
HAL Id: hal-02559031
https://hal.science/hal-02559031v1

Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The magic of content-addressable storage
Konrad Hinsen

To cite this version:
Konrad Hinsen. The magic of content-addressable storage. Computing in Science and Engineering,
2020, 22 (3), pp.113-119. �10.1109/MCSE.2019.2949441�. �hal-02559031�

https://hal.science/hal-02559031v1
https://hal.archives-ouvertes.fr

COMPUTING IN SCIENCE AND ENGINEERING 1

The magic of content-addressable storage
Konrad Hinsen

F

The dry technical term “content-addressable storage”
doesn’t sound exciting, but superficial explanations can
make it look like magic, to the point raising suspicion. In
this article, I will show that content-addressable storage
is a technology that works, is already in widespread use,
and holds many promises for the future of both scientific
programming and the management of scientific data. I will
start by outlining the theory, and then illustrate how it
works in practice, using IPFS, the Inter-Planetary FileSystem
(http://ipfs.io/), as a vehicle.

1 A BIT OF THEORY

Traditionally, we use two techniques in computing to refer
to data, which I will call quoting and naming. Quoting
is just writing out the data explicitly, such as writing
the number literal 42, the text snippet Computing in
Science and Engineering, or the few-thousand-byte-
sequence consisting of the JPEG encoding of a photo,
which I won’t in fact quote here because it is too long.
The last example illustrates the major limit of quoting: it is
convenient only for small data. Naming works by defining
a name in some namespace and assigning the data to it.
Names, namespaces, and assignment take different forms
in different technology layers. In a Python script, I can write
value = 42 to assign an integer value to the name value
in the global namespace of the script. Modules, classes, and
functions/methods are the other kinds of namespaces in
Python. In my (Unix) computer’s filesystem, the command
echo "Computing in Science and Engineering"
> $HOME/my-preferred-magazine.txt assigns a
string to the name my-preferred-magazine.txt in the
namespace of my home directory. In conventional jargon I’d
say that I am writing a text string to a file, but semantically
this is just the same as assigning a value to a variable,
we just use different terms for historical reasons. On the
Web, URLs are also names that live in namespaces that
are managed by name servers (DNS) and Web servers.
Assignment can take various forms, from copying a file to a
server to on-line editing via a content-management system
(CMS).

One reason for naming rather than quoting data is to
define a shorthand for data that is too big to be quoted.
Another equally important reason is that names are mutable
references, i.e. the value assigned to a name can change over
time. The URL for my blog is a name that remains constant
in time, even though my blog changes as I add new posts

and correct mistakes in older ones. A permanent reference to
my blog is obviously useful. A third motivation for naming
is that the name itself can be chosen to be descriptive. The
URL of my blog is https://blog.khinsen.net, which is quite
suggestive, at least for people familiar with Web habits.

However, the mutability of names is also a liability, in
particular for names that are descriptive. Seeing the URL
https://blog.khinsen.net, you may well suspect that it refers
to my blog, all the more if you know that I use the handle
khinsen on several social networks. However, you cannot
really be sure of your assumption. Some evil hacker could
have taken over my domain name and assigned different
content to my blog’s URL. While that’s unlikely for my
personal blog (it’s not worth the effort), it is an issue for,
say, my bank’s Web server. Many risks in computing, be it
Internet security or program correctness, are ultimately due
to the impossibility to guarantee that the value assigned to
a name is indeed what the manager of that name expects
it to be. This is why functional programming [1] bans
mutable names: a single name can refer to different values in
different locations in the source code, but the value at each
location is fixed over the duration of program execution.

The risks associated with mutability are probably the
most important problematic aspect of naming, but not the
only one. When naming is used to define a shorthand for
data that is too big to quote, coming up with a name can
be a chore, as anyone who has had to work with temporary
files has probably experienced. Programmers have to decide
where to put a temporary file, how to name it in such a way
as to avoid collisions with all other programs that are also
busy making up names, and to remove the name reliably
when it is no longer needed. Speaking of collisions, they
can also be a problem when it’s humans that make up
descriptive names and great minds happen to think alike.
That’s why we see fights over the right to certain domain
names on the Internet, for example.

