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Multi-task Deep Learning for Real-Time 3D
Human Pose Estimation and Action Recognition

Diogo C. Luvizon, David Picard, and Hedi Tabia

Abstract—Human pose estimation and action recognition are related tasks since both problems are strongly dependent on the human
body representation and analysis. Nonetheless, most recent methods in the literature handle the two problems separately. In this work,
we propose a multi-task framework for jointly estimating 2D or 3D human poses from monocular color images and classifying human
actions from video sequences. We show that a single architecture can be used to solve both problems in an efficient way and still
achieves state-of-the-art or comparable results at each task while running with a throughput of more than 100 frames per second. The
proposed method benefits from high parameters sharing between the two tasks by unifying still images and video clips processing in a
single pipeline, allowing the model to be trained with data from different categories simultaneously and in a seamlessly way.
Additionally, we provide important insights for end-to-end training the proposed multi-task model by decoupling key prediction parts,
which consistently leads to better accuracy on both tasks. The reported results on four datasets (MPII, Human3.6M, Penn Action and
NTU RGB+D) demonstrate the effectiveness of our method on the targeted tasks. Our source code and trained weights are publicly
available at https://github.com/dluvizon/deephar.

Index Terms—Human action recognition, Human pose estimation, Multitask deep learning, Neural networks.

F

1 INTRODUCTION

H UMAN action recognition has been intensively studied in the
last years, specially because it is a very challenging problem,

but also due to the several applications that can benefit from it.
Similarly, human pose estimation has also rapidly progressed with
the advent of powerful methods based on convolutional neural
networks (CNN) and deep learning. Despite the fact that action
recognition benefits from precise body poses, the two problems
are usually handled as distinct tasks in the literature [1], or action
recognition is used as a prior for pose estimation [2], [3]. To
the best of our knowledge, there is no recent method in the
literature that tackles both problems in a joint way to the benefit of
action recognition. In this paper, we propose a unique end-to-end
trainable multi-task framework to handle human pose estimation
and action recognition jointly, as illustrated in Fig. 1.

One of the major advantages of deep learning methods is
their capability to perform end-to-end optimization. This is all
the more true for multi-task problems, where related tasks can
benefit from one another, as suggested by Kokkinos [4]. Action
recognition and pose estimation are usually hard to be stitched to-
gether to perform a beneficial joint optimization, usually requiring
3D convolutions [5] or heatmaps transformations [6]. Detection
based approaches require the non-differentiable argmax function
to recover the joint coordinates as a post processing stage, which
breaks the backpropagation chain needed for end-to-end learning.
We propose to solve this problem by extending the differentiable
soft-argmax [7], [8] for joint 2D and 3D pose estimation. This
allows us to stack action recognition on top of pose estimation,
resulting in a multi-task framework trainable from end-to-end.

In comparison with our previous work [9], we propose a
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Fig. 1: The proposed multi-task approach for human pose esti-
mation and action recognition. Our method provides 2D/3D pose
estimation from single images or frame sequences. Pose and visual
information are used to predict actions in a unified framework and
both predictions are refined by K prediction blocks.

new network architecture carefully designed for pose and action
prediction simultaneously at different feature map resolutions.
Each prediction is supervised and re-injected into the network for
further refinement. Differently from [9], where we first predict
poses then actions, here poses and actions are predicted in parallel
and successively refined, strengthening the multi-task aspect of our
method. Another improvement is the proposed depth estimation
approach for 3D poses, which allows us to depart from learning the
costly volumetric heat maps while improving the overall accuracy
of the method.

The main contributions of our work are presented as follows:
First, we propose a new multi-task method for jointly estimating
2D/3D human poses and recognizing associated actions. Our
method is simultaneously trained from end-to-end for both tasks
with multimodal data, including still images and video clips.
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Second, we propose a new regression approach for 3D pose
estimation from single frames, benefiting at the same time from
images “in-the-wild” with 2D annotated poses and 3D data. This
has been proven a very efficient way to learn good visual features,
which is also very important for action recognition. Third, our
action recognition approach is based only on RGB images, from
which we extract 3D poses and visual information. Despite that,
our multi-task method achieves state-of-the-art on both 2D and
3D scenarios, even when compared with methods using ground-
truth poses. Fourth, the proposed network architecture is scalable
without any additional training procedure, which allows us to
choose the right trade-off between speed and accuracy a posteri-
ori. Finally, we show that the hard problem of multi-tasking pose
estimation and action recognition can be tackled efficiently by a
single and carefully designed architecture, handling both problems
together and in a better way than separately. As a result, our
method provides acceptable pose and action predictions at more
than 180 frames per second (FPS), while achieving its best scores
at 90 FPS on a customer GPU.

The remaining of this paper is organized as follows. In Sec-
tion 2 we present a review of the most relevant works related
to our method. The proposed multi-task framework is presented
in Section 3. Extensive experiments on both pose estimation and
action recognition are presented in Section 4, followed by our
conclusions in Section 5.

2 RELATED WORK

In this section, we present some of the most relevant methods
related to our work, which are divided into human pose estimation
and action recognition. Since an extensive literature review is out
of the scope of the paper, we encourage the readers to refer to the
surveys in [10], [11] for respectively pose estimation and action
recognition.

2.1 Human Pose Estimation

2.1.1 2D Pose Estimation
The problem of human pose estimation has been intensively
studied in the last years, from Pictorial Structures [12], [13], [14]
to more recent CNN based approaches [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]. We can identify from the literature
two distinct families of methods for pose estimation: detection
and regression based methods. Recent detection methods handle
pose estimation as a heat map prediction problem, where each
pixel in a heat map represents the detection score of a given
body joint being localized at this pixel [25], [26]. Exploring
the concepts of stacked architectures, residual connections, and
multiscale processing, Newell et al. [27] proposed the Stacked
Hourglass networks (SHG), which improved scores on 2D pose
estimation challenges significantly. Since then, methods in the
state of the art are frequently proposing complex variations of the
SHG architecture. For example, Chu et al. [28] proposed an at-
tention model based on conditional random field (CRF) and Yang
et al. [29] replaced the residual unit from SHG by the Pyramid
Residual Module (PRM). Very recently, [30] proposed a high-
resolution network that keeps a high-resolution flow, resulting
in more precise predictions. With the emergence of Generative
Adversarial Networks (GANs) [31], Chou et al. [32] proposed
to use a discriminative network to distinguish between estimated
and target heat maps. This process could increase the quality of

predictions, since the generator is stimulated to produce more
plausible predictions. Another application of GANs in that sense
is to enforce the structural representation of the human body [33].

