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This paper describes a system for optical music recognition (OMR) in case of monophonic typeset scores. After clarifying the
difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation.
Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous
symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level
interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and
imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication
of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on
a large data base show that the proposed method constitutes an interesting contribution to OMR.
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1. INTRODUCTION

This paper proposes improvements and extensions to our
earlier work on optical music recognition (OMR) [1]. OMR
aims at automatically reading scanned scores in order to con-
vert them into an electronic format, such as an MIDI file,
or an audio waveform. This conversion requires a symbolic
representation of the score content, achieved through recog-
nition of its individual components and their structure. The
motivation for OMR is manifold, and possible applications
cover several topics addressed in this special issue, including
automatic transcription, editing, transposition and arrange-
ment, semantic analysis, fingerprinting (which is facilitated
by the symbolic representation), feature extraction, indexing
and mining, which are important components of query sys-
tems, and can all benefit from symbolic representations.

The literature acknowledges active research in the 1970’s
and 1980’s, see, for example, the reviews in [2, 3], until the
first commercial products in the early 1990’s. The success of
these works relies heavily on available knowledge (as opposed
to other document analysis problems): reasonable number
of symbols, strict location of the staff lines, strong rules of
music writing. But still, the problem remains difficult and

solutions are generally computationally expensive, even in
cases of typeset music.

Despite the advances in the field and the available soft-
wares, there are still some unsolved problems, and recog-
nition is not error or ambiguity free. As already mentioned
in [2, 5–8], major problems result from the difficulty to
obtain an accurate segmentation into individual meaning-
ful entities. This is due to the printing and digitalization
as well as to the numerous interconnections between musi-
cal symbols. The complexity of primitive arrangements (e.g.,
grouped notes) [8], the considerable symbol variability and
the continuous evolution of the notation system [9, 10] are
other features of the music notation that make it difficult to
recognize.

The research in this domain reached a noticeable level,
since commercial softwares could be developed and are now
widely used. Despite their efficiency, they still failed in a
number of configurations. As an illustration, Figure 1 shows
examples where the recognition performed by such a soft-
ware [4] leads to an inconsistent metric in a bar. These er-
rors are due to primitive recognition failures, but they are
also probably due to the lack of constraints related to musi-
cal rules in the recognition method.
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Figure 1: Examples of recognition errors provided by a commercial software [4]. On the left-hand side of each column, the original bar, on the
right-hand side, the recognition results.

The aim of this paper is to propose a symbol segmenta-
tion and analysis method that attempts to overcome the dif-
ficulties summarized above, and to show how musical rules
can be modeled and introduced at a higher level in order
to obtain consistent and reliable results, with better perfor-
mances.

Numbers of methods have been proposed in order to
improve primitive segmentation and recognition (e.g., [5–
8, 10, 11]). More particularly, an interesting idea to deal
with symbol variability is to propose extensible and adap-
tive recognition systems [9, 10] that allow supervised learn-
ing of symbols. In this paper, we propose a fuzzy model that
relies on a robust symbol detection and template matching
results. The proposed method allows adapting automatically
the class model to the processed score, modeling explicitly
the symbol variability within the score, and, as an option, re-
fining automatically the symbol models and the related pa-
rameters from a manually corrected excerpt of the music
score.

The musical rules are characterized by the particular
structure they impose to the scores, but also by their flexibil-
ity, either in their parameters (relative position of symbols,
e.g.), or in their application modes (redundancy of symbols,
e.g.). Recent developments acknowledge the necessity of in-
troducing rules in recognition methods. Most methods in-
troduce structural information at the symbol level, by con-
straining the spatial arrangement of primitives (note head,
note tail, etc.) [7, 8, 12–15]. Syntactic and semantic rules
have to be introduced at higher level since they involve sev-
eral symbols in a bar or in several bars. All methods deal with
such information in order to retrieve the semantic content of
the recognized symbols (e.g., the pitch of a note, consider-
ing its position on the staff but also the clef, the key signa-
ture and the accidentals) (e.g., [12–15]). But very few meth-
ods model and integrate the syntactic rules in the recogni-
tion process itself. They generally restrict to the local graph-
ical rules [7, 14, 15], and to the metric criterion (number of
beats per measure) in order to correct some errors [13, 15–
18], and consequently are still incomplete with respect to the
set of usual musical rules. As for the flexibility aspects, it has
not really been addressed until now. A few methods deal with
uncertainty and fuzziness at symbol level [19, 20], but not at
the rule level. The first real attempt to model explicitly this
flexibility was proposed in [1].

Based on this short literature overview, it appears that
a number of problems remain unsolved by existing meth-
ods. Most of them are linked to the specificities of the mu-
sical writing and will be detailed in Section 2. The aim of this

paper is to propose a better modeling of available knowledge
(in particular musical rules and their flexibility or impreci-
sion), to improve decision making, and to gain in robustness
by indicating possible errors. This last feature is an original
point that was not addressed before and that allows an in-
teraction with the user, from which learning and correction
procedures can be very easily applied. One of the original as-
pects of our approach is to develop a fuzzy formalism, which
allows us to propose a consistent modeling of heterogeneous
knowledge, and to exploit the richness of the fuzzy sets the-
ory in terms of knowledge representation, fusion, and deci-
sion making [21–24]. Some ideas have already been devel-
oped in our earlier work. The aim of this paper is to describe
the complete system, including significant additions and im-
provements with respect to previous work [1, 25, 26].

The paper is organized as follows. Section 2 describes the
specificities of musical scores and the main difficulties for
recognition. Section 3 provides an overview of the method.
The next sections describe each step in more detail. Section 4
deals with the preprocessing steps and the extraction of prim-
itive symbols. In Section 5, we describe how each detected
symbol is analyzed in order to generate recognition hypothe-
ses. In Section 6, structural information is used to guide the
recognition. This information consists of graphical and syn-
tactical rules that are usually respected in musical writing.
In Section 7, the fusion of all available information is per-
formed, leading to the final decision making. Section 8 aims
at improving the robustness of the whole system by indicat-
ing possible errors and introducing a learning procedure. Ex-
perimental results are presented and discussed in Section 9.
Section 10 contains concluding remarks and some proposals
for future work.

2. SPECIFICITIES OF MUSICAL SCORES

Before presenting our work, we first define precisely which
musical scores are processed by our system, and recall the
main concepts and definitions used in musical notation, in
order to clarify the terminology used all through this paper.
Then we summarize the main difficulties in OMR. The aim
of our approach is to provide answers to these open ques-
tions.

2.1. Musical notation framework

The music scores processed by our system are written in the
usual Western classical notation. This notation relies on a
set of music symbols, codified by structural, graphical, and
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Figure 2: Different note groups, corresponding to the same rhythm.

syntactic rules: for example, the structure of the staves, con-
sisting of five parallel and equally spaced lines, the structure
of the notes, composed of assembled primitives (note head,
stem, tail, etc.), the relative position of symbols, the use of
metric and tonal rules, and so forth. We only consider this
notation in our work, and we restrict to monophonic scores
(one musical voice per staff). Chords (notes played together)
are also not processed, nor polyphonic music. Although the
main ideas proposed in this paper are general and can proba-
bly be extended or adapted to other kinds of scores, it should
be noticed that the actual program is designed under the
assumptions presented above, and that the related a priori
knowledge is hard coded in it. The last assumption concerns
the symbols currently handled, which are restricted to the
main ones (notes, rests, accidentals, etc.), that are manda-
tory for playing the music. Ornaments, for example, are not
yet considered.

A very important component of musical writing consists
of a set of rules. As they are at the core of our high-level in-
terpretation approach, we review them in this section. They
can be divided into two classes: graphical rules, describing
the relative positions of symbols, and syntactic rules, involv-
ing tonality and metric. Let us summarize the ones that apply
in monophonic classical music. They are numbered for later
use in this paper.

Graphical rules

(1) An accidental should be placed before the note it mod-
ifies and at the same height (vertical position) on the
staff.

(2) A duration dot should be placed right after the note
head.

(3) A staccato dot should be placed just above (or below)
the note head.

Syntactic rules

(4) The number of beats per bar should always correspond
to the global metric indication.

(5) Notes are generally grouped into beats, multiple of
beats, or beat fraction, so as to facilitate the rhythm
and beat structure understanding. This is illustrated in
Figure 2. Groups can include silences as well.

(6) The accidentals of the key signature are applied implic-
itly to each note having the same name (same pitch up
to octave shifts).

(7) An accidental applies to the next note, but also to all
notes at the same height in the same bar. It does not

apply anymore in the next bar if it is not explicitly re-
peated.

(8) A duration dot modifies the length of a note by a factor
1.5.

A noticeable feature of musical writing is that these rules
have different strengths and can be applied with more or less
flexibility. Let us take a few examples.

(i) Rule (4) about metric is strict for almost all bars of a
score. Exceptions concern only the possible first notes
before the first bar (upbeat), and partial bar related to
repeat signs. In this case, the sum of the length of the
bar preceding the repeat sign and the length of the bar
to which the repeat starts should match the metric.

(ii) Rule (7) states that it is theoretically not useful to re-
peat an accidental in the same bar. However this is by
no means forbidden and numerous examples can be
exhibited where this redundant repetition is done, for
the sake of readability. Similarly, although it is not nec-
essary to cancel the effect of an accidental in the next
bar, this often occurs, for similar reasons.

(iii) Rule (5) is by essence very flexible, since several groups
can be consistent with usual beat subdivision or
grouping. It can be even more relaxed, by allowing un-
usual groups for interpretation sake (see, e.g., the last
example in Figure 2).

(iv) Graphical rules are imprecise: they impose a relative
position between symbols, but this position cannot be
given in a precise way. A lot of variations occur within
a score depending on symbol density, or between dif-
ferent scores (from different editors typically).

These examples show that rules are usually flexible, or con-
tain imprecise parameters. They are usually satisfied, but can
also be relaxed, or applied in different ways.

The main originality of our approach lies in the model-
ing of these rules, along with their flexibility and impreci-
sion, and in their introduction in the recognition procedure.
These features of our approach allow us to provide original
and efficient answers to the open questions listed in the next
section.

2.2. Main difficulties in OMR

Although OMR has a number of common features with
text recognition (limited number of symbols, writing codes),
both domains are actually quite different and OMR raises
specific problems. Although most of these problems have al-
ready been mentioned in the literature (e.g., [2, 5, 8]), several
of them are not yet properly addressed by existing methods,
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(a) (b)

Figure 3: Examples of common printing defects: symbols touching (a), fragmented or damaged symbols (b).

(a) (b)

Figure 4: Typesetting variability between different publishings and also within the score.

or only partial solutions are proposed, addressing only a part
of them. Here we take them all into account, and we propose
global solutions.