Since neither quoting nor naming is without problems,
wouldn’t it be nice to have another way to refer to data?
That’s the starting point of the development of content-
addressable storage, which uses hashes as references in order
to provide most of the advantages of quoting while keeping
the size of the references constant, irrespectively of the size
of the data itself. In IPFS, which I will explain in more
detail later, you store data by passing it to the IPFS software,
which gives you a hash in return. You can then transmit the
hash to someone else, or archive it for later use by yourself.
Whoever knows the hash can instruct the IPFS software to
retrieve the corresponding original data.

http://ipfs.io/
https://blog.khinsen.net
https://blog.khinsen.net

COMPUTING IN SCIENCE AND ENGINEERING 2

A hash is to data what a fingerprint is to a person: a com-
pact yet almost unique descriptor. Hashes are the result of
computing a hash function whose input is a data stream, i.e.
a sequence of bytes. A given hash function produces hashes
of fixed size. For example, the popular (though by now a
bit outdated) hash function called SHA1 produces 20-byte
hashes, which are usually written as 40-digit hexadecimal
numbers. There are Web sites such as http://www.sha1-
online.com/ where you can paste in some data and get
its hash computed with a click. You can also easily find
implementations of the most popular hash functions in lots
of programming languages, because hash functions are so
widely used, in particular in cryptography.

Like fingerprints, hashes cannot be truly unique. There
are only 28×20 ≈ 1.46 × 1048 different SHA1 hash values,
which is exactly the same as the number of possible contents
of 20-byte files. But files can be much longer than 20 bytes,
so there must be many files that share the same hash, a
situation known as a hash collision. The conclusion seems
to be that a hash cannot be sufficient as a reference to
data. And yet, hash-based content-addressable storage is
in daily use for various applications without any major
trouble. Git uses content-addressable storage for managing
data inside repositories. In spite of its enormous popularity,
you don’t hear people complaining about data loss. How is
that possible?

A first observation is that most possible file contents are
of no interest. Data that actually carries information is struc-
tured. Think of what you keep stored on your computer:
text in English, source code in Python, addresses in vCard
format, numerical data in IEEE floating-point formats, etc.
The data formats impose many constraints on which byte
sequences actually make sense. Additional informal con-
straints further reduce the number of potential meaningful
files. Most syntactically correct Python programs are invalid
for some other reason, and even though QQQqqqqqqq is
valid content for a name field in vCard, it is not very
probable that someone actually has that name. SHA2-256,
today’s default hash function in IPFS, yields 256-bit hashes
of which there are almost as many as the estimated number
of atoms in the universe. It looks reasonable to assume that
there are enough distinct hash values to uniquely label each
file content that we might actually encounter in real life,
if the hash function does a good job of assigning labels
to contents. This has in fact been a very active field of
research for a while. As I said, hash functions are very
widely used, so finding good ones is an important job. There
are two criteria that are particularly important in practice:
even a small change in file contents should change its hash,
because small changes are frequent, and it should be very
hard (practically impossible) to construct a file for a given
hash, because that would allow various forms of attack
on hash-based systems. The main reason why I described
SHA-1 as outdated above is that such an attack has been
demonstrated recently [2].

There is a vast literature on the question that I discussed
in the last paragraph, which I won’t even try to summarize.
But one aspect of this question needs to be emphasized:
no matter how good your hash function, hash collisions are
never impossible but merely very improbable. All reasoning
about hashes is of a probabilistic nature. For people ap-

proaching computing from a mathematics background, this
is often hard to swallow. You want to prove that your soft-
ware works, not merely argue that it works most of the time!
When coming from a physics or engineering background,
probabilistic reasoning is more familiar. In fact, quantum
mechanics says that all of nature is ultimately probabilistic.
It is not impossible for me to fall through the chair I am
sitting on, the tunnel effect would in principle permit it.
But it’s so enormously improbable that I don’t lose sleep
over the risk. Transferred to computing, which is done by
physical machines, if a piece of software has a much lower
risk of failure than the hardware it runs on, it is good enough
in practice.

