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COEFFICIENTS OF DRINFELD MODULAR FORMS AND HECKE OPERATORS by

Consider the space of Drinfeld modular forms of fixed weight and type for Γ0(n) ⊂ GL2 (Fq[T ]). It has a linear form bn, given by the coefficient of t m+n(q-1) in the power series expansion of a type m modular form at the cusp infinity, with respect to the uniformizer t. It also has an action of a Hecke algebra. Our aim is to study the Hecke module spanned by b1. We give elements in the Hecke annihilator of b1. Some of them are expected to be nontrivial and such a phenomenon does not occur for classical modular forms. Moreover, we show that the Hecke module considered is spanned by coefficients bn, where n runs through an infinite set of integers. As a consequence, for any Drinfeld Hecke eigenform, we can compute explicitly certain coefficients in terms of the eigenvalues. We give an application to coefficients of the Drinfeld Hecke eigenform h.

Introduction

Drinfeld modular forms are certain analogues over F q [T ] of classical modular forms, introduced by D. Goss [START_REF] Goss | Modular forms for F r [T ][END_REF][START_REF] Goss | π-adic Eisenstein series for function fields[END_REF]. A Drinfeld modular form f has a power series expansion with respect to a canonical uniformizer t at the cusp infinity. If f has type m, this expansion is n≥0 b n (f )t m+n(q-1) . On the space of Drinfeld modular forms of fixed weight and type, we have the linear form b n : f → b n (f ) and an action of a Hecke algebra. In the present work, we investigate the Hecke module spanned by b 1 .

Our interest in the problem comes from the torsion of rank-2 Drinfeld modules. In a previous work, we established a uniform bound on the torsion under an assumption on the latter Hecke module in weight 2 and type 1 (see [START_REF] Armana | Torsion rationnelle des modules de Drinfeld[END_REF][START_REF] Armana | Torsion des modules de Drinfeld de rang 2 et formes modulaires de Drinfeld[END_REF]). This condition was required for studying a Drinfeld modular curve at a neighborhood of the cusp infinity, namely for showing that the map from the curve (or rather a symmetric power) to a quotient of its Jacobian variety is a formal immersion at this cusp in a special fiber.

Before stating the main results, we fix some notations. Let A = F q [T ] be the ring of polynomials over a finite field F q in an indeterminate T , K = F q (T ) the field of rational functions, K ∞ = F q ((1/T )) and C ∞ the completion of an algebraic closure of K ∞ . For an ideal n of A, k ∈ N and 0 ≤ m < q -1, we consider the C ∞ -vector space M k,m (Γ 0 (n)) of Drinfeld modular forms of weight k and type m for the congruence subgroup Γ 0 (n) of GL 2 (A) (see Section 4.1 for the definition). These are rigid analytic C ∞ -valued functions on C ∞ -K ∞ which have an interpretation as multi-differentials on the Drinfeld modular curve attached to Γ 0 (n).

Let T = T k,m (Γ 0 (n)) be the Hecke algebra, that is the commutative subring of End C∞ (M k,m (Γ 0 (n))) spanned over C ∞ by all Hecke operators T P for P monic polynomial in A (see Section 4.2). Its restriction T = T k,m (Γ 0 (n)) to the subspace M 2 k,m (Γ 0 (n)) of doubly cuspidal forms (with expansion vanishing at order ≥ 2 at all cusps) stabilizes this subspace. As Goss first observed, doubly cuspidal Drinfeld modular forms play a role similar to classical cusp forms.

In this work, we are interested in the pairing between the space M 2 k,m (Γ 0 (n)) and the Hecke algebra T given by the coefficient b 1 of the expansion. More precisely, the dual space Hom C∞ (M k,m (Γ 0 (n)), C ∞ ) has a natural right action of T (given by composition) and contains the linear form b n : f → b n (f ). Let u = u k,m,n : T → Hom C∞ (M 2 k,m (Γ 0 (n)), C ∞ ) be C ∞ -linear map defined by s → b 1 s. Our main results concern the kernel I and the image b 1 T of u.

Let A d+ be the set of monic polynomials of degree d in A. The first statement gives a family of elements of I.

Theorem 1.1. -The following elements of T belong to I:

1. P ∈A 1+ P 1-m T P + T 1 if m ∈ {0, 1}.

P ∈A

d+ C i 0 P,0 • • • C i d-1 P,d-1 T P if d ≥ 1 and (i 0 , . . . , i d-1 ) ∈ N d is such that 0 ≤ i j ≤ q -m for all j ∈ {0, . . . , d -1} (1) i 0 + . . . + i d-1 ≤ (d -1)(q -1) -m. (2)
Here, C P,j ∈ A stands for the jth coefficient of the Carlitz module at P (see Section 3.1 for its definition). 3. P ∈A d+ P l T P if 0 ≤ l ≤ q -m and d ≥ 1 + (l + m)/(q -1)

P ∈A d+ T P if d ≥ 2, or if d = 1 and m = 0. These elements actually belong to the span over A of all Hecke operators. Moreover, they are universal in the sense that, for a given type m, they do not depend on the weight k nor on the ideal n.

In most cases, we believe that I = 0, that is at least one element of Theorem 1.1 is a nontrivial endomorphism of M 2 k,m (Γ 0 (n)), hence the pairing is not perfect. Over the space M 2 2,1 (Γ 0 (n)) with n prime, the situation is as follows. If n has degree 3, we prove that I = 0 (Theorem 7.7). If n has degree ≥ 5, numerical experiments suggest that I = 0 (Conjecture 6.9). Moreover, it may happen that some elements of Theorem 1.1 are zero in T 2,1 (Γ 0 (n)): examples of such a situation are explored in Section 6. [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF].

For the rest of the introduction, we restrict our attention to Drinfeld modular forms of type 0 or 1. Our second statement gives an infinite family of coefficients of Drinfeld modular forms in b 1 T . Theorem 1.2. -Assume q is a prime and m ∈ {0, 1}. Let S be the set of natural integers of the form c/(q -1), where c ∈ N is such that the sum of its base q digits is q -1. For every n ∈ S , there exists s n ∈ T , independent of k and n, satisfying

b n = b 1 s n ∈ b 1 T .
Moreover, b 1 T is the C ∞ -vector space spanned by b n for all n ∈ S .

The primality assumption on q is not essential (see Remark 7.3). As for the set S , it is infinite of natural density zero and the first integer not belonging to S is q + 1. For example, if q = 3, the first elements of S are 1, 2, 3, 5, 6, 9, 14, 15, 18, 27, 41, 42, 45, 54, 81. Theorem 1.2 relies on an explicit version, Theorem 7.2 (the elements s n that we produce depend on whether the type is 0 or 1). The expression for s n is rather natural: it is a A-linear combination of Hecke operators T P , with P of fixed degree, involving Carlitz binomial coefficients in A.

Suppose now that I = 0. Then the map u fails to be surjective (see Lemma 6.2). In particular, b 1 T does not contain all linear forms b n for n ≥ 1. It is then natural to ask what is the smallest integer n such that b n / ∈ b 1 T . Theorem 1.2 suggests that n = q + 1 might be a good candidate.

Both theorems bring new insight on Drinfeld Hecke eigenforms. Consider a Drinfeld modular form f which is an eigenform for the Hecke algebra T. Theorem 1.1 translates into linear relations among eigenvalues of f , provided that b n (f ) = 0 for some n ∈ S (Proposition 6.5 and Corollary 7.5). Similarly, Theorem 7.2 gives explicit formulas for coefficients b n (f ) (n ∈ S ) in terms of eigenvalues of f and b 1 (f ). From Theorem 7.2, we also derive:

multiplicity one statements in some spaces of Drinfeld modular forms of small dimension (Theorem 7.7); as far as we know, these are the only known results of this kind for Drinfeld modular forms. explicit expressions for some coefficients of the Drinfeld modular form h (Proposition 8.1). This extends previous work of Gekeler. As a side remark, we give a brief account of the multiplicity one problem for Drinfeld modular forms. Since there exist two Hecke eigenforms for GL 2 (A) with different weights and same system of eigenvalues (Goss [START_REF] Goss | Modular forms for F r [T ][END_REF]), the question of multiplicity one should be stated as: do eigenvalues and weight determine the Hecke eigenform, up to a multiplicative constant? (see Gekeler [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF], Section 7). Böckle and Pink showed that this does not hold for doubly cuspidal forms of weight 5 for the group Γ 1 (T ) when q > 2 by means of cohomological techniques (Example 15.4 of [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF]). Except for Theorem 7.7 mentioned above, the question remains open for Γ 0 (n).

We now compare our results with their analogues for classical modular forms. Consider the space S k (Γ 0 (N )) of cuspidal modular forms of weight k for the subgroup Γ 0 (N ) ⊂ SL 2 (Z) (N ≥ 1). Let (c n (f )) n≥1 be the Fourier coefficients of such a modular form f at the cusp infinity. Computing the action of the nth Hecke operator T n on the Fourier expansion of f gives the well-known relation, for any n ≥ 1

(3) c n (f ) = c 1 (T n f ).
In particular, the Hecke module spanned by the linear form c 1 , which now contains all coefficients c n , is the whole dual space of S k (Γ 0 (N )) and the coefficient c 1 gives rise to a perfect pairing over C between S k (Γ 0 (N )) and the Hecke algebra. Conjecture 6.9 and Theorem 1.2 thus suggest a phenomenon specific to the function field setting. For Drinfeld modular forms, the reason for not having straightforward statements about the kernel and image of u is that the action of Hecke operators on the expansion is not well understood. Goss [START_REF] Goss | Modular forms for F r [T ][END_REF][START_REF] Goss | π-adic Eisenstein series for function fields[END_REF][START_REF] Goss | The algebraist's upper half-plane[END_REF] and subsequently Gekeler [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF] wrote down this action using Goss polynomials. But such polynomials are difficult to handle (see also Remark 5.3). In particular, a relation as general as (3) is lacking.

