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Abstract

In this paper, a new framework to design high-order approximations in the context of node-centered Finite

Volumes on simplicial meshes is proposed. The major novelty of this method is that it relies on very simple and

compact differential operators, which is a critical point to achieve good performances in the High-Performance

Computing (HPC) context. This method is based on deconvolution between nodal and volume-average values

which can be conducted to any order. The interest of the new method is illustrated through three different

applications : mesh-to-mesh interpolation, levelset curvature computation and numerical scheme for convection.

Higher-order can also be achieved within the present framework by introducing high-rank tensors. Although

these tensors feature many symmetries, their manipulation can quickly become an overwhelming task. For this

reason and without loss of generality, the present papers is limited to third-order expansion. This method,

although tightly connected to the k-exact schemes theory, does not rely on successive corrections: the high-order

property is obtained in a single operation, which makes them more attractive in terms of performances.

Keywords— Deconvolution, Node-Centered Finite Volume, Simplical mesh, High-order approximation, Poly-

nomial reconstruction, Compact stencil
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1 Motivation and objectives

The Finite Volume Method (FVM) has become a major tool in CFD in the last decades, mostly because of its

unique feature of naturally enforcing exact conservation at the discrete level. In this framework, the quantities

of interest are the average of the transported variables over Control Volumes (CV). As a consequence, pointwise

quantities are not directly available. Traditionally, the direct use of the cell-averaged quantities in the discretization

leads to a first-order accurate scheme. But such a scheme is not accurate enough for most industrial and research

applications. Following the procedure proposed by Van Leer [39], a second-order accuracy can be recovered if the

flux integral over the control-volume surface is not directly expressed from the cell-centered data: a piece-wise

linear extrapolation, eventually coupled with a slope limiter, is mandatory. Obtaining any other scheme accuracy

is possible if the error between the exact solution and the numerical approximation at any point (or integrated over

a CV) is of sufficient order. This numerical approximation can be estimated by combining and integrating several

Taylor expansions.

This error estimation is illustrated hereafter by considering the transport equation of a scalar φ at a constant

velocity u in conservative form:
∂φ

∂t
+ ∇ · (φu) = 0. (1)

The finite-volume formulation of the problem is obtained by integrating this partial derivative equation (PDE)

over a generic control-volume ΩI and by commuting the volume averaging and time differentiation operators (only

time-independent meshes are considered here):

dφ
ΩI

dt
+

1

VI

∫
ΩI

∇ · (φu) dV = 0 (2)

The measure of the control volume is defined as:

VI =

∫
ΩI

dV, (3)

which represents either a volume in 3D, an area in 2D or a length in 1D. The control-volume averaging operator is

then:

φ
ΩI

=
1

VI

∫
ΩI

φdV (4)

The divergence of the convective flux in Eq. 2 may be rewritten as an integral over the control-volume boundary

∂ΩI thanks to the Gauss theorem:

dφ
ΩI

dt
+

1

VI

∫
∂ΩI

φu · dS = 0 (5)

The exact value of the flux on the boundary ∂ΩI is then estimated numerically and the quality of this approx-

imation depends on the choice of the numerical scheme. The important fact here is that Eq. 5 is an evolution

equation for the control-volume average φ
ΩI

rather than for the nodal value φI or for any other pointwise value.

However, higher-order schemes require higher-order surface integrals than need either higher-order quadrature rules

or moments. In any case, pointwise values of φ or moments based on Taylor series expansions must be defined.

For example, the second-order integral approximation only needs the evaluation of φ at the face center. Even this

very simple formulation highlights the necessity to recover pointwise values of φ from the integrated quantities φ
ΩI

.

This process is known as deconvolution.
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Deconvolution is an important step in building of high-order Finite Volume approximations. With the standard

k−exact high-order reconstruction, the computation of the polynomial coefficients for approximating the unknowns

is possible through the introduction of an extended stencil: the stencil must contain enough control volumes to

recover an invertible system where polynomial coefficients are the unknowns. This process is not new: introduced by

Barth & Frederickson [3], it was for instance considered by Abgrall [1], Ollivier-Gooch et al. [27, 29, 28, 37], Mandal

et al. [23], ... Generally, the stencil used to compute the scheme contains more control volumes than the required

number of polynomial coefficients and the computation of the polynomial coefficients is performed by means of a

least-squares method over a larger stencil. Recently, Sejekan et al. [36] proposed an improvement of the least-squares

method based on the H1 projection instead of the L2 projection in order to derive an accurate gradient usable for

the viscous flux computation. The Monotone Optimal Order-Detection (MOOD) technique [6, 10, 11] follows the

same principle for defining local polynomial approximation and mostly differs with k−exact approximation by the

polynomial basis.

The definition of a large stencil in a massively parallel framework is the main bottleneck to maintain high

performance and an alternative approach is the Successive-Correction k−exact approximation. Introduced by

Brenner, Haider, Courbet, Croisille and co-authors for cell-centered finite-volume discretization in several papers [17,

18, 19, 32, 33, 20, 25], the procedure only needs the smallest possible stencil (local cell and direct neighbors by

the faces). Starting from the definition of a discrete gradient operator, the procedure consists in analysing the

truncation error of the gradient in order to correct it and to increase its accuracy. Then, the discrete gradient

operator is applied to the gradient in order to obtain second-order derivatives. Here again, an analysis of the

truncation error of the second-order derivatives enables to define a more accurate polynomial representation of the

unknowns. In practice, the stencil is reduced to the minimum but the number of fields to exchange in a parallel

environment increases. To the author’s knowledge, such a correction procedure was never applied to node-centered

formulations.

