

Then, an active contour model (parallel snakes) is applied to accurately position
the curves found by the pre-segmentation. This model is an extension of [3] for
extracting four curves approximately parallel to a �xed reference line V . This is
achieved by minimizing

E(V1, . . . , V4, b1, . . . , b4) =

4∑
k=1

(∫ 1

0

P (Vk(s)) ds︸ ︷︷ ︸
EImage(Vk)

+

∫ 1

0

ϕk(s)(b′k(s))2 ds︸ ︷︷ ︸
R(Vk,bk)

)
, (4)

where EImage is designed to attract the curves towards large image gradients
while R controls the variation of the half-diameter bk(s), thus imposing a lo-
cal parallelism. The strength of this parallelism is controlled by the parameters
{ϕk}k=1,...,4: the larger these parameters are, the more strict the parallelism to
the reference line V is. It is worth noting that the assumptions made for the pre-
segmentation are fully relaxed, i.e. the four curves can now evolve independently
of each other. They are implicitly linked by the parallelism constraint but no sym-
metry property w.r.t. the reference line V is imposed. The minimization of (4)
is obtained by solving the Euler-Lagrange equations w.r.t. the half-diameters bk.
The resulting algorithm uses standard numerical approximation of derivatives
and converges until some accuracy ε is reached.

2.2 Limits

The approach detailed in [7] has two important limitations. For some cases, the
pre-segmentation can fail to accurately position the curves close to artery walls.
This situation is illustrated in the top row of Figure 2. The inner and outer half-
diameters are underestimated at Step 1 due to the local narrowing of the artery.
These poor estimations therefore prevent to perform the tracking procedure from
a good initial position found at Step 2. The tracking procedure therefore fails to
follow correctly morphological deformations. This suggests a more robust way
to estimate the half-diameters at Step 1.
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For some cases, the parallel snake model can also fail to accurately position
the curves close to artery walls. This situation is illustrated in the bottom row of
Figure 2. Although the solution provided by the pre-segmentation is correct, the
positioning of the curves is inconsistent on an artery segment. Such a behavior
is due to a poor contrast on the outer borders of walls. This suggests to enforce
the regularity of the wall thickness along the arteries and also symmetry prop-
erties w.r.t. the reference line, as wall thicknesses are generally similar on both
sides. Last but not least: the model (4) does not ensure that the constraints ex-
pressed in (1) hold. This point must also be addressed to ensure the anatomical
consistency of the solution.

(a) 1027× 627 (b) 1027× 627

(c) 818× 692 (d) 818× 692

Fig. 2: Limits of the pre-segmentation (a,b) and the parallel snake model (c,d) for
two distinct pathological subjects. Pre-segmentations and segmentations are re-
spectively given in (a,c) and (b,d) columns, superimposed on the original image.
Yellow arrows point misplacements of curves. The green dashed line corresponds
to the reference line while the circle denotes the position from which the tracking
procedure operates (see Step 2). The size of the images are expressed in pixels.

3 Improvements

3.1 Pre-segmentation

We propose a simple modi�cation to overcome the di�culties outlined in Sec-
tion 2.2. Instead of estimating inner and outer half-diameters as constant along
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vessels in Step 1, we propose to estimate them as piecewise constant. Then, the
initial estimates of the inner and outer half-diameters are those found at the
position maximizing (2) along the resulting piecewise constant curves (Step 2).
In such a manner, these new half-diameters estimates are less prone to morpho-
logical deformations while keeping a good robustness against intensity changes
along the artery walls. The robustness of the tracking process (Step 3) is there-
fore improved. In accordance to morphometric features, the piecewise constant
estimations are performed on vessel segments whose length is 50 pixels (' 40µm).