However, all the previous mentioned detection based ap-
proaches do not provide body joint coordinates directly. To recover
the body joints in (x, y) coordinates, predicted heat maps have
to be converted to joint positions, generally using the argument
of the maximum a posteriori probability (MAP), called argmax .
On the other hand, regression based approaches use a nonlinear
function to project the input image directly to the desired output,
which can be the joint coordinates. Following this paradigm,
Toshev and Szegedy [23] proposed a holistic solution based on
cascade regression for body part regression and Carreira et al. [34]
proposed the Iterative Error Feedback. The limitation of current
regression methods is that the regression function is frequently
sub-optimal. In order to tackle this weakness, the soft-argmax
function [7] has been proposed to compute body joint coordinates
from heat maps in a differentiable way.

2.1.2 3D Pose Estimation
Recently, deep architectures have been used to learn 3D represen-
tations from RGB images [35], [36], [37], [38], [39], [40] thanks
to the availability of high precise 3D data [41], and are now able
to surpass depth-sensors [42]. Chen and Ramanan [43] divided
the problem of 3D pose estimation into two parts. First, they
target 2D pose estimation considering the camera coordinates and
second, the 2D estimated poses are matched to 3D representations
by means of a nonparametric shape model. However, this is an ill-
defined problem, since two different 3D poses could have the same
2D projection. Other methods propose to regress the 3D relative
position of joints, which usually presents a lower variance than the
absolute position. For example, Sun et al. [44] proposed a bone
representation of the human body. However, since the errors are
accumulative, such a structural transformation might effect tasks
that depend on the extremities of the human body, like action
recognition.

Pavlakos et al. [45] proposed the volumetric stacked hourglass
architecture, but the method suffers from significant increase in
the number of parameters and from the required memory to
store all the gradients. A similar technique is used in [46], but
instead of using argmax for coordinate estimation, the authors
use a numerical integral regression, which is similar to the soft-
argmax operation [9]. More recently, Yang et al. [47] proposed
to use adversarial networks to distinguish between generated
and ground truth poses, improving predictions on uncontrolled
environments. Differently form our previous work in [9], we show
that a volumetric representation is not required for 3D prediction.
Similarly to methods on hand pose estimation [48] and on 3D
human pose estimation [42], we predict 2D depth maps which
encode the relative depth of each body joint.

2.2 Action Recognition
2.2.1 2D Action Recognition
In this section we revisited some methods that exploit pose
information for action recognition. For example, classical methods
for feature extraction have been used in [49], [50], where the key
idea is to use body joint locations to select visual features in space
and time. 3D convolutions have been stated as the best option to
handle the temporal dimension of images sequences [51], [52],
[53], but they involve a high number of parameters and cannot
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efficiently benefit from the abundant still images during training.
Another option to integrate the temporal aspect is by analysing
motion from image sequences [1], [54], but these methods require
the difficult estimation of optical flow. Unconstrained temporal
and spatial analysis are also promising approaches to tackle action
recognition, since it is very likely that, in a sequence of frames,
some very specific regions in a few frames are more relevant
than the remaining parts. Inspired on this observation, Baradel
et al. [55] proposed an attention model called Glimpse Clouds,
which learns to focus on specific image patches in space and
time, aggregating the patterns and soft-assigning each feature to
workers that contribute to the final action decision. The influence
of occlusions could be alleviated by multi-view videos [56] and
inaccurate pose sequences could be replaced by heat maps for
better accuracy [57]. However, this improvement is not observed
when pose predictions are sufficiently precise.

2D action recognition methods usually use the body joint
information only to extract localized visual features [1], [49], as
an attention mechanism. Methods that directly explore the body
joints usually do not generate it [50] or present lower precision
with estimated poses [51]. Our approach removes these limitations
by performing pose estimation together with action recognition.
As such, our model only needs the input RGB frames while
still performing discriminative visual recognition guided by the
estimated body joints.

2.2.2 3D Action Recognition
Differently from video based action recognition, 3D action recog-
nition is mostly based on skeleton data as the primary informa-
tion [58], [59]. With depth sensors such as the Microsoft Kinect,
it is possible to capture 3D skeletal data without a complex
installation procedure frequently required for motion capture sys-
tems (MoCap). However, due to the required infrared projector,
depth sensors are limited to indoor environments, have a low
range of operation, and are not robust to occlusions, frequently
resulting in noisy skeletons. To cope with the noisy skeletons,
Spatio-Temporal LSTM networks [60] have been widely used
to learn the reliability of skeleton sequences or as an attention
mechanism [61], [62]. In addition to the skeleton data, multimodal
approaches can also benefit from visual cues [63]. In that direction,
pose-conditioned attention mechanisms have been proposed [64]
to focus on image patches centered around the hands.

Since our architecture predicts precise 3D poses from RGB
frames, we do not have to cope with the noisy skeletons from
Kinect. Moreover, we show in the experiments that, despite being
based on temporal convolution instead of the more common
LSTM, our system is able to reach state of the art performance
on 3D action recognition, indicating that action recognition does
not necessarily require long term memory.