The Compact Least-Squares Finite-Volume (CLSFV) method [40, 41, 42, 43] gives a framework to define a

high-order polynomial of the unknown but it differs with k−exact and MOOD methods by the procedure to build

the approximation. Here, starting from the smallest stencil (current cell and its direct neighbors by faces), it is

required that the cell averages of the reconstruction polynomial and its various orders of spatial derivatives are

conserved on the stencil. This leads to inverting a linear system of equations.

In the context of cell-centered formulations, Betchen and Straatman [4] define a new reconstruction method to

deal with accurate gradient and Hessian. Their idea is simple: a third-order accurate representation of unknowns

needs a second-order accurate gradient and a first-order accurate Hessian. To obtain these operators, Betchen and

Straatman write a system of equations valid over the whole computational mesh and invert it using an under-

relaxed block-Jacobi method. Such a method does not cope with our requirements for HPC since inverting the

system cannot be performed locally, by a cell-wise formulation.

The aim of this work is to present a framework that can provide a third-order polynomial reconstruction of a field

from CV-averaged quantities on any simplicial mesh. From this polynomial reconstruction, it is then straightforward

to find accurate approximations of the field, but also of its gradients and its Hessian. It will be shown that it is

possible to achieve a second-order accuracy on the field by only considering the direct neighbors of the mesh
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vertices. Moreover, with this same connectivity, it is possible to obtain a third-order accuracy in most situations,

with the noticeable exception of boundaries. Obtaining third-order accuracy with such a compact stencil is clearly

an advantage in the context of HPC applications, where parallel performance is an issue. Moreover, it is possible

to extend the present method to recover third-order accuracy near the interfaces. Finally, the extension of the

present method to higher-order reconstructions is straightforward from a theoretical point of view. However, the

computational cost and the mathematical complexity associated to higher-order methods can become difficult to

handle and for this reason, only second- and third-order methods will be presented here.

Another important issue that will be addressed in this work is the quality of the approximations of the classical

FV discrete operators on a generic (i.e. not regular) mesh. We will show that in node-centered codes, most discrete

gradient operators are not consistent or first-order only in the best case. Similarly, most discrete Hessian operators

will usually diverge when the mesh is refined. The present framework proposes to overcome these limitations by

exhibiting discrete operators that provide a second-order accuracy on gradient and a first-order accuracy for Hessian

on any mesh.

The applications of this deconvolution technique for Node-Centered Finite-Volumes codes are numerous and

only a few of them will be presented here to illustrate the ability of this framework to achieve high-order accuracy

in any situation:

• High-precision interpolation

• Curvature computation of a levelset function for two phase flows simulations

• High-order numerical schemes for convection.

2 A framework for deconvolution of node-centered FVM

2.1 Taylor series expansion and grid moments

Assuming a sufficiently smooth scalar field, any value φ(x) can be approximated anywhere in the domain by

performing a Taylor series expansion around any node I:

φ(x) = φI + (∇φI) ·∆I(x) +
1

2
(∇∇φI) : (∆I(x)⊗∆I(x)) +O(∆3) (6)

where ∆I(x) = x− xI . The ⊗ and ∇ symbols have their usual meaning: i.e. the tensor product and the gradient

operator, respectively. Thus ∇φI is the gradient of φ estimated at xI and ∇∇φI is the Hessian of φ, also estimated

at xI .

In the context of the FVM, the averaging operator defined in Eq. 4 is then applied to this expression to provide

a first relation between the nodal and the averaged value of φ:

φ
ΩI

= φI + (∇φI) ·∆I
ΩI

+
1

2
(∇∇φI) :

(
∆I ⊗∆I

ΩI
)

+O(∆3) (7)

where

∆I
ΩI

=
1

VI

∫
ΩI

(x− xI) dV = O(∆) (8)
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∆I ⊗∆I
ΩI

=
1

VI

∫
ΩI

(x− xI)⊗ (x− xI) dV = O(∆2) (9)

are the first- and second-order moments of the control volume, respectively. These quantities are of key importance

in the present method and thus deserve a few comments. First, it can be noticed that ∆I
ΩI

is simply the vector

between the vertex I and the mass center of the control-volume I. It is thus zero when I is the center of the control

volume. Similarly, the ∆I ⊗∆I
ΩI

term is a symmetric rank 2 tensor which is never zero: its eigenvalues are the

moments of inertia of the control volume with respect to I. Then, it should be emphasized that in Eq. 7, both the

Taylor expansion and the averaging operation are performed around the same position I. This is indeed a very

special case and by no means a requirement: for example, one can also define ∆I
ΩJ

by integrating the function

∆I(x) over a different control volume ΩJ .