Most systems, including ours, rely on a first segmenta-
tion step, aiming at localizing and isolating individual sym-
bols, before recognition. However, symbols are usually con-
nected by staff lines and beams, making this step a difficult
one [5, 11]. The problem is even more complex due to the
limited quality of original scores and their scanned version
(Figure 3). Although a lot of effort was dedicated to this step
[5, 6, 8, 11, 27], it is clear that not all problems can be solved
at this level, and the imperfections of the segmentation have
to be taken into account during the next processing steps.

Another difficulty is related to the variability of symbols.
This is obvious when considering different scores, in partic-
ular from different editors, but variability can even be high
in the same score (Figure 4). This results in an additional
level of ambiguity, which will strongly influence the individ-
ual symbol recognition step. While learning procedures can
be considered to cope with the first type of variability [9, 28],
its efficiency will reach an intrinsic limit due to the intrascore
variability, which has therefore to be addressed at a different
level.

The types of rules used in musical writing carry intrin-
sic ambiguity, due to their flexibility, as explained above. Al-
though it is clear that their modeling should be of great help
in the recognition procedure, it is clear as well that these
characteristics constitute an additional difficulty. Moreover,
the interpretation and recognition of a symbol usually re-
quires the use of several rules, acting either at the level of
neighbor symbols, or at higher level. A fusion step is there-
fore necessary to guarantee both a good individual recogni-
tion and a good global consistency. This fusion has to deal
with heterogeneous pieces of information and knowledge
(local information issued from segmentation, interpretation
of previous symbols, syntactic rules, etc.).

The problem can be expressed as follows: detect, seg-
ment, and recognize basic primitives as reliably as possible,
model the available knowledge, at structural and syntactic
levels, and exploit this information to disambiguate between
possible interpretations of primitives and to provide a high-
level interpretation. This task is complex for several reasons,
as explained above. The main ones can be summarized as fol-
lows.

(1) Ambiguity is important, because of the printing im-
perfections, the difficulty to segment the score into meaning-
ful entities, and the variability of primitives.

(2) Ambiguity is difficult to solve, because the number
of possible arrangements of primitives is very high, although
the number of symbols is restricted.

(3) Notation rules express flexible constraints or may be
valid up to different precision degrees.

(4) These rules involve a large number of symbols, which
can be spatially far from each other in the score.

(5) These rules have different characteristics. They apply
at different levels. But since they are highly interdependent,
they should be used together to lead to a consistent interpre-
tation.

We show in the next sections how we can solve these
problems by developing an adequate modeling of the infor-
mation (of all types) along with its specificities and imper-
fections. In our model, these specificities and imperfections
are considered as a piece of information as well. Their ex-
plicit modeling avoids the development of complex repairing
methods, which would be necessary if this type of informa-
tion would be ignored.

3. GENERAL STRUCTURE OF THE
PROPOSED METHOD

An overview of the proposed method is illustrated in Figure
5. The input is decomposed into two types of information:
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Generic information Specific inputs

Musical rules Set of models Original image
Global information:

tonality-metric

(I) Primitive extraction

(II) Individual symbol analysis

(III) Music writing rules

(IV) Fusion & decision

Preprocessing &
primitive extraction

Set of recognition
hypotheses

Symbol classes

Graphical rules Syntactic rules

Global decision-error indication

Image analysis

Interpretation:
fuzzy model

Figure 5: Overview of the proposed method.

(i) generic information, consisting of (i) a set of reference
models of symbols, which will be used mainly in the
first phases, dedicated to individual symbol extraction
and analysis, and (ii) musical rules, used in the higher-
level interpretation phases;

(ii) specific information related to the score to be analyzed,
consisting of (i) the scanned page, and (ii) global infor-
mation on tonality and metric (provided by the user).

The first phase consists of preprocessing steps and seg-
mentation. First, the orientation of the score is estimated.
This allows us to realign the staff lines along the horizon-
tal axis and to improve their detection [25]. Segmentation of
symbols is then performed, based on the accurate removal
of staff lines that isolates most symbols, and the detection
of vertical segments that feature all the others. Detection of
beams connecting stems is also considered. This phase is de-
scribed in Section 4.

In the next step, segmented objects are analyzed based
on their correlation with the reference models (generic in-
formation). From correlation coefficients, at most three hy-
potheses are generated for each object. A hypothesis is an as-
signment of a segmented object to a symbol class, to some
degree (modeled using possibility distributions). The possi-
bility that the object is not a musical symbol is considered as
well. This processing is detailed in Section 5.

The next phases deal with higher-level interpretation. It
uses intensively the musical rules. This type of knowledge
is adequately represented in the possibility theory because
of the required flexibility mentioned in Section 2. After the
first phase, these rules can be instantiated according to the
analyzed score. This concerns, in particular, the tuning of

parameters of the possibility distributions, based on parame-
ters extracted from the score such as the interval between two
staff lines. Then the recognition hypotheses generated previ-
ously are reconsidered and their mutual consistency accord-
ing to the rules and to the specific global information (tonal-
ity and metric) is checked. This is presented in Section 6.

The best combination of recognition hypotheses after the
fusion of all rules is chosen. This decision is made globally
for all symbols in a bar. These fusion and decision steps are
described in Section 7.

In order to simplify the scheme, it is presented as a uni-
directional process in Figure 5. However, backwards proce-
dures have been implemented as well, in order to correct er-
rors and gain in robustness. We propose a method for indi-
cating possible sources of errors which is an innovation with
respect to existing systems. This allows an easy interaction
with the user, who can correct these errors, for instance on
the first page of the score. Based on these corrections, sym-
bol models or specificities of the score can be more precisely
learned. The learning procedure is expected to lead to fewer
errors in the next pages of the score. This reduced interac-
tion with the user is not tedious, likely to be well accepted if
limited to one page for instance, and may be even required
by the user in order to guarantee better results and fewer er-
rors on the whole score. This learning should however not
lead to very restricted models and flexibility should still be
allowed, in order to deal with intra-score variability, as men-
tioned above.

Although the general system architecture, including suc-
cessively preprocessing, symbol recognition, syntactic and
semantic analysis, is similar to existing ones (e.g., [9, 13, 15,
18]), its individual components contain innovative features
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that allow overcoming the limitations of previous systems
and answering in an elegant way the questions raised in
Section 2. This concerns in particular the modeling of mu-
sical rules and their rigorous structured organization in the
system, which avoids ad hoc uses of these rules spread all over
the processing. A main feature of the proposed method is
that no definite decision is made before the whole bar is ana-
lyzed, both at symbol level and at higher interpretation level
using musical rules. This process manages ambiguity and im-
precision and takes all the context into account, unlike exist-
ing methods. Another important feature is adaptability: pos-
sibility distributions are defined generically and their param-
eters are learnt on the specific analyzed score. This applies
in particular to models and graphical rules. The proposed
system goes one step further in this direction since models
can be further refined and precisely adapted after one step
of recognition-correction on a few bars or a page. Finally,
the proposed fuzzy modeling exploits the advantages of fuzzy
sets and possibility theory in terms of modeling and fusion of
heterogeneous information and knowledge prone to imper-
fections, variability, and flexibility.

4. PREPROCESSING AND PRIMITIVE DETECTION

The music sheets (in A4 format) have been scanned at the
resolution of 300 dpi and binarized to provide an image
I(x, y), where I(x, y) at point (x, y) can take values 0 (white
pixels in the following figures) or 1 (black pixels). Our co-
ordinate system is defined by the origin, at the upper-left
corner of the image, the vertical axis from top to bottom (x
coordinate), the horizontal axis from left to right (y coordi-
nate).

The preprocessing method concerning the staff detec-
tion and skew recognition, and the segmentation step are
based on [25], with significant improvements, in order to
better overcome the segmentation difficulties due to print-
ing imperfections. Then, the musical symbols we want to
recognize can be classified into two different types: (i) the
symbols that are featured by a vertical segment, obviously
the notes through their stem, but also the accidentals (flat,
sharp, and natural), and the appoggiatura; (ii) the rests,
the whole notes and the dots. The symbols of the second
type can be easily isolated through a staff line removal al-
gorithm. The problem is more complicated for the sym-
bols of the first type, since notes are often beamed to-
gether, and accidentals often connected to note heads be-
cause of printing defects (Figure 3). But once they are de-
tected through their vertical segment, a template matching
procedure can be applied because this recognition method
does not require precise prior knowledge about the pattern
location.

Thus, our symbol segmentation method relies on two
fundamental steps: the staff lines removal and the detection
of vertical segments. These two steps must deal with com-
mon printing defects: locally warped staff lines, broken seg-
ments, skewed vertical segments. We propose in the next
sections an accurate staff lines detection and removal algo-
rithm, and a robust detector of vertical segments. The last

section concerns the detection of beams connecting stems to-
gether, that also has to cope with variability and defects.

4.1. Staff-line detection and removal

The challenge is to realize an accurate removal of staff lines,
capable of disconnecting nearby symbols that are syntacti-
cally separated, while avoiding suppressing pixels belonging
to symbol primitives. This requires knowing the exact lo-
cation of the staff lines at each horizontal coordinate. The
skew angle is first calculated and corrected, the staff lines are
coarsely detected and the staff spacing (SI) is computed [25].
The staff line thickness (e) is also estimated, by detecting the
maximum peak in the histogram of the black run-lengths
[15]. Based on these parameters, we define the Hp coeffi-
cients of a correlation mask, that represents the cross-section
of the staff, and that will be used in a horizontally tracking
filtering, for the purpose of locating precisely the staff posi-
tion:

Mp(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
for x = Hp

2
+ k∗SI + i,

k ∈ [−2, 2], i ∈ [− Δb,Δh
]
,

−1 otherwise,

Hp = 2
⌊
2.5SI

⌋
, 0 ≤ x < Hp,

Δb =
⌊
e

2

⌋

, Δb + Δh + 1 = e,

(1)

with �x� denoting the integer part of x.
We compute then the correlation between this mask and

the image. Let us denote by C(x, y) the result obtained at
point (x, y):

C(x, y) = 1
Hp

Hp−1
∑

i=0

(

Mp(i) · I′
(

x + i− Hp

2
, y
))

, (2)

where

I′(x, y) =
⎧
⎨

⎩

−1 if I(x, y) = 0,

1 if I(x, y) = 1,
0 ≤ x < H , 0 ≤ y < W.

(3)

The correlation score is computed at each y coordinate
for several x around the average position of the third staff
line. Without symbol superimposed on the staff, the maxi-
mum value C(xopt, y) leads to the exact position xopt of the
third staff line at the y coordinate. To deal with symbol inter-
ference, we use a filter technique that integrates continuously
the previous correlation scores in order to be insensitive to
superimposed symbols and just track the slow variations of
the staff line position. This algorithm can be formalized as
follows:

filt staff (x, y) = α∗filt staff (x, y − 1) + (1− α)∗C(x, y),

max
x

(
filt staff (x, y)

) = filt staff
(
xopt, y

)
.