3.2 Coupled Parallel Snakes model

To overcome the di�culties of the parallel snake model highlighted in Section 2.2,
we propose to modify the energy (4) (see Section 2.1) as follows

E(V1, . . . , V4, b1, . . . , b4) =

4∑
k=1

(
EImage(Vk) +R(V, Vk)

)
+ S(V1, V3, b1, b3)

+ S(V2, V4, b2, b4) + T (V1, . . . , V4, b1, . . . , b4), (5)

where

S(Vi, Vj , bi, bj) =

∫ 1

0

ψi,j(s)(bj(s)− bi(s)− β0
i,j)(bj(s)− bi(s)− β1

i,j)ds,

T (V1, . . . , V4, b1, . . . , b4) =

∫ 1

0

λ(s)(b3(s)− b1(s)− b4(s) + b2(s))2ds,

and λ, ψ1,3, ψ2,4 are weighting parameters (independent of s in our application).
Notice that EImage and R in (5) are the same as in (4). The term T controls the
wall thickness di�erence between b3(s)− b1(s) and b4(s)− b2(s), ∀s. It reaches a
minimum for b3(s)− b1(s) = b4(s)− b2(s), ∀s. The larger the parameter λ is, the
more identical the wall thickness on both sides of the reference line V (s) is. The
main role of S is to control the variation of the wall thicknesses b3(s)−b1(s) and
b4(s)− b2(s), with respect to the initial estimate (bext(s)− bint(s)) found in the
pre-segmentation step. This term reaches a minimum when the wall thickness is
between β0

i,j and β
1
i,j , for (i, j) = (1, 3) or (i, j) = (2, 4). The larger the weighting

parameters ψ1,3 and ψ2,4 are, the closer the wall thicknesses b3(s) − b1(s) and
b4(s)− b2(s) are to (bext(s)− bint(s)). Here, we set for any s

β0
1,3 = β0

2,4 = (1− γ)(bext(s)− bint(s)), β1
1,3 = β1

2,4 = (1 + γ)(bext(s)− bint(s)),
(6)

where γ ∈ [0, 1]. Since the resulting curves found by the pre-segmentation lie at
the same distance from the reference line V , S also controls both the amount of
symmetry of the curves V1 / V2 and V3 / V4 w.r.t the reference line V . The larger
the parameters ψ1,3 and ψ2,4 are, the more strict the symmetry is. Unlike (4),
(5) ensures that the constraints (1) hold as the parameters ψ1,3 and ψ2,4 tend to
+∞. Notice that when the weighting parameters λ, ψ1,3 and ψ2,4 are null, the
energy (5) becomes the same as (4). Finally, the energy (5) is minimized in the
same way as for (4).
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4 Experimental results

4.1 Data and experimental protocol

17 images from pathological subjects were manually segmented by 3 physicians.
These physicians have several years of experience in AO image interpretation.
Each physician segmented the images 4 two times, separated by several weeks
to diminish the memory e�ect between both segmentations. The images were
selected by the medical experts to ensure the representativeness of the quality
of the images and the vessel deformations encountered during clinical routine.

Let us denote by S1 and S2 two distinct segmentations. To evaluate the
accuracy of the segmentation S1 w.r.t. the segmentation S2, we choose to use
the same measures as the ones described in [7], i.e. the absolute relative di�erence
on the inner diameter δint, the outer diameter δext and the total walls thickness
δwt (i.e. the di�erence between outer and inner diameters). For each image,
notice that these measures are expressed in percentages and are performed on
the intersection of all manual segmentations from medical experts for that image.
Then, we �rst estimate the intra-physician variability by computing the mean
and standard deviation of the above measures between the segmentations of the
same image, delineated by the same physician (see Table 1). Table 1 provides
the same statistics but for a unit displacement of one pixel all along a curve.