As already mentioned, it is straightforward to extend Eq. 7 to higher order by defining tensors ∆⊗3
I

ΩJ

, ∆⊗4
I

ΩJ

,

and so on. Of course, the amount of data associated to these tensors increases substantially for higher orders but it

can also be noted that these tensors are geometric quantities which can be pre-computed and stored once and for

all: the CPU cost associated to their evaluation is thus not an issue, provided that they can be stored in memory.

Moreover, these high-rank tensors have the maximal symmetry property: the amount of data which must be stored

to describe them remains tractable for practical applications.

The technical details presenting the computation of these moments are gathered in Appendix A.

2.2 Control-Volumes, mesh quality and discrete differential operators

A simple inspection of Eq. 7 shows that the evaluation of the discrete differential operators at node I and the choice

of the control-volume around this node will have a major impact on the deconvolution procedure. The aim of this

section is to clarify these two points.

In the context of the Node-Centered approach, the CV are the cells of the dual mesh. Several methods have been

described extensively in the literature to build a dual mesh from the primal mesh (barycentric, Voronöı, . . . ) [26]

so this choice must be clearly stated. Here, the barycentric method is used, but the results can be reformulated for

other dual meshes without any major difficulty. The case of non-simplicial meshes will not be discussed here as it is

always possible to decompose any element into a finite number of simplices in a pre-processing step: the proposed

framework can thus be applied to any grid, provided that such a decomposition has been applied beforehand.

Once the primal and dual meshes have been given, it is then possible to introduce the concept of mesh quality:

for a given number of elements, a regular mesh will usually provide a better accuracy than a grid containing highly

distorted elements. This concept is detailed in Appendix B where some notations and some objective criteria to

quantify the lack of regularity of a given grid are introduced.

Many discretizations of the usual differential operators have been proposed in the context of FVM [2, 31, 21].

Among them, the following pair-based formulations for the nodal gradient and Hessian are easily derived by applying

the Gauss Theorem to the dual mesh and are often used in CFD codes, either in the simple form presented hereafter

or in more complex forms to define the interface quantities [34]:

GI (Ψ) =
1

VI

∑
J∈NI

ΨI + ΨJ

2
⊗ SIJ (10)
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HI (Ψ) =
1

VI

∑
J∈NI

(
ΨJ −ΨI

‖IJ‖

)
⊗ 1

2
(nIJ ⊗ SIJ + SIJ ⊗ nIJ) (11)

where the notations refer to Fig. 1 and where NI is the set of vertices connected to I by an edge of the mesh, i.e.

the direct neighbors of I. By noting V the set of all nodes of the mesh, Ψ = (ΨI)I∈V is a vector containing values

evaluated at each node of the mesh. This quantity can either be pointwise (e.g. φ = (φI)I∈V or ∆K = (∆K(xI))I∈V)

or an average value (e.g. φ
Ω

=
(
φ

ΩI
)
I∈V

or ∆
Ω

K =
(

∆
ΩI

K

)
I∈V

). A special attention must be paid when dealing

with moments such as ∆K and ∆
Ω

K : the index K refers to the center of the function and must be kept constant in

the gradient/Hessian operators.

I

J

K

L

E

C1
C2

F2
F1

nIJ

s2IJ
s1IJ

SIJ

Figure 1: Notations for a 2D control-volume based on the barycentric dual mesh. Here, NI = {J,K,L}. Considering

the boundary face ∂ΩIJ between nodes I and J (red line), the full face vector SIJ is the sum of the two facelets

surface vectors s1
IJ and s2

IJ . In 3D, the situation is similar but the number of facelets based on an edge is not fixed

(generally 5 to 8 facelets by edge).

The discrete nodal gradient of Eq. 10 can achieve second-order accuracy on regular meshes, but is only first-order

on generic meshes as will be demonstrated below. It can also be highlighted that the adaptation of Eq. 10 to the

cell-centered Finite-Volume approach is not straightforward: the mesh interface being generally not located exactly

between cell centers, the interface quantity cannot be defined by a simple averaging procedure [38]. Similarly, it will

also be shown that the approximation of the Hessian given in Eq. 11 usually does not converge on distorted meshes.

As a consequence, these operators can not be used in Eq. 7 to achieve a third-order reconstruction of the solution on

distorted meshes. This clearly highlights the necessity to improve the calculation of these two differential operators

to perform the high-order deconvolution of the average solution.

2.3 Third-order deconvolution procedure

In this section, we detail the methodology that enables to express high-order approximations of φI , ∇φI and ∇∇φI

from φ
Ω

. To achieve this goal, some discrete operators for the nodal gradient GI and the nodal Hessian HI must

already be available, even if they are not high-order. Their exact expression is actually not very important and we
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will thus consider generic linear operators written as:

GI
(
φ

Ω
)

=
∑

J∈N?
I

φ
ΩJ ⊗ R

1

IJ (12)

HI

(
φ

Ω
)

=
∑

J∈N?
I

φ
ΩJ ⊗ R

2

IJ (13)

where N ?
I = NI

⋃ {I} is the set of direct neighbors of I augmented with I itself and R
1

IJ and R
2

IJ are generic rank

1 and rank 2 tensors. One can notice that both operators are compact, in the sense that they only imply the direct

neighbors of a given node. In the present paper, we used the approximations presented in Eq. 10 and Eq. 11 but

other choices would have provided similar results.