(4)
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The filter is initialized on the left-hand side, at the start-
ing position of the staff, and the filter is applied at each in-
creasing y, leading to the accurate vertical position xopt at
each horizontal coordinate. The parameter α is set to 0.98.

Figure 6 shows an example of result. The black lines rep-
resent the average position of the staff lines, extracted in the
first step, while the red lines follow exactly the warped staff
lines.

The proposed method provides reliable results. It has
also been successfully tested on polyphonic music scores that
present higher symbol density. Compared to other tracking
algorithms presented in the literature, the strong point is the
continuity of the analysis, that probably ensures, as in [27],
a better robustness towards interfering symbols than more
local methods [5, 6].

In the next step, the staff lines are simply removed by con-
sidering the length of the black vertical runs intersecting the
staff lines. A run is a set of connected pixels of the same color
within a column or a line. Let us consider the staff line num-
ber k, and a black run located between x1 and x2 at the y co-
ordinate. This run is deleted if the following conditions are
simultaneously verified:

(1) (x2 − x1 + 1) ≤ e + 2,
(2) x1 < (xopt + kSI),
(3) x2 > (xopt + kSI).

Figure 7 shows two excerpts of a score after staff line
removal. The objects are properly disconnected, while the
beamed notes remain well connected, and so the first step
of the segmentation process succeeds. Nevertheless, we can
notice some imprecision on the symbol boundaries: some
of them, especially the whole ones, may be erased on their
thin part tangent to the staff lines, while some small parts
of the staff lines may be left attached to the symbol, since
they are connected to it. These imperfections increase the
symbol variability, since the obtained shape may vary for a
given symbol class, depending on its position on the staff.
The problem of erroneous removing was partially addressed
in [5, 11, 29]. In our method, the resulting imprecision on
the symbol shape will be formalized at a later stage, in the
fuzzy symbol model part.

4.2. Vertical segment detection

The vertical segment detection must overcome two major
difficulties due to bad printing quality: skew and interrup-
tions. The latter are difficult to solve because the number of
consecutive white pixels interrupting the segment is gener-
ally in the same range as the number of white pixels sepa-
rating symbols that are close together. Another difficulty is
that vertical segments may be part of a symbol (case of ac-
cidentals), or are connected to another primitive (note head
or beam). We define the geometrical and topological features
of the vertical segments we want to extract, at the considered
image size and resolution:

(1) length greater than 1.5 staff space,
(2) typical thickness from 1 to 5 pixels, on the linear parts,
(3) separation with nearby symbol greater than 2 pixels,

Figure 6: Accurate detection of warped staff lines.

(4) separation between two nearby segments greater than
2/5 staff space,

and the defects that frequently arise

(5) small interruption, from 1 to 2 pixels.
(6) slight skew.

This analysis leads us to propose to compute three im-
ages, from which the segments can be extracted: a label image
Iv of the vertical runs, where the value at point (x, y) is equal
to the length of the black run passing through this point, a
label image Ih of the horizontal black run-lengths, and a fil-
tered image Il extracting the pixels of horizontal runs that
meet items (2) and (3):

Il(x, y) = I(x, y)
4∑

j=−4

(
I(x, y + j)Nl( j)

)
,

Nl = 1
4

[

1 1 0 0 0 0 0 1 1
]

.

(5)

The segment extraction process is carried out as follows:

(i) vertical closing, up to 2 pixels, of the vertical black runs
whose nearby extremities are both maxima in Il. This
step addresses item (5), while avoiding connecting ob-
jects that are effectively syntactically disconnected. The
label images Iv and Ih are then updated,

(ii) search for the longest vertical run in Iv at every y co-
ordinate. Let us denote by xh and xb the coordinates of
the extremities. The run is retained if it satisfies simul-
taneously criteria 1 to 3, expressed as

l = xb − xh + 1,

l > 1.5SI ,

∑xb
x=xh Il(x, y)

l
>

1
4
.

(6)

The second condition is purposely loose because we
search for segments that are generally included in a
wider shape and we do not want any significant seg-
ment to be oversight. But it is sufficient to discard
black runs that belong to a very thick component, such
as noisy interconnected beams of note group,

(iii) horizontal analysis of the remaining adjacent black
runs by the mean of a horizontally narrow sliding win-
dow (2/5SI wide), that keeps only the longest run and
discard all the others. This step addresses item (4). In
this way, just one black run is retained per vertical seg-
ment.

(iv) the last step solves the problem of skew (item (6)).
When a thin vertical segment is skewed, the detected
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Figure 7: Examples of staff lines removal.

Figure 8: Vertical segment detection. In light blue the black pixels added through vertical closing, in orange the main black run and in red
the run extensions corresponding to the merged black runs.

black run (at coordinate y) does not reveal the entire
segment, and it is necessary to reconsider the nearby
runs that are connected to the extremities of the de-
tected one. The average thickness ep of the segment is
estimated, using the labelling image Ih, by considering
only the pixels that are maxima (1.0) in image Il:

ep = 1
N

∑

xh≤x≤xb ,
Il(x,y)=1.0

Ih(x, y),

N = Card
{

(x, y)/xh ≤ x ≤ xb, Il(x, y) = 1.0
}
.

(7)

A run is considered as an extension of the detected one, if
it is connected to it, and if the average thickness of the corre-
sponding segment, computed also by (7), is almost equal to
ep. The process is iterated until no new run can be merged.

Figure 8 shows an example of the results we obtain on
degraded images with skew and breaks. We can see that the
vertical segments are properly detected despite these defects.

Compared to [27], the proposed method is simple and
not computationally expensive, but it has proved to be ac-
curate and robust enough, in the sense that all significant
vertical segments are properly detected, except in very bad
printing conditions with wide interruptions. In this case, we
could relax item (5). The imperfections are the double detec-
tion of symbols, obviously in the case of sharp or natural, and
sometimes, in the case of a very thick segment; typically some
end bar lines are detected twice. This problem is generally
solved at the next step of the segmentation. Indeed, the verti-
cal segments are used as seeds of a region growing and image-
labeling algorithm, and the relevant symbols are located by a
bounding box. When two vertical black runs lead to identical
bounding boxes, and if their width is less that the typical size
of a symbol (less than 1.5 space), they are merged. When the
bounding boxes are wider, it may be a case of bad connection
between nearby symbols, and the ambiguity has to be solved

at higher-level stages. The most important point is that no
vertical tall symbol is overlooked, since the corresponding
symbol would not be analyzed, and this error would never
be corrected. Figure 9 shows some results. The detection of
the vertical segment is precise; the bounding boxes are also
generally correct, but some imprecision cannot be avoided,
because of symbol fragmentation or symbols touching (see,
e.g., the slur crossing the bar line, the forte symbol touching
the beam, or the flat that is fragmented and is also touch-
ing the next note head). Therefore, bounding boxes are not
strongly involved in the recognition of the symbols featured
by a vertical segment, however they can be used to indicate
the free spaces left between them, where rests can be found
[25].

4.3. Beams detection

Beams are very difficult to detect and classify as primitive,
since they dramatically vary in shape and size and are part
of composed symbols. They are also prone to printing de-
fects (inconsistent connections between them, as illustrated
in Figure 3, variable thickness, disconnection from stems),
and interfere with staff lines. They also may be assembled
in different ways with the stems. Thus, rather than trying to
segment and classify beams, we propose a solution that just
checks the presence of a segment of adequate thickness, that
connects the extremities of two note stems. Consequently,
the method is applied after the classification hypotheses have
been generated, for any pair of objects assumed to be both
black notes (quaver, semiquaver, etc.). The proposed method
is based on region growing and on a modified Hough trans-
form. It has been designed to overcome the defects men-
tioned above.

Let us consider two vertical segments, assumed to be
stems, and the corresponding black note heads. The posi-
tion of the stems is known accurately (results of the vertical
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Figure 9: Segmentation of symbols featured by a vertical segment.
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Figure 10: Detection of a beam connecting a stem in ya and a stem in yb. (a) Parameters involved in the region growing process and modified
Hough transform. (b) Hough accumulator leading to the beam slope value.

segment detector) and the coordinates are denoted by ya, x1a,
x2a, and yb, x1b, x2b (Figure 10(a)). The position of the note
heads is also known, as a result of the individual symbol anal-
ysis step (described below in Section 5.1). Based on this in-
formation, it follows that the beam has to be searched near
the stem end, opposite to the note heads.

A region growing algorithm is applied from left to right,
for increasing y coordinates. Let us consider the case where
the note heads are both down. The seed is defined as the small
pixel column at the ya coordinate, between x1a − SI /2 and
x1a + SI . It corresponds to the range where the most extreme
beam is expected and it allows some breaks between the stem
and the beam. Let us denote by x1 and x2 the extremities of
the current pixel column at the yc coordinate (ya < yc < yb),
that has been aggregated to the region. We compute (8) for
each black point (xc, yc) (x1 < xc < x2), the slope a of the line
passing though this point and the extremity of the first stem
(x1a+e+1, ya). The parameter e represents the half minimum
thickness of the beam, and is set to 0.25SI ,

x = ay + b,

a = xc −
(
x1a + e + 1

)

yc − ya
,

b = x1a + e + 1− aya.

(8)

The values found for a are approximated to discrete
values ranged from −1 to +1 (−45◦ to 45◦). They incre-
ment the Hough accumulator (actually the histogram of a

values, see Figure 10(b)) if the black run centred on (xc, yc)
is longer than the minimum thickness (2e + 1). At the end of
the region growing process, and if the process has reached
the yb coordinate, the maximum value of the accumula-
tor is searched for, leading to the optimal parameters aopt

(Figure 10(b)) and bopt (8) of the beam. The last step consists
in validating these parameters. The number of black pixels,
located on the segment centred on the line x = aopty + bopt

and of thickness 2e+1, is counted. If the ratio expressed in (9)
is greater than 0.8, then the presence of a beam connecting
the two stems is validated. This threshold is not a sensitive
parameter; it allows to deal with some beam defects com-
pared with the theoretical model,

q = number of black pixels
(
yb − ya + 1

)
(2e + 1)

. (9)

In order to increase the reliability of the method, two accu-
mulators are in fact handled, corresponding to the line pass-
ing though the extremity of the first stem (ya) as explained
above, and in the same way, to the line passing through the
extremity of the second stem (yb). The one optimizing the
ratio (9) is preferred and its parameters are stored in the data
fields of the analyzed objects, indicating that both objects,
with the assumptions that they are both black note heads,
can be connected by a beam centred on this line. Thus, the
method provides accurate results, once at most one stem is
almost connected to the beam. Note that the detected beam
is the most extreme one, and that other beams may exist but
are not checked. These results will be further refined in order
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to compose groups of more than two notes and deduce the
duration of each note (see Section 6.2.2).