As shown in Table 1, the physician Phys3 has the smallest intra-physician
variability for two measures out of three. Because this physician produced the
most stable segmentations, we choose him as a reference and denote him as
PhysRef . Next, we pre-segment all images with either variable (VHDI) or con-
stant (CHDI) half-diameter estimations and using r = 10 (see Section 2.1). For
both pre-segmentations, half-diameters are estimated in a piecewise constant
manner, as proposed in Section 3.1. VHDI is for α = 0.95 while CHDI is for
α = 0. From these pre-segmentations, parallel snakes (PS) and the coupled par-
allel snakes (CPS) models are applied (see Section 3.2). For both, we set ε = 0.05
and ϕk = 100, ∀k ∈ {1, . . . , 4}. CPS is for γ = 0.5 while PS is for ψ1,3 = 0,
ψ2,4 = 0 and λ = 0. The weighting parameters ψ1,3, ψ2,4 and λ involved in the
CPS model have been optimized experimentally on a training set 5, consisting
of eight images extracted from the database. The optimized values are the ones
that minimize the mean of the overall errors δint and δext. A test set is com-
posed of the nine remaining images. The optimized values are also applied in all
con�gurations that involve the CPS, in both training and test sets. This leads to
six distinct con�gurations: CHDI, VHDI, CHDI+PS, CHDI+CPS, VHDI+PS
and VHDI+CPS. The accuracy of all of them is evaluated by computing the
mean and the standard deviation of δint, δext and δwt w.r.t. the manual seg-
mentations from the physician PhysRef . The results are summarized in Table 2
and illustrated in Figure 3. The inter-physicians error is also given in Table 2: it
is estimated between the segmentations from the physicians Phys1 and Phys2
w.r.t. those from the physician PhysRef .

4 Each segmentation consists of a single artery branch.
5 By convenience, we make the weighting parameters ψ1,3 and ψ2,4 equal.
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4.2 Discussion

First, the overall mean error on δwt is much larger than the overall mean errors
on δint and δext. Due to the size of the parietal structures, the measure δwt is
indeed very sensitive to curves displacements. In Table 2, the accuracy for the
CPS model is almost the same between the training and test databases, meaning
a good generalization of the parameters ψ1,3, ψ2,4 and λ.

The accuracy of CHDI is poor w.r.t. the inter-physician error, signi�cantly
worse that the one obtained with VHDI. Although this accuracy is globally
improved when applying the PS or CPS models (CHDI+PS or CHDI+CPS),
the �nal results are always worse than when relying on variable half-diameters
(VHDI), showing the importance of the tracking in the pre-segmentation.

As mentioned previously, the accuracy provided by VHDI is much closer to
the inter-physician error than with CHDI. It is still improved with the application
of the PS model, except for δint on the test database, and, in average, it is
always improved after the application of the CPS model. The �nal mean errors
(VHDI+PS or VHDI+CPS) are close to the inter-physician errors for the internal
and external diameters and lower for the wall thickness measures, the most
sensitive ones. Overall, the VHDI+CPS �ow reaches the best accuracy.

These observations are con�rmed by the results depicted in Figure 3. For both
subjects, VHDI+CPS reaches globally a better accuracy for two measures out of
three. The interest of using variable half-diameters against constant ones in the
pre-segmentation step is clear. However, it is less obvious when comparing CPS
against PS. For Subject 9, VHDI+CPS shows a better accuracy than VHDI+PS
for δint and δwt. The coupling permitted indeed to correct the position of the top
inner curve. For Subject 7, the segmentation for VHDI+CPS is however a little
worse than for VHDI+PS. This reduced performance is due to a local asymmetry
w.r.t. the axial re�ection. However, such asymmetries are very uncommon in
practice (including on the presented images). Also, when we evaluate the interest
of using either the energy terms S or T (see (5)), we found that the latter has
a stronger impact on the accuracy than the former. Finally, we applied the
VHDI+CPS �ow on the database of healthy subjects (the one used in the study
presented in [7]) and found an accuracy very close to the presented results, for all
measures. Finally, for a typical 600µm long vessel branch, the processing time for
the pre-segmentation and the CPS model is respectively about 120 and 30 secs.
Future work will focus on a methodology for optimizing the parameterization of
the CPS model (i.e. the weighting parameters ψ1,3, ψ2,4 and λ), according to the
type of image to be segmented, in order to better manage the uncommon cases.
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