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ABSTRACT

The study of vascular morphometry requires segmenting vessels
with high precision. Of particular clinical interest is the morpho-
metric analysis of arterial bifurcations in Adaptive Optics Ophthal-
moscopy (AOO) images of eye fundus. In this paper, we extend
our previous approach for segmenting retinal vessel branches to the
segmentation of bifurcations. This enables us to recover the mi-
crovascular tree and extract biomarkers that charactarize the blood
flow. Segmentation results are shown to be within the range of intra-
and inter-user variability, allowing a preliminary study on biomark-
ers derived from vessel diameter estimates at arterial bifurcations.

Index Terms— Active contours, segmentation, retinal arterial
bifurcations, adaptive optics ophthalmoscopy images.

1. INTRODUCTION

This study aims to determine the effect of CADASIL syndrome
on vessel morphometry, by segmenting retinal vessels precisely
in Adaptive Optics Ophthalmoscopy (AOO) and then derive some
biomarkers. This rare pathology is an inherited condition that causes
stroke and other impairments affecting blood flow in small blood
vessels, particularly vessels within the brain [1]. Retinal vessels are
related to cerebral vessels, sharing many structural, functional, and
pathological features. Therefore, retinal vessels may be considered
in many ways as substitutes for the cerebral vessels. Moreover, they
are more easily observable thanks to their planar arrangement and to
dedicated high resolution imaging systems, such as AOO (Fig. 1).
For all these reasons, we can assume that the analysis of retinal
vessel alterations observable in 2D AOO images will enable us to
define relevant biomarkers for CADASIL syndrome.

In addition to the general considerations of contrast, resolution,
noise and acquisition dependent artifacts, retinal vascular networks
are complex tree-like structures with successive branchings. To
analyze these structures, the relationships between the lumens (i.e.
diameters) of bifurcating blood vessels are shown to arise from some
simple principles of optimality, as already suggested by D’Arcy
Thompson [2]. The best known of these is Murray’s law [3]. This
law led to the definition of many biomarkers that describe the rela-
tionship between parent vessel and child branches in a bifurcation.
Measuring diameter dependent biomarkers on patients has shown
deviations from Murray’s optimality, related with some pathologies
such as stroke [4], diabetes [5] and high blood pressure [6]. These
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deviations can be related to blood circulation disorders and reflect
the progress of some pathologies.

The estimation of retinal artery lumen at a bifurcation requires
an accurate segmentation of the vascular tree, which is a very diffi-
cult but also valuable task especially for studying vessel morphome-
try and for diagnosis assistance [7]. In fact, most clinical studies rely
on standard eye fundus images (the interior wall of the eye) [4, 6].
Limits of the proposed protocols come from the poor resolution of
the images (about 10 to 20 µm/pixel) and the methods used to esti-
mate the diameters. In [5], such estimations are based on manually
defined points, so with limited accuracy and reproducibility. AOO
offers a much higher image resolution (about 1 to 2 µm/pixel), and
potentially more accurate biomarker estimates, but, to the best of our
knowledge, there does not exist yet a fully automatic and reliable
segmentation algorithm to this end.

This paper presents a semi-automatic method for precise seg-
mentation of arterial bifurcations in 2D AOO images, which ex-
tends our previous work on segmentation of individual arterial
branches [8]. The algorithm segments the branches according to
the method proposed in [8], then the segmentation is refined at
bifurcations following our new approach. Diameter estimation at
bifurcations is then performed, as well as a preliminary study of
biomarker extraction on healthy and pathological cases. Finally, we
evaluate quantitatively diameters and biomarkers measured from our
segmentation.

Fig. 1: Segmentation of an AOO image of a retinal artery [8].

2. STATE OF THE ART

Conventional fundus photographs were generally used to estimate
biomarkers at arterial bifurcation or venous confluences [5, 6]. AOO
allows for a better resolution and hence a potentially more accurate
estimate of diameters and biomarkers. Arichika et al. [9] segmented
AOO images with a semi-automatic method: spline interpolation
is applied to determine the limits of the vessel lumen from con-
trol points placed manually, and then estimate the diameters. This
approach is operator-dependent and lacks reproducibility; it is not
tractable when processing large databases. A fully automatic method
for segmenting artery walls was developed by Lerme et al. [8], who



proposed exploiting prior information on the geometry of the ves-
sels and their gray levels in AOO images. This method models the
arterial wall as four curves approximately parallel to a common ref-
erence line placed on the central reflection (Fig. 1). These curves
are initialized automatically through a tracking procedure and this
initial segmentation is refined using an active contour model embed-
ding a parallelism constraint [10]. This algorithm, called AOV, was
meant to delineate the wall of any artery branch referenced by its
central reflection, but does not provide an accurate segmentation at
bifurcations. Contours cross at the bifurcation but do not follow the
lumen borders (see Fig. 2a). Moreover, the fully automatic local-
ization of central reflections (and so of the vessel branches) is not
reliable enough.