5. INDIVIDUAL SYMBOL ANALYSIS AND GENERATION
OF RECOGNITION HYPOTHESES

5.1. Template matching

Symbol analysis is mainly based on template matching. A
set of models is used to compute the correlation between
the class models and the segmented symbols. The models
(Figure 11) are designed for the typical score size and the
chosen scanning resolution, to avoid preliminary scaling.
Other sets of models could also be integrated in the system,
and selected depending on the staff space SI . Let us define
the correlation between the model k, Mk, of size dkx · dky and
origin (ik, jk), and the tested shape S, at the (x, y) position in
the image I :

Ck
S(x, y) = 1

dkx · dky

dkx−1∑

i=0

dky−1
∑

j=0

Mk(i, j)

· I′(x + i− ik, y + j − jk
)

(10)

with

Mk(i, j)=
⎧
⎨

⎩

−1 for a white pixel

1 for a black pixel
, 0≤ i<dkx , 0≤ j <dky ,

I′(i, j) =
⎧
⎨

⎩

−1 if I(i, j) = 0,

1 if I(i, j) = 1.

(11)

In the case of perfect superimposition between shape and
model, the result will reach the maximum score of 1.0. The
score decreases with the number of pixels that differ from the
model. In template matching, the correlation is computed
for several (x, y) coordinates. So, the highest score Ck(S), ob-
tained at (xk, yk), is a measure of similarity and of localiza-
tion:

Ck(S) = Ck
S

(
xk, yk

) = max
(x,y)

Ck
S(x, y). (12)

Numbers of classification methods may be used, and the
solutions proposed in the OMR literature are numerous.
Most of them rely on subsegmentation of the composed sym-
bols (the note groups), recognition of the segmented primi-
tives, followed by a reassembly phase based on rules express-
ing structural criteria (relative position of primitives) (e.g.,
[7, 8, 12–15]). The primitives themselves (note head, vertical
segment, tail, beams) and the other types of symbols (acci-
dentals, rests, dot) can be classified in various ways. We can
mention again structural methods based on the extraction of
geometric or topologic features [8, 10, 11, 15, 18, 30] or pro-
jection profile analysis [9, 31, 32], skeleton extraction and
analysis [29, 33], and methods that directly compare the un-
known shape to models, typically neural networks [6, 19],

or template matching [9, 32]. The structural methods need
to locate precisely the shape, making them very sensitive to
segmentation defects that result from undesired connections
between distinct symbols, or symbol fragmentation. These
segmentation problems are impossible to solve at this stage
of the image analysis without any contextual information.
That is why some authors need to imbricate segmentation
and classification in a very complex process [7, 8] or in-
troduce feedback in order to review some recognized sym-
bols based on inconsistency detection at the semantic analy-
sis level [15, 18, 34]. The main problem with these methods
is that they are fundamentally based on local interpretations,
and thus, do not take into account all the contextual infor-
mation.

Because of these problems, we prefer the second type
of method (template matching), combined with the ro-
bust symbol detection presented above. This methodology
presents some powerful advantages.

(i) It does not need to locate precisely the analyzed shape.
In particular, it can deal with fragmentation or undesired
symbol connections, and provide meaningful results as long
as the symbol is approximately localized, which is guaranteed
in our case. The correlation score is simply computed on a
small area deduced from the vertical segment, and the posi-
tion where the maximum correlation score is obtained pro-
vides the exact position of the symbol. For the note groups,
we can search for the note head at the extremities of the
detected vertical segment, with some tolerance to deal with
stem/note head disconnection cases. So, we can avoid com-
plex methods of subsegmentation and reconstruction. More-
over, the computing area can be more restricted by consider-
ing some structural rules. For example, note heads and acci-
dentals are placed on a staff line or on a staff space.

(ii) The class model is very easy to adapt to the ana-
lyzed score. A simple basic idea is to extract the different
models from the analyzed score itself. It is also possible to
store and test different models per class, corresponding to
various publishings (Figure 11) [25]. So, the method is eas-
ily adaptable. Moreover, we will propose in the next section
an automatic adaptation of the class models, based on the
correlation scores obtained on the whole music sheet, as well
as, in Section 8, a learning method allowing a better process-
ing of a specific score. These proposals really take advantage
of template matching.

(iii) The direct comparison of correlation scores can be
used to extract several recognition hypotheses, with the po-
sition obtained for each one. All these pieces of information
are used in the fuzzy model of symbol classes, as mentioned
above, and in the evaluation of graphical rules related to the
relative position of symbols.

Template matching is applied for the symbol featured by
a vertical segment on a small area deduced from the posi-
tion of the vertical segment. For all the other classes, except
augmentation dots, the correlation is computed on the free
space between the bounding boxes. In both cases, a priori
knowledge about the possible symbol positions according
to the tested class is used in order to increase the reliabil-
ity and the speed of the analysis. The last case concerns the
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Figure 11: Reference models Mk . Up to two models are used for each class k.
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Figure 12: Original images and recognition hypotheses.

augmentation dots: the correlation is computed in a small
searching area after a possible note head (Figure 15) or a rest.

Then, at most three recognition hypotheses (H1, H2, H3)
are selected, based on the obtained correlation scores, each
hypothesis assigning the pattern to a possible class. When
the highest correlation score is less than the decision thresh-
old td(k), the possibility that there is no symbol ((−) in Ta-
bles 1 and 2) is also added as H0 hypothesis. The decision
threshold values td(k) are defined for each class k. They allow
taking into account that some classes are more sensitive to
typesetting variations (small value for td(k)) or have a higher
probability of false detection (large value).

Figure 12 shows three bars, (a), (b), and (c), and the
recognition hypotheses superimposed on the original im-
ages. Table 1 indicates some of the associated correlation
scores.

These examples (Table 1) show the limits of the individ-
ual analysis: the correlation scores may be very ambiguous,
and the highest one does not always correspond to the right
hypothesis. The ambiguity results from symbol typesetting
variability, printing, and segmentation defects, as illustrated
above (Figures 3, 4, and 7); it is obvious that no individual
decision can be taken at this stage. But we can notice that the
correct solution is included in the set of hypotheses. So, the
next stages aim at disambiguating these primary results by
modeling all the information extracted from the score and
the knowledge about music writing.

5.2. Fuzzy model of symbol classes

This section addresses specifically the problem of symbol
variability and shape imprecision [1]. As the correlation
scores provide similarities between each analyzed symbol
and models, we define the degree of possibility πk(S) that S
belongs to class k as an increasing function of Ck(S):

πk(S) = fk
(
Ck(S)

)
. (13)

The shape of the possibility distribution for class k
(Figure 13) is defined by two parameters, Sk and D. The first
one is learnt from the correlation scores obtained on the
whole score:

Sk = td(k) + D/2 + n(k)m(k)
n(k) + 1

, (14)

where n(k) is the number of objects having their highest cor-
relation score with model Mk, this correlation score being
larger than the threshold value td(k). The average value m(k)
is computed from these scores, and represents a mean simi-
larity degree between the objects of class k in the score and
the reference model Mk of the program. So, the parameter
Sk takes a large value when Mk matches closely the objects of
the processed score, a small one otherwise. The second pa-
rameter, D (always 0.4), defines the width of the uncertainty
area around Sk, in which the possibility degrees are strictly
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Table 1: Some hypotheses and correlation scores.
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Figure 13: Possibility distribution of class k.

between 0 and 1. It models the range of the admissible varia-
tions of symbols of class k within the score. Thus, the possi-
bility distributions allow modeling both inter and intra score
symbol variability.

The shape of the distribution πk does not need to be es-
timated very precisely [23]. It has experimentally proved to
be robust. The most important is that it is not a binary func-
tion (there is no crisp threshold) and that it is increasing:
the higher is the correlation score, the higher is the degree of
possibility.

Table 2 shows the results obtained for the three bars
of Figure 12. Compared to Table 1, the possibility degrees
present less ambiguity. In particular, many hypotheses re-
ceive a zero possibility degree. It should also be noticed that
the classification rank may change: see, for example, object 5
in bar (c), for which the possibility of a flat is now eliminated.

6. INTEGRATION OF GRAPHICAL AND
SYNTACTICAL RULES

Until now, each object was processed individually. In this sec-
tion, we introduce the graphical and syntactic relationships
that are imposed by the notation (Section 2.1). As most of
the music writing rules are flexible or contain imprecise pa-
rameters, they cannot be expressed in a crisp way, and are
rather a matter of degree. Therefore, we define compatibility
degrees to express these consistency rules.

6.1. Graphical consistency

Given a set of hypotheses, the aim is to compute the compat-
ibility degree between each object and all the surrounding

objects in the bar, according to their classes. Horizontal and
vertical position criteria are first expressed separately and
then combined together to form graphical compatibility de-
grees between two symbols (binary interaction). Positions
extracted by template matching are intensively used for this
aim. Then the results are merged to get graphical consis-
tency degrees of higher orders, that is, involving more than
two symbols. This hierarchical method allows comparing the
global graphical consistency of different hypothesis combi-
nations, which involve any number of symbols, which are
more or less distant from each other.

All the graphical rules indicated in Section 2.1 have been
modeled: the position of an accidental or an appoggiatura
before a note head [1], the position of a point after a note
head or above a note head, in order to disambiguate dura-
tion dots and staccato dots [26], the relative position of any
other pair of symbols [26]. For the sake of clarity, we briefly
summarize and illustrate how the first graphical rule is mod-
eled, and how the final graphical compatibility of each object
Sn is obtained, for each hypothesis configuration.

Rule (1) expresses that an accidental should be placed be-
fore a note and at the same height. The possibility degree that
the object Sn is an accidental of class kn, and that a following
nearby object Sm (m > n) is a note of class km, is a function of
the compatibility degree Cp(Sknn , Skmm ) between both symbols:

Cp
(
Sknn , Skmm

)

=
⎧
⎨

⎩

αl fl(Δl) + αh fh(Δh) if fl(Δl) > 0, fh(Δh) > 0,

0 otherwise,
(15)

where fl and fh are two functions defining the admissible val-
ues of Δl and Δh, respectively, the differences in horizontal
and vertical positions between Sn and Sm (Figure 14). This
combination is a compromise between two criteria, exclud-
ing the cases where at least one is not satisfied at all. The
chosen coefficients αl = 0.2 and αh = 0.8 express their rel-
ative importance. Using a degree between 0 and 1 instead of
a crisp threshold on each criterion allows us not to discard
completely an accidental which is not exactly at the theoreti-
cally expected position.