We now sketch the proofs of Theorems 1.1 and 1.2, which involve rather elementary techniques.

-We first compute the coefficient b 1 (T P f ), for any f and P , using Goss polynomials (Proposition 5.5). Note that the formula we get is more intricate than (3): it is a A-linear combination of several coefficients of f . For the next step, the crucial point is that the index of these coefficients depends only on the degree of P . This already proves that b 1 T is contained in the C ∞ -vector space spanned by b n , for n ∈ S when m ∈ {0, 1} (Corollary 5.8). -We take advantage of characteristic p. For power sums of polynomials of a given degree in A, vanishing properties and closed formulas are well-known (see [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF]III] for a survey). Here we use a variant consisting of power sums of coefficients of the Carlitz module. Such sums are studied in Section 3 and closed formulas are given in Proposition 3.5. In Section 3.4, we also explain their connection with Carlitz binomial coefficients and special values of Goss zeta function at negative integers. -By taking adequate linear combinations of b 1 (T P f ), for P of fixed degree, and using results of Section 3, we obtain elements in the kernel I (Theorem 1.1, Section 6) and in the image b 1 T (Theorems 7.2 and 1.2).

For the study of the Hecke module b 1 T , our method has reached its limit and improving our results would require new ideas. Our approach might be used to tackle other Hecke modules b i T : however, computing b i (T P f ) for any i ≥ 2 is a harder combinatorial problem.

Notations

A tuple will always be a tuple of nonnegative integers. For such a tuple i = (i 0 , . . . , i s ), let i 0 +...+is i be the generalized multinomial coefficient (i 0 +...+is)! i 0 !•••is! . Let q be a power of a prime p and F q (resp. F p ) be a finite field with q (resp. p) elements. We will use repeatedly the following theorem of Lucas: i 0 +...+is i is nonzero in F p if and only if there is no carry over base p in the sum i 0 + . . . + i s .

We keep the same notations as in the introduction. On A = F q [T ], we have the usual degree deg with the convention deg 0 = -∞. By convention, any ideal of A that we will consider is nonzero. We will often identify an ideal p of A with the monic polynomial P ∈ A generating p. Accordingly, deg p stands for deg P .

Let K ∞ = F q ((1/T )) be the completion of K at 1/T with the natural nonarchimedean absolute value | • | such that |T | = q. We write C ∞ for the completion of an algebraic closure of K ∞ : it is an algebraically closed complete field for the canonical extension of

| • | to C ∞ .
For P, Q in A, (P ) denotes the principal ideal generated by P , P | Q means P divides Q and (P, Q) is the g.c.d. of P and Q. The integer part is denoted by • .

Power sums of Carlitz coefficients

3.1. The Carlitz module. -Let A{τ } the noncommutative ring of polynomials in the indeterminate τ with coefficients in A for the multiplication given by τ a = a q τ (a ∈ A). By the map τ → X q , the ring A{τ } can be identified with the subring of End C∞ (G a ) of additive polynomials of the form a i X q i (where the multiplication law is given by composition). The Carlitz module is the rank-1 Drinfeld module C : A → A{τ } defined by C T = T τ 0 + τ . For a ∈ A, we put C a for the image of a by C, as usual, and

C a = deg a k=0 C a,k τ k with C a,k ∈ A.
In particular, C a,0 = a and C a,d = 1 if a is monic of degree d.

Deformation of the Carlitz module. -

We study the dependence of C a,k in the coefficients of a, when a is viewed as a polynomial in T . For this purpose, we need a formal version of the Carlitz module. Let F q [T, a] = F q [T, a 0 , a 1 , . . .] be the polynomial ring in T and an infinite set of indeterminates {a i } i≥0 . Consider the ring homomorphism

C : F q [T, a] -→ F q [T, a]{τ } defined by C T = T τ 0 + τ, C a i = a i τ 0 for all i ≥ 0
where the noncommutative ring F q [T, a]{τ } is defined in the obvious way. Let P be an element of F q [T, a] and d its degree as a polynomial in T . We define C P,0 , . . . , C P,d in F q [T, a] by C P = d i=0 C P,i τ i . These coefficients satisfy the following recursive formulas.

Lemma 3.1. -Let P ∈ F q [T, a] be a monic of degree d in T . Write P = T b + c, with c ∈ F q [a] and b ∈ F q [T, a] monic of degree d -1 in T . Then C P,0 = T C b,0 + c = P C P,i = T C b,i + C q b,i-1 (1 ≤ i ≤ d -1) C P,d = C q b,d-1 = 1.
Proof. -Since C is additive, we have C P,i = C T b,i + C c,i . Moreover, C c,i is c if i = 0 and 0 otherwise. It remains to compute C T b,i in terms of C b,i . We have the following equalities in F q [T, a]{τ }:

C T b = C T C b = (T τ 0 + τ ) d-1 i=0 C b,i τ i = T d-1 i=0 C b,i τ i + d-1 i=0 C q b,i τ i+1 .
By identification, we get our claim.

Lemma 3.2. -Let d ≥ 1 and P ∈ F q [T, a] monic of degree d in T . Write P = T d + n d-1 T d-1 + . . . + n 0 with n 0 , . . . , n d-1 ∈ F q [a]. For all 0 ≤ j ≤ d -1, one has C P,j = n q j j + T Q j with Q j ∈ F q [T, n k | k > j].
In particular, if P = T d + a d-1 T d-1 + . . . + a 0 , the polynomial C P,j is independent of a 0 for j ≥ 1.

Proof. -For j = 0, we have C P,0 = P = n 0 + T (n 1 + . . . + n d-1 T d-1 ) which has the expected form. For other coefficients, we proceed by induction on d. The statement is already proven for d = 1. Suppose the property satisfied for all monic polynomials of degree < d in T . Let P = T d + n d-1 T d-1 + . . . + n 0 and write

P = T b + n 0 with b ∈ F q [T, n 1 , . . . , n d-1 ] monic of degree < d in T . Let 1 ≤ j ≤ d -1. By Lemma 3.1, we have (4) C P,j = T C b,j + C q b,j-1 . By hypothesis, there exists R j-1 ∈ F q [T, n k | k > j] and R j ∈ F q [T, n k | k > j + 1] such that C b,j = n q j j+1 + T R j and C b,j-1 = n q j-1 j + T R j-1 .
Substituting in (4), we get C P,j = n q j j + T (n q j j+1 + T R j + T q-1 R q j-1 ). Since n q j j+1 + T R j + T q-1 R q j-1 belongs to F q [T, n k | k > j], the coefficient C P,j has the expected form. The property is then established for any monic polynomial P of degree d.

Power sums of Carlitz coefficients. -

Notation 3.3. -Let d ≥ 1.
Recall that the set of monic polynomials of degree d in A is denoted by A d+ . For P ∈ A d+ and i = (i 0 , . . . , i d-1 ), let

C(P ) i = C i 0 P,0 • • • C i d P,d = C i 0 P,0 • • • C i d-1 P,d-1
(the last equality follows from C P,d = 1). By convention, 0 0 = 1. Let

S d (i 0 , . . . , i d-1 ) = P ∈A d+ C(P ) i ∈ A.
Note that for d = 1, the sum is just S 1 (i) = P ∈A 1+ P i . We will compute S d (i 0 , . . . , i d-1 ) for small i 0 , . . . , i d-1 .

Lemma 3.4. -Let 0 ≤ i ≤ 2(q -1) and P ∈ A. Then

a∈Fq (P + a) i = -1 if i = q -1 or 2(q -1) 0 otherwise.
Proof. -The vanishing case is merely an application of Lemma 3.1 of Goss [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF]. Since we need to compute the remaining cases, we give a full proof. Let R i (P ) = a∈Fq (P + a) i .

Then by the binomial formula,

R i (P ) = i k=0 i k P i-k ( a∈Fq a k ).
Recall that a∈Fq a k equals -1 if k > 0 and k ≡ 0 mod (q -1), and 0 otherwise. Thus R q-1 (P ) = -1 and R i (P ) = 0 if 0 ≤ i < q -1. Now let i = q + j with 0 ≤ j ≤ q -2. Then R i (P ) = a∈Fq (P q + a)(P + a) j = P q R j (P ) + a∈Fq a(P + a) j .

Since j ≤ q -2, R j (P ) is zero. Moreover, by the binomial formula,

a∈Fq a(P + a) j = j k=0 j k P j-k ( a∈Fq a k+1 ) which is 0 if j < q -2 (resp. -1 if j = q -2).
Proposition 3.5. -Let i j ∈ {0, . . . , 2(q -1)} for all j ∈ {0, . . . , d -1}. Then

S d (i 0 , . . . , i d-1 ) = (-1) d if, for all j, i j ∈ {q -1, 2(q -1)} 0 otherwise. Proof. -The sum S d (i 0 , . . . , i d-1 ) is equal to a 0 ,...,a d-1 ∈Fq C i 0 T d +a d-1 T d-1 +•••+a 0 ,0 • • • C i d-1 T d +a d-1 T d-1 +•••+a 0 ,d-1 .
By Lemma 3.2, the polynomials

C T d +•••+a 0 ,1 , . . . , C T d +•••+a 0 ,d-1
do not depend on a 0 , so we can rewrite the sum as

a 1 ,...,a d-1 ∈Fq C i 1 T d +•••+a 1 T,1 • • • C i d-1 T d +•••+a 1 T,d-1   a 0 ∈Fq (T d + . . . + a 1 T + a 0 ) i 0   . Let j be -1 if i j ∈ {q -1, 2(q -1)} and 0 otherwise. Since 0 ≤ i 0 ≤ 2(q -1), Lemma 3.4 gives a 0 ∈Fq (T d + . . . + a 1 T + a 0 ) i 0 = 0 . Then, again by Lemma 3.2, S d (i 0 , . . . , i d-1 ) is equal to 0 a 2 ,...,a d-1 ∈Fq C i 2 T d +•••+a 2 T 2 ,2 • • • C i d-1 T d +•••+a 2 T 2 ,d-1   a 1 ∈Fq (T Q 1 + a q 1 ) i 1   . Since 0 ≤ i 1 ≤ 2(q-1), Lemma 3.4 yields a 1 ∈Fq (T Q 1 +a q 1 ) i 1 = a 1 ∈Fq (T Q 1 +a 1 ) i 1 = 1 . Continuing in this fashion, we obtain S d (i 0 , , . . . , i d-1 ) = 0 • • • d-1 .

