
HAL Id: hal-02559169
https://hal.science/hal-02559169v1

Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highlighting directional reflectance properties of retinal
substructures from D-OCT images
Florence Rossant, Kate Grieve, Michel Paques

To cite this version:
Florence Rossant, Kate Grieve, Michel Paques. Highlighting directional reflectance properties of
retinal substructures from D-OCT images. IEEE Transactions on Biomedical Engineering, 2019,
�10.1109/TBME.2019.2900425�. �hal-02559169�

https://hal.science/hal-02559169v1
https://hal.archives-ouvertes.fr


TBME-02046-2018 
 

1 

 
Abstract— Optical Coherence Tomography (OCT), which is 

routinely used in ophthalmology, enables transverse optical 
imaging of the retina and hence the identification of the different 
neuronal layers. Directional OCT (D-OCT) extends this 
technology by acquiring sets of images at different incidence 
angles of the light beam. In this way, reflectance properties of 
photoreceptor substructures are highlighted, enabling physicians 
to study their orientation, which is potentially an interesting 
biomarker for retinal diseases. Nevertheless commercial OCT 
devices equipped to automate D-OCT acquisition do not yet exist, 
meaning that physicians manually deviate the light beam to 
acquire a set of D-OCT images sequentially. Therefore, the 
intensities in the stack of images are not directly comparable and 
a normalization step is required before differential analysis. In this 
article, we present advanced image processing methods to perform 
differential analysis of a set of D-OCT images and extract the 
angle-dependent retinal substructures. Our approach relies on a 
robust and accurate normalization algorithm followed by a 
classification that is spatially regularized. We also propose a 
robust color representation that facilitates interpretation of D-
OCT data in general, by detecting and highlighting angle-
dependent structures in healthy and diseased eyes. Experimental 
results show evidence of photoreceptor disarray in a variety of 
retinal diseases, demonstrating the potential medical interest of 
the approach. 
 

Index Terms— Directional Optical Coherence Tomography, D-
OCT, Retina, Joint illumination correction, Reflectance properties 
of retinal structures, Intensity normalization, Markovian 
regularization, Fusion. 
 

I. INTRODUCTION 
hotoreceptors of the human retina have unique optical 
properties, one of which is the angular dependence of their 
absorbance and reflectance, known as the Stiles-Crawford 

effect (SCE) [1][2]. As a result, the distribution of backscattered 
light through the pupil is modulated by its angle of incidence. 
The angle-dependent absorbance and reflectance of individual 
cone photoreceptors follows a Gaussian curve, with a peak 
whose orientation defines the photoreceptor pointing and whose 
acceptance angle correlates with the span of photon capture [2]. 
Cones account for most of the SCE. Angle-dependent 
reflectance of photoreceptors can be observed with different 
fundus imaging modalities including scanning laser 
ophthalmoscopy (SLO) with [3] or without [4][5] adaptive 
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optics, flood-illumination adaptive optics (FIAO) [6][7] and 
optical coherence tomography (OCT) [8]. Physiologically, in 
emmetropic eyes, adjacent photoreceptors are parallel, 
converging slightly nasal to the center of the cornea [4] with 
less than 1° disarray on average [3]. Therefore analysis of 
photoreceptor pointing offers a potentially interesting 
biomarker for retinal diseases since it reflects the organization 
of outer segments, the photoreceptor substructure sensitive to 
light. In diseased eyes alterations of the psychophysical SCE 
have been reported during aging, myopia, macular edema and 
retinitis pigmentosa [9][10][11][12][13]; but to our knowledge 
the corresponding changes in directional reflectance have never 
before been automatically extracted by image processing 
algorithms. 

Optical coherence tomography (OCT) is a real time imaging 
modality that allows the acquisition of high-resolution cross-
sectional images of thin layers of biological tissues [14]. It is 
now routinely used in ophthalmological settings, as it enables 
transverse optical imaging of the retina and hence the 
identification of the different neuronal layers (Fig. 1). Optical 
coherence tomography is based on the principle of the 
Michelson interferometer and can be considered as the optical 
equivalent of echography [15]. Spectral domain (SD) OCT 
technology now reaches 3 μm resolution while the high 
acquisition speed reduces motion artifacts, allowing reliable 
image averaging and good signal to noise ratio [16].  
 

 
Fig. 1.  OCT data acquired in a clinical setting [16] from a normal eye (on-axis 
image). Main retinal layers and interfaces: ILM – inner limiting membrane; 
RNFL – retinal nerve fiber layer; GCL – ganglion cell layer; IPL – inner 
plexiform layer; INL – inner nuclear layer; OPL – outer plexiform layer; HFL 
– Henle fiber layer; ONL – outer nuclear layer; IS – inner segments; OS – outer 
segments; IS/OS –inner segment/outer segment junction; COST – cone outer 
segment tips; RPE – retinal pigment epithelium; ChCap – chorio capillaris. 
 

Clinical OCT images are acquired with the incident beam 
normal to the surface of the retina. Directional optical 
coherence tomography (D-OCT, Fig. 2) involves imaging at 
multiple off-axis angles relative to the visual axis, which 
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highlights the orientation of photoreceptor substructures and 
hence may detect misaligned photoreceptors. However, D-OCT 
is not yet available on standard OCT devices and custom OCT 
devices or specific protocols have to be designed along with 
image processing methods to analyse sets of images acquired at 
different angles. 

 

 

 

 
Fig. 2.  A set of D-OCT images acquired in a clinical setting from a normal 
eye. The yellow arrows show the direction of the incident light beam. The blue 
and red arrows point to areas of varying reflectance, in the Henle fiber layer 
(HFL). 
 

Several research articles have already demonstrated the 
potential interest of D-OCT to highlight and analyse directional 
reflectance properties in the retina. Gao et al. first used a custom 
OCT setup to image off-axis macular photoreceptors and 
measure the contributions of macular photoreceptor 
substructures to the optical SCE (oSCE) [8]. They suggested 
that directional reflectance of the cone outer segment tip 
(COST) line and, to a lesser extent, of the inner/outer segment 
junction (IS/OS), accounts for most of the oSCE of macular 
photoreceptors. This was supported by the findings of Miloudi 
et al. who documented the directional reflectance of 
photoreceptors using a combined approach of en-face adaptive 
optics imaging and D-OCT [7]. 

The potential medical interest of D-OCT was highlighted by 
Lujan et al. who used D-OCT to delineate the Henle fiber layer, 
that is, the photoreceptor axons, and subsequently extract the 
thickness of the outer nuclear layer (ONL), which is an 
important biomarker of retinal degeneration [17]. Moreover, 
knowledge of the orientation of photoreceptors is essential 
because of the relationship between the direction of incident 
photons and the probability of their capture (and hence 
detection) by outer segments. The probability of capture is 
maximal when light is parallel to the physical orientation of the 
outer segment. This defines the Stiles-Crawford effect [1][2]. 
Hence, any change in the orientation of photoreceptors will 
decrease the efficiency of photon capture. Therefore, an 
automatic method to quantify the orientation of photoreceptors 
and disambiguate between loss and misorientation is of high 
interest for medical interpretation. Changes in photoreceptor 
anisotropy due to pathologies have been already observed using 
D-OCT in patients [18][19]. 