The compatibility degrees help to compare two compet-
ing hypotheses. For object 2 in bar (a) in Figure 12, we obtain
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Table 2: Some hypotheses and possibility degrees.
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Figure 14: Accidental/note graphical compatibility.

a compatibility degree with the next note of 1.0 in the hy-
pothesis of a flat, and of 0.77 in the hypothesis of a sharp.
These results rank correctly the flat before the sharp and
strengthen the right hypothesis H1. Most of the wrong acci-
dental hypotheses are in this way discarded, but the graphical
compatibility degree is not always sufficient. For object 9 in
bar (b), the compatibility degree is equal to 0.0 for a flat, and
this correctly discards this hypothesis, but it is equal to 1.0 for
both sharp and natural. This second example shows that ad-
ditional criteria have to be considered in order to decide be-
tween two equally possible and still ambiguous hypotheses.

Compatibility degrees are calculated for all pairs of
nearby symbols, according to their classes [1, 26]. As there
may be more than one nearby symbol before or after Sn, espe-
cially in case of high symbol density, a global graphical com-
patibility degree for each object Sn classified in class kn, is
computed:

Cp
(
Sknn
) =

[

min
j<n

Cp

(

S
kj
j , Sknn

)]

·
[

min
l<n

Cp

(

Sknn , Skll
)]

.

(16)

It is a conjunctive combination expressing that symbol Sn
must be graphically compatible with all the previous and the
next symbols. The use of the min t-norm operator, in each
of both factors, allows to get graphical compatibility degrees
that are comparable whatever the number of involved sym-
bols. Then, the product t-norm provides more discriminat-
ing results than the min operator does.

This combination has proved to be very efficient, lead-
ing to very representative results on the global graphical con-
sistency of the different hypothesis configurations, thus con-
tributing to disambiguate them.

6.2. Syntactic consistency

In this section, we introduce the syntactic rules related to
tonality, accidentals, and metric. As underlined in Section 2,
these rules are very flexible and involve many symbols that
may be far from each other. We propose to define compat-
ibility degrees that evaluate each symbol or each group of
symbols against the considered rule. The proposed method
overcomes both difficulties stated above, and it is a very orig-
inal and innovative point with respect to systems found in
the literature.

6.2.1. Tonality and accidentals

The key signature is an input parameter of the recognition
program. It is indicated in the score as an ordered sequence
of accidentals (flats and sharps) placed just after the clef. This
is a strict rule that always applies. So, we assign binary syntac-
tic compatibility coefficients CS(Skn) to the accidentals found
after the clef, equal to 1.0 when satisfying the rule, 0.0 other-
wise.

The second rule concerns all the other accidentals in the
score. If a symbol belongs to one of the accidental classes
(flat, sharp, natural), it must be consistent with the key sig-
nature (tonality) and the other accidentals in the score. Ac-
cording to rules (6) and (7), and their flexible application,
we have to consider the consistency between accidentals of
same height (up to octave shifts): the accidental in the key
signature, the immediately previous accidental in the same
bar, and, if the latter does not exist, in the previous nearby
bars. A syntactic compatibility degree is assigned to every ac-
cidental Sn, based on the configuration evaluation [23].

Table 3 provides the defined coefficients in the case where
there is no accidental of same height (up to octave shifts)
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Table 3: Syntactic compatibility coefficient between two accidentals
in a bar, with no accidental of the same height in the key signature.

Sn = sharp Sn = natural Sn = flat

Sm = void 0.75 0.5 0.75

Sm = sharp 0.5 1.0 0.0

Sm = natural 1.0 0.5 1.0

Sm = flat 0.0 1.0 0.5

in the key signature. They have been defined as follows: the
most common configurations are when a sharp or a flat
occurs for the first time in the bar, or when a natural cancels
a previous flat or sharp. The first configuration gets a pos-
sibility degree equal to 0.75, so over the middle value, while
the second configuration gets the maximum possibility de-
gree, 1.0, in order to strengthen any consistent interaction
bringing new information inside a bar. But it is also possi-
ble that the second accidental recalls the first one in order to
make the reading easier. That is why the corresponding de-
gree takes the middle value 0.5 reflecting that this configura-
tion is possible but corresponds to usual but nonmandatory
practice. The last possibility degree is 0.0 when a flat occurs
after a sharp, or vice versa, because this configuration should
not occur, at least in tonal music.

Let us now take an example, with accidentals 4 and 9 in
bar (b) (see Figure 12(b)). Nine different combinations are
possible and evaluated, based on Table 3, each of them lead-
ing to a syntactic compatibility coefficient for both objects
(see Table 4).

This example shows how distant objects interact. The
better average syntactic configuration is obtained for
sharp/natural and flat/natural (0.75/1.0). But as the flat hy-
pothesis for object 4 gets a graphical compatibility with the
following note head equal to 0.0, against 1.0 for the sharp hy-
pothesis, we can guess that the fusion of both graphical and
syntactic criteria will lead to the correct solution: sharp for
object 4, natural for object 9.

Other accidental combinations have been defined, tak-
ing into account the presence of the accidental in the key
signature or in previous bars (refer to [1] for a complete de-
scription). To our knowledge, no other method of the lit-
erature models and integrates the accidental consistency in
their recognition algorithms. However, it has proved to in-
crease significantly the accidental recognition, since it allows
a global evaluation of their mutual consistency, and takes
into account the notation flexibility.

6.2.2. Meter

Meter is generally considered at the end of the recognition
process, in order to detect and correct errors [13, 15, 17, 18].
The number of beats per bar (Rule (4)) is checked for this
goal, since it is a strict rule that has always to be satisfied
(up-beat excepted). Then, additional criteria, such as vertical
alignment may be used in a post correction process. We pro-
pose to integrate Rule (5) about note grouping in the recog-

nition process itself, combined also with the strict Rule (4), in
order to increase the reliability of note-length interpretation.

The method proposed in [1] has been modified in or-
der to deal with groups including rests. Its reliability has
also been improved, thanks to the accurate beam detection
method, presented in Section 4.3. The parameters a and b of
the thick line linking the extremities of two beamed stems
are first found. These first results are used to compose larger
groups. In bar (c), for example, (Figure 12(c)), objects 3,
4, 6, and 8 are all assumed to be filled notes, and are de-
tected to be connected in pairs. Consequently, they must
form a single group of four notes and this larger association
is checked. The results obtained for each beam portion are
at the same time refined, so that the most extreme beam is
precisely located. Then, each note length can be obtained by
simply counting the number of beams on the left-hand side
and/or the right-hand side of the stem, the analyzed cross-
section being determined by the detected beam (a, b), the
note head position (x0), and the stem position (y0) ((17),
Figure 15(a)). Some additional criteria are also defined to
deal with connected beams: for example, when the thickness
of the detected beam is greater than 1.2SI , it is counted as two
beams,

y = y0 ± 0.25SI ,

x11 = a∗y + b + 0.3SI ,

x11 = max
(
x0 + SI , xl1 − 3SI

)
.

(17)

It should be noticed that the method is applied for ev-
ery combination of hypotheses found for a bar, but that all
results obtained for a given note group are stored in the
data fields, so that identical configurations are not processed
twice.

Notes that are not connected to others are assumed to be
crotchets or isolated quavers. No specific treatment is imple-
mented in order to recognize flags. However the duration of
isolated notes can also be found by counting the number of
possible flags at the end of the note stem [25], as illustrated in
Figure 15(b). The analysed cross-section is defined from the
stem location and the note head position (x11 is then equal
to the stem extremity coordinate in (17)).

Dots, which are searched for after every note head
(Figure 15), are then attached to the note heads. Eighth rests
and shorter rests have also to be considered, since they may
be included in a note group. When a rest is inside a note
group, it can be included in it without any doubt. But when
it is just before it, we have to consider two cases: the one for
which the rest is outside the group and the one for which it
is part of the group. The total length of each formed group
is then computed. If it does not reach a conventional value
(Rule (5)), its rhythmical internal organization is compared
with the usual ones, according to the time signature. At most
two hypotheses are made, that increase or decrease the to-
tal length of the group, while changing the smallest num-
ber of note lengths and respecting the dots and the rests
of the group. Altogether, there are at most 5 hypotheses Hl

per group: the initial interpretation, two possible corrections
for the group without any rest just before it, two possible
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Table 4: Examples of compatibility coefficients obtained for measure (b) and objects 4 and 9. Shaded boxes correspond to accidental hypotheses
with a graphical compatibility coefficient with the next note head equal to 0.0.

4 9 Cs(sk4)

0.75

0.75
0.75

Cs(sk9)

0.5

0.0
1.0

4 9 Cs(sk4)

0.75

0.75

0.75

Cs(sk9)

0.0

0.5

1.0

4 9 Cs(sk4)

0.5

0.5

0.5

Cs(sk9)

1.0

1.0

0.5

Search area for augmentation dot

x0

x12

x11

y0 � 0.25 sI y0 + 0.25 sI

y0

(a)

x0

x12

x11

y0
y0 + 0.25 sI

(b)

Figure 15: Beam (a) or flag (b) detection for filled note length evaluation. In yellow the detected vertical segments counted as beams or flags.

corrections for the group including the rest just before it, if
existing. Let L(g) be the number of notes and rests in the
group g, and l(g) the number of notes whose beam count is
changed. The possibility degree assigned to each group hy-
pothesis Hl is computed as

CHl

l (g) = πHl
l (g)

(

1.0− l(g)
L(g)

)

. (18)

The first factor, πHl
l (g), evaluates the group consistency:

it is equal to 1.0 when the total group length is normal (so,
for all proposed corrections), equal to 0.5 otherwise. When a
rest is before a beamed note group, the initial interpretation
gets a πHl

l (g) coefficient equal to 0.5, if none of the possi-
ble groupings (with or without the rest) seems to be normal,
1.0 otherwise. In this last case, possible corrections are pro-
posed for the unusual configuration. For example, πHl

l (g) is
equal to 1 for an initial interpretation such as (1/4), but
other possibilities are proposed when considering just the 3
beamed notes (3/16). The second factor has another
interpretation. It expresses that the more the new interpre-
tation differs from the initial one, the more the possibility
degree decreases. Thus, the product of both terms leads to
prefer initial configurations that can be correct, or corrected
groups with few corrections. Isolated notes are not affected
by this process, and their possibility degree is always set to 1.