3 PROPOSED MULTI-TASK APPROACH

The goal of the proposed method is to jointly handle human
pose estimation and action recognition, prioritizing the use of
predicted poses on action recognition and benefiting from shared
computations between the two tasks. For convenience, we define
the input of our method as either a still RGB image I ∈ RH×W×3

or a video clip (sequence of images) V ∈ RT×H×W×3, where
T is the number of frames in a video clip and H × W is the
frame size. This distinction is important because we handle pose
estimation as a single frame problem. The outputs of our method

for each frame are: predicted human pose p̂ ∈ RNj×3 and per
body joint confidence score ĉ ∈ RNj×1, where Nj is the number
of body joints. When taking a video clip as input, the method also
outputs a vector of action probabilities â ∈ RNa×1, where Na is
the number of action classes. To simplify notation, in this section
we omit batch normalization layers and ReLU activations, which
are used in between convolutional layers as a common practice in
deep neural networks.

3.1 Network Architecture

Differently from our previous work [9] where poses and actions
are predicted sequentially, here we want to strengthen the multi-
task aspect of our method by predicting and refining poses and
actions in parallel. This is implemented by the proposed archi-
tecture, illustrated in Fig. 2. Input images are fed through the
entry-flow, which extracts low level visual features. The extracted
features are then processed by a sequence of downscaling and
upscaling pyramids indexed by p ∈ {1, 2, . . . , P}, which are re-
spectively composed of downscaling and upscaling units (DU and
UU), and prediction blocks (PB), indexed by l ∈ {1, 2, . . . , L}.
Each PB is supervised on pose and action predictions, which are
then re-injected into the network, producing a new feature map
that is refined by further downscaling and upscaling pyramids.
Downscaling or upscaling units are respectively composed by
maxpooling or upsampling layers followed by a residual unit that
is a standard or a depthwise separable convolution [65] with skip
connection. These units are detailed in Fig. 3.

In order to be able to handle human poses and actions in
a unified framework, the network can operate into two distinct
modes: (i) single frame processing or (ii) video clip processing.
In the first operational mode (single frame), only layers related to
pose estimation are active, from which connections correspond to
the blue arrows in Fig. 2. In the second operational mode (video
clip), both pose estimation and action recognition layers are active.
In this case, layers in the single frame processing part handle
each video frame as a single sample in the batch. Independently
on the operational mode, pose estimation is always performed
from single frames, which prevents the method from depending
on the temporal information for this task. For video clip pro-
cessing, the information flow from single frame processing (pose
estimation) and from video clip processing (action recognition) are
independently propagated from one prediction block to another, as
demonstrated in Fig. 2 respectively by blue and red arrows.

3.1.1 Multi-task Prediction Block

The main challenges related to the design of the network archi-
tecture is how to handle multimodal data (single frames and video
clips) in a unified way and how to allow predictions refinement
for both poses and actions. To this end, we propose a multi-task
prediction block (PB), detailed in Fig. 4. In the PB, pose and action
are simultaneously predicted and re-injected into the network for
further refinement. In the global architecture, each PB is indexed
by pyramid p and level l, and produces the following three feature
maps:

X p,l
t ∈ RHf×Wf×Nf (1)

Zp,l
t ∈ RHf×Wf×Nf (2)

Yp,l ∈ RT×Nj×Nv . (3)
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Fig. 2: Overview of the proposed multi-task network architecture. The entry-flow extracts feature maps from the input images, which
are fed through a sequence of CNNs composed of prediction blocks (PB), downscaling and upscaling units (DU and UU), and simple
(skip) connections. Each PB outputs supervised pose and action predictions that are refined by further blocks and units. The information
flow related to pose estimation and action recognition are independently propagated from one prediction block to another, respectively
depicted by blue and red arrows. See Fig. 3 and Fig. 4 for details about DU, UU, and PB.
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Fig. 4: Network architecture of prediction blocks (PB) for a
downscaling pyramid. With the exception of the PB in the first
pyramid, all PB get as input features from the previous pyramid in
the same level (X p−1,l

t , Yp−1,l), and features from lower or higher
levels (X p,l∓1

t , Yp,l∓1), depending if it composes a downscaling
or an upscaling pyramid, respectively.

Namely, X p,l
t is a tensor of single frame features, which is

propagated from one PB to another, Zp,l
t is a tensor of multi-

task (single frame) features used for both pose and action, and
Yp,l is a tensor of video clip features, exclusively used for
action predictions and also propagated from one PB to another.
t = {1, . . . , T} is the index of single frames in a video clip, and
Nf and Nv are respectively the size of single frame features and
video clip features.

For pose estimation, prediction blocks take as input the single

frame features X p−1,l
t from the previous pyramid and the features

X p,l∓1
t from lower or higher levels, respectively for downscaling

and upscaling pyramids. A similar propagation of previous fea-
tures Yp−1,l and Yp,l∓1 happens for action. Note that both X p,l

t

and Yp,l feature maps are three-dimensional tensors (2D maps
plus channels) that can be easily handled by 2D convolutions.

The tensor of multi-task features is defined by:

Z
′p,l
t = RU(X p−1,l

t + DU(X p,l−1
t )) (4)

Zp,l
t = Wp,l

z ∗ Z
′p,l
t , (5)

where DU is the downscaling unit (replaced by UU for upscaling
pyramids), RU is the residual unit, ∗ is a convolution, and Wp,l

z is a
weight matrix. The choice of including a residual unit in Equation
(4) was inspired from [27] and prevents Z

′p,l
t from becoming

a direct summation of its previous terms. Then, Zp,l
t is used to

produce body joint probability maps:

hp,l
t = Φ(Wp,l

h ∗ Z
p,l
t ), (6)

and body joint depth maps:

dp,l
t = Sigmoid(Wp,l

d ∗ Z
p,l
t ), (7)

where Φ is the spatial softmax [7], and Wp,l
h and Wp,l

d are weight
matrices. Probability maps and body joint depth maps encode,
respectively, the probability of a body joint being at a given
location and the depth with respect to the root joint, normalized in
the interval [0, 1]. Both hp,l

t and dp,l
t have shape RHf×Wf×Nj .

3.2 Pose Regression
Once a set of body joint probability maps and depth maps
are computed from multi-task features, we aim to estimate the
corresponding 3D points by a differentiable and non-parametrized
function. For that, we decouple the problem in 2D pose estimation
and depth estimation, and the final 3D pose is the concatenation
of the intermediate parts.