Hence, in this article, we propose a new approach to segment
accurately the bifurcations. It is based on three steps: (1) a man-
ual step where the user defines the three vessel branches involved in
the bifurcation by placing points on the central reflections; (2) the
automatic segmentation of the branches by AOV algorithm; (3) the
segmentation of the bifurcation, described in Section 3, which is the
key contribution of this paper. This way, the tedious manual seg-
mentation task is avoided, as the user’s action is limited to an easy
initialization step, and the bifurcation segmentation itself is fully au-
tomatic. Finally, the diameters are estimated.

3. SEGMENTATION OF RETINAL BIFURCATIONS

In this section, we present the proposed method for bifurcation
segmentation. Starting from a manual initialization, i.e a set of
points manually placed on the central reflection of the three vessel
branches, we apply AOV [8] to segment them accurately. Fig. 2a
shows the three pairs of curves that delineate the lumen of the vessel
branches (the outer borders are not used in this study).

Fig. 2: Initialization of the active contour model. (a) Initial segmen-
tation of vessel branches obtained with AOV semi-automatic mode.
(b) Curves V (0)

i obtained after rearrangement of the 6 curves delin-
eating the 3 branches involved in the bifurcation.

While this result is generally accurate along the vessel branches,
this may not always be the case at the bifurcations. In this study,
where diameters have to be measured closed to the bifurcations to
derive relevant biomarkers, a precise segmentation is needed even
at bifurcations. Therefore we propose to improve the previous re-
sult in the following way. We detect the intersection points between
two contours (see the crossing contours in Fig. 2a) and we eliminate
the rest of the segmentation lines after their crossing. If there is no
crossing of segmentation lines, a linear interpolation is applied to re-
connect segmentation contours. The resulting curves are rearranged
to obtain three segmentation lines, denoted by V (0)

i , as shown in
Fig. 2b. The locations of the former intersection or re-connection
points are referred to as junction points and point out regions where

the segmentation has to be refined. This new configuration is consid-
ered the initialization of an active contour model whose purpose is
to ensure that the contours converge precisely to the inner wall of the
vessels at the bifurcation without moving out of that region, where
the initial segmentation was precise. We propose the following en-
ergy functional to be minimized by this deformable model:

E(Vi) =
∫ 1

0
− | ∇I(Vi(s)) | +α(s) | V ′i (s) |2 +ϕ(s) | Vi(s)− V (0)

i (s) |2 ds (1)

where Vi is one of the three contours, parametrized by s, and V (0)
i is

the corresponding initial contour. In Eq. 1, the first term attracts Vi
towards the strong gradients of the image, denoted by I . The second
term is a first regularization for smoothing the curve at the bifurca-
tions, and the last term is a second regularization which insures that
the curve Vi remains close to the initialization V (0)

i . The weights
α(s) and ϕ(s) are defined according to two criteria, the angle of
the re-connected curves at the junction point and the distance to this
point. The aim is to impose a strong regularization when moving
away from the junction point, to keep the initial position, and to re-
lax the regularization around the junction point, so that the curve can
accurately move towards the inner border of the lumen at the bifur-
cation. This imposes ϕ(s) to be high for points far from the junction
point and low around it. Moreover, we also take into account the
angles of the reconnected curves at the junction point (Fig. 2b): we
need a strong regularization for flat angles, so high values for α(s),
and weak values for acute angles, to avoid shortcuts. Thus, to cal-
culate the weight profiles, we rely on a function f (s0,δ)

p (s) of the
curvilinear abscissa s, parametrized by the position s0 of the junc-
tion point and a margin δ around it (Fig. 3):

f
(s0,δ)
p (s) = max( 1

1+exp(−(s−s0−δ))
, 1
1+exp(−(s0−s−δ))

) (2)

The margin δ is calculated from a rough estimate of the mean di-
ameters db1 and db2 of the two branches involved in the processed
contour Vi(s):

δ = min(db1, db2) (3)

Fig. 3: Function f (s0,δ)
p (s) parameterized by the curvilinear abscissa

s0 of the junction point and the margin δ around it.