To be consistent, it is important that the discrete Hessian satisfies the Schwartz theorem on mixed partial

derivatives which simply requires that R
2

IJ should be symmetrical. Moreover, in what follows, we will assume that:

R n = O
(
∆−n

)
for n ∈ {1, 2} (14)

which is rather natural to ensure the operators consistency. Additional consistency conditions will be discussed

thoroughly hereafter.

Applying the volume averaging, discrete gradient and discrete Hessian operators to the Taylor expansion of φ

(Eq. 6), and using the linearity of these operators, leads to:

φ
ΩI

= φI 1
ΩI + (∇φI) ·∆I

ΩI

+
1

2
(∇∇φI) :

(
∆I ⊗∆I

ΩI
)

+O
(
∆3
)
, (15)

GI
(
φ

Ω
)

= φI GI
(

1
Ω
)

+ (∇φI) · GI
(
∆I

Ω
)

+
1

2
(∇∇φI) : GI

(
∆I ⊗∆I

Ω
)

+O
(
∆2
)
, (16)

HI

(
φ

Ω
)

= φI HI

(
1

Ω
)

+ (∇φI) · HI

(
∆I

Ω
)

+
1

2
(∇∇φI) : HI

(
∆I ⊗∆I

Ω
)

+O (∆) , (17)

It can be seen that some new high-rank tensors are involved in Eq. 16 and Eq. 17. These tensors are built by

applying the discrete gradient and Hessian operators to the vectors ∆I
Ω

and ∆I ⊗∆I
Ω

. From a practical point of

view, and thanks to Eq. 12 and Eq. 13, it is sufficient to evaluate ∆I
ΩJ

and ∆I ⊗∆I
ΩJ

for J ∈ N ?
I , and then to

compute some linear combination of these quantities at each node of the mesh.

Eq. 15, Eq. 16 and Eq. 17 can be rewritten all together as:

LI = CO3
I · HI + E (18)

where:

LI =


φ

ΩI

GI
(
φ

Ω
)

HI

(
φ

Ω
)
 , HI =

 φI
∇φI
∇∇φI

 and E =

 O (∆3
)

O
(
∆2
)

O (∆)

 (19)
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are the vectors of low-order approximations, exact nodal values and errors respectively. The 3rd-order convolution

matrix CO3
I is then:

CO3
I =


1

ΩI ∆I
ΩI 1

2∆I ⊗∆I
ΩI

GI
(

1
Ω
)
GI
(
∆I

Ω
)

1
2GI

(
∆I ⊗∆I

Ω
)

HI

(
1

Ω
)
HI

(
∆I

Ω
)

1
2HI

(
∆I ⊗∆I

Ω
)
 (20)

The previous notations rely on a consistent unfolding of the various high-rank tensors that appear in Eq. 19 and

Eq. 20 to form a classical linear system. This unfolding is actually trivial and will not be commented any further

here, except for the fact that it must take into account the various symmetries of the tensors to ensure that the

matrix CO3
I has the maximal-rank property.

This matrix is of key importance in the present work and deserves some additional comments. First it must

be noted that the ideal situation is the case where CO3
I = I: in this case the discrete and continuous variables

are identical up to the theoretical order indicated by the vector E. In this situation, no deconvolution is needed

as the discrete operators can be used directly to perform a polynomial representation of the solution in a given

control volume. The main point of the present article is to realize that such an ideal situation is never achieved,

even on regular meshes. Moreover, on distorted meshes, this matrix can depart greatly from identity and the

discrepancy between L and H can become very important. In any case, one has to solve Eq. 18 to obtain high-order

approximations of H from the available data, i.e. L.

Considering a single line of the matrix, it can be noticed that the consistency between the discrete and the

continuous part is achieved when the elements located at the left of the diagonal of CO3
I are zero and when the

diagonal term is one. Assuming that these consistency constraints are fulfilled, the order of the approximation is

then given by the position of the first non-zero term on the right of the diagonal.

Several comments can be formulated at this point. First, from the definition of the averaging operator, 1
ΩI = 1,

and thus φ
ΩI

is always a consistent approximation of φI . Another desirable (but not mandatory) property is that

the discrete gradient and Hessian satisfy the following constraints:

GI
(

1
Ω
)

= 0 and HI

(
1

Ω
)

= 0 (21)

This is for example the case for operators given in Eq. 10 and Eq. 11. These conditions state that the discrete

gradient and Hessian operators applied to a constant field must be zero, which are rather natural requirements.

The important special case of regular meshes is now considered. In the present paper, a mesh is said to be

regular around vertex I if the condition ∆J
ΩJ

= 0 holds for all J ∈ N ?
I . In this situation it can be shown that for

the discrete operators considered in Eq. 10 and Eq. 11, many terms cancel in the deconvolution matrix and then:

HI

(
φ

Ω
)

= ∇∇φI +O
(
∆h
)

(22)

GI
(
φ

Ω
)

= ∇φI +O
(
∆2
)

(23)

φ
ΩI

= φI +
1

2
HI

(
φ

Ω
)

:
(
∆I ⊗∆I

ΩI
)

(24)

where h = 2 in 1D and h = 0 otherwise. Equation 24 shows that φ
ΩI

is a second-order approximation of φI in the

case of regular meshes.
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On the other hand, it can also be shown that if the mesh is not regular those discrete operators are usually

not consistent. More specifically, in this situation, GI
(
∆I

Ω
)
6= I 2 and HI

(
∆I

Ω
)
6= 0 3 and finally φ

ΩI
is only a

first-order approximation of φI .