3.2.1 The Soft-argmax Layer for 2D Estimation
Given a 2D input signal, the main idea is to consider that the
argument of the maximum (argmax) can be approximated by
the expectation of the input signal after being normalized to
have the properties of a distribution. Indeed, for a sufficiently
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pointy (Leptokurtic) distribution, the expectation should be close
to the maximum a posteriori (MAP) estimation. For a 2D heat
map as input, the normalized exponential function (softmax) can
be used, since it alleviates the undesirable influences of values
below the maximum and increases the “pointiness” of the resulting
distribution, producing a probability map, as defined in Equation 6.

Let’s define a single probability map for the jth joint as
hj , in such a way that h ≡ [h1, . . . , hNj ]. Then, the expected
coordinates (xj , yj) are given by the function Ψ:

Ψ(hj) =

(
Wh∑
c=0

Hh∑
r=0

c

Wh
hr,c,

Wh∑
c=0

Hh∑
r=0

r

Hh
hr,c

)
, (8)

where Hh×Wh is the size of the input probability map, and l and
c are line and column indexes of h . According to Equation 8, the
coordinates (xj , yj) are constrained between the interval [0, 1],
which corresponds to the normalized limits of the input image.

3.2.2 Depth Estimation
Differently from our previous work [9], where volumetric heat
maps were required to estimate the third dimension of body joints,
here we use a similar apprach to [48], where specialized depth
maps d are used to encode the depth information. Similarly to the
probability maps decomposition from section 3.2.1, here we define
d j as a depth map for the jth body joint. Thus, the regressed depth
coordinate zj is defined by:

zj =
Wh∑
c=0

Hh∑
r=0

hj
r,cd

j
r,c. (9)

Since hj is a normalized unitary and positive probability map,
Equation 9 represents a spatially weighted pooling of depth map
d j based on the 2D body joint location.

3.2.3 Body Joint Confidence Scores
The probability of a certain body joint being present (even if
occluded) in the image is computed by the maximum value in the
corresponding probability map. Considering a pose layout with Nj

body joints, the estimated joint confidence vector is represented
by ĉ ∈ RNj×1. If the probability map is very pointy, this score is
close to 1. On the other hand, if the probability map is uniform or
has more than one region with high response, the confidence score
drops.

3.2.4 Pose Re-injection
As systematically noted in recent works [25], [26], [27], [45],
predictions re-injection is a very efficient way to improve precision
on estimated poses. Differently from all previous methods based
on direct heat map regression, our approach can benefit from
prediction re-injection at different resolutions, since our pose
regression method is invariant to the feature map resolution.
Specifically, in each PB at different pyramid and different level,
we compute a new set of features X p,l

t based on features from
previous blocks and on the current prediction, as follows:

X p,l
t = Wp,l

r ∗ h
p,l
t + Wp,l

s ∗ d
p,l
t + Z

′p,l
t + Zp,l

t , (10)

where Wp,l
r and Wp,l

s are weight matrices related to the re-
injection of 2D pose and depth information, respectively. With this
approach, further PB at different pyramids and levels are able to
refine predictions, considering different sets of features at different
resolutions.

3.3 Human Action Recognition
Another important advantage in our method is its ability to
integrate high level pose information with low level visual features
in a multi-task framework. This characteristic allows sharing
the single frame processing pipeline for both pose estimation
and visual features extraction. Additionally, visual features are
trained using both action sequences and still images captured
“in-the-wild”, which have been proven as a very efficient way
to learn robust visual representations. As shown in Fig. 4, the
action prediction part takes as input two different sources of
information: pose features and appearance features. Additionally,
similarly to the pose prediction part, action features from previous
pyramids (Yp−1,l) and levels (Yp,l∓1) are also aggregated in each
prediction.

3.3.1 Pose Features
In order to explore the rich information encoded with body joint
positions, we convert a sequence of T poses with Nj joints each
into an image-like representation. Similar representations were
previously used in [64], [66]. We choose to encode the temporal
dimension as the vertical axis, the joints as the horizontal axis,
and the coordinates of each point ((x, y) for 2D, (x, y, z) for
3D) as the channels. With this approach, we can use classical
2D convolutions to extract patterns directly from the temporal
sequence of body joints. The predicted coordinates of each body
joints are pondered by their confidence scores, thus points that are
not present in the image (and consequently cannot be correctly
predicted) have less influence on action recognition. A graphical
representation of pose features is presented in Fig. 5a.
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Fig. 5: Extraction of (a) pose and (b) appearance features.

3.3.2 Appearance Features
In addition to the pose information, visual cues are very important
to action recognition, since they bring contextual information. In
our method, localized visual information is encoded as appearance
features, which are extracted in a similar process to the one of
pose features, with the difference that the first relies on local
visual information instead of joint coordinates. In order to extract
localized appearance features, we multiply each channel from
the tensor of multi-task features Zp,l

t ∈ RHf×Wf×Nf by each
channel from the probability maps ht ∈ RHf×Wf×Nj (outer
product of Nf and Nj), which is learned as a byproduct of
the pose estimation process. Then, the spatial dimensions are
collapsed by a sum, resulting in the appearance features for time t
of size RNj×Nf . For a sequence of frames, we concatenate each
appearance feature map for t = {1, 2, . . . , T} resulting in the
video clip appearance features V ∈ RT×Nj×Nf . To clarify this
process, a graphical representation is shown in Fig. 5b.

We argue that our multi-task framework has two benefits
for the appearance based part: First, it is computationally very
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efficient since most part of the computations are shared. Second,
the extracted visual features are more robust since they are trained
simultaneously for different but related tasks and on different
datasets.