Then, the value of ϕ is simply given by:

ϕ(s) = ϕ0f
(s0,δ)
p (s) (4)

with ϕ0= 10. Thus, the proximity constraint with respect to the ini-
tial curve is totally relaxed at the bifurcation, over a distance com-
parable to the smallest diameter of the two branches involved. It is
weighted by ϕ0 otherwise.

The second weight α(s) follows a similar profile (Eq. 2, Fig. 3)
but it evolves between a maximum value αhigh, set experimentally,
and a minimal value αmin calculated from the angle θ formed by the
two initial curves at the junction point (Fig. 2b) :

αmin(θ) = αlow + (αhigh − αlow) 1
1+exp(−γ(θ−θmed))

(5)



where γ = 0.1, αlow = 10, αhigh = 75 and θmed = 115◦. Thus,
the value αmin ranges between αlow and αhigh, with high values
for flat angles and low values for acute angles (Fig. 4a). Then, the
weight α(s) is again defined by the profile function f (s0,δ)

p (s) in
order to modulate the regularization constraints according to the dis-
tance to the bifurcation:

α(s) = αmin + (αhigh − αmin)f (s0,δ)
p (s) (6)

Fig. 4b shows the profile we finally obtain for α(s) for the three
curves delineating the bifurcation in our example of Fig. 2b. The
regularization is high for points far from the junction points, to get
smooth curves, and lower around the bifurcation. The more acute
the angle, the more relaxed the constraint: for example, αmin ' 13
for V3 (blue curve) for which θ = 84◦ while αmin ' αhigh for V1

(red curve) where θ = 166◦.

Fig. 4: Calculation of α(s). (a) Determination of αmin as a function
of the angle at the bifurcation. (b) Profilesα(s) for the three contours
(s in pixels), parametrized by the abscissa s0 of the junction point,
the margin δ and the calculated minimum value αmin.

The energy functional E(Vi) (Eq. 1) is classically minimized
by solving numerically the associated Euler-Lagrange equation [11].
The active contour model is applied on the three curves Vi indepen-
dently. This last segmentation step leads to a precise and regular
segmentation of the bifurcation (Fig. 5). Moreover, it respects the
initial segmentation of the branches. The functions α and ϕ have a
suitable profile while being differentiable. There are five parameters
to set: ϕ0, αlow, αhigh, θmed and the factor γ setting the slope of
αmin(θ) (Eq. 5, Fig. 4a). We tuned them empirically on a subset
of five images representative of the angles and diameters we have in
our dataset, just by observing the behavior of the model. We also
verified that the final values are not too sensitive, by checking that
the final segmentation does not vary significantly if we shift slightly
one parameter. Once these parameters are definitively fixed, the pro-
posed method adapts itself to the geometry of the vessel branches,
without any tuning. User’s action is limited to the initialization step
of the central reflections, an easy step which does not need to be
precise. The next steps are fully automatic, which ensures a good
reproducibility of segmentation results.

4. EXPERIMENTS

4.1. Adaptive optics images and acquisition protocol

To carry out this study, we have built an AO database of control, di-
abetic and CADASIL subjects, in order to make a statistical study of
bifurcation morphometry in each pathology. The rtx1 AOO camera
from Imagine Eyes enables to visualize microscopic retinal struc-
tures with high resolution (pixel size equal to 0.8 µm, corresponding
to a physical resolution of 1.6 µm/pixel), non-invasively and without
using contrast agents. Several images of the eye fundus were ac-
quired, tracking one main artery emerging from the optic disk up to

Fig. 5: Final segmentation and areas of diameter estimation.

the sixth bifurcation. Diameters of the acquired branches range from
90 µm to 20 µm for the smallest arterioles. Images were acquired
from 23 control subjects, 28 patients with non-proliferative diabetes
(NDR) and 25 patients with CADASIL syndrome. Each subject first
underwent an ophthalmic examination, and visual control was done
to ensure that the images were not blurred.