It is now possible to define the following new operators, simply by inverting the system defined in Eq. 18,

provided that the matrix CO3
I has the full rank property:

 φO3
I

GO2
I

HO1
I

 =
(
CO3
I

)−1 ·


φ

ΩI

GI
(
φ

Ω
)

HI

(
φ

Ω
)
 (25)

where φO3
I is a third-order approximation of φI , GO2

I a second-order approximation of ∇φI and HO1
I a first-order

approximation of ∇∇φI , respectively.

Of course it is possible to downgrade the quality of this deconvolution to obtain a second-order approximation

of φ and a first-order approximation ∇φ:[
φO2
I

GO1
I

]
=
(
CO2
I

)−1 ·
[

φ
ΩI

GI
(
φ

Ω
) ] (26)

where the second-order convolution matrix CO2
I is simply:

CO2
I =

[
1

ΩI ∆I
ΩI

GI
(

1
Ω
)
GI
(
∆I

Ω
) ] (27)

As already shown above, the first-order convolution matrix CO1
I simply reduces to the scalar 1 and thus:

φO1
I = φ

ΩI
(28)

is a first-order approximation on a generic mesh.

To conclude, if the convolution matrix CO3
I is invertible, the method described above provides a third-order

polynomial expansion of the solution around every CV of the computational domain:

φO3
I (x) = φO3

I + GO2
I ·∆I(x) +

1

2
HO1

I : (∆I(x)⊗∆I(x)) = φI +O
(
∆3
)
. (29)

2.4 Invertibility of the convolution matrix

As already mentioned, the convolution matrix CI and the deconvolution matrix C−1
I only depend on geometrical

quantities and can thus be computed and stored once for all in a pre-processing step. Their computation is thus

transparent from a performance point of view. The only additional cost associated to the deconvolution is thus a

matrix-vector product of very limited size, which can be done efficiently on all modern processors.

The main advantage of the present method should now be clear: building a third-order approximation of the

solution even on very distorted meshes only requires to compute two compact operators and to invert a small matrix

on each node of the mesh. There is no need to build long-distance stencils, which can be both difficult to implement

and numerically inefficient for massively parallel solvers. On the other hand, each node must have enough neighbors

so that the convolution matrix is invertible. Indeed, the connectivity of a given node needs to be at least equal to

the dimension of the convolution matrix (see Tab. 1 that summarizes the size of the various convolution matrices).
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For example, the third-order deconvolution matrix in 3D has 10 independent lines and columns: 1 for the field,

3 for the gradient and 6 for the Hessian (symmetric 3 × 3 matrix). It means that the set N ?
I must contain 10

elements, i.e. each node must be connected to 9 neighbors.

If this condition is not respected (for example, the nodes lying on the boundaries usually do not have that many

neighbors), several solutions can be proposed:

• it is always possible to perform a 2nd-order deconvolution at the concerned node: on a simplicial mesh of

dimension d, the cells have d+ 1 vertices and each vertex is connected to the other d vertices which are thus

direct neighbors. This implies a local loss of accuracy, but this is usually not a problem since it concerns a

limited number of nodes. Moreover, most numerical methods have an order decrease near the boundaries due

to the necessary upwinding.

• another possibility is to use the polynomial reconstruction performed on some neighboring nodes, if they have

themselves a sufficient connectivity.

• a last technique could consist in blending low-order local reconstructions into a higher-order one, as performed

in the Pn − Pm method (see [13] as the first reference on this technique).

The reason why the present framework can only be applied to node-centered Finite Volumes should now be

clear: in the cell-centered method, the number of direct neighbors is simply the number of faces of the simplex

which is always equal to d + 1. As indicated by Tab. 1, this connectivity only allows to achieve a second-order

accuracy on the scalar field.

2.5 Extension to higher orders

First, the extension of Eq. 6 to the order k is straightforward. Then, some discrete differentials operators also up to

order k must be available. Those operators can be obtained by composing the low-order first and second derivatives

as many times as needed, for example:

D(odd) = G ◦ H ◦ . . . ◦ H (30)

D(even) = H ◦H ◦ . . . ◦ H (31)

Of course, this implies that larger and larger stencils will be involved but this is anyway needed to ensure the

invertibility of the convolution matrix. Then, one has to build and to invert the convolution matrix COk
I . For this,

dimension (d) 1D 2D 3D

CO1
I 1 1 1

CO2
I 2 3 4

CO3
I 3 6 10

COn
I n n(n+1)

2
n(n+1)(n+2)

6

Table 1: Size of the convolution matrices in 1D, 2D and 3D (taking the various symmetries into account).
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the grid moments up to ∆⊗k−1
I

ΩJ

must also be pre-computed and the previously introduced differential operators

must be applied to them. When k is greater than 3, even if still feasible, this can become challenging from a

computing point of view, as it implies to deal with large amount of data for each vertex of the mesh. Moreover,

achieving third-order accuracy is usually sufficient for many practical applications.