Connection with Carlitz binomial coefficients and special zeta values.

-We recall Carlitz's analogue a k in F q [T ] of the binomial coefficient n k (the reader may consult Thakur's article [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF] for examples of such analogies). Let a ∈ A and k ∈ N with base q expansion w i=0 k i q i (0

≤ k i < q). We put a k = w i=0 C k i a,i (if i > deg a, C a,i = 0 by convention). In particular, a q i = C a,i . Note that if 0 ≤ i j < q, then C(P ) i = C i 0 P,0 . . . C i d-1 P,d-1 = P i 0 + i 1 + . . . + i d-1 q d-1 .
In general (i j ≥ q), it is still possible to write

C i 0 P,0 . . . C i d-1
P,d-1 in terms of several Carlitz binomials. We now explain how Proposition 3.5 might be proved using this formalism.

If

x is an indeterminate, x k is a polynomial in K[x] with degree k (because x k
is also the exponential function of a finite lattice, see Equation 2.5 of [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF] or [START_REF] Goss | Fourier series, measures and divided power series in the theory of function fields[END_REF]). Any polynomial f in K[x] may therefore be written as a linear combination of x k . Moreover, the coefficients of this combination can be recovered, in terms of x k , by a Mahler inversion type formula due to Carlitz (Theorem 6 in [START_REF] Carlitz | A set of polynomials[END_REF], Lemma 3.2.14 in [START_REF] Goss | Fourier series, measures and divided power series in the theory of function fields[END_REF] or Theorem XIV in [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF]). For f = 1, the coefficients in the binomial basis are easily computable and, by the inversion, we obtain for d ≥ 0 and 0 ≤ i < q d with base q expansion d-1 j=0 i j q j , S d (i 0 , . . . , i d-1 ) =

P ∈A d+ P i = (-1) d if i = q d -1 0 otherwise.
This is precisely a special case of Proposition 3.5 (see also [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF] p. 14 and Theorem 3.2.16 in [START_REF] Goss | Fourier series, measures and divided power series in the theory of function fields[END_REF] for similar statements). It seems likely that Proposition 3.5 can be proved by Mahler inversion. Finally, we explain how, by the previous observations, S d (i 0 , . . . , i d- 1) is related to special zeta values of Goss zeta function at negative integers. Consider the Carlitz zeta function ζ : N → K ∞ defined by ζ(k) = P ∈A,P monic P -k . In [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF] Goss proved that ζ can be extended to Z by summing over fixed degree:

ζ(-k) = ∞ i=0 ( P ∈A i+ P k ) ∈ A for k ≥ 0. Now,
let p be a prime ideal of A and A p the ring of integers of the completion of K at p. Following Thakur [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF], one can attach to ζ an A p -valued zeta measure µ determined by its kth moment:

Ap x k dµ = ζ(-k) if k > 0 0 if k = 0.
By Wagner's Mahler-inversion formula for continous functions on A p ( [START_REF] Goss | Fourier series, measures and divided power series in the theory of function fields[END_REF] or Theorem VI in [START_REF] Thakur | Zeta measure associated to F q [T ][END_REF]), the measure µ is uniquely determined by the coefficients of its divided power series i.e. the sequence

µ k = Ap x k dµ (k ≥ 0). Thakur has computed explicitly µ k ([21], Theorem VII). It follows from his proof that, when 0 ≤ i j < q and i = i 0 + . . . + i d-1 q d-1 , S d (i 0 , . . . , i d-1 ) = µ i+q d .

Drinfeld modular forms and Hecke operators

We collect some basic facts, and set up notation and terminology as well, for Drinfeld modular forms and Hecke operators.

Drinfeld modular forms. -

The first occurrence of Drinfeld modular forms goes back to the seminal work of D. Goss [START_REF] Goss | Modular forms for F r [T ][END_REF][START_REF] Goss | π-adic Eisenstein series for function fields[END_REF]. Subsequent developments in the 1980s are due to Gekeler [START_REF] Gekeler | Drinfel d modular curves[END_REF][START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF].

The so-called Drinfeld upper-half plane is Ω = C ∞ -K ∞ , which has a rigid analytic structure. For an ideal n of A, the Hecke congruence subgroup Γ 0 (n) is the subgroup of matrices a b c d ∈ GL 2 (A) such that c ∈ n. Fix an integer k ≥ 0 and a class m in Z/(q -1)Z. From now on, m will denote the unique representative of such a class in {0, 1, . . . , q -2}. A Drinfeld modular form

(for Γ 0 (n)) of weight k and type m is a rigid holomorphic function f : Ω → C ∞ such that (5) f az + b cz + d = (ad -bc) -m (cz + d) k f (z) for any a b c d ∈ Γ 0 (n)
and f is holomorphic at the cusps of Γ 0 (n). We will not detail the second assumption and rather refer to [START_REF] Gekeler | Drinfel d modular curves[END_REF] (V, Section 3) and [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF] (Section 2). For our purpose, we need only the behaviour at the cusp infinity, which we now recall.

Let π be the period of the Carlitz module (well-defined up to multiplication by an element in F × q ). The Carlitz exponential e is the holomorphic function

C ∞ → C ∞ defined by e(z) = z λ∈πA-{0} 1 - z λ .
It is surjective and F q -linear with kernel πA.

For z ∈ C ∞ -A, let t(z) = 1 e(πz) = 1 π λ∈A 1 z -λ .
The function t, invariant by translations z → z + a (a ∈ A), is then a uniformizer at the cusp infinity. Since any f satisfying ( 5) is invariant under such translations, it has a Laurent series expansion f (z) = i≥i 0 a i (f )t(z) i with i 0 ∈ Z (the series does not converge on all Ω, but only for |t(z)| small enough). Such a function is said to be holomorphic at the cusp infinity if the expansion has the form i≥0 a i (f )t i . We call it the t-expansion of f (at infinity). Since Ω is a connected rigid analytic space, any Drinfeld modular form is uniquely determined by its t-expansion.

Let M k,m (Γ 0 (n)) be the space of Drinfeld modular forms of weight k and type m for Γ 0 (n). It is a finite-dimensional vector space over C ∞ whose dimension may be calculated explicitly thanks to Gekeler [START_REF] Gekeler | Drinfel d modular curves[END_REF]. If a 0 (f ) = 0 (resp. a 0 (f ) = a 1 (f ) = 0) and similar conditions at other cusps, f is cuspidal (resp. doubly cuspidal) and the subspace of such functions is denoted by

M 1 k,m (Γ 0 (n)) (resp. M 2 k,m (Γ 0 (n))).
Goss observed that doubly cuspidal forms play a role similar to classical cusp forms. For an interpretation of Drinfeld modular forms as differentials on a Drinfeld modular curve, one may refer to Section V.5 in [START_REF] Gekeler | Drinfel d modular curves[END_REF].

Type and weight are not independent: namely, if k -2m ≡ 0 mod (q -1), the space M k,m (Γ 0 (n)) is zero. Therefore, from now on we assume k ≡ 2m mod (q -1).

Since Γ 0 (n) contains matrices of the form λ 0 0 1 for λ ∈ F × q , (5) implies a i (f ) = 0 when i ≡ m mod (q -1). Thus any f ∈ M k,m (Γ 0 (n)) has t-expansion of the form j≥0 a m+j(q-1) (f )t m+j(q-1) .

For j ≥ 0, let b j (f ) = a m+j(q-1) (f ).
Later on, we will use both notations for coefficients. A Drinfeld modular form of type > 0 (resp. > 1) is automatically cuspidal (resp. doubly cuspidal). If f is doubly cuspidal, the coefficient b 0 (f ) may not vanish in general (it does when m ∈ {0, 1}).

Hecke algebra. -

We define a formal Hecke algebra R n which acts on the different spaces M k,m (Γ 0 (n)). In this section, we adopt the notation Γ = Γ 0 (n). Let ∆ = ∆ 0 (n) be the set of matrices a b c d with entries in A such that ad -bc is monic, c ∈ n and (a) + n = A. Let R n be the C ∞ -vector space spanned by formal sums of double cosets ΓgΓ for g ∈ ∆. One can make R n a commutative algebra over C ∞ (see Section 3.1 of [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF] for a general treatment or Section 6.1 of [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF] for Drinfeld modular forms).

For an ideal p of A, let ∆ p be the set of g ∈ ∆ such that det g is the monic generator of p. The Hecke operator T p is then defined as the formal sum of all double cosets ΓgΓ with g ∈ ∆ p in R n . For example, when p is prime, T p = Γ 1 0 0 P Γ where P is the monic generator of p.

As elements of R n have coefficients in a field of characteristic p, the usual relation for the product gives T p T p = T pp for any ideals p, p (see [START_REF] Goss | The algebraist's upper half-plane[END_REF]). This is very different from Hecke operators for classical modular forms, where the above relation only holds for relatively prime ideals. One can check that R n is the polynomial ring over C ∞ spanned by T p for p prime (such elements are algebraically independent over C ∞ ).

As for the notation, T p depends on the subgroup Γ 0 (n) but from the context, there will be no confusion on which Hecke algebra (or space of endomorphisms of Drinfeld modular forms) it belongs to.