Nevertheless, few previous studies propose image processing 
solutions to finely highlight the directional reflectance 

properties of photoreceptor substructures. In the literature, 
either standard commercial OCT devices [17][21][22] or 
custom multi-angle OCT devices [8][20] have been employed 
to acquire sets of multi-angle (directional) images. Custom 
OCT devices allow simultaneous acquisitions at several 
incidence angles, thus limiting aberrations due to the eye 
movement and allowing a better control of the incidence angles. 
In contrast, standard OCT devices are not designed for such use, 
and ad-hoc acquisition procedures are applied to sequentially 
acquire images at different angles, leading to higher variability 
in the set of multi-angle images (location of the slices, intensity 
distortions) and in the angles finally obtained. In all cases, 
image processing is limited in the literature to image 
registration, intensity normalization and color representation. 
An intensity normalization step is not always included in the 
processing algorithm, although it is a crucial issue. Indeed, 
there are possible variations of the measured signal due to 
optical properties of the tissues traversed (cornea, crystalline 
lens, nerve fiber layer), due to aberrations intrinsic to the eye 
and also due to the instrument (Fig. 3(a-c)), even in case of 
simultaneous acquisitions by a custom OCT apparatus [8]. So, 
without normalization, it is impossible to compare the intensity 
values across the stack of multi-angle images in a reliable and 
accurate way. Therefore, normalization is essential to highlight 
retinal structures showing directional reflectance properties and 
to estimate the relative amplitude of changes. In [8], each A-
scan (i.e. each image column) is normalized to the same inner 
retinal reflection level, as the inner layers are assumed isotropic 
scatterers. In [20], data is normalized to the RPE layer, whose 
intensity is directionally invariant. Makhijani et al. rely on a 
region containing RPE and choroid to calculate a normalization 
function based on the measured mean and standard deviation; 
one function is calculated and applied per directional image 
[21]. These approaches all rely on a segmentation step to 
calculate the parameters of the normalization function(s), which 
may be complicated to achieve automatically in the case of 
diseased retinas where the retinal layers may be severely 
altered. Moreover, the processing is applied very locally 
without spatial regularization [8] or the same function is applied 
over the whole directional image [21], which does not deal with 
spatial variations of the overall image intensity. However, 
spatial variations of the signal intensity are obviously present in 
the directional images, especially when acquired with a 
standard commercial OCT device (Fig. 3(a-c)). Concerning 
colored representations of the directional reflectance properties, 
the common method is based on a chromatic visualization 
[17][20][21]. Given 3 directional images (one on-axis image 
and two off-axis images), each one is mapped to a color channel 
(red, green and blue) to generate the final color image. In this 
representation, isotropic pixels (i.e. with no significant intensity 
variation with respect to the angle) appear in gray levels, since 
the intensities are the same in the three color channels, while 
anisotropic pixels are attributed with a tint which reveals the 
angle of maximal intensity or a subset of dominant angles. The 
resulting colored images [17][20][21] may be challenging to 
interpret as the chromatic image is generally noisy and isotropic 
areas may be colored. This is probably because of the absence 
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or the weakness of the normalization step, as well as the lack of 
spatial regularization in the analysis of the angle-dependent 
intensity variations. Moreover, it is not possible to visualize the 
amplitude of the intensity variation with the angle. 

In this article, we present advanced image processing 
methods to perform differential analysis of a set of D-OCT 
images and extract the angle-dependent retinal substructures. 
This work is an extension of our previous method [22] where 
we dealt with only 2 angles. We designed our algorithm to 
process directional images acquired with a standard SD-OCT 
device [16]. Our approach relies on a robust and accurate 
normalization algorithm, which includes two main steps: an 
individual correction applied to each directional image, to deal 
with inhomogeneous illumination over the image, and a joint 
illumination correction to normalize the directional images with 
respect to each other. Our algorithm does not need a prior 
segmentation of intra retinal layers or any assumption about 
isotropic areas. It only requires outlining of the whole retina 
(i.e. delineation of the inner limiting membrane (IML) and outer 
border of the retinal pigment epithelium (RPE), Fig. 5). Other 
strengths are the joint image processing and the possibility to 
estimate correction functions that spatially vary smoothly, 
allowing us to accurately compare pixel intensities. Finally, we 
also propose a robust color representation that facilitates 
interpretation of D-OCT data in general, by detecting and 
highlighting angle-dependent structures in healthy and diseased 
eyes. This colored representation is based on a pixel 
classification step followed by a Markovian regularization. It 
shows both the angle of maximal reflectance and the amplitude 
of the reflectance variation. Experimental results show 
evidence of photoreceptor disarray in a variety of retinal diseases, 
demonstrating the potential medical interest of the approach. 

II. D-OCT 

A. Subjects 
This was an observational, two center study. The study was 

carried out according to the tenets of the Declaration of Helsinki 
and followed international ethical requirements. Informed 
consent was obtained from all patients. Eyes from 11 normal 
controls and eyes from 33 patients with various retinal diseases 
(macular edema, resolved macular edema, macular 
telangiectasia, acute macular neuropathy, serous detachment) 
were imaged during their routine follow-up. All eyes had a 
seemingly transparent ocular media. 

B. D-OCT acquisition protocol 
Fig. 3 shows a set of three directional images acquired by the 

SD-OCT Spectralis apparatus [16] at three different angles, 
including one standard on-axis image (zero angle, Fig. 3(b)) and 
two off-axis images (Fig. 3(a-c)). The two off-axis images are 
acquired at roughly opposite angles (≈[-5°,5°]) by manually 
changing the incident light beam entry position in the pupil. The 
apparatus automatically registers all images. Both horizontal 
and vertical cross-sectional images were acquired. The 
acquisition angle of each image can be inferred from the 
position of the specular reflection in relation to the foveal pit. 

By tracing the tangent to the specular reflection, and then 
tracing the normal to this tangent, we discover the angle of 
beam incidence. A more precise and automated way to estimate 
the angle of the incident beam is to benefit from the automatic 
alignment procedure of the Spectralis software, that aligns the 
retinal scans and therefore pulls the off-axis scans to an on-axis 
orientation. This leaves a triangular cropped zone at the left or 
right upper corner of the image, visible after contrast 
enhancement, and whose acute angle is equal to the angle of 
incidence of the imaging beam from the normal to the retinal 
surface (Fig. 3d, see the yellow dashed lines). 

C. D-OCT image processing and analysis 
We developed image processing methods to automatically 

detect the retinal structures that show directional reflectance 
properties, i.e. anisotropic areas. A direct comparison of pixel 
intensities across the D-OCT stack of images is not suitable 
here, since the global brightness of the images is no longer 
homogeneous over the entire image when the operator turns the 
light beam away from the visual axis. In Fig. 3(a,c), we can 
notice that the left side is brighter than the right side for a given 
α angle (temporal) and conversely for the opposite angle –α 
(nasal). For these reasons, image processing methods are 
required to compensate for illumination defects before 
performing differential analysis. Then, the areas that show 
reflectance changes can be extracted from the normalized 
images and a colored representation is proposed to show both 
the orientation leading to the highest reflectance and the 
amplitude of the reflectance variation. It is worth noting that 
this final representation can only determine relative reflectivity 
changes. 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 3.  OCT data acquired at three different angles [16]; (b) standard on-axis 
image, (a)(c) two off-axis images acquired at roughly opposite angles ߙଶ ≈
 ଵ; note the inhomogeneous illumination over the off-axis images andߙ−
between the three images; (d) Saturation of the image data to white to reveal a 
black triangle generated by the clinical SD-OCT device when aligning retinal 
scans; this triangle allows estimation of the acquisition angle. The green arrow 
in the fundus image (left) shows the location of the slice (horizontal here). 
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The image processing methods (Fig. 4), developed in Matlab, 
are presented in Section III. They are based on three main steps: 
(i) a segmentation procedure to delineate the whole retinal area 
(Section III.A), (ii) a normalization algorithm to homogenize 
the intensities in the input images (Section III.B), (iii) a joint 
intensity analysis, including regularization procedures, to 
obtain a colored map showing the main anisotropic areas 
(Section III.C). The areas which have a peak of intensity in one 
of the three acquisition directions are represented by three 
colors, red, yellow and green for the negative, zero and positive 
angles respectively. The angle of each D-OCT acquisition is 
also estimated directly from the image itself (Section III.D). 
The quality of the results is assessed by checking that the RPE 
does not show directional reflectance in the final anisotropy 
map. The methods presented in Section III are an extension of 
our previous work [22]. The main improvements concern the 
method of joint illumination correction (Section III.B.2)), the 
estimation of the acquisition angle (Section III.D) and the 
differential analysis (Section III.C) which can now deal with 
three or more angles. 