3 Verification and applications

3.1 Numerical verification of the accuracy of the deconvolution

The present section describes the tests that are used to assess the accuracy of the deconvolution procedure described

above. In these tests, a 1D bump function is used, i.e. a compactly supported C∞ function, which depends only

on x:

φ(x) =

{
exp

(
1
R2

0

)
exp

(
1

x2−R2
0

)
if |x| < R0

0 else
(32)

In all presented results, the domain length is Lx = 1 and R0 = 0.4. The convergence order is studied by varying

the number of cells Nx in the principal direction. In 2D and in 3D, the domain width/height is always set to 30

cells to keep a reasonable CPU cost on the finest meshes: this is not an issue since the solution mostly remains 1D.

Moreover, additional tests with full 2D and 3D solutions have not shown any noticeable difference. Both regular

and distorted meshes are used to evaluate the performance of the method: those meshes are identified thanks to

the notation Md
b , where d is the dimension of the problem and b is a parameter that indicates the perturbation of

the grid, as explained in Appendix B (b = 0 indicates a regular mesh and the more b increases, the more the mesh

is deformed).

To apply the deconvolution procedure, the average value of the scalar φ
ΩI

over each CV of the mesh must be

available at the initial time:

• A first possibility to obtain this average field is to compute it analytically by integrating the bump function

on each CV. However, depending on the signal expression, this can be cumbersome, especially in 2D and 3D.

• Another option is to compute this field from Eq. 15: this requires to know the analytical expression of φ,

∇φ and ∇∇φ and the first and second order moments. This method will provide a third-order accurate

approximation of the analytical average value and is used in the present situation.

• In the general case, when the nodal data is known but not its successive derivatives, it is not a trivial task to

compute the nodal gradient up to the second order and the nodal Hessian up to the first order, to ensure a

third order reconstruction of the average data.

In this last situation, it is still possible to apply the discrete gradient and Hessian operators to Eq. 6 at point I:

GI(φ) = ∇φI · GI (∆I) + ∇∇φI : GI (∆I ⊗∆I) +O(∆2) (33)

HI(φ) = ∇φI · HI (∆I) + ∇∇φI : HI (∆I ⊗∆I) +O(∆) (34)

12



For the previous equations to hold, the assumptions GI(1) = 0 and HI(1) = 0 must be verified (Eq. 21) but this is

not an issue as already explained. Following the same path as for the averaged quantities (see Eq. 25), this can be

re-written as a linear system: [
GO2

I

HO1
I

]
=
(
C̃O3
I

)−1

·
[
GI (φ)

HI (φ)

]
(35)

where the pointwise convolution matrix C̃O3
I

C̃O3
I =

[
GI (∆I) 1

2GI (∆I ⊗∆I)

HI (∆I) 1
2HI (∆I ⊗∆I)

]
(36)

does not require the knowledge of the CV moments but only evaluation of the function ∆I(x) = x − xI for all

J ∈ N ?
I . The evaluation of this pointwise convolution matrix C̃O3

I is actually very similar to the evaluation of CO3
I

and will not be commented any further.

Once φ
ΩI

is available (by any of the aforementioned method), the discrete differential operators Eq. 10 and

Eq. 11 are applied to this averaged field and then the high-order approximations φO3
I , GO2

I and HO1
I are obtained

by solving linear system of Eq. 25.

The accuracy of the resulting quantities is then evaluated by computing L1-, L2- and L∞-norms of errors between

the theoretical values and the approximations. As expected, the convergence order is independent of the specific

norm chosen to measure the error. Thus, for the sake of conciseness, only results corresponding to L2-norm are

represented hereafter. For example, the error on the deconvoluted scalar field reads:

‖E(φ)‖2 =

√√√√ 1

VΩ

NΩ∑
I=1

(
φex
I − φO3

I

)2
VI (37)

where NΩ is the number of nodes in the domain Ω. For the differential operators, the L2-norm of error is evaluated

for each component and then the Euclidean norm and the Frobenius norm are computed for gradient and Hessian,

respectively.

Fig. 2a shows that the classical Hessian operator converges in 1D whereas it is either O (1) on regular meshes

or even O
(
∆−1

)
on distorted 2D and 3D meshes. More precisely:

• the error on the diagonal terms is O(∆2) on regular meshes and O(∆) in the general case.

• the error on the off-diagonal terms is O(1) on regular meshes and O(∆−1) in the general case.

That explains the specific behavior observed on the 1D results, as there is no off-diagonal terms in this situation.

Regarding the deconvoluted Hessian, Fig. 2b shows that it is O(∆2) on regular meshes and O(∆) on distorted

meshes, whatever the problem dimension.

Concerning the approximation of the gradient, Fig. 3 shows that, even if the classical operator is O(∆2) on

regular meshes, its convergence decreases to O(∆) in the general case. Here again, the deconvoluted gradient

remains O(∆2), no matter the grid quality.