4.2. Biomarker measurements

Arterial bifurcation morphometry can be evaluated by measuring
biomarkers derived from Murray’s law [3]. The most known is the
junction exponent x defined by:

dx0 = dx1 + dx2 (7)

where d0 is the parent diameter while d1 and d2 are the child diam-
eters. Murray stated that x = 3 for an ideal bifurcation. Clinical
studies have shown a deviation of the junction exponent from this
optimal value in peripheral arterial diseases [6], incident heart dis-
ease, stroke [4] and diabetes [5]. Nevertheless, solving Eq. 7 may
lead to negative values of x, which has no physiological interpreta-
tion. This may happen in particular for pathological subjects [4]. For
this reason, we have selected another biomarker, that is derived from
the branching coefficient, defined by:

βmeasured =
d21 + d22
d20

=
1 + λ2

(1 + λx)2/x
(8)

where λ = d2/d1 (d2 < d1) measures the asymmetry of child
branches. Considering an ideal bifurcation with an asymmetry coef-
ficient λ, the optimal branching coefficient βoptimal is given by the
right hand side of Eq. 8 with x = 3. Therefore, we calculate the
deviation βdev to the optimal branching coefficient:

βdev = βoptimal − βmeasured (9)

This biomarker is always calculable and provides information on the
deviation to Murray’s law optimum. In practice, we estimate the
branch diameters in regions derived from the largest circle inscribed
in the bifurcation (i.e. tangent to the segmentation), similarly to [12].
Let us denote by R the radius of this circle. The measurement re-
gion starts at a distance equal to one radius R from the intersection
point between the circle and the central reflection, up to 2R (see
Fig. 5). We calculate the median of the diameters measured in this
region (more robust to outliers than the mean value). Fig. 6 shows
the biomarkers we obtained on our database.

For the results for βdev , we note a deviation in the positive di-
rection of Murray’s law which is consistent with [5] for the com-
parison between healthy and diabetic subjects. Yet, there is a trend
toward a negative deviation for CADASIL subjects, which may in-
dicate downstream increase of flow resistivity.



Fig. 6: Results for control subjects, diabetics and CADASIL at a
95% confidence interval. Left: junction exponent x (cases with x >
0 only). Right: deviation βdev to the optimal branching coefficient.

4.3. Quantitative evaluation

Ten images (not trained) were selected from the database for the
quantitative evaluation. This selection was done by the medical ex-
perts to ensure representativeness in terms of image quality and mor-
phology variability encountered in clinical routine. Three physicians
(Physj) segmented manually the set of images. Five images were
processed twice by each physician to study the intra-expert variabil-
ity. Let us denote by V (Seg)

i and V (Ref)
i two distinct segmenta-

tions of the contour Vi, where V (Ref)
i is chosen as a reference and

V
(Seg)
i as a segmentation to evaluate. The segmentation accuracy is

given by the mean squared error (MSE) between the curves V (Ref)
i

and V (Seg)
i , calculated on a circular region centered on the bifur-

cation and of radius 4R. Then, we estimated the median diameters
d as described above, for each branch, in the segmentation and in
the reference and, finally, the derived biomarkers. We denote by
δd0,1,2, δβdev and δx the measured differences (averaged for the
three branches for the diameters). The results are then averaged over
the test cases to obtain mean and standard deviation values. Table 1
shows the intra-expert variability measured from the five segmen-
tations realized twice by each expert. The physician Phys3, who
obtained the most stable results on the biomarkers, was chosen as
reference for the inter-experts and software/expert variability study.
Table 2 summarizes the results obtained on the 10 images. Examples
are shown in Fig. 7.

MSE δd0,1,2 δβdev δx
Phys1 2.43± 0.90 +0.84± 2.22 0.00± 0.09 −0.10± 0.49
Phys2 2.80± 0.99 −0.62± 3.98 0.00± 0.11 +0.41± 1.24
Phys3 2.04± 0.96 −1.18± 2.09 +0.01± 0.02 +0.07± 0.11

Table 1: Intra-expert variability (MSE and diameters expressed in pixels).

Seg/Ref MSE δd0,1,2 δβdev δx
Phys1/Phys3 2.65± 1.48 +0.06± 4.51 −0.04± 0.07 −0.44± 1.20
Phys2/Phys3 3.25± 1.84 +0.52± 6.15 0.00± 0.18 −0.40± 2.24

Software/Phys3 3.22± 1.21 +2.78± 2.95 +0.02± 0.06 +0.11± 0.38

Table 2: Inter-expert variability and software/expert variability. Values are
expressed in pixels for MSE and diameters.