 

 
Fig. 4.  Functional diagram of the proposed approach. 

III. IMAGE PROCESSING METHODS 
Let us denote by ܫଶ(ݔ,  the standard on-axis OCT image (ݕ

and by ܫଵ(ݔ, ,ݔ)ଷܫ and (ݕ -the two off-axis images (Fig. 3(a (ݕ
c)). The grayscale values are coded by floating point numbers 
in the interval [0,1]. The system of coordinates is defined by the 
origin at the upper left corner, the horizontal x axis and the 
vertical y axis (Fig. 5). 

A. Preprocessing 
The delineation of the retina is necessary to determine the 

area over which we have to correct the illumination. This is 
performed on the mean image that is calculated as the pixel-
wise average of the input images. We apply the method of [23] 
to segment the inner limiting membrane (ILM) and the method 
of [24] to determine the outer edge of the retinal pigment 
epithelium (RPE) (Fig. 5). Horizontally, we restrict the region 
of interest (ROI) to the interval [ݔ,  ோ], 6mm wide, centeredݔ
on the foveola ݔி  
 

 
Fig. 5.  Delineation of the region of interest (ROI). 

These algorithms have proved to be robust even in cases of 
diseased retinas [23][24]. Contrary to [8][20][21], the complete 
delineation of the RPE and the segmentation of the inner layers 
(which are much more difficult to achieve) are not required. 

B. Image normalization 
Image normalization aims to restore a homogeneous 

brightness over the input images ܫଵ(ݔ, ,ݔ)ଶܫ ,(ݕ ,ݔ)ଷܫ and (ݕ  (ݕ
and normalize pixel intensities. This processing is necessary to 
compare the relative pixel intensities and detect anisotropic 
areas. We first propose an individual illumination correction, 
which is applied to each image separately. The underlying 
correction model is a linear function of the abscissa x, whose 
parameters are dynamically calculated from the image itself 
(Section III.B.1)). Then a joint optimization procedure is 
proposed to correct the two off-axis images ܫଵ and ܫଷ relative to 
the standard on-axis image ܫଶ, based on a polynomial regression 
applied iteratively (Section III.B.2)). 

1) Individual illumination correction 
We first apply an illumination correction to the three images 

separately to better balance their overall intensity. Let us denote 
the image to be processed by ݔ)ܫ,  one of the three input) (ݕ
images, ܫଵ, ܫଶ or ܫଷ, Fig. 6a). A classic background subtraction 
does not work on this type of image. Indeed, this type of 
correction assumes that the image is composed of small bright 
or dark objects over a homogeneous background. On the 
contrary, OCT images of the retina are made up of large stripes 
of different intensities. Therefore, our method relies on a model 
of intensity variation whose parameters are calculated from the 
image itself, considering its specific features. By observing the 
off-axis images, we note that the overall intensity mainly varies 
along the horizontal axis. So we propose to model the variation 
of the intensity ܫ() as follows: 
 
,ݔ)ܫ (ݕ = ,ݔ)()ܫ (ݕ + ܽ ௫ି௫ಷ

௫ೝି௫
,ݔ)()ܫ (ݕ + ܾ ௫ି௫ಷ

௫ೝି௫
 (1) 

 
In this equation, ܫ()(ݔ,  represents the true value of (ݕ

intensity of the pixel (ݔ,  ,i.e. the value we wish to recover ,(ݕ
while ݔ)ܫ,  ݔ ;is the intensity measured in the source image (ݕ
and ݔ are predefined positions (Fig. 6b). For pixels of abscissa 
ݔ = ,ݔ)ܫ ி, we haveݔ (ݕ = ,ݔ)()ܫ  i.e. no illumination ,(ݕ
distortion at the foveola. This model requires estimation of two 
parameters ܽ and ܾ. For that, we exploit the symmetry of the 
retinal layers with respect to the foveola to study the variation 
of intensity of the main clusters, as follows. 

We divide the ROI of the input image ݔ)ܫ,  into (Fig. 6a) (ݕ
two sub-images (L) and (R), by slicing it vertically at the 
foveola ݔி. We classify the pixels of the retinal area into 3 
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classes with a K-means algorithm applied to both sub-images 
independently (Fig. 6b). We choose ܭ = 3 classes since three 
main reflectance levels are generally present in the OCT 
images, from very low levels (e.g. ONL, edema, etc.) to hyper 
reflective layers (e.g. RNFL, RPE, IS/OS) passing through 
intermediate values (e.g. OPL, GCL). Let us denote by ܿ

(), 
ܿ

(ோ), k=1,2,3, the centers of the clusters (i.e. the mean intensity 
of the clusters) for the left (L) and right (R) sub-images. We use 
them to define three straight lines that each represent the 
variation of the actual value of the center of cluster k with 
respect to the x coordinate. The two points defining each of the 
three lines are set at about 2mm on either side of the foveola (ݔ 
and ݔ x-coordinates), and take vertically the intensity value of 
the cluster (ܿ

() and ܿ
(ோ)) (Fig. 6b). 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 6.  Individual correction of the intensity of an input image; (b) k-means 
classification applied to input image (a), on the two half images separated at the 
foveola, and estimation of the intensity variation of the cluster centers; (c) 
corrected image. 
 

The parameters a and b of (1) are estimated from points 
൫ݔ , ܿ

()൯ and ൫ݔ , ܿ
(ோ)൯, ݇ = 1,2,3. For each k, we assume that 

ܿ
() and ܿ

(ோ) are two distorted values of pixels of true intensity 
൫ܿ

() + ܿ
(ோ)൯ 2⁄ , these pixels being respectively located at ݔ 

and ݔ. This leads to a set of six equations (1), which can be 
reduced to a set of three linear equations (2). 

 
൫ܿ

() + ܿ
(ோ)൯ܽ + 2ܾ = 2൫ܿ

(ோ) − ܿ
()൯, ݇ = 1,2, … , 3 (2) 

 
Let us denote by ܽ and ܾ the least square solutions of (2). 

We reverse equation (1) to get the transform to apply to each 
pixel (ݔ, ,ݔ)ܫ to correct its intensity (ݕ  :(ݕ

 
,ݔ)ᇱܫ (ݕ = ቂݔ)ܫ, (ݕ − ܾ

௫ି௫ಷ
௫ೝି௫

ቃ ቂ1 + ܽ
௫ି௫ಷ
௫ೝି௫

ቃൗ  (3) 
 
We apply this processing to each input image separately and 

we normalize the result in [0,1] by a linear contrast stretching. 
The corrected images are denoted by ܫଵ

′ ଶܫ ,
′  and ܫଷ

′ . We can see 

that the overall intensity of the off-axis images is better 
balanced after this correction (Fig. 6c, Fig. 8b). For the standard 
image ܫଶ, usually only contrast stretching is needed but we still 
apply the whole individual correction to deal with all cases and 
for the sake of homogeneity. 

 
2) Joint illumination correction 

The corrected images, denoted by ܫ
′ , ݅ = 1,2,3, are then 

jointly processed over the ROI. The standard on-axis image ܫଶ
′  

is taken as reference and the two off-axis images ܫଵ
′  and ܫଷ

′  are 
corrected with respect to it. The idea is to minimize the number 
of pixels that differ in the reference image and in the processed 
off-axis image, assuming that most pixels of the ROI have the 
same reflectance whatever the light incidence. 

We detail below the algorithm to process ܫଵ
′ . The same 

algorithm is applied to ܫଷ
′ . Our method relies on the 

approximation of the logarithm of the ratio of the two images 
(4) by a smooth surface. 