For example, in bar (c) of Figure 12, the duration of the
second note is false, and the total length of the group is equal
to the unusual value, 7/16 (1/8 + 1/16 + 1/8 + 1/8). The possi-
bility degree of this initial configuration is 0.5 and the follow-
ing corrections are proposed: (1/8 + 1/8 + 1/8 + 1/8) = 1/2,
with a possibility degree equal to 0.75, and (1/16 + 1/16 +
1/16 + 1/16) = 1/4 with a possibility degree equal to 0.25. So,
the first correction (1/8 + 1/8 + 1/8 + 1/8) = 1/2 (the correct

solution) is preferred to the other configurations, and Rule
(4) applied to the whole bar will also confirm this hypothesis
in the next stage.

The proposed method has proved to be very efficient
(Figure 16), especially for n-tuplets interpretation, more
rhythm models being now integrated with respect to [1]. Its
efficiency has been increased, due to the new beam detec-
tion and counting method, which provides reliable prelimi-
nary results, so that only isolated errors need to be corrected.
Thus, corrections can generally be proposed without ambi-
guity. Groups of two notes, or more than 4 notes, with just
one misinterpretation are generally free of ambiguity. Errors
in three note groups are more difficult to solve. For exam-
ple, (1/16 + 1/8 + 1/8) = 5/16 can be corrected in either
(1/16 + 1/16 + 1/8) = 1/4, (1/16 + 1/8 + 1/16) = 1/4, or
(1/12+1/12+1/12) = 1/4 [1], with a possibility degree equal
to 2/3 for all. In such ambiguous situations, the most fre-
quent group is preferred, that is, (1/16 + 1/16 + 1/8) = 1/4
in this example. Altogether, the number of erroneous cor-
rections is insignificant compared with the number of good
corrections.

7. FUSION AND DECISION MAKING

The fuzzy model described in Sections 5.2 and 6 leads to a set
of possibility degrees evaluating recognition hypotheses and
their mutual consistency according to musical rules. The next
step consists in merging all these pieces of information and in
searching for the optimal configuration according to all crite-
ria, in order to take a decision that is consistent with the mu-
sic writing. This global evaluation is an important and pow-
erful feature of the proposed recognition method, since sym-
bols are highly interdependent as explained in Section 2.2.
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1/8 1/12

3 5 6

1/161/20 1/24 1/32 1/64

Initial interpretation

Corrected interpretation

Figure 16: Examples of groups with length correctly interpreted thanks to Rule (5). In red the lengths that were not correct after the beam counting
process. In the second bar, for example, the notes initially interpreted as semiquavers (1/16) are corrected into a quintuplet of semiquavers
(1/20).

In order to decrease the complexity, the global optimiza-
tion problem is divided into subproblems, where optimiza-
tion is performed in each bar separately. This decomposition
is very natural because symbols are interrelated by musical
rules especially at the bar level. All configurations of recog-
nition hypotheses are sequentially considered and evaluated.
A configuration j is composed of a set of N( j) objects Sn
(n = 1, . . . ,N( j)) assigned to classes k(n, j). For this con-
figuration, several length hypotheses Hl are also made, com-
bining together the different hypotheses made on each of the
N( j,Hl) groups g (g = 1, . . . ,N( j,Hl)) of notes and eventu-
ally rests. Such a configuration will be referenced as ( j,Hl)
in what follows. The decision process is divided into two
steps:

(i) fusion of all possibility degrees and compatibility de-
grees,

(ii) decision by maximization of the resulting global func-
tion, and bar length checking.

7.1. Fusion

The general consistency of the configuration is first checked:
every duration dot must be in the search area of a note,
every accidental (tonality excepted) must be followed by a
note, and every symbol must have a nonzero graphical com-
patibility degree. All the configurations that do not satisfy
these preliminary criteria are inconsistent and therefore im-
mediately discarded. For all the others, the possibility degrees
and compatibility degrees are merged step by step to pro-
vide the final possibility degree Conf( j,Hl) of the configu-
ration.

The global compatibility degree C
( j)
t (S

k(n, j)
n ) of an object

n, classified in class k(n, j) in the configuration j, with all the
other objects of the configuration, is deduced from its graph-

ical compatibility coefficient Cp(S
k(n, j)
n ) (16), and, for acci-

dentals exclusively, from its syntactic compatibility degree

CS(S
k(n, j)
n ) (Section 6.2.1). The global compatibility degree is

then merged with the possibility degree of membership to a

class πk(n, j)(S
k(n, j)
n ) (13), using a product, and all these results

are averaged to provide the global possibility degree for the
hypothesis combination j (19). This fusion method leads to

a better discrimination than the one proposed in [1]:

Conf r( j) = 1
N( j)

N( j)
∑

n=1

[

πk(n, j)

(

S
k(n, j)
n

)

C
( j)
t

(

S
k(n, j)
n

)]

. (19)

Then we have to combine the hypotheses made on the
length of the beamed notes, in order to express the global
possibility degree Conf l( j,Hl) of the N( j,Hl) note/rests
groupings. The fusion method relies again on an average, and
we refer to [1] for a complete explanation.

The final function combining all the possibility degrees
and compatibility coefficients for the configuration ( j,Hl) is
given by

Conf
(
j,Hl

) = Conf r( j)∗ Conf l
(
j,Hl

)
. (20)

It is the product of two factors, expressing that both cri-
teria, the consistency of the recognition hypotheses and the
possibility degree of the length hypotheses, have to be simul-
taneously satisfied. The use of the product t-norm instead of
the minimum for instance makes this rule more severe.

7.2. Decision

The total length of the bar, denoted by D( j,Hl), is the sum
of the length of the note/rest groups in the configuration
( j,Hl), and of the length of the isolated rests (only depend-
ing on j). The decision algorithm chooses the configuration
( j,Hl) which meets at best two decision criteria, which are
by priority order

(i) the total length D( j,Hl) of the bar is correct,
(ii) the Conf( j,Hl) function is maximized.

This means that the algorithm chooses among the config-
urations matching the time signature the one which reaches
the highest score Conf( j,Hl). If no configuration satisfies the
strict length constraint, the algorithm retains the configura-
tion maximizing Conf( j,Hl).

So the strict rule (Rule (4)) concerning the metric is ex-
pressed in the last step. It should be noticed that all rules
mentioned in Section 2.1 have been integrated in the deci-
sion process. The fuzzy model allows merging both graph-
ical and syntactic criteria, which involve different numbers
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of symbols, close or far from each other. Thus, the strong
ambiguity on the symbol classes is reduced, leading to recog-
nition results that are consistent with the notational syntax.
The drawback of the method is its computational cost, espe-
cially for bars including many symbols, since the number of
configurations grows exponentially (product of the number
of hypotheses generated per symbol). It is statistically accept-
able, around 350 per bar. When it is too high, we just discard
the “less possible” class hypotheses. In the current version
of the system, the average processing duration for one music
sheet (10 staves) is around 5 seconds on a Pentium 4 3.2 GHz.
But some graphical and syntactical criteria can be added in
order to implement heuristics, that reduce more drastically
and intelligently the computational cost of the decision mak-
ing step.

8. IMPROVEMENTS AND GAIN IN ROBUSTNESS

We present in this section two improvements that allow an
easier use and a better reliability of the system. The first
one is the automatic indication of potential recognition er-
rors, based on the results obtained during the analysis. This
is an innovative feature that is very important since it is a
very tedious work for the user to check one by one all the
recognized symbols, even if the average recognition rate is
good. The second improvement concerns adaptation proce-
dures that allow refining the symbol models after a recogni-
tion/correction cycle made on a short excerpt of the score,
so that the reliability is significantly increased on the rest
of the score. As already mentioned, this option may be very
interesting when large scores are processed, since the time
spent for supervised learning compensates largely the time
wasted for painful manual corrections. One could also imag-
ine that the learnt features can be stored and reused when
similar scores provided by the same publisher are processed.
These two improvements constitute an important advanced
step leading to an OMR system with enhanced practical use
convenience.

8.1. Potential error indication

There are three types of errors: symbol missing, symbol con-
fusion, added symbol. Results provided by the recognition
process are reused to analyze the solution output by the de-
cision process: the considered criteria are the class possibility
degrees, the graphical compatibility degrees, and the rhyth-
mical decomposition of the measure.

As most authors, we first check that the total length of
the bar matches the time signature. All bars that do not sat-
isfy Rule (4) are indicated as potentially false. The rhythmical
decomposition of all the others is then studied. It is already
nearly known, through the note group detection and their
association with rests. Based on this information, we define
a decomposition step, which is equal to 1/4 or 1/8 in a bi-
nary metric, 3/8 or 1/8 in a ternary metric. Isolated rests and
notes are processed to complete the rhythmical decomposi-
tion of the whole bar, so that each association tends to a total
length equal to a multiple of the step. All associations that

cannot match this ideal decomposition are assumed to be
impossible and indicated as potentially erroneous. The inter-
nal rhythmical structure of the others is compared with the
usual groups. The associations that are possible but not usual
are also indicated as potentially false, with another code to
distinguish them from the impossible ones. The criteria are
based on the time signature and the length repartition in the
group. For example, a group equivalent to 3 quavers is com-
mon in a ternary metric, possible but unusual in a binary
metric. A group such as (3/16, 1/16, 1/8, 1/8) is considered to
be possible in a binary metric, but really unusual, and may
result from the adding of an inexistent augmentation dot. So
the indication of possible errors will be a great help to detect
both error length and false augmentation dot.

Possibility degrees computed in the fuzzy modeling step
are also reused as confidence measures. Let us consider again
each symbol Skn, classified in class k, with a possibility de-
gree πk(Skn) (13). Small values for πk(Skn) can reveal a mis-
classification. Consequently, the following rule is applied: if
πk(Skn) < tkS , then the symbol Sn is indicated as potentially
incorrect. The thresholds tkS have been learnt, so that the cor-
rection rate is maximized and the “false alarm” rate is less
than 1% of the total number of symbols. The learning base is
made of half the total score database and is representative of
the different publishings included in it.

The last rule is defined in order to indicate some miss-
ing symbols, from the hypotheses that have been left aside by
the decision algorithm. If a symbol hypothesis gets a nonzero
Cp(Skn) compatibility degree (16) with the symbols of the
chosen configuration, then it is indicated as potentially miss-
ing. Another criterion has been added, in order to decrease
the number of false alarms, due to confusions with some in-
scriptions: the symbol must be located on the stave, within a
margin of 2 staff spaces.

8.2. Supervised learning of symbol models

Symbols may vary from one publishing to another. Some
classes, such as filled note heads or flat, are quite invariant,
but others, for example hollow note heads or sixteenth rests,
may strongly vary in shape. Two ways are proposed to deal
with different fonts: firstly, up to two class models (Figure 11)
are tested at the beginning of the individual symbol analysis
step, and the most suitable is retained after some processing
[25]; secondly, the fuzzy symbol class model allows to adapt
the class model to the processed score (Section 5.2). Thus,
the recognition process, in its standard application mode, is
automatically adaptable and free of user interventions. But,
these automatic procedures are not sufficient and cannot
work properly when the reference class models are too dif-
ferent from the symbols in the analyzed score. Some learning
procedures are in this case required.