Finally, as illustrated in Fig. 4, the averaged scalar φ
ΩI

approximates the pointwise value up to O(∆2) on regular

meshes and O(∆1) on distorted meshes. By using the new framework, the pointwise reconstruction of the scalar is

O(∆4) and O(∆3) on regular and distorted meshes respectively.
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Figure 2: Errors on Hessian for different mesh quality, without deconvolution (a) and with deconvolution (b).

Meshes quality notations are detailed in Appendix B. Black dotted lines correspond to convergence order 1, 2, 3

and 4 respectively.
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Meshes quality notations are detailed in Appendix B. Black dotted lines correspond to convergence order 1, 2, 3

and 4 respectively.
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3.2 Application to high-order interpolation

The availability of a high-order polynomial reconstruction (Eq. 29) offers the possibility to perform an accurate

interpolation of a field at any location in the domain. It permits for example to interpolate precisely any fluid

properties from an Eulerian phase towards Lagrangian particles. Another obvious application of this high-order

deconvolution framework is to perform accurate mesh-to-mesh interpolation in the context of dynamic mesh adapta-

tion [?] for example. This last point is of particular importance: dynamic mesh adaptation implies a very frequent

remeshing and any spurious numerical noise can accumulate over time and produce unexpected discrepancies if

low-accuracy interpolation is used. For completeness, it must also be mentioned that an alternative to interpolation

with polynomials is interpolation using the Radial Basis Functions. The literature is large but recent applications

concern the treatment of non conforming grid interface for high-order finite-volume schemes [22] or the coupling

computations using non conforming grids and potentially different discretization techniques [14].

The interest of the proposed framework is illustrated by applying the high-order interpolation method proposed

by Délèze et al. [8, 7]. This method is an extension of the Hermite interpolation method to 2D and 3D simplices

which relies on the construction of a local finite-element basis in each cell of the mesh. This leads to interpolation

functions which are C1-differentiable everywhere, and C2-differentiable almost everywhere and that can achieve

third-order convergence order. It is particularly interesting as it ensures the continuity of the fluid properties (and

of their first derivative) when Lagrangian particles cross an element boundary. To achieve these desirable properties,

the Délèze method requires to have the value of the field and its gradient at each vertex of the mesh with respectively

3rd and 2nd order accuracy.

To illustrate this application, the bump function presented in section 3.1 is interpolated from a source mesh

consisting of a manufactured distorted grid using perturbation parameter b = 0.2 (see Appendix B) towards a

regular destination grid, i.e. b = 0. Both grids contain the same number of nodes (which do not coincide) and the

convergence order is studied by refining the source and the destination grid simultaneously.

Fig. 5 shows the L2-norm of the error on the solution obtained on the destination grid by the interpolation

method proposed by Délèze. This figure shows three different datasets:

• The curve labeled analytical is obtained by using the analytical values for the data and its gradient in the

formula of Délèze. As expected, a 3rd order accuracy is obtained.

• The low-order curve corresponds to the results obtained when replacing the analytical values of φI and ∇φI

by the averaged data φ
ΩI

and its low-order gradient GI
(
φ

Ω
)

. It can be seen than in this situation, the method

degenerates to 1st-order.

• Finally, the high-order set is obtained by using the deconvoluted values φO3
I and GO2

I : in this situation, the

3rd-order theoretical convergence is recovered, with however a lower precision than the first method which

uses the analytical values.
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dotted lines correspond to convergence order 1, 2 and 3 respectively.

3.3 Application to levelset curvature computation

In many multiphase applications, the interface is treated by the mean of the levelset method [30]: in this case,

an accurate evaluation of geometrical quantities is requested to ensure the consistency of the simulation. For

example, computing the pressure drop between the two phases with Young-Laplace equation requires to evaluate

the curvature of the interface. However, computing a consistent curvature on a distorted mesh is a common issue

in multiphase flows [9, 5, 24].

In what follows, the levelset function φ can represent either the hyperbolic tangent or the signed distance function

depending on the considered levelset method. In both cases, the normal to the interface is defined as:

n =
∇φ

‖∇φ‖ . (38)

and the the total curvature of the interface, i.e. the sum of the main curvatures, reads:

K = −∇ · n. (39)

As summarized by Goldman [15], various formulations are available to evaluate numerically this curvature. All these

formulations are equivalent when considering continuous differential operators but can show significant differences

when evaluated numerically. In this paper we focus on two formulations.

The first one is a two-step method, based on the preliminary computation of the normal following Eq. 38. Then,

its divergence is computed as the trace of the gradient of the normal:

Knc = −tr(∇n) = −tr

(
∇ ∇φ

‖∇φ‖

)
(40)
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This method requires two applications of the gradient operator to the levelset function and is thus non-compact (as

indicated by the subscript nc). The second formulation is expressed as a function of the gradient and the Hessian

of the levelset function.

Kc =
∇∇φ

‖∇φ‖ :

(
∇φ⊗∇φ

‖∇φ‖2 − I 2

)
(41)

which requires to evaluate the discrete gradient and Hessian to compute the curvature but only implies the direct

neighbors: this method is thus named compact, as indicated by the subscript c.