For n = A, let us consider the formal Hecke algebra R A attached to the sets GL 2 (A) and ∆ 0 (A). Let Tp temporarily denotes the pth Hecke operator in R A . The map Tp → T p , for p prime, defines an algebra homomorphism R A → R n . We regard R A as a universal formal Hecke algebra, independent of n. Any algebraic relation among the Hecke operators in R A can be translated to the corresponding relation in R n for any n.

Hecke operators on Drinfeld modular forms

. -For v = a b c d with entries in A and f : Ω → C ∞ , let f |[v] k : z -→ (ad -bc) k-1 (cz + d) -k f az + b cz + d .
Fix g ∈ ∆. The group Γ acts on the left on the double coset ΓgΓ. Let {g i } i be a finite system of representatives such that g i has monic determinant. We define an action of ΓgΓ on

f ∈ M k,m (Γ 0 (n)) by f |[ΓgΓ] k = i f |[g i ] k
(independently of the choice of {g i } i ). It extends, in a unique way, to a non-faithful

action of R n on M k,m (Γ 0 (n)). Let T = T k,m (Γ 0 (n)) be the commutative sub-C ∞ -algebra of End C∞ (M k,m (Γ 0 (n))) induced by R n .
For any g ∈ ∆ p , a set of representatives of Γ\ΓgΓ with monic determinant is given by

α β 0 δ , α, δ monic in A, (αδ) = p, (α) + A = n, β ∈ A/(δ).
Therefore, the action of T p on the Drinfeld modular form f can be written more concretely as

(6) T p (f )(z) = P k-1 α,δ monic ∈A β∈A, deg β<deg δ αδ=P,(α)+n=A δ -k f αz + β δ = 1 P α,β,δ α k f αz + β δ
where P is the monic generator of p. This formula slightly differs from other references. Gekeler [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF] (resp. Böckle [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF], Section 6) considered P T p (resp. P m+1-k T p ). In particular, our operator coincides with Böckle's when k = m -1 (for instance, when k = 2 and m = 1). In general, these variously normalized Hecke operators have the same eigenforms, however with different eigenvalues.

The Hecke algebra T stabilizes the subspaces M 1 k,m (Γ 0 (n)) et M 2 k,m (Γ 0 (n)) (see for example Proposition 6.9 of [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF]). We denote by T = T k,m (Γ 0 (n)) the restriction of T to M 2 k,m (Γ 0 (n)).

Hecke action on the first coefficient of Drinfeld modular forms

We recall some results on Goss polynomials for finite lattices and their role in the t-expansion of Drinfeld modular forms. Then we give an explicit formula for the action of Hecke operators on the first coefficient of this expansion.

Goss polynomials.

-Let Λ be a F q -lattice in C ∞ , i.e. a F q -submodule of C ∞ having finite intersection with each ball of C ∞ of finite radius. We assume Λ to be finite of dimension d over F q . The exponential corresponding to Λ

e Λ (z) = z λ∈Λ-{0} 1 - z λ (z ∈ C ∞ )
is an entire Λ-periodic F q -linear function. Since Λ is finite, it is a polynomial in z of the form

e Λ (z) = d i=0 λ i z q i with coefficients λ i ∈ C ∞ depending on Λ. Goss has considered Newton's sums associated to the reciprocal polynomial of e Λ (X -z) = e Λ (X) -e Λ (z) ∈ C ∞ [z][X],
namely

N 0 = 0 N j (z) = N j,Λ (z) = λ∈Λ 1 (z+λ) j (j ≥ 1, z ∈ C ∞ -Λ). Let t Λ (z) = e Λ (z) -1 = λ∈Λ 1 z -λ (z ∈ C ∞ -Λ).
Proposition 5.1 (Section 2 of [START_REF] Goss | π-adic Eisenstein series for function fields[END_REF], 3.4-3.9 in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]). -Let j ≥ 1. There exists a unique polynomial

G j = G j,Λ (X) ∈ C ∞ [X]
such that the following equalities hold:

1. if j ≤ q then G j (X) = X j 2. G j (X) = X i≥0,j-q i ≥0 λ i G j-q i (X).
The polynomial G j (X) is monic of degree j and satisfies N j = G j (t Λ ). Moreover,

(7) G j (X) = j-1 n=0 i n i λ i X n+1
for i = (i 0 , . . . , i d ) running through (d + 1)-tuples such that

i 0 + . . . + i d = n i 0 + i 1 q + . . . + i d q d = j -1 and λ i denotes λ i 0 0 • • • λ i d d .
The polynomial G j (X) is divisible by X u where u = j/q d + 1. We further put G 0,Λ (X) = 0.

Gekeler provided the explicit formula (7) using a generating function.

5.2.

Hecke algebra and Goss polynomials. -Let p an ideal of A of degree d ≥ 0 with monic generator P . Recall that C denotes the Carlitz module over C ∞ (Section 3.1). As usual, for an indeterminate X, put C P (X) = d i=0 C P,i X q i . For our purpose, we consider the F q -lattice of dimension d

Λ P = Ker(C P ) = {x ∈ C ∞ | C P (x) = 0}
whose jth Goss polynomial is denoted by G j,P . Let

t P (z) = t(P z) = 1 e(πP z) (z ∈ C ∞ -A).
Then, if f P (X) is the P th inverse cyclotomic polynomial C P (X -1 )X q d , one has (8)

t P = t q d f P (t)
.

The following statement mildly extends Gekeler's formula 7.3 in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF] (which was established for GL 2 (A) and p prime) to Γ 0 (n) and any p.

Proposition 5.2. -Let f ∈ M k,m (Γ 0 (n)) with t-expansion i≥0 a i t i . We have (9) T p f = P k-1 i≥0 δ monic in A δ|P, ( P δ )+n=A δ -k a i G i,δ (δt P δ )
Moreover, for fixed j, only a finite number of terms in the right-hand side contribute to t j in the t-expansion of T p f .

Proof. -Let δ be a monic divisor of P . Recall that e is the Carlitz exponential. We write F (z) for β∈A,deg β<deg δ f ((P z/δ + β)/δ). For |t(z)| small enough, F (z) is β∈A,deg β<deg δ i≥0 

a i t P δ z + β δ i = i≥0 a i β∈A,
F (z) is i≥0 a i λ∈Λ δ (e(πw) + λ) -i = i≥0 a i N i,Λ δ (e(πw)) = i≥0 a i G i,Λ δ (e Λ δ (e(πw)) -1 ).
Observe that e Λ δ (z) = C δ (z)/δ (both polynomials have the same set of zeros and the multiplicative constant is obtained by comparing the terms in z). By the properties of the Carlitz exponential, we also have C δ (e(πw)) = C(πzP/δ) = t(zP/δ) -1 . Substituting, we get

F (z) = i≥0 a i G i,Λ δ δt zP δ = i≥0 a i G i,Λ δ (δt P δ (z)).
Our claim follows from ( 6) and the last statement of Proposition 5.1.

Remark 5.3.

-To obtain the t-expansion of T p f from Equation ( 9), it would suffice to compose the t-expansions of t P/δ and Goss polynomials G i,δ . However, making this explicit seems to be a difficult problem. Indeed, a similar question arises when trying to make explicit the t-expansion of Drinfeld-Eisenstein series (see Section 6 of [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]) since it involves the t-expansion of G i,πA (t P ) (1) . This is quite different from the classical situation where coefficients of Eisenstein series are well-known arithmetic functions. given by composition, and contains the following linear forms, for any n ≥ 1:

a m+n(q-1) = b n : f → a m+n(q-1) (f ) = b n (f ). Let u = u k,m,n : T → Hom C∞ (M 2 k,m (Γ 0 (n)), C ∞ ) be the C ∞ -linear map s → b 1 s. We write b 1 T for the image of u.
We collect some remarks on the dimension of the C ∞ -algebra T . The map u is not necessarily an isomorphism, therefore the dimension of T is unknown a priori. In the case T = T 2,1 (Γ 0 (n)), one can prove that its dimension coincides with dim C∞ M 2 2,1 (Γ 0 (n)), using results from automorphic forms and work of Gekeler and Reversat [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF].

We keep Notation 3.3. The next statement gives a first description of b 1 T .

Proposition 5.5. -Let f ∈ M k,m (Γ 0 (n)) with t-expansion i≥0 a i (f )t i . Let p an ideal of A of degree d with monic generator P . Then a m+(q-1) (T p f ) is

(10) n m+q-2 n C(P ) n a 1+n 0 +n 1 q+...+n d q d (f ) + ε Q|P,Q∈A 1+ (Q)+n=A Q k-1 a 1 (f )
where n = (n 0 , . . . , n d ) is such that n 0 + . . . + n d = m + q -2 with n i ≥ 0 for all i and ε is defined by ε = 1 if m = 1 0 otherwise.

Remark 5.6. -1. In Example 7.4 of [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF], Gekeler treated a i (T p f ) for p of degree 1, i ≥ 0, and f modular for GL 2 (A). Proposition 5.5 supplements Gekeler's statement. 2. Actually, Propositions 5.2 and 5.5 work for holomorphic functions f : Ω → C ∞ having an expansion i≥0 a i t i for |t(z)| small enough (Hecke operators are still defined on f via ( 6)). In particular, this applies to holomorphic functions f : Ω → C ∞ which are A-periodic (f (z + a) = f (z), a ∈ A) and holomorphic at the cusp infinity.

(1) The lattice πA is not finite but Goss polynomials can be defined in that more general setting (see [START_REF] Goss | π-adic Eisenstein series for function fields[END_REF][START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]).