The user is invited to select a set of staves, from which the
symbol classes can be learnt, and to correct manually each
mistake made by the standard recognition process. So, a set of
known prototypes is available, with their coordinates in the
music sheet, and this prototype list is then passed to an au-
tomatic learning procedure, whose purpose is to extract class
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Figure 17: Examples of symbol model learning. (a) The learnt model Mk
a for class k and the proportion of symbols used as prototypes in the

learning procedure. (b) The histogram of the correlation scores between Mk
a and the prototypes of the learning database. (c) The histogram

of the correlation scores between Mk
a and the symbols in the whole score.

models, representative of the processed score, and to deduce
some recognition algorithm parameters: the thresholds td(k)
used in the hypothesis generation (Section 5.1), and in the
definition of the possibility distributions πk(S) (Section 5.2).

In a first step, the prototype list is scanned object per ob-
ject, and a standard reference model Mk is correlated with
the symbol in the image around the coordinates stored in the
list (10). The image staff lines have been removed beforehand
according to Section 4.1. A small image is extracted, based on

the position where the maximum correlation score is found.
For each class k, the average of all the extracted small images
is computed and then binarized, using a threshold equal to
0.5. The resulting binary image Mk

a is assumed to be a repre-
sentative model for class k (Figure 17).

Nevertheless, some precautions must be taken in order
to reach the expected results. Firstly, the symmetry of note
head (filled notes, half notes, whole notes) must be respected.
Therefore a central symmetry relatively the image origin is
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performed on each extracted image and the symmetric is also
integrated in the average. Thus, the method works perfectly,
whatever the proportion of stems up and down. Secondly,
some specific procedures must be applied for hollow objects,
that may be damaged by the staff line removal process (half
note heads, whole note heads, flats). For these classes, two
average images are considered, the first one for the symbols
put on a staff line, the second one for the symbols between
two staff lines. Both images are independently binarized, and
then combined together to produce the final class model: a
logical AND is performed for the pixels that are never sup-
pressed by the staff line removal process, while only the first
image is used to provide the other pixels.

In the second step, the algorithm parameters that are
related to the class models are tuned, that is, the deci-
sion thresholds td(k) used in the generation of recognition
hypotheses, and, as a consequence, the possibility distribu-
tions πk(S). The correlation is again computed between the
new class models Mk

a and the image without staff lines. Let
us denote by Ck(Sn) the correlation score between the model
Mk

a and the nth prototype (0 ≤ n < Nk) of class k. Due
to the symbol variability inside the image, some correlation
score variations are still observed. The mean value Cm

k and
the minimum value Min(Ck(Sn)) obtained on the set of pro-
totypes provide a good estimation of the variation range. The
minimum correlation score td(k) that has to be reached, in
order to store class k as first hypothesis H1 without H0 hy-
pothesis (Section 5.1), is set according to the following equa-
tions:

Cm
k =

1
Nk

Nk−1∑

n=0

Ck
(
Sn
)
,

td(k) = Max
(

Cm
k −

D

2
, Min

(
Ck
(
Sn
))
)

.

(21)

The td(k) parameters are clipped to Cm
k − D/2 (D = 0.4,

see Section 5.2) in order to avoid setting too low thresholds
due to strongly damaged isolated symbols, D representing
the maximum correlation score variation range around the
mean value that can be observed in practice.

In the generalization stage, the possibility distribution for
class k will still be learnt from the individual symbol analy-
sis made on the complete processed music sheet, according
to (14) and Figure 13, but with the decision threshold td(k)
defined in (21).

The method leads to satisfactory results if enough sym-
bols Nk per class are learnt. In our experiments, we can notice
that Nk = 5 prototypes per class (symmetric prototypes in-
cluded) are sufficient to get significant parameters. But obvi-
ously, the more the prototypes, the more reliable will be the
results. Figure 17 illustrates the learning procedure applied
to a large score (16 music sheets, 172 staves), where some
symbols, especially the sharps, got unsatisfactory recognition
rates with the recognition procedure without the learning
phase. Eleven staves were used for the supervised learning.
Comparison between the correlation score distributions for
the learning data base and for the whole score shows that the
symbol models are representative of the processed publish-
ing. These distributions also confirm that symbol variability

is still present in the score. Consequently, fuzzy modeling of
the symbol classes and music rules are still necessary.

All other parameters of the recognition process do not
depend directly on the class model and are left unchanged.
The adapted recognition algorithm applied in generalization
is exactly the same as the standard one, but uses the learnt
set of models Mk

a instead of the default ones, and the related
parameters td(k). Recognition results, before and after super-
vised training, are provided in Section 9.

9. EXPERIMENTAL RESULTS

Tests of the proposed method have been conducted on a large
music score database (100 music sheets, about 48000 sym-
bols) by various composers and publishers. The base includes
examples of various levels of difficulty in terms of symbol
density, rhythmical complexity. No key change occurs in the
tested sheets, since it is not yet handled by our system (clef,
tonality, and metric are given as input parameters). Origi-
nal scores were of good quality, without physical degrada-
tions, but many of them show printing defects and symbol
variability such as the ones illustrated in Figures 3 and 4.
The scanning has been performed carefully on three differ-
ent scanning devices, and no specific processing was then
applied to enhance the image quality. The tests have been
performed without any parameter modification. So care has
been taken not to train on specific cases, and we believe that
this database is general enough to illustrate the strengths and
the performances of our approach.

The evaluation of an OMR system is not straightforward.
Indeed recognition rates may not be absolutely significant,
since primitives may be correct while semantic is incorrect,
and some proposals are currently made in order to define a
standard evaluation method, dealing with this difficulty, and
that allows comparing different systems. According to [35],
our evaluation is made at both symbolic and semantic levels.
We first calculate the recognition rates of all the recognized
symbols: notes (composed of a note head, whose position rel-
ative to the staff lines has been calculated, a stem, and beams
or tails), accidentals, whole notes, rests, and dots. This first
evaluation is not far from the semantic level: the last step con-
sists in attributing accidentals and dots to notes, dots to rests,
in order to retrieve pitch and duration. This has been already
realized in our system, since structural, graphical, and syn-
tactic information have been integrated in the recognition
process (Sections 6.1, 6.2). The ultimate step consists just in
propagating some information over the bars (clef, meter, key,
accidentals), and this is obvious in monophonic music. Thus,
the semantic analysis is ambiguity free in our system, and the
correct semantic can be regenerated by simply correcting one
by one the following mistakes: symbol added, symbol miss-
ing, confusion, false note length interpretation, false inter-
pretation of the note head position relative to the staff lines.
These results are presented in Table 5 and commented below.
They are completed by an estimation of the note identifica-
tion rate, representative of the quality of the final interpreta-
tion.

Referred to the total number of symbols, the average
recognition rate is now 99.2%. The symbol error rate (0.8%)



20 EURASIP Journal on Advances in Signal Processing

Table 5: Recognition rates per class.

Class rk(k)

99.60

98.92 97.06(1)

97.65

98.95 98.33(1)

64.55

97.48

100.00

90.67

r�k(k)

0.33

0.18

0.08

0.00

8.68

0.70

0.00

0.00

Class rk(k)

97.38

�

(2)

99.40

100.00

98.62

99.95

98.00

97.70

r�k(k)

0.75

0.48

3.11

4.05

3.45

0.05

0.52

0.00

(1) The rate in the left column is obtained for all accidentals; the rate in the right column excludes
key signature accidentals.

(2) The crotchet rest never occurs in the database.

is split into confusion (0.2%) and symbol missing (0.6%).
There is also 0.3% of added symbols which generally result
from confusion with inscriptions that have not to be recog-
nized in our system (such as textual annotations or indica-
tions for the interpretation). The length of the filled notes is
correctly interpreted for 99.3% of them, and the estimated
position of the note heads on the staff is exact for 99.0% of
the notes. Errors are due to the space variations between the
additional lines placed above or below the staff: these defects
are not yet handled by our method. Notes on the staff itself
are correctly interpreted, thanks to the accurate staff line de-
tection.

The recognition rate has been slightly increased with re-
spect to [1, 26], although we have introduced more diffi-
cult scores. This is due to the improvements realized at the
preprocessing stage, especially the ones described in this pa-
per: staff lines tracking, robust detection of vertical segments.
They both contribute to improve very significantly the seg-
mentation and, as a consequence, the recognition reliability
of the imperfectly printed music scores. The fuzzy model has
also been completed and finalized with respect to [1, 26].
The graphical modeling part now involves all the symbols
in the bar and it has proved to be very efficient especially in
case of high symbol density. The note group model, that has
been extended to rests, combined with the robust beam de-
tection, has also contributed to reach better results, for both
note length interpretation and symbol recognition. Figure 18
shows the histogram (normalized to 100%) of the recogni-
tion rates obtained per music sheet. One third of them get a
global recognition rate higher than 99.75%, and all the recog-
nition rates are larger than 91.0%, proving the reliability of
the proposed method. When excluding the appoggiaturas,
which have the worst recognition rate (64.55%, see Table 5)
and are ornaments rather than mandatory musical symbols,
the results are better: more than 40% of the music sheets ob-
tain a global recognition rate above 99.75%, and the worst
recognition rate is higher than 94.0%.

Let us now analyse in more detail the results. Table 5 pro-
vides the recognition rates obtained for each class of symbols
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Figure 18: Histogram of the recognition rates obtained per music
sheet.

and the rates of added symbols. All are normalized by the
number of occurrences belonging to the class

rk(k)

= number of occurrences of class k correctly recognized
total number of occurrences of class k

∗ 100,

r′k(k) = number of added occurrences of class k
total number of occurrences of class k

∗ 100.

(22)

All the recognition rates, sixteenth rest and appoggiatura
excepted, are above 95%. Appoggiaturas are really prone
to errors, since they show a high variability and they are
involved in just one loose graphical rule; so disambiguating
them is not straightforward. We can also observe high rates
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(a)

Symbol missing Confusion Added symbol Note length error Other error

(b)

Figure 19: Comparison with the commercial software SmartScore [4]. (a) Results with our method: 0 error. (b) Results with SmartScore: 16
errors.

of added rests. This is generally a consequence of the strict
metric rule applied to pick-up measures or upbeats, leading
to confusion with some other inscription, in order to satisfy
the rule.

The final interpretation of the notes is exact for 97.8% of
them. The errors are due to the bad estimation of the posi-
tion relative to the staff (1.0%), an indirect error, such as an
accidental or a bar line missing (0.3%), a false flag or beam
interpretation (0.7%), an augmentation dot error (0.2%).