 

,ݔ)݂ (ݕ = ln ቀூమ
ᇲ(௫,௬)

ூభ
ᇲ(௫,௬)

ቁ (4) 

 
,ݔ)݂  is approximately equal to 0 for isotropic pixels, it is (ݕ

positive or negative otherwise. The logarithmic scale is suitable 
here since inverse values for the ratio  ܫଶ

ᇱ ,ݔ) (ݕ ଵܫ
ᇱ(ݔ, ⁄(ݕ  are 

represented by opposite values of the same order of magnitude. 
To deal with noise, we approximate ݂(ݔ,  by a polynomial (ݕ
function ܲ(ݔ,  ,whose order was empirically set to 3. Then ,(ݕ
the off-axis image can be corrected as follows: 
 
ଵܫ

,ݔ)" (ݕ = exp൫ܲ(ݔ, ଵܫ൯(ݕ
ᇱ(ݔ,  (5) (ݕ

 
The coefficients of the polynomial function ܲ(ݔ,  are (ݕ

calculated by polynomial regression (least square 
minimization). It is important to fit the function only on pixels 
that are supposed to be isotropic (similar reflectance in ܫଵ

′ ,ݔ)  (ݕ
and ܫଶ

′ ,ݔ)  To do this, we calculate the histogram of ݂ over .((ݕ
the ROI and we discard the % pixels that have the highest and 
lowest values. Moreover, we propose to apply this approach 
iteratively in order to refine the estimate of the correction 
function. The global algorithm is summarized below: 
 
Initialization: ܫଵ

"() = ଵܫ
ᇱ  

Iterate:  at iteration i 
 Calculate ݂(ݔ, (ݕ = ln ூమ

ᇲ (௫,௬)

ூభ
"()(௫,௬)

 

 Calculate the mask ℳ: discard p% pixels of the ROI, i.e. those 
with the lowest and highest values in ݂. 

 Apply a polynomial regression to estimate the coefficients of 
the polynomial function ܲ()(ݔ, ,ݔ)݂ approximating (ݕ  at (ݕ
pixels (ݔ, (ݕ ∈ ℳ. 

 Correct image: ∀(ݔ, (ݕ ∈    ,ܫܱܴ
ଵܫ  

"(ାଵ)(ݔ, (ݕ = ݔ݁ ቀܲ()(ݔ, ቁ(ݕ ଵܫ
"()(ݔ,  (ݕ

Until: 
൬ max

(௫,௬)∈ℳ
ܲ()(ݔ, (ݕ − min

(௫,௬)∈ℳ
ܲ()(ݔ, (ݕ < ܵ൰ and ݅ ≤ 25 

 
The algorithm stops when the polynomial function is almost 
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flat, indicating that the pixels of the mask have similar values 
in images ܫଶ

′ ,ݔ) ଵܫ and (ݕ
"(ାଵ). The corrected image is the last 

ଵܫ
"(ାଵ) image, formally given by: 

 
ଵܫ

,ݔ)" (ݕ = ோܨ
(ଵ)(ݔ, ଵܫ(ݕ

ᇱ(ݔ,  (6) (ݕ
with ܨோ

(ଵ)(ݔ, (ݕ = ∏ ݔ݁ ቀܲ()(ݔ, ቁ(ݕ  
 
The parameters are set to  = 50% and ܵ = 10ିସ. 
Fig. 7 shows the restoration functions ܨோ

(ଵ) and ܨோ
(ଷ) applied 

respectively to ܫଵ
′  and ܫଷ

′  to get the normalized images ܫଵ
" and ܫଷ

" .  
 

 
Fig. 7.  Restoration functions ܨோ

(ଵ) (left) and ܨோ
(ଷ) (right). The function 

coefficients vary respectively in [0.8,1.1] and [0.8, 1.3]. 
 

 

 
(a)  ܫଵ ଶܫ , ଷܫ ,  and ܫ   

 

 
(b)  ܫଵ

ᇱ ଶܫ ,
ᇱ ଷܫ ,

ᇱ  and ܫ
ᇱ  

 

 
(c) ܫଵ

ଶܫ ,"
" , = ଶܫ

ᇱ ଷܫ 
"  and ܫ

"   

Fig. 8.  Main steps of the normalization algorithm: the three D-OCT images and 
the corresponding image of the standard deviation (7) calculated at each pixel; 
(a) input images; (b) after individual correction (Section III.B.1)); (c) after joint 
correction (Section III.B.2)). 
 

Fig. 8 illustrates the main steps of the normalization 
algorithm: (a) the original images, (b) after the individual 
correction (Section III.B.1)) and (c) after the joint correction. 
At each step, the two first rows show the input or processed D-
OCT images, and the third row shows the standard deviation 
calculated from the three images above: 

ܫ ,ݔ) (ݕ = ටଵ
ଶ

∑ ቀܫ ,ݔ) (ݕ − ଵ
ଷ

∑ ܫ ,ݔ) ଷ(ݕ
ୀଵ ቁ

ଶ
ଷ
ୀଵ  (7) 

 
In (c), the anisotropic areas, including the Henle fiber and the 

outer segments of the photoreceptors (Fig. 1), are highlighted 
in the standard deviation image, while isotropic areas appear 
now in black. The contrast between anisotropic and isotropic 
areas improves at each step of the normalization algorithm (see 
TABLE I in Section IV.B.2)). The individual correction step 
helps to homogenize the images and so to get a consistent mask 
in the first steps of the iterative joint correction algorithm. It is 
worth noting that the RPE is black in the final standard 
deviation image (c), which retrospectively validates our 
algorithm, as this layer is isotropic. In what follows, we will use 
the notation ܫଶ

" = ଶܫ
′  to denote the normalized standard image. 

C. Segmentation of the anisotropic areas and labelling 
1) Classification and colored representation 

We can now perform differential analysis on the normalized 
images. The aim is to classify the pixels into 4 classes. Class ܥ 
corresponds to pixels whose reflectance does not vary with the 
incidence of the light beam. Their value in the difference image 
ܫ

" = หܫଵ
" − ଷܫ

"ห (Fig. 9a) or in the standard deviation image ܫ
"  

(Fig. 9b, (7)) is close to 0. Classes ܥଵ, ܥଶ and ܥଷ correspond 
respectively to pixels whose reflectance varies with the light 
angle, with a peak respectively in ܫଵ

ଶܫ ,"
"  or ܫଷ

" .  
 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 9.  First classification in four classes. (a) difference image ܫ
" = หܫଵ

" − ଷܫ
"ห, 

(b) standard deviation image ܫ
"  (7), (c) binary mask ܯ of anisotropic pixels, 

(d) resulting classification ܫబ of the anisotropic pixels according to the angle 
leading to the maximal reflectance. 
 

We first consider the images ܫ
"  and ܫ

" , both normalized to 1, 
to detect the anisotropic pixels and calculate the mask ܯ (Fig. 
9c). In theory, the difference image ܫ

"  reveals only pixels of 
classes 1 and 3. However, as it is of higher contrast than ܫ

" , we 
rely on it to detect an initial set of anisotropic pixels, which are 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBME.2019.2900425

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TBME-02046-2018 
 

7 

then used to dynamically define the parameters of the 
processing to apply to ܫ

" . Given a fixed threshold ܶ = 0.15 
(experimentally tuned), we apply a hysteresis thresholding to ܫ

"  
with low and high thresholds respectively set to ܶ and 2 ܶ. 
This gives an initial mask ܯ_ of anisotropic pixels. The 
mean ݉ and the standard deviation ߪ of the pixels of ܯ_ 
in ܫ

"  are calculated. We then apply a hysteresis thresholding to 
ܫ

" , with the high and low thresholds respectively set to ݉ and 
݉ −   . (Fig. 9c)ܯ . The resulting binary mask is denoted byߪ

Finally, we classify the anisotropic pixels with respect to the 
angle of maximal reflectance and so we get a first colored map 
 .బ showing reflectance properties (Fig. 9d)ܫ

,ݔ)బܫ (ݕ = ቊ
,ݔ)ܯ ݂݅ ܥ (ݕ = 0

,ݔ)ܯ ݂݅ ܥ (ݕ = 1 and arg max
ୀଵ,ଶ,ଷ

ܫ
" ,ݔ) (ݕ = ݆ (8) 