Proof. -By Proposition 5.2, we have to find the coefficient of t m+(q-1) in the t-expansion of G i,δ (δt P/δ ). First, if i = 0, then G 0,δ (X) = 0 so the expansion of G 0,δ (δt P/δ ) has no t m+(q-1) -term. Assume i > 0. By (8) the t-expansion of t P/δ is divisible by t q d-deg δ . Moreover, it follows from the definition of Goss polynomials that G i,δ (X) has X as a factor. Hence, the t-expansion of G i,δ (δt P/δ ) is divisible by t q d-deg δ . Since m < q -1, G i,δ (δt P/δ ) has no t m+(q-1) -term when

d -deg δ ≥ 2. Now assume 0 ≤ d -deg δ ≤ 1. Put s = deg δ. Recall that e Λ δ (z) = C δ (z)/δ = s i=0 C δ,i z q i /δ.
The explicit formula for Goss polynomials gives

G i,δ (X) = i-1 j=0 δ -j n j n C(δ) n X j+1
where n = (n 0 , . . , n s ) are such that n 0 + . . . + n s = j and n 0 + n 1 q + . . . + n s q s = i -1.

Suppose that s = d, i.e. δ P . Then the corresponding partial sum in ( 9) is

1 P i≥0 a i G i,P (P t) = 1 P i≥0 a i i-1 j=0 P -j n j n C(P ) n (P t) j+1 .
The t m+(q-1) -term corresponds to j = m + q -2; namely, it is

n m+q-2 n C(P ) n a 1+n 0 +n 1 q+...+n d q d (f ) with n = (n 0 , . . . , n d ) such that n 0 + . . . + n d = m + q -2.
Next, suppose that s = d -1. Using Equation ( 8), we get

(11) G i,δ (δt P δ ) = i-1 j=0 δ -j n j n C(δ) n δ t q 1 + P δ t q-1 j+1
where (n 0 , . . . , n d-1 ) with n 0 + . . . + n d-1 = j and n 0 + n 1 q + . . . + n d-1 q d-1 = i -1. If j ≥ 1, then q(j + 1) ≥ 2q > m + q -1, thus there is no t m+(q-1) -term in the expansion of [START_REF] Goss | The algebraist's upper half-plane[END_REF]. Finally, we assume j = 0, in other words n 0 = . . . = n d-1 = 0 and i = 1. We have

G 1,δ (δt P δ ) = δ t q 1 + P δ t q-1 = δt q +∞ n=0 (-1) n P n δ n t n(q-1) .
This series has a t m+(q-1) -term if and only if q -1 divides m -1. This happens only if m = 1, and in that case the corresponding coefficient is δ. Thus we obtain [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF].

Assume m ∈ {0, 1}. By [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF], the linear form b 1 T p = a m+(q-1) T p is a A-linear combination of a i , where i runs through the set of natural integers satisfying the condition: the expansion of i in base q has at most d + 1 digits, whose sum is equal to m + q -1. In particular, the set of such i's only depends on the degree d of p. This observation, also communicated to the author by D. Goss, will be used in Section 7. For the moment, we derive the following statement for b 1 T . Notation 5.7. -Let S be the set of natural integers of the form c/(q -1) where c ∈ N is such that the sum of its base q digits is q -1. The reverse inclusion will be proved in Section 7. Finally, we state another straightforward application of Proposition 5.5. Notation 5.9. -For d ≥ 1 and i = (i 0 , . . . , i d-1 ), let

Θ d (i 0 , . . . , i d-1 ) = P ∈A d+ C(P ) i T P = P ∈A d+ C i 0 P,0 • • • C i d-1 P,d-1 T P ∈ R A . Corollary 5.10. -Let f ∈ M k,m (Γ 0 (n)).
With the notations of Proposition 5.5 and Section 3, the coefficient a m+(q-1)

(Θ d (i 0 , . . . , i d-1 )f ) is n=(n 0 ,...,n d ) n 0 +...+n d =m+q-2 m+q-2 n S d (n 0 + i 0 , . . . , n d-1 + i d-1 )a 1+n 0 +n 1 q+...+n d q d (f ) +ε P ∈A d+ C(P ) i Q|P,Q∈A 1+ (Q)+n=A Q k-1 a 1 (f )
where ε is defined as in Proposition 5.5. In particular, I is a sub-C ∞ -algebra of T which maps doubly cuspidal forms to Drinfeld modular forms f satisfying a 0

Annihilator of b 1 for the Hecke action

(f ) = b 0 (f ) = b 1 (f ) = 0. Lemma 6.2. -If the map u : T → Hom C∞ (M 2 k,m (Γ 0 (n)), C ∞ ) is surjective, then it is an isomorphism.
Proof. -Since u is surjective, we take an element t n in the preimage of b n for any n ≥ 1. If s belongs to the ideal I, so does t n s. Hence, for any f ∈ M 2 k,m (Γ 0 (n)), the nth coefficient b n (sf ) is zero for any n ≥ 1. As the t-expansion uniquely determines a Drinfeld modular form, sf must be zero. Therefore s is zero as an endomorphism of M 2 k,m (Γ 0 (n)).

Proof of Theorem 1.1. -

Proof of Theorem 1.1. -Actually we prove a slightly more general statement: all the following equalities of linear forms will take place in the dual space of

M k,m (Γ 0 (n)) if m = 1 (resp. of M 2 k,m (Γ 0 (n)) if m = 1
). 1. Without any assumption on m, we apply Corollary 5.10 to d = 1. For i ≥ 0 we get

b 1   P ∈A 1+ P i T P   = m+q-2 n=0 m+q-2 n S 1 (n + i)a 1+n+q(m+q-2-n) .
This follows also from Gekeler's example 7.4 in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF], although stated there for GL 2 (A) and with a different normalization of Hecke operators. Assume m = 0. The sum S 1 (n + 1) = Q∈A 1+ Q n+1 is nonzero if and only if n = q -2, and S 1 (q -1) = -1 (by Lemma 3.4 for instance). Taking i = 1, our expression simplifies as b 1 P ∈A 1+ P T P = -b 1 . Assume m = 1. Since the sum S 1 (n) is nonzero if and only if n = q -1, taking i = 0, we get b 1 P ∈A 1+ T P = -b 1 . 2. Consider (i 0 , . . . , i d-1 ) as in the statement. By Corollary 5.10, we get that b

1 (Θ d (i 0 , . . . , i d-1 )) is n n 0 +...+n d =m+q-2 m+q-2 n S d (n 0 + i 0 , . . . , n d-1 + i d-1 )a 1+n 0 +n 1 q+...+n d q d .
We have 0 ≤ n j + i j ≤ 2(q -1), hence we can evaluate S d (n 0 + i 0 , . . . , n d-1 + i d-1 ) thanks to Proposition 3.5. This sum is nonzero if and only if n j + i j = q -1 or 2(q -1) for all j ∈ {0, . . . , d -1}. If this happens, we have

d(q -1) ≤ d-1 l=0 (n l + i l ) ≤ i 0 + . . . + i d-1 + m + q -2 which contradicts i 0 + . . . + i d-1 ≤ (d -1)(q -1) -m.
Accordingly, the sum always vanishes and b 1 (Θ d (i 0 , . . . , i d- 1)) = 0. 3. Apply the statement proved before to i 0 = l and i 1 = . . .

= i d-1 = 0.
It is worth pointing out that the elements of I given in Theorem 1.1 are universal in the sense that, for a given type, they do not depend on the weight k nor the ideal n. Some of them, as P ∈A d+ T P for d ≥ 2 for instance, are also independent of the type m. This means that, in the universal formal Hecke algebra R A , such an element is independent of k, m and n. Remark 6.3. -This phenomenon does not occur for classical modular forms of weight 2 as we now explain. Let S 2 (Γ 0 (N )) be the complex space of weight-2 cusp forms for Γ 0 (N ) (N ≥ 1). We write (c n ) n≥1 for the linear forms given by Fourier coefficients of such modular forms at the cusp infinity. The Hecke algebra T c of weight 2 for Γ 0 (N ) is the subring of End(S 2 (Γ 0 (N )) spanned over C by all Hecke operators T n for n ∈ N. Let u c be the C-linear map T c → Hom C (S 2 (Γ 0 (N ), C) given by s → c 1 s. Relation [START_REF] Böckle | An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals[END_REF] gives c n = u c (T n ) for all n ≥ 1, thus u c is bijective. We claim that if there exists a C-linear combination s = λ 1 T i 1 + . . . + λ j T i j , with j, λ 1 , . . . , λ j , i 1 , . . . , i j independent of N , such that s = 0 as an endomorphism of S 2 (Γ 0 (N )), then the coefficients λ 1 , . . . , λ s must be zero. In fact, when N is prime, the Hecke operators T 1 , . . . , T g(N ) are C-linearly independent in End(S 2 (Γ 0 (N )) for g(N ) = dim S 2 (Γ 0 (N )) (this follows from the cusp infinity not being a Weierstrass point on the modular curve X 0 (N )). Choosing N prime such that g(N ) is large enough yields λ 1 = . . . = λ j = 0 and proves our claim. In Section 7.2, we will further our investigation of the ideal I and prove that it vanishes in some cases (Theorem 7.7).

Linear relations for eigenvalues. -

Notation 6.4. -Let p an ideal of A with monic generator P . A Hecke eigenform f is a Drinfeld modular form which is an eigenform for all Hecke operators. We write λ P (f ) for its eigenvalue for T P = T p .

For a Hecke eigenform f such that b 1 (f ) = 0, Theorem 1.1 yields linear relations among its eigenvalues. It seems rather remarkable that these relations are universal in the sense that, for a fixed type, they do not depend on the weight k nor on the level n.

Proposition 6.5. -Let f ∈ M k,m (Γ 0 (n)) be a Hecke eigenform with b 1 (f ) = 0. If m = 1, we assume further f ∈ M 2 k,m (Γ 0 (n)). 1. If m ∈ {0, 1}, then P ∈A 1+ P 1-m λ P (f ) + 1 = 0.
2. Let d ≥ 1 and i 0 , . . . , i d-1 satisfying (1) and (2). Then

P ∈A d+ C(P ) i λ P (f ) = 0.
3. Let l and d be integers such that 0 ≤ l ≤ q -m and d ≥ (l + m)/(q -1) + 1. Then

P ∈A d+ P l λ P (f ) = 0.
In particular, if d ≥ 2, or f has type 0 and d = 1, then P ∈A d+ λ P (f ) = 0.