3.3.3 Action Features Aggregation and Re-injection
Some actions are hard to be distinguished from others only by
the high level pose representation. For example, the actions drink
water and make a phone call are very similar if we take into
account only the body joints, but are easily separated if we have
the visual information corresponding to the objects cup and phone.
On the other hand, other actions are not directly related to visual
information but with body movements, like salute and touch chest,
and in this case the pose information can provide complementary
information. In our method, we combine visual cues and body
movements by aggregating pose and appearance features. This
aggregation is a straightforward process, since both feature types
have the same spacial dimensions.

Similarly to the single frame features re-injection mechanism
discussed in section 3.2.4, our approach also allows action features
re-injection, as detailed in the action prediction part in Fig. 4. We
demonstrate in the experiments that this technique also improves
action recognition results with no additional parameters.

3.3.4 Decoupled Action Poses
Since the multi-task architecture is trained simultaneously on pose
estimation and on action recognition, we may have an effect
of competing gradients from poses and actions, specially in the
predicted poses, which are used as the output for the first task and
as the input for the second task. To mitigate that influence, late
in the training process, we propose to decouple estimated poses
(used to compute pose scores) from action poses (used by the
action recognition part) as illustrated in Fig. 6.

Multitask
features (Z)

Pose regression
+ pose loss

Action recognition
+ action loss

Wh

W'h

h'h

Fig. 6: Decoupled poses for action prediction. The weight matrix
W′

h is initialized with a copy of Wh after the main training
process. The same is done to depth maps (Wd and d).

Specifically, we first train the network on pose estimation for
about one half of the full training iterations, then we replicate
only the last layers that project the multi-task feature map Z to
heat maps and depth maps (parameters Wh and Wd), resulting
in a “copy” of probability maps h′ and depth maps d′. Note that
this replica corresponds to a simple 1 × 1 convolution from the
feature space to the number of joints, which is almost insignificant
in terms of parameters and computations. The “copy” of this layer
is a new convolutional layer with its weights W′ initialized with
W. Finally, for the remaining training, the action recognition part
propagates its loss through the replica poses. This process allows
the original pose predictions to stay specialized on the first task,
while the replicated poses absorb partially the action gradients and
are optimized accordingly to the action recognition task. Despite
the replicated poses not being directly supervised in the final
training stage (which corresponds to a few more epochs), we show
in our experiments that they still remain coherent with supervised
estimated poses.

4 EXPERIMENTS

In this section, we present quantitative and qualitative results by
evaluating the proposed method on two different tasks and on two
different modalities: human pose estimation and human action
recognition on 2D and 3D scenarios. Since our method relies
on body coordinates, we consider four publicly available datasets
mostly composed of full poses, which are detailed as follows.

4.1 Datasets
MPII Human Pose Dataset [67] is a well known 2D human pose
dataset composed of about 25K images collected from YouTube
videos. 2D poses were manually annotated with up to 16 body
joints. Human3.6M [41] is a 3D human pose dataset composed
by videos with 11 subjects performing 17 different activities, all
recorded simultaneously by 4 cameras. High precision 3D poses
were captured by a MoCap system, from which 17 body joints
are used for evaluation. Penn Action [68] is a 2D dataset for
action recognition composed by 2,326 videos with sports people
performing 15 different actions. Human poses were manually
annotated with up to 13 body joints. NTU RGB+D [69] is a large
scale 3D action recognition dataset composed by 56K videos in
Full HD with 60 actions performed by 40 different actors and
recorded by 3 cameras in 17 different configurations. Each color
video has an associated depth map video and 3D Kinect poses.

4.1.1 Evaluation Metrics
On 2D pose estimation, we evaluate our method on the MPII
validation set composed of 3K images, using the probability
of correct keypoints measure with respect to the head size
(PCKh) [67]. On 3D pose estimation, we evaluate our method
on Human3.6M by measuring the mean per joint position error
(MPJPE) after alignment of the root joint. We follow the most
common evaluation protocol [37], [39], [44], [45], [47] by taking
five subjects for training (S1, S5, S6, S7, S8) and evaluating on
two subjects (S9, S11) on one every 64 frames. We use ground
truth person bounding boxes for a fair comparison with previous
methods on single person pose estimation. We report results using
a single cropped bounding box per sample.

On action recognition, we report results using the percentage
of correct action classification score. We use the proposed eval-
uation protocol for Penn Action [49], splitting the data as 50/50
for training/testing, and the more realistic cross-subject scenario
for NTU, on which 20 subjects are used for training, and the
remaining are used for testing. Our method is evaluated on single-
clip and/or multi-clip. In the first case, we crop a single clip with
T frames in the middle of the video. In the second case, we
crop multiple video clips temporally spaced of T/2 frames one
from another, and the final predicted action is the average decision
among all clips from one video.

In our experiments, we consider two scenarios: A) 2D pose
estimation and action recognition, on which we use respectively
MPII and Penn Action datasets, and B) 3D pose estimation and
action recognition, using MPII, Human3.6M, and NTU datasets.

4.2 Implementation and Training Details
4.2.1 Function Loss
For the pose estimation task, we train the network using the elastic
net loss [70] function on predicted poses:

Lp =
1

Nj

Nj∑
j=1

(
‖p̂j − pj‖1 + ‖p̂j − pj‖22

)
, (11)
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where p̂j and pj are respectively the estimated and the ground
truth positions of the jth body joint. The same loss is used for
both 2D and 3D cases, but only available values ((x, y) for 2D
and (x, y, z) for 3D) are taken into account for backpropagation,
depending on the dataset. We use poses in the camera coordinate
system, with (x, y) laying on the image plane and z corresponding
to the depth distance, normalized in the interval [0, 1], where the
top-left image corner corresponds to (0, 0), and the bottom-right
image corner corresponds to (1, 1). For depth normalization, the
root joint is assumed to have z = 0.5, and a range of 2 meters
is used to represent the remaining joints. If a given body joint
falls outside the cropped bounding box on training, we set the
ground truth confidence flag cj to zero, otherwise we set it to
one. The ground truth confidence information is used to supervise
predicted joint confidence scores ĉ with the binary cross entropy
loss. Despite giving an additional information, the supervision
on confidence scores has negligible influence on the precision of
estimated poses. For the action recognition part, we use categorical
cross entropy loss on predicted actions.