Comparison between the results provided by our method
(Figure 19(a)) and those output by SmartScore 3.2 Pro Demo
[4] (Figure 19(b)), one of the most efficient commercial
softwares, shows that the proposed method is able to solve
problems for which SmartScore fails. For example, there are
some confusions between staccato dots and duration dots
with SmartScore (bars 1, 2), while we avoid this problem
thanks to our graphical model. We can also point out that
symbols touching each other are often not recognized with
SmartScore (bars 2, 4), while our program models such con-
figurations and performs well. Accidentals are better recog-
nized thanks to the graphical and syntactical model (bars
2, 4, 6, 7). Especially, the second natural in bar 7 (symbol
9 in bar (b) of Figure 12) is correctly recognized, thanks
to the syntactic rule that expresses its consistency with the
previous sharp, while it is suppressed by SmartScore. Lastly,
the symbol classes and syntactic consistency models allow
avoiding the confusions made by SmartScore on the eight
rest (bar 3), the half note (bar 6), or the filled note length
(bar 5). Examples were extracted from two music sheets.
The global symbol recognition rate is 92.0% for SmartScore,
98.7% for our method. 85.3% of quavers get the correct
length with SmartScore, 99.3% with our method.

At this stage of the proposed method, one possible
way that could improve the results could be adding some
structural criteria in the symbol analysis process. Correla-
tion scores provide a global similarity measure between two
shapes. But results are ambiguous because of the symbol
variability, and also because some musical symbols are highly
correlated: for example natural and sharp, eighth rest and

sixteenth rest, black filled note head and hollow note head.
Symbol variability results in a relatively small correlation
score between a processed symbol and the corresponding
class model, while intercorrelation results in relatively high
correlation scores between the processed symbol and other
models of different classes. Adding some structural features
could help to disambiguate between two hypotheses. For ex-
ample, a hollow note head has white pixels inside it, while
filled note head should not have any, and this simple crite-
rion can help to prefer one class to another, and consequently
decrease the confusion rate between both symbols. This
proposal does reduce the interest of using template match-
ing in any way, and all the arguments exposed in Section 5.1
still hold. The idea is just expressing explicitly useful infor-
mation that is more or less hidden in the correlation scores.
This structural information will have to be integrated in the
fuzzy model in order to avoid crisp decision criteria that can-
not deal with printing defects and segmentation imprecision.

The proposed method for potential error indication has
also been evaluated: 84% of the detectable errors (symbol
added, symbol missing, confusion, note length error) are well
indicated, 52% directly, 32% indirectly (a correct error indi-
cation has been made within the same bar). The false alarms
represent 2.5% of the total number of symbols, which is ac-
ceptable. From a practical point of view, the processing of a
music sheet of 10 staves leads in average to more than 5 well
indicated errors, 1 nonindicated error, and less than 10 false
indications. Given that such a music score contains more
than 400 symbols, we can consider that the proposed method
is a real help, making the manual post-correction much eas-
ier. The detection of potential pitch errors should be added
in order to complete the process.

Figure 20 gives some examples of error indications. We
can see that confusions, missing or added symbols are cor-
rectly indicated (bars 1, 2, 3, 5), except one false alarm (bar
2). Length errors in bars 2 and 6 are also well indicated thanks
to the indication of false group (bar 2), or potentially false
group (bar 6). All other errors in these examples are eas-
ily corrected thanks to the indications made on surrounding
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Potentially false symbol

Incorrect number of beats

Potentially missing symbol

Correct

Potentially false

False

Note/rests groups

Figure 20: Potential error indications.

symbols: the added duration dot in bar 6 is quickly located
through the indication of potentially false note group, the
missing crotchet in bar 4 through the indication of false
number of beats.

The average processing time needed for one music sheet
of 10 staves is around 35 seconds on a Pentium 4 3.2 GHz. We
can notice that preprocessing and individual symbol analysis
steps take much more time than the global decision stage (5
seconds). One first improvement could consist in integrating
a connected component analysis [10] in order to accurately
segment symbols that are not featured by a vertical segment,
and thus, decrease the amount of time spent for correlation
with rest models. Moreover, at the time this article is written,
research has been concentrated on the recognition method,
and the actual code needs now to be restructured and then
optimized. So, even if the run-time is quite high with respect
to commercial software such as SmartScore [4], it is not pro-
hibitive and it can certainly be dramatically reduced.

Finally, the experimental results of the supervised learn-
ing stage are presented. The method has been applied on
scores for which one or more classes had bad recognition
rates with the standard recognition program (without learn-
ing procedures). Some staves extracted from the score have
been corrected and the class models have been learnt. Table 6
provides some results obtained on the large score whose
learning has been illustrated in Section 8.2 (Figure 17). We
can see that the average recognition rate is increased; espe-
cially sharps are now perfectly recognized. The second exam-
ple presented in Table 7 shows similar results.

The results show that the learning stage may be able to
lead to a 100% recognition of some symbols. However, when
recognition rates are already quite satisfactory and when er-
rors are mainly due to bad printing or other sources of am-
biguity rather than inadequate class models, it is difficult to
achieve a perfect recognition, and the recognition rates are
only slightly improved. This is explained by the fact that the
fuzzy model already manages symbol variability and allows
disambiguating symbol by checking music writing rules. In
this case, the general benefit of a correction/learning cycle is
reduced. Overall, the adaptation method has always led to
an increase in the general recognition rate in all our experi-
mental tests. It has especially proved to be very efficient when
some class symbols are really badly recognized, this prob-
lem arising when the internal class models of the standard

recognition program are not suited to the processed score.
It should be noticed that some other specificities of a music
score could be learnt, for example some graphical parameters
such as the typical distance between an accidental and a note
head, or the thresholds used for potential error indication.

10. CONCLUSION

In this paper, we have described a complete optical music
recognition system. After clarifying the music notation and
the difficulties specific to this field, we tried to propose ap-
propriate solutions to each issue. Efforts have been concen-
trated at both low-level and high-level analyses.

Low-level analysis includes preprocessing, segmentation
and individual symbol analysis. Some robust algorithms were
proposed to achieve a reliable segmentation: an accurate de-
tection and removal of the staff lines, and a robust detec-
tion of vertical segments that feature all symbols that are
not isolated through staff line removal. These algorithms can
deal with the common printing defects, that is, skewed and
warped staff lines, skewed and interrupted vertical segments,
undesired connections. Template matching was then cho-
sen as symbol analysis method, since it can deal with seg-
mentation imprecision and printing defects, such as sym-
bol fragmentation, bad connections, or primitive disconnec-
tions. The correlation scores are computed between the pro-
cessed image and some generic class models, in small areas
deduced from segmentation results and from the music rules
related to possible symbol positions according to their class.
They lead to a set of recognition hypotheses, each one assign-
ing a detected object to a class. It should be noted that the
vertical segment analysis, combined with template matching
and the proposed method for beam detection and counting,
allows retrieving compounded symbols (i.e., beamed note
groups), while overcoming the common printing defects af-
fecting them.

High-level analysis aims at disambiguating the recogni-
tion hypotheses, by analyzing the preliminary results (corre-
lation scores and positions) and incorporating musical rules.
Music notation is intrinsically ambiguous because of its vari-
ability and flexibility. It is also difficult to model since rules
may involve more than two symbols which may be very dis-
tant, and since they apply at different levels. Three important
features of the proposed method, that relies on the fuzzy sets
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Table 6: Recognition rates before and after supervised learning (example 1, 16 sheets). The other symbol recognition rates are identical. The
global recognition rate is increased from 99.69% to 99.86%, and the added symbol rate is decreased from 0.53% to 0.11%.

Class Without
learning

99.51

99.43

90.77

Supervised
learning

99.84

100.00

100.00

Class Without
learning

97.65

93.75

99.94

Supervised
learning

98.23

100.00

99.98

Table 7: Recognition rates before and after supervised learning (example 2, 2 sheets, 21 staves). The global recognition rate is increased from
95.64% to 98.09%, and the added symbol rate is decreased from 3.13% to 2.32%.

Class No-learning

91.67

0.00

81.25

Supervised
learning

100.00

71.43

100.00

Class No-learning

87.50

95.24

Supervised
learning

100.00

100.00

and possibility theory, give some answers to these problems:
the fuzzy model allows modeling symbol variability, segmen-
tation imprecision, and the flexible and imprecise nature of
the music notation; the main musical rules are all modeled
and integrated in the decision process; the decision process is
global in the sense that all possible combination of hypothe-
ses provided by the low-level analysis for each bar are evalu-
ated against all rules. So, the final decision is made by taking
into account all criteria and it is thus consistent with the mu-
sic writing.

Experiments conducted on a large database show good
recognition rates and interesting results for both symbol
recognition (99.2%) and note length interpretation (99.3%).
The parameters of the system, which are either learnt on the
score or set based on general music considerations, proved
to be experimentally robust. The recognition rates have been
increased with respect to [1, 26], thanks to the gain in robust-
ness realized at the low level analysis, and the improvements
realized in the fuzzy model. Comparison with SmartScore
[4], a well-known commercial software, shows that the pro-
posed method is an important contribution to OMR. It is
obvious, when comparing recognition results, that the fuzzy
modeling of musical rules and their integration in a global
decision process contribute to a better interpretation.

Improvements can be made in handling pick-up mea-
sures that are responsible of many added symbols, and im-
proving the pitch recognition of notes below or above the
staff. Also adding some structural information about mu-
sical symbols could help to decrease the confusion rate be-
tween intercorrelated symbol classes. This idea raises two is-
sues: which information is suitable and how it can be inte-
grated in the fuzzy model, in order to avoid rigid criteria
that cannot deal with symbol variability, printing and seg-
mentation defects. Lastly, some improvements can be made
in order to decrease the processing time: detecting more ac-
curately the symbols that are not characterized by a vertical

segment in order to better restrict the areas where correlation
is computed; implementing some heuristics that reduce the
computational cost required for decision making, especially
in case of large bars involving many symbols.

Another innovative feature of the proposed method is the
automatic indication of potential recognition errors that rely
on the results obtained in the fuzzy modeling part. Most er-
rors are directly or indirectly indicated to the user, and the
manual correction is in this way facilitated. Some learning
procedures are also proposed in order to adapt symbol mod-
els and related parameters to the processed score, so that the
recognition is improved on the rest of the score. Experiments
show very good results on scores, for which some classes got
unsatisfactory recognition rates before learning, and almost
perfect recognition rates after. These two features really allow
a better reliability and a more convenient use of the system,
since manual correction is facilitated and the time spent for
this tedious task considerably reduced. This is especially im-
portant when processing large scores. Further improvements
may include learning other specificities of the score, at the
graphical level, for example, and refining the thresholds used
for error indications.
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