2 FROM THEORY TO PRACTICE: IPFS
The Inter-Planetary File System (IPFS, https://ipfs.io/) is
an ambitious research and development project aiming at
reinventing the World Wide Web with many fundamental
improvements. One major difference to today’s Web infras-
tructure is the use of content-based addressing as opposed
to location-based URLs. This is the only aspect I will discuss
here, please refer to the IPFS documentation for any other
questions you might have. Before going on, let me stress that
IPFS should at this time be considered an experiment. In my
experience it is reliable though a bit slow, but your mileage
may vary. Relying on IPFS as a data storage medium is
probably not a good idea for now.

If you want to play with IPFS yourself, you should
start by installing IPFS software on your computer.
The most convenient entry point is IPFS Desktop
(https://github.com/ipfs-shipyard/ipfs-desktop), but you
can find other options at https://ipfs.io/. There are IPFS
bindings for many programming languages, which are
listed at https://github.com/ipfs/ipfs. They are all rather
light-weight, as they connect to an HTTP server run by IPFS
Desktop, which does all the heavy lifting. In the following
I will use Pharo (https://pharo.org/), a modern Smalltalk
derivate, because it is a particularly nice environment for ex-
plorative programming. In fact, the IPFS bindings for Pharo
(https://github.com/khinsen/ipfs-pharo) are a byproduct
of my own experiments with IPFS.

Let’s start simple: I will store the list of numbers [1, 2,
3] in IPFS:

#(1 2 3) storeInIpfs

Pharo prints the result as
IpfsCid(bafyreib5ragfuond76dbywu7yubse73goit3h6v4dwf6tti2wfzdajo5py)
The long string in parentheses is the IPFS content identifier
(CID for short) for my list. An IPFS CID is essentially
a hash, but it contains some additional information.
The initial ’b’ indicates that the CID has been encoded
as a number in base 32. This is done to make sure it
will survive all kinds of Internet transmission channels
that might strip spaces and control characters or convert
everything to upper case. Base 32 uses only the 32 characters
abcdefghijklmnopqrstuvwxyz234567/ and ignores
case. Decoding the base 32 string yields the real CID,
a sequence of 36 byte which I’ll show in hexadecimal
notation:

#(1 2 3) storeInIpfs hex

http://www.sha1-online.com/
http://www.sha1-online.com/
https://ipfs.io/
https://github.com/ipfs-shipyard/ipfs-desktop
https://ipfs.io/
https://github.com/ipfs/ipfs
https://pharo.org/
https://github.com/khinsen/ipfs-pharo

COMPUTING IN SCIENCE AND ENGINEERING 3

yielding:
017112203d880c5a39a3ff861c5a9fc503227f667227b3fabc1d8be9cd1ab1723025dd7e
The first byte is a version number, whose presence allows
future extensions to the CID format without invalidating
existing CIDs. The second byte indicates how the data itself
is encoded. In our case, the encoding is CBOR, the Concise
Binary Object Representation (https://cbor.io/), which
is best summarized as a binary version of the popular
JSON format. The choice of CBOR was ultimately made
by my Pharo bindings, but it’s today’s standard encoding
for linked data in IPFS. The third byte indicates the hash
function, SHA2-256, and the fourth byte is the length of the
hash, 32 bytes. The 32 remaining bytes are just that hash.
IPFS can accommodate many hash functions, but SHA2-256
is today’s standard.