 
2) Markovian regularization 

The results presented in Fig. 9 can be regularized based on 
Markov random field (MRF) techniques [25], since the 
Markovian hypothesis allows us to take into account spatial 
interactions between connected pixels. We consider the K = 4 
classes corresponding to the regions in black, green, yellow and 
red in ܫబ (Fig. 9, equation (8)). Every pixel is characterized by 
the vector ܫெ of its intensities in the three images ܫ

", i = 1,2,3: 
 

,ݔ)ெܫ (ݕ = 
ଵܫ

,ݔ)" (ݕ
ଶܫ

,ݔ)" (ݕ
ଷܫ

,ݔ)" (ݕ
 (9) 

 
So we have a classification problem of dimension 3 with 4 

classes. The initial classification ܫబ enables us to estimate the 
probability density functions of intensities conditionally to the 
classes, denoted by ܲ(ܫெ(ݔ, ,ݔ)ܫ|(ݕ (ݕ =  ). We assume thatܥ
each one follows a Gaussian distribution. This assumption was 
verified experimentally on patches extracted from the images 
using the one-sample Kolmogorov-Smirnov test, with a 5% 
significance level. The parameters ߤೖ (mean vector) and Σೖ 
(covariance matrix) of the distributions are classically estimated 
from vectors ܫெ belonging to class ܥ in the initial classification 
 బ (8). We refine this classification according to the Bayesianܫ
maximum a posteriori (MAP) criterion, i.e. by looking for the 
label configuration ܫ that maximizes the probability of the 
class field (ܫ(ݔ,  conditionally to the observation field (the ((ݕ
image data ܫெ(ݔ,  This optimal configuration corresponds .((ݕ
to a minimum state of an energy function U, defined as follows: 

 

(ெܫ|ܫ)ܷ = ∑ ቈଵ
ଶ

,ݔ)ெܫൣ (ݕ − ூ(௫,௬)൧்Σூ(௫,௬)ߤ
ିଵൣܫெ(ݔ, (ݕ −(௫,௬)

ூ(௫,௬)൧ߤ + ln ቆ(2ߨ)
య
మට݀݁ݐ൫Σூ(௫,௬)൯ቇ  +

ߚ ∑ φ൫ܫ(ݔ, ,(ݕ ,′ݔ)ܫ ൯൫(௫,௬),(௫ᇱ,௬ᇱ)൯(′ݕ  (10) 
 
where ்ݕ is the transpose of vector ݕ and ݀݁(ܯ)ݐ the 
determinant of matrix ܯ. In this equation, ߮(ݔ,  refers to the (ݕ
Potts model [26], expressing spatial dependencies between each 

pixel (ݔ, ,′ݔ) and its neighbors (ݕ  which are likely to belong ,(′ݕ
to the same class. The first two terms of (10) are related to the 
image data, while the third one is a regularization term. The 
parameter ߚ, empirically set (ߚ = 0.9), weights the relative 
influence of each. The energy function is minimized by running 
the simulated annealing (SA) algorithm. Fig. 10 shows the final 
classification, which is much less noisy than Fig. 9(d). 
 

 
Fig. 10.   Classification obtained after regularization based on RFM model. 
 

A colored representation is deduced from this classification 
(Fig. 11). Let us denote by ܫோீ the color image coded in the 
RGB space and by ܿ ∈ {1,2,3} the third coordinate coding the 
color channel (1 for red, 2 for green and 3 for blue). The output 
image ܫோீ shows the anisotropic regions in colors: 
 

ቐ
,ݔ)ோீܫ ,ݕ 1) = ܫ

" ,ݔ) ,ݔ) if (ݕ (ݕ ∈ ,ଶܥ ଵ orܥ 0 otherwise
,ݔ)ோீܫ ,ݕ 2) = ܫ

" ,ݔ) ,ݔ) if (ݕ (ݕ ∈ ,ଷܥ ଶ  orܥ 0 otherwise
,ݔ)ோீܫ ,ݕ 3) = 0

 (11) 

 

 

 
Fig. 11.  Top: Final anisotropy map. The color codes the angle leading to the 
maximum intensity while the intensity codes the standard deviation of the 
reflectance; bottom: same result superimposed to the grey level image 
calculated as the minimum of the three input images. 

 
In this way, we obtain the color code previously defined, with 

an intensity proportional to the standard deviation image, 
reflecting to what extent the pixel intensity varies with respect 
to the light beam angle. This colored representation can also be 
superimposed on a fusion image ܫி defined as the minimum of 
ଵܫ ଶܫ , and ܫଷ . These two representations are illustrated in Fig. 
11. 

 

D. Angle estimation 
The true incidence angle relative to the foveal axis is normal 

to the specular reflection at the base of the fovea pit. However, 
the specular reflection spot appears slightly blurry and does not 
allow a precise calculation of the light incidence. Instead, we 
considered the fact that due to the Spectralis automated image 
registration process a dark triangle is displayed on two corners 
of the image, which results from the projection of the registered 
scan on the reference scan (Fig. 3(d)). The acute angle of this 
triangle matches the angle measured from the specular 
reflection. Therefore, to calculate the angle of the beam relative 
to the foveal axis, we dramatically increase the contrast of the 
OCT data and we apply a morphological closing to simplify the 
image (Fig. 12a). These operations reveal the main edges, in 
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particular the contours of the black triangle. These contours 
appear either at the upper left corner as in Fig. 12a, or at the 
upper right corner, or even in the bottom corners, depending on 
the tilt angle and the position of the retinal data in the image. 

 

(a) 

 

(b
) 

Fig. 12.  Estimation of the incident light beam angle from the saturated image 
(a), split in 4 quadrants (violet lines); (b) linear segments (in yellow) extracted 
from the edge candidate points through the RANSAC algorithm. 

 
Thus, for the analysis, we divide the image into four 

quadrants (ݍ = 1,2,3,4) by splitting it vertically at the foveola 
and horizontally between the ILM and the RPE (Fig. 12). We 
extract the edges with a Canny operator. In each quadrant, we 
retain edge candidate points: in the upper quadrants, the top 
edge points in each image column, and in the lower quadrants 
the lowest edge points. We apply a RANSAC algorithm to find 
the parameters ൫ܽ , ܾ൯ of the straight line ݕ = ܽݔ + ܾ that 
fits the extracted edge points in each quadrant ݍ. We note the 
corresponding angle ߠ = tanିଵ൫ܽ൯. We also note the number 
݊ of inliers and we calculate a line feature, ݈, defined as the 
ratio between the number of inliers and the total number of 
points in the corresponding segment. This feature takes the 
maximal value ݈ = 1 for a perfect detection of a straight 
segment and a lower value otherwise, indicating the quality of 
the segment detection. Finally, we merge all the information 
extracted from the four quadrants to find the tilt angle ߙ, as 
follows. For each quadrant, we define the set of quadrants that 
lead to a good segment detection with similar angle 
measurements: 

 
ܧ = ൛ ∈ {1,2,3,4}, ݈ > ܵ, ݈ > ܵ , หߠ − หߠ < 2°ൟ (12) 
 
with ܵ = 0.5. We calculate the total number ܰ of inliers that 
lie approximately along a straight line of angle ߠ up to 2 
degrees: 
 

ܰ = ∑ ݊∈ா  (13) 
 
The angles corresponding to the highest cumulate number of 
inliers ܰ are used to calculate the incidence angle α: 
 

௧ݍ = arg max
 ܰ, ߙ =

∑ ఏചಶ

∑ ചಶ

 (14) 

When no segment can be extracted, we get ܰ = 0 for all 
ݍ = 1,2,3,4, and we set ߙ = 0. 
 

This algorithm has proved to be very robust with 100% 
success rate on our database (of 240 images). The use of the 
RANSAC algorithm enables us to make a good approximation 
of the black triangle hypotenuse, even when the image 
boundaries are not as clear and straight as in the illustration or 
when there are black columns on the B-scan borders. Note that 
the image resolution along the vertical and horizontal axes is 
taken into account to calculate the final real angle of the 
incident light beam. The knowledge of the incidence angle is 
mandatory for the interpretation of the anisotropy maps (See 
Section IV.C). 