Linear relations for Hecke operators. -

We explain how some relations of Proposition 6.5 may follow from linear relations among Hecke operators in characteristic zero or p. In other words, we prove or suggest that certain elements of I given in Theorem 1.1 are zero in T . Notation 6.6. -For an ideal n of A, let H n be the abelian group of Z-valued cuspidal harmonic cochains for Γ 0 (n) on the Bruhat-Tits tree T of PGL(2, K ∞ ) (we refer to Section 3 of [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF] for the relevant definitions and properties). The group GL 2 (K) acts on the left on the set of oriented edges Y (T ) of T . We define an endomorphism θ p of H n by

(θ p F )(e) = α,δ monic ∈A β∈A, deg β<deg δ (αδ)=p, (α)+n=A F α β 0 δ e for F ∈ H n and e ∈ Y (T ).
After scalar extension to the complex numbers C, H n is identified with a space of cuspidal automorphic forms on GL(2) over the adeles of K (by the strong approximation theorem). Moreover, using Teitelbaum's residue map [START_REF] Teitelbaum | The Poisson kernel for Drinfeld modular curves[END_REF], Gekeler and Reversat [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF] gave an isomorphism between H n /pH n and a subspace of Drinfeld modular forms, namely the subspace

M 2 2,1 (Γ 0 (n), F p ) of M 2 2,1 (Γ 0 (n)
) consisting of such forms with residues in F p .

It turns out that this isomorphism is Hecke-equivariant, with the normalizations we have adopted here for T p and θ p . Finally, M 2 2,1 (Γ 0 (n), F p ) is an F p -vector space which, after scalar extension to C ∞ , gives the whole space M 2 2,1 (Γ 0 (n)). Put differently, the Hecke operator T p acting on M 2 2,1 (Γ 0 (n)) can be thought of as the mod p reduction of θ p . Lemma 6.7. -Let n be a prime. Assume

d ≥ deg(n) -1. Then deg p=d θ p = 0. In particular, deg p=d T p = 0 on M 2 2,1 (Γ 0 (n)). Proof. -Let F ∈ H n (C) = H n ⊗ Z C be an eigenform for (θ p ) p with eigenvalues (λ p ) p . For d > deg(n) -3, we have (12) 
deg p≤d

λ p = 0.
It is essentially a consequence of the cuspidality of F . Namely, by the structure of the quotient graph Γ 0 (n)\T , the edges of T corresponding to matrices π k 0 0 1 with k ≥ deg n are not in the support of F (see also [START_REF] Tan | Computation of L-series for elliptic curves over function fields[END_REF]). Using the Fourier expansion of F and the relation between Fourier coefficients and Hecke eigenvalues (λ p ) p ((3.12') and (3.13) in [START_REF] Gekeler | Analytical construction of Weil curves over function fields[END_REF]), we derive [START_REF] Goss | Modular forms for F r [T ][END_REF]. Since n is prime, there exists a basis of H n (C) consisting of normalized eigenforms for (θ p ) p . Hence we have

deg p≤d θ p = 0 if d > deg(n) -3. An equivalent formulation is: deg p≤deg(n)-2 θ p = 0 and deg p=d θ p = 0 if d ≥ deg(n) -1.
This completes the proof.

Therefore, from the theory of automorphic forms, we know that certain elements of I given in Theorem 1.1 are zero on M 2 2,1 (Γ 0 (n)), because so they are on H n : this is the case for

deg p=d T p if n is prime and d ≥ deg(n) -1.
It is now natural to ask whether some elements of I in Theorem 1.1 can act nontrivially on H n and be zero in T (i.e. in characteristic p). We suggest that this happens. Question 6.8. -Assume n is prime. Do the following relations among Hecke operators on M 2 2,1 (Γ 0 (n)):

1. deg p≤1 T p = 0 if n has degree 4 2. deg p=deg(n)-2 T p = 0 if n has degree ≥ 4 hold?
We checked numerically such relations on several examples. We computed Hecke operators on H n /pH n , for n prime, using Teitelbaum's modular symbols for F q (T ) [START_REF] Teitelbaum | Modular symbols for F q (T )[END_REF]. The first relation has been checked for q ∈ {2, 3, 4, 5, 7} and the second one for all primes n of degree 5 and 6 in F 2 [T ]. Note that, when deg n = 4, both relations are equivalent: indeed, we have deg p≤2 θ p = 0 (see proof of Lemma 6.7).

An affirmative answer to Question 6.8 would tell that some elements of I would be zero in T but may be nonzero on the automorphic level, more precisely:

• deg p≤1 T p = 0 in T 2,1 (Γ 0 (n)) for n prime of degree 4; • deg p=deg(n)-2 T p = 0 in T 2,1 (Γ 0 (n)) for n prime of degree ≥ 4.
In the next paragraph, we are interested in the reverse problem: finding nonzero elements in the ideal I.

Nonzero elements in the annihilator. -

The following conjecture suggests that, in general, the Hecke annihilator I of b 1 is nonzero. Conjecture 6.9. -Assume n is prime of degree ≥ 5. Then deg p≤1 T p ∈ I is nonzero as an endomorphism of M 2 2,1 (Γ 0 (n)). In particular, the map

u : T -→ Hom C∞ (M 2 2,1 (Γ 0 (n)), C ∞ ) s -→ b 1 s is not surjective.
The last statement follows from Lemma 6.2. As in Section 6.3, we were able to compute the action of deg p≤1 T p on M 2 2,1 (Γ 0 (n)) on some examples. We checked Conjecture 6.9 for all primes n in F 2 [T ] of degree in {5, 6, 7, 8, 9}, in F 3 [T ] of degree in {5, 6, 7, 8}, in F 4 [T ] and F 5 [T ] of degree 5 . ,c d ) such that c = d j=0 c j q j and 0 ≤ c j < q for any j ∈ {0, . . . , d}, for some d ≥ 0. The length of c is d + 1. Note that we do not require c d = 0. The base q expansion gives a decomposition of c. By putting zeros at the end of any decomposition of c, we obtain decompositions of larger length.

Proof and applications of

If i = (i 0 , . . . , i d ) is a decomposition of i ≥ 0, let l(i) = P ∈A d+ C(P ) i Q|P,Q∈A 1+ (Q)+n=A Q k-1 ∈ A.
We prove Theorem 1.2 by establishing the following explicit version.

Theorem 7.2. -Assume q is a prime. 1. Suppose m = 0. Let n = c/(q -1) ∈ S . We fix a decomposition (c 0 , . . . , c d ) of c of length d + 1 for some d ≥ 0 (therefore c 0 + . . .

+ c d = q -1). Let t c 0 ,...,c d = (-1) d q-2 c 0 -1,c 1 ,...,c d -1 P ∈A d+ P q d+1 -c T P ∈ R A .

Then, for any k and n, we have b

n = b 1 t c 0 ,...,c d in the dual space of M k,0 (Γ 0 (n)). 2. Suppose m = 1. Let n = c/(q -1) ∈ S . We fix a decomposition (c 0 , . . . , c d ) of c of length d + 1 for some d ≥ 0 with c d = q -1 (therefore c 0 + . . . + c d = q -1). Let t c 0 ,...,c d = (-1) d q-1 c 0 ,...,c d -1 P ∈A d+ P q d+1 -1-c T P ∈ R A .
Then, for any k and n, we have

b n = b 1 t c 0 ,...,c d + (-1) d+1 q-1 c 0 ,...,c d -1 l(q d+1 -1 -c)a 1
in the dual space of M k,1 (Γ 0 (n)).

3. Assume m = 1. Let d ≥ 1 and

t d = (-1) d P ∈A d+ P q d -1 - d-1 i=0 P q d -1-(q-1)q i T P ∈ R A .
Then, for any k and n, we have [START_REF] Goss | π-adic Eisenstein series for function fields[END_REF] b

q d = b 1 t d + (-1) d -l(q d -1) + d-1 i=0 l(q d -1 -(q -1)q i ) a 1
in the dual space of M k,1 (Γ 0 (n)).

Remark 7.3. -1. Since q is prime and d j=0 c j = q -1, the multinomial coefficients q-1 c 0 ,...,c d and q-2 c 0 -1,c 1 ,...,c d are nonzero in F p , by Lucas's theorem, hence invertible. 2. On doubly cuspidal forms, a 1 vanishes and the expressions of Theorem 7.2 simplify and provide Theorem 1.2. Moreover, since b 1 T is contained in the C ∞ -vector space spanned by b n for n ∈ S (Corollary 5.8), we get the equality provided that q is prime and m ∈ {0, 1}. 3. For a given n ∈ S , we get infinitely many expressions

s n ∈ T such that b n = b 1 s n .
The reason is that, in the first two items of Theorem 7.2, any decomposition of c = (q -1)n gives rise to a formula for s n ∈ T satisfying the desired property. More generally, any element of s n + I would satisfy the same property. 4. The primality assumption on q is not always essential: it is required to ensure that the multinomial coefficient q-1 c 0 ,...,c d for m = 1 (resp.

q-2 c 0 -1,c 1 ,...,c d for m = 0) is nonzero in F p . Hence, the assumption is unnecessary in [START_REF] Goss | π-adic Eisenstein series for function fields[END_REF]. If q is not a prime, the first (resp. second) statement of Theorem 7.2 is true for n = c/(q -1) ∈ S such that there exists a decomposition (c 0 , . . . , c d ) of c with q-2 c 0 -1,c 1 ,...,c d = 0 in F p (resp. q-1 c 0 ,...,c d = 0 in F p ) for some d ≥ 0. Before proving Theorem 7.2, we give an example.