Explore

IPLD EXPLORER

CBOR

CID zdpuApZdg27uJf8MQCMqHEhCmcc7fkX7UCb8mxhhJpu9z7D8y

LINKS 0

DATA

▶ [1,	2,	3]

	 0:	1

	 1:	2

	 2:	3

CID INFO

zdpuApZdg27uJf8MQCMqHEhCmcc7fkX7UCb8mxhhJpu9z7D8y

base58btc - cidv1 - dag-cbor - sha2-256-256-3d880c5a39a3ff861c5a9fc503227f667227b3fabc1d8be9cd1ab1723025dd7e

BASE - VERSION - CODEC - MULTIHASH

MULTIHASH

0x12203d880c5a39a3ff861c5a9fc503227f66
7227b3fabc1d8be9cd1ab1723025dd7e

HASH DIGEST

0x12 = sha2-256

0x20 = 256 bits

bafyreib5ragfuond76dbywu7yubse73goit3h6v4dwf6tti2wfzdajo5py

Fig. 1. My list of numbers in the IPLD explorer

You can now go to https://explore.ipld.io, paste this
base 32 string into the search field at the top, and click
“explore”. You should see something very similar to Fig. 1.
Under “Data” you see the list, which shows that the
data transfer from my machine to yours has worked fine.
In the “CID Info” box you see a confirmation of what
I explained above. Except that the CID is printed as
zdpuApZdg27uJf8MQCMqHEhCmcc7fkX7UCb8mxhhJpu9z7D8y This is just
another encoding, the initial ’z’ indicating base 58 instead of
base 32. This leads to a more compact but also more fragile
representation, as upper and lower case letters are no longer
equivalent. IPFS software accepts any of these encodings,
but recommends the use of base 32.

If you have done this little exercise, you have a first-
hand proof that you can retrieve on your computer data
that I have stored on mine, using nothing but the CID
which is essentially a hash of the data. You may have
wondered where the data is actually stored, and how IPFS
manages to find it. I won’t say much about the second part,
because that would require me to explain IPFS’ sophisti-

cated peer-to-peer communication system. The basic idea is
to send out requests to other nodes in the network, and
choosing the nodes to turn to as a function of the CID
itself. As for the storage location, there may be many but
there is one I can be sure of: the IPFS pinning service at
https://temporal.cloud/, where I pinned this CID.
Pinning is IPFS jargon for instructing a server to keep a piece
of data unconditionally. Otherwise, the IPFS software treats
its storage area as a cache, from which items are deleted
after a while if they are not requested. You can pin data on
any computer that runs IPFS software. Pinning data on your
desktop or laptop machine guarantees you an off-line copy,
whereas pinning data on a computer with a permanent
network connection effectively turns it into a server hosting
the data. Pinning services are the IPFS equivalent of file
hosting services, with a crucial difference: nobody needs to
know on which pinning service you keep your data, because
data requests involve only the CID, not the location. And
that means that you are free to move to a different pinning
service at any time.

Note also that all data stored in IPFS should be consid-
ered public. Even if you don’t give your CIDs to anyone
else, current or future versions of the IPFS distribution
algorithms may send the data to other nodes even without
an explicit request. If privacy is an issue, encrypt your data
or use a dedicated network [3].

Location-independent data access is one of the big ad-
vantages of content-addressable storage. Another one is
protection against accidental or malicious modification of
data. Unlike traditional file systems, IPFS has no concept
of write permissions, because it doesn’t need it. There is
no way to overwrite or replace any data because CIDs are
not mutable names, but identifiers computed from the data.
When you ask IPFS to retrieve the data for a given CID,
you can recompute the hash to check that the data is indeed
what you requested:

cid := IpfsCid fromString:
’bafyreib5ragfuond76dbywu7yubse’,
’73goit3h6v4dwf6tti2wfzdajo5py’.

data := cid loadRaw.
hash := SHA256 hashMessage: data.
(cid last: 32) = hash

(The CID string is split into two parts to make the code
fit into one column.) Pharo says true, so I know that I
received the data exactly as its creator stored it. Note that
loadRaw accesses the data at the lowest level: a sequence
of bytes, which in this case stores the CBOR encoding of
our three-element list. Hashes are computed at that level
because that’s how hash functions are defined. For most
purposes, it is more convenient to use the two higher-level
layers: the CBOR-encoding layer that I used above, or the
file-system layer that most closely resembles traditional file
systems.