E. Extension to more than 3 angles 
Our algorithm can easily be extended to ܰ > 3 angles. In this 

case, every image is individually corrected with the method of 
Section III.B.1), then jointly processed as in Section III.B.2), 
with the on-axis image still serving as reference image. The 
classification step presented in Section III.C can also be 
generalized to a classification problem with ܰ + 1 classes in 
dimension ܰ. We acquired sets of directional images at up to 9 
angles, by progressively deviating the light beam from the 
visual axis. We defined a new color map to represent the angle 
values in the interval [-7°,7°]: in the HSV color space, the angle 
defines the hue, the saturation is set to 1 and the value is equal 
to the standard deviation. 
 

 

 

 
Fig. 13.  Anisotropy maps obtained with ܰ = 3 angles (first row) and ܰ = 7 
angles (second and third row); The colored bar shows the angle coding in the 
interval [-7°,7°]. ߙ = 0 is represented by the red line and still coded in yellow. 
The dark lines indicate the largest angles in the set of images.  
 

Fig. 13 shows a comparison between the anisotropy maps 
obtained with respectively ܰ = 3 and ܰ = 7 angles. Both are 
consistent but the result with 7 angles gives a more accurate 
estimate of the peak of reflectance. Fig. 14 shows another 
example in a case of macular edema. In the example of Fig. 15, 
we also note a slightly better continuity in the detection of the 
anisotropic areas when processing more angles.  

Therefore, considering more than three acquisition angles 
helps to refine the analysis and find the peak of maximal 
intensity. It should lead to a more accurate interpretation 
regarding the presence or absence of photoreceptor 
substructures and their orientation. However, in practice, the 
acquisitions are often of poorer quality for the largest angles, 
with important saturation to black, and the benefit is not always 
obvious compared to the configuration ܰ = 3, which 
demonstrated a better robustness. These limits should be 
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overcome when OCT technology integrates D-OCT 
functionality. 
 

 

 
Fig. 14.  Anisotropy maps obtained with ܰ = 3 angles (first row) and ܰ = 9 
angles (second row) in case of macular edema. The detection of the peak of 
reflectance is more accurate with ܰ = 9. 
 

 

 
Fig. 15.  Anisotropy maps obtained with ܰ = 3 angles (first row) and ܰ = 9 
angles (second row) in case of acute macular neuroretinopathy. 

 

F. Summary 
We have presented in this section a complete algorithm to 
highlight and automatically extract the retinal structures which 
show variable reflectance properties. This method requires only 
the delineation of the whole retinal thickness and not the 
segmentation of individual retinal layers (Section III.A); The 
method first enhances the areas of anisotropy by compensating 
for illumination distortion (Section III.B), leading to a standard 
deviation image where the regions of variable reflectance are 
high contrast. The classification with Markovian regularization 
enables us to automatically extract these regions from the 
normalized D-OCT images and to label them according to the 
maximum reflectance angle (Section III.C). The corresponding 
incident angle is known accurately as it is calculated from the 
input images (Section III.D). The method can be extended to 
more D-OCT images and preliminary results are shown in 
Section III.E. The next section aims to present quantitative and 
qualitative results to demonstrate the improvements in 
comparison to previous algorithms [8][21][22] and to illustrate 
the medical interest. 

IV. EXPERIMENTAL RESULTS 
We applied our algorithm on a database of 80 sets of D-OCT 

images, acquired from 44 patients. Regarding pathologies, the 
database includes normal cases (37.5%), resolved macular 
edema (25%), macular edema (5%), macular telangiectasia 
(17.5%), acute macular neuropathy (2.5%), serous detachment 
(7.5%) and various other cases (5%). We checked for the 
presence of a specular reflection spot at the base of the foveal 
pit in each image to select acceptable sets of acquisitions. 

A. Visual assessment 
The quality of the processing result was assessed by checking 

that the RPE does not show directional reflectance in the final 
anisotropy map. An ophthalmologist also visually checked that 
the final anisotropy map is consistent with the observation of 
the input images. The new method of joint illumination 
correction has considerably improved the robustness of the 
algorithm, compared to [22] with now less than 10% failure. 
Overall, the final anisotropy maps are less noisy. They are also 
more accurate as we now deal with at least three angles instead 
of two. Cases of failure are mainly due to poor acquisition, i.e. 
a significant shift in the position of the slice between 
acquisitions, poor signal to noise ratio with bright speckles in at 
least one D-OCT image, or saturation of one off-axis image to 
white or black. The saturation to black or white results in loss 
of information and distorted correction functions ܨோ

(୧)(ݔ,  .(6) (ݕ
Moreover, the new method of joint illumination correction 
(Section III.B.2)) and the angle calculus algorithm (Section 
III.D) have enabled us to extend our approach to more than 
three angles (Section III.E), demonstrating the possibility of 
accurately highlighting the orientation of photoreceptor 
substructures (Section IV.C).  

B. Quantitative evaluation 
In this section, we provide quantitative results to demonstrate 

the benefits of our normalization algorithm compared to 
previous ones [8][21][22]. We show how our method leads to a 
better contrast between isotropic and anisotropic areas and we 
evaluate the accuracy of the segmentation and classification of 
anisotropic structures. 

 
1) Database for the quantitative evaluation 

20 sets of D-OCT images are used for the quantitative 
evaluation. They were extracted from the complete database 
according to the following methodology: we first discarded sets 
of poor acquisitions,i.e. significant shift in the position of the 
slices (revealed by dissimilarities in the choroidal patterns) or 
very noisy images; then, we selected randomly 20 sets to 
encompass control cases (4 sets) and the various pathologies 
(16 sets). An ophthalmologist with 20-year’s experience in 
interpreting OCT images did manual segmentations, in order to 
delineate the inner layers (GCL+IPL+INL+OPL, denoted 
globally by IL in what follows), the retinal nerve fiber layer 
(RNFL), the Henle fiber layer (HFL), the COST line and the 
RPE (see Fig. 1). He also labelled the pixels of the COST line 
according to the classes defined in Section III.C.1). This work 
was done directly on the input D-OCT images, without any 
processing. Two other ophthalmologists did the same in order 
to study the inter-expert variability. These three experts are 
respectively denoted by Opht0, Opht1 and Opht2. 
 
2) Contrast enhancement between isotropic and anisotropic 
areas  

We analyze first the standard deviation image calculated 
from the D-OCT images (7) at different stages of the proposed 
normalization algorithm. Anisotropic layers such as the Henle 
fiber layer (HFL) and the COST line should be bright while 
isotropic layers such as the pigment epithelium (RPE), the inner 
layers (IL) and the retinal nerve fiber layer (RNFL) should be 
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dark. We estimate the mean power of the standard deviation 
image for a given region R by 

 

ௗܲ(ܴ) = 10 logଵ ቀ ଵ
|ோ|

∑ ܫ ,ݔ) ଶ(ݕ
(௫,௬)∈ோ ቁ (15) 

 
The mean values obtained on the evaluation database are 

indicated in TABLE I, with standard deviations: (a) before 
processing, (b) after the individual illumination correction 
(Section III.B.1)) and (c) after the complete normalization 
(Section III.B.2)). The overall contrast between isotropic and 
anisotropic structures is very low before any processing, with a 
mean power that may even be lower in the HFL than in the 
isotropic layers. The situation improves at each step of the 
method, with a final contrast of about 5-6 dB. This analysis 
shows that our normalization algorithm is efficient. 