4.2.2 Network Architecture
Since the pose estimation part is the most computationally ex-
pensive, we chose to use separable convolutions with kernel size
equals to 5× 5 for single frame layers and standard convolutions
with kernel size equals to 3 × 3 for video clip processing layers
(action recognition layers). We performed experiments with the
network architecture using 4 levels and up to 8 pyramids (L = 4
and P = 8). No further significant improvement was noticed
on pose estimation by using more than 8 pyramids. On action
recognition, this limit was observed at 4 pyramids. For that reason,
when using the full model with 8 pyramids, the action recognition
part starts only at the 5th pyramid, reducing the computational
load. In our experiments, we used normalized RGB images of size
256×256×3 as input, which are reduced to a feature map of size
32× 32× 288 by the entry flow network, corresponding to level
l = 1. At each level, the spatial resolution is reduced by a factor
of 2 and the size of features is arithmetically increased by 96. For
action recognition, we used Nv = 160 and Nv = 192 features
for Penn Action and NTU, respectively.

4.2.3 Multi-task Training
For all the experiments, we first initialize the network by training
pose estimation only, for about 32k iterations with mini batches
of 32 images (equivalent to 40 epochs on MPII). Then, all the
weights related to pose estimation are fixed and only the action
recognition part is trained for 2 and 50 epochs, respectively for
Penn Action and NTU datasets. Finally, the full network is trained
in a multi-task scenario, simultaneously for pose estimation and
action recognition, until the validation scores plateau. Training the
network on pose estimation for a few epochs provides a good
general initialization and a better convergence of the action recog-
nition part. The intermediate training stage of action recognition
has two objectives: first, it is useful to allow a good initialization
of the action part, since it is built on top of the pre-initialized pose
estimator; and second, it is about 3 times faster than performing
multi-task training directly while resulting in similar scores. This
process is specially useful for NTU, due to the large amount of
training data. The training procedure takes about one day for
the pose estimation initialization, then two/three days for the
remaining process for Penn Action/NTU, using a desktop GeForce
GTX 1080Ti GPU.

For initialization on pose estimation, the network was opti-
mized with RMSprop and initial learning rate of 0.001. For action
and multi-task training, we use RMSprop for Penn Action with
learning rate reduced by a factor of 0.1 after 15 and 25 epochs,
and, for NTU, a vanilla SGD with Nesterov momentum of 0.9 and
initial learning rate of 0.01, reduced by a factor of 0.1 after 50 and
55 epochs. We weight the loss on body joint confidence scores and
action estimations by a factor of 0.01, since the gradients from the
cross entropy loss are much stronger than the gradients from the
elastic net loss on pose estimation. This parameter was empirically
chosen and we did not observe a significant variation in the results
with slightly different values (e.g., with 0.02). Each iteration is
performed on 4 batches of 8 frames, composed of random images
for pose estimation and video clips for action. We train the model
by alternating one batch containing pose estimation samples only
and another batch containing action samples only. This strategy
resulted in slightly better results compared to batches composed
of mixed pose and action samples. We augment training data by
performing random rotations from −40◦ to +40◦, scaling from
0.7 to 1.3, video temporal subsampling by a factor from 3 to
10, random horizontal flipping, and random color shifting. On
evaluation, we also subsampled Penn Action/NTU videos by a
factor of 6/8, respectively.

4.3 Evaluation on 3D Pose Estimation
Our results compared to previous approaches are shown in Ta-
ble 1. Our multi-task method achieves the state-of-the-art average
prediction error of 48.6 millimeters on Human3.6M for 3D pose
estimation, improving our previous work [9] by 4.6 mm. Consider-
ing only the pose estimation task, our average error is 49.5 mm, 0.9
mm higher than the multi-tasking result, which shows the benefit
of multi-task training for 3D pose estimation. For the activity “Sit
down”, which is the most challenging case, we improve previous
methods (e.g. Yang et al. [47]) by 21 mm. The generalization
of our method is demonstrated by qualitative results of 3D pose
estimation for all datasets in Fig. 10. Note that a single model and
a single training procedure was used to produce all the images and
scores, including 3D pose estimation and 3D action recognition,
as discussed in the following.

4.4 Evaluation on Action Recognition
For action recognition, we evaluate our method considering both
2D and 3D scenarios. For the first, a single model was trained
using MPII for single frames (pose estimation) and Penn Action
for video clips. In the second scenario, we use Human3.6M for
3D pose supervision, MPII for data augmentation, and NTU video
clips for action. Similarly, a single model was trained for all the
reported 3D pose and action results.

For 2D, the pose estimation was trained using mixed data
from MPII (80%) and Penn Action (20%), using 16 body joints.
Results are shown in Table 2. We reached the state-of-the-art
action classification score of 98.7% on Penn Action, improving
our previous work [9] by 1.3%. Our method outperformed all
previous methods, including the ones using ground truth (manually
annotated) poses.

For 3D, we trained our multi-task network using mixed data
from Human3.6M (50%), MPII (37.5%) and NTU (12.5%) for
pose estimation and NTU video clips for action recognition. Our
results compared to previous methods are presented in Table 3.
Our approach reached 89.9% of correctly classified actions on



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST XXXX 8

TABLE 1: Comparison with previous work on Human3.6M evaluated using the mean per joint position error (MPJPE, in millimeters)
metric on reconstructed poses.