3 LINKED DATA

There is one more feature of IPFS that I will explain in some
detail, because it showcases another nice property of content
addressable storage: the use of CIDs in data structures

https://cbor.io/
https://explore.ipld.io

COMPUTING IN SCIENCE AND ENGINEERING 4

to create immutable linked data, as defined by the Inter-
Planetary Linked Data specifications (see https://ipld.io).
The idea is very simple: you can put CIDs into the lists or
dictionaries you store in IPFS, and IPFS provides support for
managing the resulting linked data structures and to access
their elements. Let’s see how this works in practice:

cidForData := #(1 2 3) storeInIpfs.
cidForDescription :=

’List of three numbers’ storeInIpfs.
(NeoJSONObject

with: #data->cidForData
with: #description->cidForDescription)

storeInIpfs

In this piece of code, NeoJSONObject is a Pharo
implementation of JSON objects, from a library
called NeoJSON. The result as shown by Pharo is
IpfsCid(bafyreichcsaqqhxwgdpqvlni4p2z75arewt3yoesnvizgfxqkhiisbc52u),
and by now you should know how to look it up using
the explorer at https://explore.ipld.io. Please do so! The
explorer will show a dictionary with the two keys data
and description, each of which has a CID as its value.
And you can click on the CIDs to inspect the data they refer
to.

Now paste the string
bafyreichcsaqqhxwgdpqvlni4p2z75arewt3yoesnvizgfxqkhiisbc52u/data
into the explorer. As you will see, this will take you
directly to the list. This notation is called a path, and most
IPFS-based software will accept a path wherever it requires
a CID. Paths work much like file paths on today’s operating
systems, except that they traverse dictionary-like data
structures rather than directories.

It is no coincidence that my small example looks like
data plus metadata. When data is stored in files, metadata
requires an unpleasant trade-off. You can store the metadata
along with the data in a single file, as it is habitually done
in HDF5 [5], for example. But if the metadata contains
execution-specific information, such as a time stamp or the
name of the computer that did a calculation, the whole file
becomes irreproducible because of the irreproducible meta-
data. Checking if two output files are equivalent in spite of
the differing metadata is then laborious because it requires
a detailed knowledge of the data format. Storing metadata
in a separate file avoids such problems, and the raw data
can be compared using generic tools such as Unix’ cmp. But
the link between data and metadata has to be made through
filenames, and is therefore fragile when the data is trans-
ferred to a different computer where files live in a different
namespace. Moreover, files being mutable, data-metadata
associations are fragile even on the computer where they
were established. With content-addressable storage, this
problem disappears. In fact, checking if two computations
produce the same result, assuming it is structured like my
small example, requires no more effort than comparing the
CIDs stored under data.

IPFS also helps with data management for linked data
structures. As I mentioned, the elementary operation in data
management is pinning, which means telling a specific node
in the IPFS network to keep a piece of data indefinitely. IPFS
can pin data recursively, which means that it also pins the
data items referenced by any CIDs in the originally pinned

data structure. A complex data assembly can thus be treated
as a whole while still having well-identified substructures
that can be shared with other data structures.

APPLICATIONS IN SCIENTIFIC COMPUTING

Let’s assume we had a high-performance and widely
adopted infrastructure for content-addressable storage. IPFS
isn’t quite there yet, but that could well change in a few
years. How could we put it to good use for managing
scientific data?

The most obvious use case is referring to data, including
software source code, in an unambiguous and future-proof
way. A journal article could simply state “the raw dataset
has the CID ...” and both authors and readers could be sure
to retrieve exactly the right data via this CID. URLs cannot
guarantee the same level of permanence, nor can DOIs,
whose permanence is no more than a moral obligation for
the organizations that issue them. CIDs are therefore much
more robust references for archiving, which is the reason
why hash-based IDs very similar to IPFS CIDs are used in
Software Heritage’s archive of software source code [6].