The proposed method leads to MSE values within the same
range as the inter-experts variability and slightly higher than the
intra-expert variability. This demonstrates the accuracy of the pro-
posed segmentation method. Considering the diameters, estimation
errors are consistent with the measuredMSE but we note a positive
bias that reveals a small over-segmentation, however with a smaller
standard deviation than for the inter-experts evaluation. Neverthe-
less, our automatic method reaches the best accuracy regarding the

biomarkers, both in terms of mean error and standard deviation,
similar to the intra-expert accuracy and better than the inter-experts
accuracy. However these errors are quite significant regarding the
targeted application (Fig. 6), especially for βdev . This biomarker
is always calculable but maybe more sensitive to segmentation
imprecision than the junction exponent. This needs to be further
investigated through a statistical analysis of significance. Examples
are illustrated in Fig. 7. In (b), the blur on the child branch 2 (red
arrow) leads to an uncertainty on the border localization, which
results in significant differences between the manual and automatic
estimates of d2 and of the biomarkers. This study shows the diffi-
culty of estimating biomarkers characterizing arterial bifurcations,
despite the high resolution of AOO. The main limitation is due to the
blur in the images, when the bifurcation is not exactly in the focal
plane, which leads to uncertainty in the delineation of the lumen,
even for experts.

Fig. 7: Examples of segmentations and biomarker estimations. The
manual segmentations are represented in yellow dashed curves.

5. CONCLUSION

We have proposed a method to segment arterial bifurcations in AOO,
based on our previous approach for segmenting artery branches [8].
A new active contour model has been designed, to refine the seg-
mentation at bifurcations. It is based on adaptive weighting of two
regularization terms to cope with the specific geometry of every bi-
furcation and keep the initial segmentation where it is reliable. The
quantitative evaluation has demonstrated a good accuracy of the pro-
posed approach, with MSE values within the range of inter-experts
variability. We have also shown promising preliminary results
on biomarkers extracted from these segmentations to characterize
pathologies. Future work aims at automatically evaluating the relia-
bility of the diameter estimates, in order to discard biased biomarker
values and better characterize CADASIL pathology. Moreover, it is
now possible to consider the vascular tree as a whole, so to analyze
blood circulation more globally.

Acknowledgments. The authors would like to thank Dr. V. Krivosic
and Dr. C. Lavia of the ophthalmology department of Lariboisière
hospital for providing AOO images, and the ophthalmologists of
Quinze-Vingts Hospital for providing AOO images and for perform-
ing manual segmentations.



6. REFERENCES

[1] H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-Lasserve, and
M.-G. Bousser, “Cadasil,” The Lancet Neurology, vol. 8, no.
7, pp. 643–653, 2009.

[2] D’A. W. Thompson, On growth and form., Cambridge Uni-
versity Press, 1942.

[3] C. D. Murray, “The physiological principle of minimum work:
I. the vascular system and the cost of blood volume,” Proceed-
ings of the National Academy of Sciences, vol. 12, no. 3, pp.
207–214, 1926.

[4] N. W. Witt, N. Chapman, S. A. McG. Thom, A. V. Stanton,
K. H. Parker, and A. D. Hughes, “A novel measure to char-
acterise optimality of diameter relationships at retinal vascular
bifurcations,” Artery Research, vol. 4, no. 3, pp. 75–80, 2010.

[5] T. Luo, T. J. Gast, T. J. Vermeer, and S. A. Burns, “Retinal
vascular branching in healthy and diabetic subjects,” Inves-
tigative Ophthalmology & Visual Science, vol. 58, no. 5, pp.
2685–2694, 2017.

[6] N. Chapman, N. Witt, X. Gao, A.A. Bharath, A.V. Stanton,
S.A. Thom, and A.D. Hughes, “Computer algorithms for
the automated measurement of retinal arteriolar diameters,”
British Journal of Ophthalmology, vol. 85, no. 1, pp. 74–79,
2001.

[7] D. Lesage, E. D. Angelini, G. Funka-Lea, and I. Bloch, “A
review of 3D vessel lumen segmentation techniques: Models,
features and extraction schemes,” Medical Image Analysis, vol.
13, pp. 819–845, 2009.
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