Methods Direction Discuss Eat Greet Phone Posing Purchase Sitting
Pavlakos et al. [45] 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7
Mehta et al. [39]? 52.5 63.8 55.4 62.3 71.8 52.6 72.2 86.2
Martinez et al. [37] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0
Sun et al. [44]† 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Yang et al. [47]† 51.5 58.9 50.4 57.0 62.1 49.8 52.7 69.2
Sun et al. [46]† – – – – – – – –
3D heat maps (ours [9], only H36M) 61.7 63.5 56.1 60.1 60.0 57.6 64.6 75.1
3D heat maps (ours [9])† 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5
Ours (single-task)† 43.7 48.8 45.6 46.2 49.3 43.5 46.0 56.8
Ours (multi-task)† 43.2 48.6 44.1 45.9 48.2 43.5 45.5 57.1
Methods Sit Down Smoke Photo Wait Walk Walk Dog Walk Pair Average
Pavlakos et al. [45] 96.5 71.4 76.9 65.8 59.1 74.9 63.2 71.9
Mehta et al. [39]? 120.0 66.0 79.8 63.9 48.9 76.8 53.7 68.6
Martinez et al. [37] 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Sun et al. [44] † 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Yang et al. [47]† 85.2 57.4 65.4 58.4 60.1 43.6 47.7 58.6
Sun et al. [46]† – – – – – – – 49.6
3D heat maps (ours [9], only H36M) 95.4 63.4 73.3 57.0 48.2 66.8 55.1 63.8
3D heat maps (ours [9])† 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2
Ours (single-task)† 67.8 50.5 57.9 43.4 40.5 53.2 45.6 49.5
Ours (multi-task)† 64.2 50.6 53.8 44.2 40.0 51.1 44.0 48.6

? Method not using ground-truth bounding boxes.
† Methods using extra 2D data for training.

TABLE 2: Results for action recognition on Penn Action. Results
are given as the percentage of correctly classified actions. Our
method uses extra 2D pose data from MPII for training.

Methods RGB Optical
Flow

Annot.
poses

Estimated
poses Acc.

Nie et al. [49] X - - X 85.5

Iqbal et al. [3] - - - X 79.0
X X - X 92.9

Cao et al. [51] X - X - 98.1
X - - X 95.3

Du et al. [54]? X X - X 97.4

Liu et al. [57]
† X - X - 98.2

X - - X 91.4

Our previous work [9] X - X - 98.6
X - - X 97.4

Ours (single-clip) X - - X 98.2
Ours (multi-clip) X - - X 98.7

? Including UCF101 data; † using add. deep features.

NTU, which is a strong result considering the hard task of
classifying among 60 different actions in the cross-subject split.
Our method improves previous results by at least 3.3% and our
previous work by 4.4%, which shows the effectiveness of the
proposed approach.

4.5 Ablation Study

4.5.1 Network Design
We performed several experiments on the proposed network archi-
tecture in order to identify its best arrangement for solving both
tasks with the best performance vs computational cost trade-off. In
Table 4, we show the results on 2D pose estimation and on action
recognition considering different network layouts. For example,
in the first line, a single PB is used at pyramid 1 and level 2. In
the second line, a pair of full downscaling and upscaling pyramids

TABLE 3: Comparison results on NTU cross-subject for 3D
action recognition. Results are given as the percentage of correctly
classified actions. Our method uses extra pose data from MPII and
H36M for training.

Methods RGB Kinect
poses

Estimated
poses

Acc. cross
subject

Shahroudy et al. [69] - X - 62.9
Liu et al. [60] - X - 69.2
Song et al. [62] - X - 73.4
Liu et al. [61] - X - 74.4
Shahroudy et al. [63] X X - 74.9
Liu et al. [57] X - X 78.8

Baradel et al. [64]
- X - 77.1
X ? - 75.6
X X - 84.8

Baradel et al. [71] - - - 86.6
Our previous work [9] X - X 85.5
Ours X - X 89.9

? Ground truth poses used on test to select visual features.

are used, but with supervision only at the last PB. This results
in 97.5% of accuracy on action recognition and 84.2% on PCKh
for pose estimation. An equivalent network is used in the third
line, but then with supervision on all PB blocks, which brings an
improvement of 0.9% on pose and 0.6% on action, with the same
number of parameters. Note that the networks from the second and
third lines are exactly the same, but in the first case, only the last
PB is supervised, while in the latter all PB receive supervision.
Finally, the last line shows results with the full network, reaching
88.3% on MPII and 98.2% on Penn Action (single-clip), with a
single multi-task model.

4.5.2 Pose and Appearance Features
The proposed method benefits from both pose and appearance
features, which are complementary to the action recognition task.
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TABLE 4: The influence of the network architecture on pose
estimation and on action recognition, evaluated respectively on
MPII validation set (PCKh@0.5, single-crop) and on Penn Action
(classification accuracy, single-clip). Single-PB are indexed by
pyramid p and level l, and P and L represent the total number
of pyramids and levels on Multi-PB scheme.

Network Param. No. PB PCKh Action acc.
Single-PB (p = 1, l = 2) 2M 1 74.3 97.2
Single-PB (p = 2, l = 1) 10M 1 84.2 97.5
Multi-PB (P = 2, L = 4) 10M 6 85.1 98.1
Multi-PB (P = 8, L = 4) 26M 24 88.3 98.2

Additionally, the confidence score ĉ is also complementary to pose
itself and leads to marginal action recognition gains if used to
weight pose predictions. Similar results are achieved if confidence
scores are concatenated to poses. In Table 5, we present results
on pose estimation and on action recognition for different features
extraction strategies. Considering pose features or appearance fea-
tures alone, the results on Penn Action are respectively 97.4% and
97.9%, respectively 0.7% and 0.2% lower than combined features.
We also show in the last row the influence of decoupled action
poses, resulting in a small gain of 0.1% on action scores and 0.3%
on pose estimation, which shows that decoupling action poses
brings additional improvements, specially for pose estimation.
When not considering decoupled poses, note that the best score
on pose estimation happens when poses are not directly used for
action, which also supports the evidence of competing losses.

TABLE 5: Results with pose and appearance features alone,
combined pose and appearance features, and decoupled poses.
Experiments with a Multi-PB network with P = 2 and L = 4.

Action features MPII val. PCKh PennAction Acc.
Pose features only 84.9 97.7
Appearance features only 85.2 97.9
Combined 85.1 98.1
Combined + decoupled poses 85.4 98.2

Fig. 7: Two sequences of RGB images (top), predicted supervised
poses (middle), and decoupled action poses (bottom).