Applied to software, content-addressable storage is the
best approach we have today for ensuring reproducibility.
The fundamental cause of irreproducibility is the complex-
ity of the typical software assemblies we use in scientific
computing. Both dependencies (mainly libraries) used by
the software and build tools (compilers etc.) have an impact
of a computation’s result, and must therefore be recorded
precisely. Storing all the files in IPFS and using the linked
data approach I outlined in the preceding section would
provide a permanent and unalterable record for future re-
construction. In fact, the package managers Nix and Guix
use a very similar approach.

Pushing this idea further, we could combine the software
dependency graph with a computational workflow graph
and have a complete provenance graph for a computation,
with everything stored as linked data in IPFS or an equiv-
alent system. Yet another graph layer could provide the
full history of the evolution of data and software. Since
such graphs can become very large, and reference many
and potentially large datasets, another welcome feature of
content-addressable storage is the built-in deduplication: if
you store the same data ten times in IPFS, only one copy will
be kept, whereas a typical computer’s file system contains
many files with identical contents.

Another use case is the simplification of data commu-
nication between the different pieces of software used in a
research project, e.g. the components of a workflow, or data
processing software connected to visualization software. If
all programs read and write data from and to content-
addressable storage, communication only involves CIDs.
Distributed computations does not require any additional
effort because CIDs, unlike file names, are not specific to one
computer. Simplifying communication between programs is
a big deal because it encourages the use of smaller tools
that do only one thing and do it well, a principle often
called the “Unix philosophy”. Smaller tools are easier to
understand and easier to maintain, and that’s something
most computational scientists appreciate very much.

https://ipld.io
https://github.com/svenvc/NeoJSON
https://explore.ipld.io
https://nixos.org/nix/
https://guix.gnu.org/

COMPUTING IN SCIENCE AND ENGINEERING 5

Finally, the transition from files to linked data structures
should bring us further simplification. Using immutable
references, we can package data in smaller units. Where
today we use file formats such as tar, zip, netCDF, or HDF5
to ensure the coherence of multiple datasets and metadata,
we will instead use simple linked data structures that don’t
require elaborate libraries to be integrated in every single
piece of software.

In the long run, content-addressable storage could thus
contribute to better computational science. Isn’t that just the
kind of magic that scientific research could profit from?

REFERENCES

[1] K. Hinsen, The promises of functional programming, Computing in
Science & Engineering 11, 86 (2009)

[2] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A.
Petit Bianco, C. Baisse, Announcing the first SHA1 collision, Google
Security Blog, February 2017

[3] M. Ober, Dedicated IPFS Networks,
https://medium.com/pinata/dedicated-ipfs-networks-
c692d53f938d

[4] Enable IPFS Applications Through Private Networks,
https://medium.com/temporal-cloud/enable-ipfs-applications-
through-private-networks-28f98ea7358f

[5] Q. Koziol and D. Robinson, HDF5, DOI:10.11578/dc.20180330.1
[6] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, Identifiers for

Digital Objects: The Case of Software Source Code Preservation.
iPRES 2018 - 15th International Conference on Digital Preservation,
Sep 2018, Boston, United States. DOI:10.17605/OSF.IO/KDE56

Konrad Hinsen is a researcher at the Centre de Biophysique
Moléculaire in Orléans and at the Synchrotron SOLEIL in Saint Aubin.
His research interests include protein structure and dynamics and sci-
entific computing. Hinsen has a PhD in theoretical physics from RWTH
Aachen University. Contact him at konrad.hinsen@cnrs.fr.

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://medium.com/pinata/dedicated-ipfs-networks-c692d53f938d
https://medium.com/pinata/dedicated-ipfs-networks-c692d53f938d
https://medium.com/temporal-cloud/enable-ipfs-applications-through-private-networks-28f98ea7358f
https://medium.com/temporal-cloud/enable-ipfs-applications-through-private-networks-28f98ea7358f
http://doi.org/10.11578/dc.20180330.1
http://doi.org/10.17605/OSF.IO/KDE56

	A bit of theory
	From theory to practice: IPFS
	Linked data
	References
	Biographies
	Konrad Hinsen