 
TABLE I 

MEAN POWER (IN DB) OF RETINAL STRUCTURES IN THE STANDARD DEVIATION 
IMAGE AT DIFFERENT STAGES OF THE PROPOSED NORMALIZATION METHOD 

 (a) source images (b) after individual 
correction 

(c) final 
normalization 

ௗܲ(ܮܫ + 20.07− (ܮܨܴܰ ± 2.20 −22.85 ± 0.92 −25.02 ± 1.22 

ௗܲ(ܴܲܧ) −20.75 ± 2.61 −24.62 ± 1.62 −25.79 ± 1.19 

ௗܲ(ܮܨܪ) −21.04 ± 2.31 −19.75 ± 2.32 −19.45 ± 2.62 
 

3) Classification results 
We now evaluate our classification results (Section III.C) by 

calculating sensitivity, precision and specificity indices. We 
first consider the isotropic vs. anisotropic binary classification. 
A true positive (TP) is a pixel belonging to an anisotropic region 
(HFL, COST line) which has been correctly classified as 
anisotropic (i.e. in class ܥଵ,  ଷ) by our algorithm. A falseܥ ଶ orܥ
negative (FN) is a pixel belonging to an anisotropic region 
(HFL, COST line) which has been set to class ܥ. A true 
negative TN (resp. false positive FP) is a pixel belonging to an 
isotropic region (RPE, IL, RNFL) classified in ܥ (resp. 
wrongly classified in ܥଵ,  ଷ). Based on the manualܥ ଶ orܥ
segmentations, we calculate the sensitivity (true positive rate) 
and precision indices for the HFL and the COST line.  

 
(ܴ)ܵܰܧܵ = |்|

|்|ା|ிே|
 (16) 

 
(ܴ)ܥܧܴܲ = |்|

|்|ା|ி|
 (17) 

 
Note that isotropic pixels can be found on the COST line, 

especially for pathological cases with damaged photoreceptors. 
Then we calculate the specificity (true negative rate) index for 
the isotropic regions (RPE, IL+RNFL): 

 
(ܴ)ܥܧܲܵ = |்ே|

|்ே|ା|ி|
 (18) 

 
The closer these indices are to 1, the better the classification. 

The ground truth is given by the manual segmentations and 
labelling of the most experienced ophthalmologist (Opht0). The 
averaged indices are reported in TABLE II. 

TABLE II 
SENSITIVITY AND PRECISION INDICES FOR ANISOTROPIC RETINAL STRUCTURES 

  Auto/Opht0 Opht1/Opht0 Opht2/Opht0 

HFL SENS 0.70 ± 0.16 0.82 ±0.10 0.84 ± 0.08 
PREC 0.70 ± 0.11 0.73 ± 0.13 0.75 ± 0.11 

COST 
line 

SENS 0.88 ± 0.12 0.99 ± 0.02 0.87 ± 0.16 
PREC 0.86 ± 0.17 0.84 ± 0.17 0.90 ± 0.12 

 
TABLE III 

CORRECT CLASSIFICATION RATE OF THE TP PIXELS OF THE COST LINE 
 Auto/Opht0 Opht1/Opht0 Opht2/Opht0 

CCR 0.66 ± 0.16 0.82 ± 0.16 0.77 ± 0.20 
 

The sensitivity index for the Henle fiber layer is not very high 
(70%), which denotes an overall under-segmentation. It is 12 to 
14% lower than the inter-experts indices. This is due to the 
discontinuities in the regions detected by our algorithm (for 
example because of vessel shadows) and to the non-detection 
of the HFL at its outer extremities where it is very thin. In 
contrast, the ophthalmologists manually segmented the HFL as 
two connected components delineated by two regular curves 
(Fig. 16). The precision index (70%, 3 to 5% lower than the 
inter-experts indices) is also explained by boundary 
irregularities in the automatic segmentations versus smoothness 
in the manual segmentations. We observe very good results for 
the COST line, with sensitivity and precision indices close to 
90% (similar to inter-expert indices). The performances are also 
very good for the IL+RNFL and the RPE, with specificity 
indices around 90% (respectively 0.89 ± 0.03 and 0.92 ±
0.06), meaning that we get very few false positives. 
 

 
Fig. 16.  Comparison between the automatic segmentation of the HFL (first 
row) and the manual segmentations of the medical experts (lines in cyan, 
magenta and yellow in the illustration of second row). In this case, the 
sensitivity is equal to 0.75 and the precision to 0.71. 
 

Considering the HFL and the COST line, we now study the 
accuracy of the classification of the true positive pixels in 
classes ܥ , 1 ≤ ݅ ≤3 (maximal reflectance in image i) by 
calculating the correct classification rate (CCR). For the HFL, 
misclassifications are negligible (ܴܥܥ ≅ 100%). For the 
COST line (TABLE III), the average CCR is about 66% with a 
large standard deviation of 16%. On the 20 sets of images, the 
CCR ranges from 37% to 91%. Considering all sets together, 
87% of the TP pixels are correctly classified. These results 
show satisfying labelling overall, but a high heterogeneity 
between the sets of images. On the other hand, we note quite a 
large inter-expert variability, which demonstrates the difficulty 
in labelling the COST line from the input (non-normalized) 
images. In practice, there may be ambiguity between two labels 
when observing the source D-OCT images. Indeed, it may be 
hard to visually discriminate between a higher brightness due 
to a real reflectance peak or due to illumination distortion. This 
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ambiguity can only be solved by normalization. Since our 
normalization process leads to very consistent results on the 
HFL and RPE layers, as well as very consistent labels for 
normal COST lines, we can assume that our method actually 
solves this ambiguity and hence contributes to improved 
medical interpretation. 

 
4) Comparison with other methods 

We rely again on the analysis of the mean power of retinal 
layers in the standard deviation image (7)(15) to compare our 
normalization method with other described in the literature: our 
previous method [22], Gao’s method [8] and Makhijani’s 
algorithm [21]. Gao normalizes each A-scan to the same inner 
retinal reflection (i.e., the collective reflectance from the GCL, 
IPL, OPL and INL), which presumes prior segmentation of the 
RNFL/IPL+GCL interface and the OPL outer border (with the 
HFL). Makhijani detects the middle line of the RPE and 
calculates a normalizing function based on the mean and 
standard deviation in a region containing the RPE and the 
choroid. This process also relies on a segmentation step. In 
contrast, our previous algorithm [22] and the proposed method 
require only the delineation of the whole retina (i.e. ILM and 
RPE outer boundary, Fig. 5), which is not difficult to achieve 
automatically even for diseased eyes. 

For a fair comparison, the mean power of the set of D-OCT 
images is adjusted to the same level over the ROI for the source 
images and the four evaluated methods. Thus, mean powers in 
the standard deviation images (7) can be compared directly. 

 
TABLE IV 

MEAN POWER (IN DB) OF RETINAL STRUCTURES IN THE STANDARD DEVIATION 
IMAGE FOR THE INPUT IMAGES AND AFTER NORMALIZATION 

 source Gao 
[8] 

Makhijani 
[21] 

Rossant 
[22] Our Method 

ௗܲ(ܮܫ
+  (ܮܨܴܰ

−20.07
± 2.20 

−. 
± .  

−20.24
± 1.94 

−23.61
± 1.10 

−25.02
± 1.22 

ௗܲ(ܴܲܧ) −20.75
± 2.61 

−18.62
± 2.36 

−22.07
± 2.75 

−24.22
± 1.96 

−. ૠૢ
± . ૢ 

ௗܲ(ܮܨܪ) −21.04
± 2.31 

−20.38
± 2.06 

−21.14
± 2.63 

−19.67
± 2.01 

−ૢ. 
± .  

 
All methods lead to a decrease of the mean power of isotropic 

areas (IL+RNFL, RPE), with the exception of Gao’s, and an 
increase of the mean power of the anisotropic areas (HFL), with 
the exception of Makhijani’s. The best result for the IL+RNFL 
is achieved by Gao’s algorithm, which is not surprising as this 
algorithm normalizes the OCT data to the IL (segmented 
manually in this evaluation), however at the cost of poor 
performances on the RPE. Our method leads to the lowest 
power in the RPE and the highest in the HFL, to better balanced 
results for the isotropic regions, in a fully automated process. 
The quantitative results show also a significant improvement 
with respect to the previous method [22]: contrast between 
isotropic and anisotropic areas around 6 dB instead of 4 dB. 