Example 7.4 (d = 1). -We put

s n = -q-1 n-1 -1 P ∈A 1+ P n-1 T P for 1 ≤ n ≤ q -1 s q = - P ∈A 1+ (P q-1 -1)T P . Then b n (f ) = b 1 (s n (f )) for all f ∈ M 2 k,1 (Γ 0 (n)
) and 1 ≤ n ≤ q. This is valid for q a power of a prime, by Remark 7.3 and Lucas's theorem. Using these formulas, we can recover the first q coefficients of any Hecke eigenform f in M 2 k,1 (Γ 0 (n)) in terms of b 1 (f ) and the eigenvalues.

Proof of Theorem 7.2. -1. Assume that the type m is 0. We put n 0 = c 0 -1, n 1 = c 1 , . . . , n d = c d , so that n 0 + . . . + n d = q -2. By Corollary 5.10, a q-1 (Θ d (q -1n 0 , . . . , q -1 -n d-1 )) is r q-2 r S d (r 0 + q -1 -n 0 , . . . , r d-1 + q -1 -n d-1 )a 1+r 0 +r 1 q+...+r d q d where r = (r 0 , . . . , r d ) satisfies r 0 + . . . + r d = q -2. From n i ≥ -1, we get 0 ≤ r i + q -1 -n i ≤ 2(q -1) for all i. We can thus evaluate the sum S d (r 0 + q -1 -n 0 , . . . , r d-1 + q -1 -n d-1 ) by Proposition 3.5: it is nonzero only if r is such that r i ∈ {n i , q -1 + n i }, for all i ∈ {0, . . . d -1}. Since r i ≤ q -2, we have r 0 = n 0 , . . . , r d-1 = n d-1 and by Proposition 3.5, a q-1 (Θ d (q -1 -n 0 , . . . , q -1 -n d-1 )) = q-2 n (-1) d a 1+n 0 +n 1 q+...+n d q d . Finally, a 1+n 0 +...+n d q d = a n(q-1) = b n and the conclusion follows. 2. Assume that the type m is 1. Since q d+1 -1-c has base q expansion d j=0 (q-1-c j )q j , we have

P ∈A d+ P q d+1 -1-c T P = P ∈A d+ C q-1-c 0 P,0 . . . C q-1-c d-1 P,d-1 T P = Θ d (q -1 -c 0 , . . . , q -1 -c d-1 ). By Corollary 5.10, b 1 (Θ d (q -1 -c 0 , . . . , q -1 -c d-1 )) is r q-1 r S d (r 0 + q -1 -c 0 , . . . , r d-1 + q -1 -c d-1 )a 1+r 0 +r 1 q+...+r d q d + l(q d+1 -1 -c)a 1
with r = (r 0 , . . . , r d ) such that r 0 +. . .+r d = q-1. From c i ≥ 0 and 0 ≤ r i ≤ q-1, we get 0 ≤ r i +q-1-c i ≤ 2(q-1). Thus the sum S d (r 0 +q-1-c 0 , . . . , r d-1 +q-1-c d-1 ) can be evaluated thanks to Proposition 3.5: it is nonzero if and only if r i ∈ {c i , q -1 + c i } for all i ∈ {0, . . . , d -1}.

Suppose there exists k ∈ {0, . . . , d -1} with r k = q -1 + c k . Then, according to the previous remarks, we have

q -1 -r d = d-1 j=0 r j = q -1 + c k + d-1 j=0,j =k r j ≥ q -1 + d-1 j=0 c j = 2(q -1) -c d hence 0 ≤ q -1 -c d ≤ -r d .
This implies r d = 0, thus c d = q -1, which is impossible. Therefore, we have r j = c j for any j ∈ {0, . . . , d -1} and r d = c d as a consequence. Proposition 3.5 then provides

b 1 (Θ d (q -1 -c 0 , . . . , q -1 -c d-1 )) =a 1+c 0 +c 1 q+...+c d q d + (-1) d q-1 c 0 ,...,c d -1 l(q d+1 -1 -c)a 1 .
Finally, a 1+c 0 +c 1 q+...+c d q d = a 1+n(q-1) = b n , thus the statement is proved. 3. Assume that the type m is 1. We first compute b 1 (Θ d (q -1, . . . , q -1)). According to Corollary 5.10, it is r=(r 0 ,...,r d ) r 0 +...+r d =q-1 q-1 r S d (r 0 + q -1, . . . , r d-1 + q -1)a 1+r 0 +r 1 q+...+r d q d + l(q d+1 -1)a 1 . By Proposition 3.5, the sum S d (r 0 + q -1, . . . , r d-1 + q -1) is nonzero if and only if r i ∈ {0, q -1} for all i ∈ {0, . . . , d -1}. This means that (r 0 , . . . , r d-1 ) is one of the following: (q -1, 0, . . . , 0) , (0, q -1, 0, . . . , 0) , . . . , (0, . . . , 0, q -1) , (0, . . . , 0). Thus b 1 (Θ d (q -1, . . . , q -1)) equals [START_REF] Goss | Fourier series, measures and divided power series in the theory of function fields[END_REF] (-1) d a 1+(q-1) + . . . + a 1+(q-1)q d-1 + a 1+(q-1)q d + l(q d+1 -1)a 1 .

Next, we compute b 1 (Θ(q -1, . . . , 0, . . . , q -1)), the only zero term being at the (j + 1)th position (0 ≤ j ≤ d -1). From Corollary 5.10, it is r=(r 0 ,...,r d ) r 0 +...+r d =q-1 q-1 r S d (r 0 + q -1, . . . , r j , . . . , r d-1 + q -1)a 1+r 0 +r 1 q+...+r d q d + l(q d+1 -1 -(q -1)q j )a 1 .

Again by Proposition 3.5, the sum is only over r satisfying the following two properties:

r i ∈ {0, q -1} for all i ∈ {0, . . . , d -1}, i = j r j ∈ {q -1, 2(q -1)}.
Since r 0 + . . . + r d = q -1, we have necessarily r j = q -1, r i = 0 for all i = j and r d = 0. Then [START_REF] Gekeler | Jacobians of Drinfeld modular curves[END_REF] b 1 (Θ(q -1, . . . , 0, . . . , q -1)) = (-1) d a 1+(q-1)q j + l(q d+1 -1 -(q -1)q j )a 1

Combining ( 14) and ( 15), we get the claim. In particular, in Proposition 6.5, one can replace the assumption b 1 (f ) = 0 by: there exists n ∈ S such that b n (f ) = 0.

We now provide multiplicity one statements in certain spaces of Drinfeld modular forms.

Lemma 7.6. - 1. Let d = dim M k,m (GL 2 (A)). The C ∞ -linear map M k,m (GL 2 (A)) -→ C d ∞ f -→ (b 0 (f ), . . . , b d-1 (f )) is an isomorphism. 2. Let d = dim M 2 2,1 (Γ 0 (n)). The C ∞ -linear map M 2 2,1 (Γ 0 (n)) -→ C d ∞ f -→ (b 1 (f ), . . . , b d (f ))
is an isomorphism.

Proof. -The first assertion follows readily from a formula relating, for a nonzero f ∈ M k,m (GL 2 (A)), the orders of vanishing of f at elliptic, non-elliptic points and the cusp infinity of GL 2 (A) (see (5.14) in Gekeler's paper [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]).

For the second assertion, we consider the Drinfeld modular curve X 0 (n) attached to Γ 0 (n). This smooth projective algebraic curve over C ∞ is the compactification of the affine curve Y 0 (n) = Γ 0 (n)\Ω over C ∞ , the group Γ 0 (n) acting on Ω via linear fractional transformations. Actually, the curve Y 0 (n) is a coarse moduli scheme for rank-2 Drinfeld modules with a level structure determined by n. The cusps, i.e. the set X 0 (n) -Y 0 (n), is naturally in bijection with Γ 0 (n)\P 1 (K). Since we assume n prime, the cusps are labeled {0, ∞} as usual. Gekeler gave formulas for the genus g = g(X 0 (n)) in terms of the degree of n ( [START_REF] Gekeler | Drinfel d modular curves[END_REF][START_REF] Gekeler | Über Drinfeldsche Modulkurven vom Hecke-Typ[END_REF]).

One can show that ∞ is not a Weierstrass point on X 0 (n) with n prime (i.e. every holomorphic differential form on X 0 (n) vanishes at ∞ at order < g). This is merely an adaptation of Ogg's geometric argument [START_REF] Ogg | On the Weierstrass points of X 0 (N )[END_REF] for the classical modular curve X 0 (pM ) with p prime and p M . To adapt the proof, we need Gekeler's description of the bad fiber at n of a model of X 0 (n) over A ( [START_REF] Gekeler | Über Drinfeldsche Modulkurven vom Hecke-Typ[END_REF] p. 233): it consists of two copies of the projective line over F n = A/n intersecting transversally at n supersingular points (i.e. points whose underlying rank-2 Drinfeld module is supersingular over F n ). The full Atkin-Lehner involution w n interchanges the components. The reductions of the cusps are on distinct components hence are not supersingular points. The second ingredient is the analogue of Ogg's formula (2) in [START_REF] Ogg | On the Weierstrass points of X 0 (N )[END_REF]: the number n of supersingular points is 1 + g, according to (5.4) in [START_REF] Gekeler | Über Drinfeldsche Modulkurven vom Hecke-Typ[END_REF] and Gekeler's formula for g. We leave the details to the reader.

The map f → f (z)dz defines an isomorphism between M 2 2,1 (Γ 0 (n)) and the space of holomorphic differential forms on X 0 (n) ([15] Proposition 2.10.2), hence both spaces have dimension g = d. Since ∞ is not a Weierstrass point, any Drinfeld modular form in M 2 2,1 (Γ 0 (n)) vanishes at ∞ at order < d. In other words, the linear map

M 2 2,1 (Γ 0 (n)) → C d ∞ given by f → (b 1 (f ), . . . , b d (f )) is injective, hence bijective.
Theorem 7.7.