Additionally, we can observe that decoupled action poses
remain coherent with supervised poses, as shown in Fig. 7, which
suggests that the initial pose supervision is a good initialization
overall. Nonetheless, in some cases, decoupled probability maps
can drift to regions in the image more relevant for action recogni-
tion, as illustrated in Fig. 8. For example, feet heat maps can drift
to objects in the hands, since the last is more informative with
respect to the performed action.

Fig. 8: Drift of decoupled probability maps from their original
positions (head, hands and feet) used as an attention mechanism
for appearance features extraction. Bounding boxes are drawn
here only to highlight the regions with high responses. Each color
corresponds to a specific body part (see Fig. 7).

4.5.3 Single-task vs. multi-task
In this part we compare the results on human action recognition
considering single-task and multi-task training protocols. In Ta-
ble 6, in the first row, are shown results on PennAction and NTU
datasets considering training with action supervision only, i.e. ,
with the full network architecture (including pose estimation lay-
ers) but without pose supervision. In the second row we show the
results when using the manually annotated poses from PennAction
for pose supervision. We did not use NTU (Kinect) poses for
supervision since they are very noisy. From this, we can notice an
improvement of almost 10% on PennAction, only by adding pose
supervision. When mixing with MPII data, it further increases
0.8%. On NTU, multi-tasking improves a significant 1.9%. We
believe that the improvement of multi-tasking on PennAction is
much more evident because this is a small dataset, therefore it is
difficult to learn good representations for complex actions without
explicit pose information. On the contrary, NTU is a large scale
dataset, more suitable for learning approaches. As a consequence,
the gap between single and multi-task on NTU is smaller, but still
relevant.

TABLE 6: Results comparing the effect of single and multi-task
training for action recognition.

Training protocol PennAction Acc. NTU Acc.
Single-task (action only) 87.5 88.0
Multi-task (same dataset) 97.4 –
Multi-task (+MPII +H36M for 3D) 98.2 89.9

4.5.4 Inference Speed
Once the network is trained, it can be easily cut to perform faster
inferences. For instance, the full model with 8 pyramids can be
cut at the 4th or 2nd pyramids, which generally degrades the
performance, but allows faster predictions. To show the trade-
off between precision and speed, we cut the trained multi-task
model at different prediction blocks and estimate the throughput
in frames per second (FPS), evaluating pose estimation precision
and action recognition classification accuracy. We consider mini
batches with 16 images for pose estimation and single video clips
of 8 frames for action. The results are shown in Fig. 9. For both
2D and 3D scenarios, the best predictions are at more than 90
FPS. For the 3D scenario, pose estimation on Human3.6M can
be performed at more than 180 FPS and still reach a competitive
result of 57.3 millimeters error, while for action recognition on
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Fig. 9: Inference speed of the proposed method considering 2D (a) and 3D (b,c) scenarios. A single multi-task model was trained
for each scenario. The trained models were cut a posteriori for inference analysis. Markers with gradient colors from purple to red
represent respectively network inferences from faster to slower.

NTU, at the same speed, we still obtain state of the art results with
87.7% of correctly classified actions, or even comparable results
with recent approaches at more than 240 FPS. Finally, we show
our results for both 2D and 3D scenarios compared to previous
methods in Table 7, considering different inference speed. Note
that our method is the only to perform both pose and action
estimation in a single prediction, while achieving state-of-the-art
results at a very high speed.

TABLE 7: Results on all tasks with the proposed multi-task
model compared to recent approaches using RGB images and/or
estimated poses on MPII PCKh validation set (higher is better),
Human3.6M MPJPE (lower is better), Penn Action and NTU
RGB+D action classification accuracy (higher is better).

Methods MPII
PCKh

H36M
MPJPE

PennAction
half/half

NTU RGB+D
Cross-sub.

Pavlakos et al. [45] - 71.9 - -
Mehta et al. [39] - 68.6 - -
Martinez et al. [37] - 62.9 - -
Sun et al. [44] - 59.1 - -
Yang et al. [47] 88.6 58.6 - -
Sun et al. [46] 87.3 49.6 - -
Nie et al. [49] - - 85.5 -
Iqbal et al. [3] - - 92.9 -
Cao et al. [51] - - 95.3 -
Du et al. [54] - - 97.4 -
Shahroudy et al. [63] - - - 74.9
Baradel et al. [71] - - - 86.6
Ours [9] @ 85 fps - 53.2 97.4 85.5
Ours 2D @ 240 fps 85.5 - 97.5 -
Ours 2D @ 120 fps 88.3 - 98.7 -
Ours 3D @ 240 fps 80.7 63.9 - 86.6
Ours 3D @ 180 fps 83.8 57.3 - 87.7
Ours 3D @ 90 fps 87.0 48.6 - 89.9

5 CONCLUSION

In this work, we presented a new approach for human pose esti-
mation and action recognition using multi-task deep learning. The
proposed method for 3D pose provides highly precise estimations
with low resolution feature maps and departs from requiring the
expensive volumetric heat maps by predicting specialized depth
maps per body joints. The proposed CNN architecture, along with

the pose regression method, allows multi-scale pose and action
supervision and re-injection, resulting in a highly efficient densely
supervised approach. Our method can be trained with mixed 2D
and 3D data, benefiting from precise indoor 3D data, as well as
“in-the-wild” images manually annotated with 2D poses. This has
demonstrated significant improvements for 3D pose estimation.
The proposed method can also be trained with single frames and
video clips simultaneously and in a seamless way.

More importantly, we show that the hard problem of multi-
tasking human poses and action recognition can be handled by a
carefully designed architecture, resulting in a better solution for
each task than learning them separately. In addition, we show that
joint learning human poses results in consistent improvement of
action recognition. Finally, with a single training procedure, our
multi-task model can be cut at different levels for pose and action
predictions, resulting in a highly scalable approach.
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2015, and the Ph.D. in Computer Science from
the Cergy Paris Université (France), in 2019. His
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