All these results considered, we can observe that our 
algorithm leads to the best performances, i.e.: an increased 
power in the anisotropic areas and a balanced decreased power 
in the two isotropic areas. This is confirmed by the graphs of 

Fig. 17, which show the True Positive Rate and the False 
Positive Rate of detection of anisotropic pixels as a function of 
a threshold applied on the final standard deviation image (7), 
for the 3 considered areas. 

Finally, Fig. 18(a) shows examples of chromatic images 
constructed from the normalized D-OCT images. The global 
normalization to the RPE and the choroid [21] cannot 
compensate for illumination distortion over the whole image. 
The normalization to the inner layers [8] in each A-scan does 
not produce good results everywhere in the RPE and results in 
discontinuities because of the local nature of the processing. 
The most easily interpretable chromatic image is obtained with 
our algorithm, with very few colored isotropic areas. Moreover, 
our classification method enables us to segment and label the 
anisotropic areas (Fig. 18(b)), which, to the best of our 
knowledge, has not been achieved before.  
 

  

 
Fig. 17. Detection of the anisotropic pixels: true positive rate and false positive 
rate as a function of the threshold for three different regions.  
 

 
(a) 

 
(b) 

Fig. 18.  (a) Examples of chromatic images constructed from the 3 D-OCT 
images; (b) resulting color map obtained with our classification method from 
the D-OCT images normalized with our algorithm.  
 

The overall computation time for automatically processing a 
set of 3 D-OCT images is now 250 seconds on a PC with an 
Intel Core i7-6600U @ 2.60GHz, of which: 24 seconds is for 
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the delineation of the region of interest (Section III.A), 25s for 
the normalization (Section III.B), 88 seconds for the 
classification (Section III.C) and 113 seconds for the estimation 
of the three incidence angles (Section III.D). The processing 
was 305 seconds long with our previous approach [22]. 
However, our software has not been optimized and we believe 
that the current overall computation time would be further 
reduced by using a C implementation. 

C. Clinical interest 
Experimental results obtained from normal and pathological 

cases are discussed below, demonstrating the potential of our 
image processing methods for clinical interpretation. 

 
1) Normal cases 

In controls, difference images show diffuse anisotropy in the 
Henle fiber layer, the cone outer segment tip (COST) line and 
to a lesser extent the inner/outer segment (IS/OS) line (Fig. 19, 
Fig. 20). D-OCT enables physicians to delineate the Henle fiber 
layer accurately in the anisotropy map, which is impossible 
when considering only the on-axis image. The directional 
reflectivity of the IS/OS is parallel to that of the COST and 
different to that of the Henle fiber layer. We can also note the 
reduced anisotropy of the foveal cones. 

 

 

 

 

 
Fig. 19.  Input images and resulting anisotropy map for a normal case. Input 
angles are -5.5°, 0°, 4.2°.  
 

 

 

 

 
Fig. 20.  Input images and resulting anisotropy map for a normal case. Input 
angles are -5.3°, 0°, 6.4°.  

2) Pathological cases 
Fig. 21 and Fig. 22 show two different pathological cases. 

The first one (Fig. 21) concerns a patient having recovered from 
macular edema. We can observe the presence of patchy loss of 
the continuity of the outer segment bands in the on-axis image. 
The continuity is reestablished in the color-coded scan, 
suggesting the presence of misaligned cones. The second case 
(Fig. 22) shows images from a patient with acute macular 
neuropathy. This time, we can observe the presence of patchy 
loss of the continuity of the COST bands in the on-axis image. 
In the color-coded scan however, several areas of outer segment 
anisotropy are apparent, again suggesting the presence of 
misaligned cones. 

These examples illustrate the contribution of our approach to 
the clinical interpretation. In the diseased cases, standard on-
axis images show spots of interruption of the continuity of the 
outer segment bands, which can be misinterpreted as the loss of 
outer segment structures. However, considering data from tilted 
scans allows rectification of the diagnosis to misalignment 
rather than loss of outer segment structures. Our image 
processing algorithms and final colored representations 
combined with the knowledge of the incidence angles facilitate 
physicians’ interpretation of D-OCT images and help them to 
refine their diagnosis. 
 

 

 

 

 
Fig. 21.  Case of a patient having recovered from macular edema. Input angles 
are -4.5°, 0°, 4.6°.  
 

 

 

 

 
Fig. 22.  Case of a patient with acute macular neuroretinopathy. Input angles 
are -5.1°, 0°, 5.5°. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBME.2019.2900425

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TBME-02046-2018 
 

13

Fig. 23 and Fig. 24 show other pathological examples. Good 
results are achieved despite the severe disorganization of the 
retinal layers. Indeed, our normalization and classification 
methods do not rely on a preliminary segmentation and manage 
to estimate the illumination distortion over the retina and 
compensate for it.  
 

 

 

 

 
Fig. 23. Case of venous occlusion. Input angles are  -6.3°, 1.5°, 3.4° 
 

 

 

 

 
Fig. 24.  Case of macular degeneration (macular telangiectasia). Input angles 
are -3.0°, 0°, 3.5° 
 

 

 

 

 
Fig. 25. Case of serous retinal detachment. Input angles are -4.8°, -0.1°, 4.6° 

Other cases of pathologies with even stronger 
disorganization have been successfully tested. For example, 
Fig. 25 shows a case of a serous retinal detachment. The color 
map is fully consistent with the observation of the source 
images. In a case with such major structural irregularities, the 
main difficulty lies in the manual acquisition of the slices at the 
exactly same location as the OCT apparatus has not been 
designed to make simultaneous acquisitions. 

V. CONCLUSION AND PERSPECTIVES 
The potential medical interest of D-OCT, compared to 

regular routine OCT, has been largely demonstrated in the 
literature. By acquiring a set of images at several angles of 
incidence, instead of only one in the direction of the optical 
axis, angle-dependent reflectance properties of photoreceptor 
substructures can be highlighted and studied. Thus, this 
technology adds a new dimension to the medical interpretation. 
However, few approaches have proposed image processing 
algorithms that enable effective detection and visualization of 
the angle-dependent reflectance areas, even when a dedicated 
D-OCT apparatus has been designed. The usually employed 
chromatic visualization is often very noisy with colored 
isotropic areas, and does not allow estimation of the extent to 
which the signal varies with the angle. In our view, the main 
issues are related to the normalization step, which is not 
accurate enough to allow a pixel-wise comparison of intensities 
across the stack of directional images. In this article, we have 
proposed an automatic algorithm to process D-OCT images 
acquired with a standard commercial OCT apparatus. This 
algorithm relies on a robust normalization algorithm that jointly 
processes the stack of images to homogenize the intensities. 
Contrary to previous methods, this algorithm relies on 
correction functions that vary smoothly over the image, so 
taking into account global illumination inhomogeneity. It also 
processes every off-axis image with respect to the standard on-
axis image, leading to a better inter-image homogeneity. The 
differential analysis is done by a classification that is spatially 
regularized to enhance areas of anisotropy and reduce noise. 
The final anisotropy map shows both the angle of maximal 
reflectance, through a color code, and the amplitude of the 
signal variation, with an intensity proportional to the measured 
standard deviation. Experimental results have demonstrated the 
potential of this algorithm, which is fully automatic and can be 
extended to more than 3 directional images. The main 
limitations are due to the acquisition technology which does not 
allow accurate control of the acquisition angles and the location 
of the slices, and which can lead to very strong illumination 
distortions in the off-axis images (with saturation to black or 
white in some cases). We assume that our approach would lead 
to even more robust and accurate results were there a dedicated 
D-OCT acquisition technology to reduce these limiting factors. 
Given the importance of the information extracted from D-
OCT, we should expect commercial adaptation of routine 
clinical OCT systems to include D-OCT functionality, in which 
case our image processing methods would become widely 
applicable in the ophthalmic imaging field. 
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