-Let M be one of the following spaces of Drinfeld modular forms:

1. M 1 k,0 (GL 2 (A)) with k < (q + 1) 2 (q -1) 2. M 2 k,1 (GL 2 (A)) with k < q 2 (q + 1) 3. M 2 2,1 (Γ 0 (n))
with n prime of degree 3.

Then:

-Any eigenform in M for the operators (T p ) deg p=1 is characterized in the space M by its eigenvalues, up to a multiplicative constant. -The map u : T → Hom C∞ (M, C ∞ ) is an isomorphism.

Proof. -Consider the first two cases for M . By the cuspidality (resp. doubly cuspidality) condition and the assumption on the type, we have b 0 (f ) = a m (f ) = 0. Therefore, any function f ∈ M is determined, in the space M , by its coefficients b 1 (f ), . . . , b d-1 (f ), according to Lemma 7.6. Now, if f is an eigenform for (T p ) deg p=1 , we know that b 1 (f ), . . . , b q (f ) are determined by the eigenvalues (up to a multiplicative constant), thanks to Example 7.4. Recall that the dimension of M k,m (GL 2 (A)) is d = (k -(q + 1)m)/(q 2 -1) + 1 (this follows from Gekeler's formula (5.14) in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]). Here, the assumptions on the weight k ensure that d -1 ≤ q. The conclusion follows.

The proof of the third case is similar, except that the dimension of M is q. Indeed, this dimension is equal to the genus of X 0 (n). By Gekeler's formula for the genus ( [START_REF] Gekeler | Drinfel d modular curves[END_REF][START_REF] Gekeler | Über Drinfeldsche Modulkurven vom Hecke-Typ[END_REF]), it is q when n is prime of degree 3.

For the bijectivity of u, we need only to prove the surjectivity by Lemma 6.2. Consider the first two cases for M . As before, M has dimension d -1 ≤ q. Moreover, the image of u contains b 1 , . . . , b d-1 (by Theorem 7.2) which are linearly independent (by Lemma 7.6), hence the conclusion. The proof of the third case is similar.

As a corollary, we get that the dimension of the C ∞ -algebra T coincides with the dimension of the space of Drinfeld modular forms M , for M as in the statement. k,m (Γ 0 (n)) (i.e. there exists a basis of M 2 k,m (Γ 0 (n)) consisting of modular forms with coefficients in A). However, a general theory of such algebraic Drinfeld modular forms is still missing in the literature. Some instances of such a theory can be found in [START_REF] Goss | Modular forms for F r [T ][END_REF] (Section 2, for M k,m (GL 2 (A))) and [START_REF] Armana | Torsion rationnelle des modules de Drinfeld[END_REF] (Section 4.2, for M 2 2,1 (Γ 0 (n))).

Comment on

Coefficients of h

We use Theorem 7.2 to compute explicitly some coefficients of Gekeler's Drinfeld modular form h, defined in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]. Recall that h has weight q + 1 and type 1 for GL 2 (A). It is defined as a certain Poincaré series and is also a (q -1)th root of the Drinfeld discriminant form ∆. Moreover, it is a cuspidal Hecke eigenform with T p h = h for any p (Corollary 7.6 in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF] with a different normalization of Hecke operators). The first coefficients of h are a 1 (h) = -1 and b 1 (h) = a q (h) = 0 if q > 2 1 if q = 2 .

Proposition 8.1. -For P in A, let σ P = Q|P,Q∈A 1+ Q q .

1. Assume q is a prime > 2. Let c ∈ N such that c = d j=0 c j q j with 0 ≤ c j < q, d j=0 c j = q -1 and c d = q -1 (we do not necessarily assume c d = 0). Then (1 + σ P ). Remark 8.2. -We recover that the corresponding coefficients of h are polynomials in T q -T with coefficients in F q (indeed, they are elements of A which are invariant under T → T + c for c ∈ F q ). More generally, Gekeler proved that this property holds for any coefficient of h (Theorem 2.4 of [START_REF] Gekeler | Growth order and congruences of coefficients of the Drinfeld discriminant function[END_REF]).

Taking d = 1 in Proposition 8.1, one can recover the first q coefficients of h. If q is a prime > 2, then b i (h) = 0 if 1 ≤ i ≤ q -2, b q-1 (h) = -1 and b q (h) = T q -T . They can also be obtained from the Taylor series h = -tU -1 1 + o(t 1+(q-1)(q 3 -q 2 ) ) with U 1 = 1 -t (q-1) 2 + (T q -T )t (q-1)q (see Corollary 10.4 in [START_REF] Gekeler | On the coefficients of Drinfeld modular forms[END_REF]).

For i ∈ N, let [i] = T q i -T . Using congruences and estimates on the degree of coefficients of h, Gekeler proved that for any d ≥ 1, [START_REF] Teitelbaum | The Poisson kernel for Drinfeld modular curves[END_REF] b

q d (h) = [d] if q > 2 1 + [d] if q = 2
(see Corollary 2.6 of [START_REF] Gekeler | Growth order and congruences of coefficients of the Drinfeld discriminant function[END_REF]; note that his b i denotes our -b i ). Equation ( 17) thus provides an alternative formula for b q d (h). We have not been able to recover ( 19) from ( 17) and [START_REF] Tan | Computation of L-series for elliptic curves over function fields[END_REF]. Hence we derive some arithmetic identities in F q [T ] which may be nontrivial and of some interest. Corollary 8.3. -Let q be a prime > 2 and d ≥ 1.

1.

[d] = (-1) d+1 P ∈A d+ -P q d -1 + d-1 i=0 P q d -1-(q-1)q i σ P .

2.

For 0 ≤ i ≤ d -1, (-1) d [i] = P ∈A d+ P q d -1-(q-1)q i σ P .

3.

(-1) d d i=1

[i] = P ∈A d+ P q d -1 σ P .

Proof. -The first one follows from [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF] and [START_REF] Teitelbaum | The Poisson kernel for Drinfeld modular curves[END_REF]. For the second one, we first apply [START_REF] Ogg | On the Weierstrass points of X 0 (N )[END_REF] to c = (q -1)q i with 0 ≤ i ≤ d -1 and get (-1) d b q i (h) = P ∈A d+ P q d+1 -1-(q-1)q i σ P = P ∈A d+ P q d -1-(q-1)q i σ P where the last equality follows from q d+1 -1-(q-1)q i = (q-1)q d + d-1 j=0 (q-1)q j -(q-1)q i and deg P = d. With [START_REF] Teitelbaum | The Poisson kernel for Drinfeld modular curves[END_REF], we get the second claim. The third one is obtained by combining the first two identities.

Table 1. q = 3, d ≤ 4 i b i (h) 1 0 2 -1 3 [1] 5 -[1] 6 -[1] 2 -1 9 [2] = [1] 3 + [1] 14 [1] 4 -1 15 [1] 5 -[1] 3 + [1] 18 -[1] 6 + [1] 4 -[1] 2 -1 27 [3] = [1] 9 + [1] 3 + [1] 41 -[1] 13 + [1] 9 -[1] 7 -[1] 42 -[1] 14 + [1] 12 -[1] 10 -[1] 8 -[1] 2 -1 45 [1] 15 -[1] 13 + [1] 11 -[1] 9 + [1] 3 + [1] 54 -[1] 18 + [1] 12 + [1] 10 -[1] 6 + [1] 4 -[1] 2 -1 81 [4] = [1] 27 + [1] 9 + [1] 3 + [1]
In Table 1, we provide further examples of coefficients of h from Proposition 8.1. Observe that when i is even (resp. odd), b i (h) is an even (resp. odd) polynomial in [START_REF] Armana | Torsion rationnelle des modules de Drinfeld[END_REF] = T q -T . This is more generally true for any coefficient when q = 3: it follows from the coefficients of h being balanced, a property established by Gekeler (Theorem 2.4 of [START_REF] Gekeler | Growth order and congruences of coefficients of the Drinfeld discriminant function[END_REF]). Note that, in our table, the constant term is -1 when i is even: we wonder if such a statement holds more generally.

  e. According to the analytic theory of Drinfeld modules, the finite set {e(πβ/δ) | β ∈ A, deg β < deg δ} is in bijection with the lattice Λ δ = Ker(C δ ). Let w = P z/δ 2 . Then, by Proposition 5.1,

5. 3 .

 3 Hecke module spanned by b 1 . -Notation 5.4. -The dual space of M k,m (Γ 0 (n)) has the natural right action of T,

Corollary 5 . 8 .

 58 -If m ∈ {0, 1} then b 1 T is contained in the C ∞ -vector space spanned by b n for n ∈ S .

Notation 6 . 1 .

 61 -Let I = I k,m,n be the kernel of u i.e. the ideal of elements s ∈ T such that b 1 s = 0 in the dual space of M 2 k,m (Γ 0 (n)).

Theorem 1. 2 7. 1 .

 21 Explicit version of Theorem 1.2. -Notation 7.1. -We call a decomposition of c ∈ N a tuple c = (c 0 , . . .

7. 2 .Corollary 7 . 5 .

 275 Applications. -Theorem 1.2 has the following straightforward consequence. -Under the assumptions of Theorem 1.2, if f is a Hecke eigenform with b n (f ) = 0 for some n ∈ S , then b 1 (f ) = 0.

  A-structures. -Although we worked with C ∞ -structures, most of the results of this paper could be transferred over the ring A. For instance, one could work with the subspaceM 2 k,m (Γ 0 (n); A) ⊂ M 2 k,m (Γ 0 (n))consisting of modular forms with expansion in A[[t]] and the Hecke algebra T A spanned over A by Hecke operators. Using Proposition 5.2, one may check that the mapT A → Hom A (M 2 k,m (Γ 0 (n); A), A) induced by s → b 1 s, is well-defined. We expect that M 2 k,m (Γ 0 (n); A) is a A-structure of M 2

2 .

 2 Assume q = 2. Then for every d ≥ 0, one has
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