Let us point out that with both formulations, due to the discrete operators definition, the curvature is known

at the mesh vertices. On the other hand, most numerical methods that solve the Laplace equation on the pressure

need to evaluate the pressure drop at interface position, which generally does not coincide to a node position.

In the case of classical FVM framework, regardless the formulation employed (Eq. 40 or Eq. 41), the curvature

is linearly interpolated at interface location Γ with the usual formula:

KΓ = θIJKI + (1− θIJ)KJ , (42)

where:

θIJ =
‖∆I(xΓ)‖
‖∆I(xJ)‖ , (43)

In this last equation, ∆I(xΓ) is the vector between node I and interface Γ and ∆I(xJ) is the vector between node

I and node J .

When using the new high-order FVM framework, the deconvoluted gradient and Hessian are first evaluated on

both sides of each edge [IJ ] that crosses the interface, i.e. at node I and J , with Eq. 25. Then their values at the

interface position Γ are computed by performing a Taylor series expansions with respect to I and J : GO2
Γ,I = GO2

I + ∆I(xΓ) ·HO1
I +O(∆2) (44a)

GO2
Γ,J = GO2

J + ∆J(xΓ) ·HO1
J +O(∆2) (44b) HO1

Γ,I = HO1
I +O(∆) (45a)

HO1
Γ,J = HO1

J +O(∆) (45b)

Finally, the values GO2
Γ and HO1

Γ that are used in Eq. 40 or in Eq. 41 to evaluate the curvature at the interface are

computed with the following linear interpolation: GO2
Γ = θIJGO2

Γ,I + (1− θIJ)GO2
Γ,J (46a)

HO1
Γ = θIJHO1

Γ,I + (1− θIJ)HO1
Γ,J (46b)

To illustrate the accuracy of both formulations, the curvature of a spherical bubble of radius R is computed for

various mesh resolutions both in 2D and in 3D, for regular (b = 0) and distorted (b = 0.2) grids. Note that the

coarser mesh Nx = 8 corresponds to R ' 2.66 ∆x. In each situation, the error is computed with the classical and

the deconvoluted discrete operators presented in section 2 and the results are gathered in Fig. 6a and Fig. 6b. More

precisely, these figures present the L2-norm of the relative error on curvature which is evaluated by comparing the

discrete value along each edge to the analytical result K0 = (d− 1)/R:

‖E(K)‖2 =

√√√√ 1

Ne

Ne∑
e=1

(Ki −K0

K0

)2

(47)
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where Ne is the number of edges of the mesh that intersect the interface.

As illustrated in Fig. 6a, the non-deconvoluted differential operators can provide a O(∆2) convergence order on

regular meshes when combined with the divergence formula (Eq. 39). But when the same methodology is applied to

a distorted grid, the numerical evaluation of the curvature fails to converge and is O(1). The compact formulation

is even worse: it only provides an O(1) error on regular grids and a O(∆−1) error on distorted meshes (the error

increases as the mesh is refined).

Alternatively, the Fig. 6b shows that, when using the new deconvoluted operators, both formulations lead to an

O(∆2) convergence on regular meshes and an O(∆) convergence on distorted grids.
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Figure 6: Errors on curvature computation using both formulations presented in section 3.3. Black dotted lines

correspond to convergence order 1, 2.

3.4 Application to flux computation for convection problems

Thanks to the deconvolution procedure exposed in section 2.3, it is possible to compute a high-order approximation

of the solution everywhere in a given CV and more particularly at its boundaries. The objective of this section is to
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show that it is possible to use this polynomial expansion to compute the convection fluxes on the CV boundaries.

This is simply achieved by performing the exact integration of this polynomial over the boundary faces. This can

be done either by a Gauss quadrature or by using the surface moments on boundary faces. Both methods give the

same result: the later method is less common but more straightforward here as it involves moments, just like the

deconvolution technique.

Starting from Eq. 5, we are looking for an accurate evalutation of the flux
∫
∂ΩI

φu · dS. This integral is

performed over the full CV boundary ∂ΩI which can always be split into a set of smaller simplicial pieces, called

facelets hereafter:

∂ΩI =
⋃
f

∂f (48)

Thanks to the linearity of the integration, it is thus sufficient to be able to compute this integral on a generic

simplicial facelet and then to sum up all the contributions to have to the full flux across the CV.

We will restrict the discussion to the evaluation of the convective flux with a constant velocity to avoid any

problems arising from the discretization of the velocity field. The case of variable velocity can be addressed by two

different level of approximations:

• the easiest and most straightforward solution is to use the value of the velocity at the center of each facelet.

If a linear interpolation is used, this method will provide a second-order approximation of the velocity.

• another option is to build a polynomial expansion of the velocity, just as for the scalar, and to compute

the flux from the product of these two polynomials. Only the terms up to order 3 are needed to provide a

third-order approximation of the flux.

First, we express that the velocity is constant over the facelet f and that this facelet has a constant normal

vector nf everywhere (because it is a simplex) so that the contribution of the facelet f to the global residual at

node I writes:

FI,f =

∫
∂f

φu · dS = u · nf

∫
∂f

φdS (49)

Then we can replace φ by its third-order approximation (Eq. 29):

FI,f = u · nf

∫
∂f

(
φO3
I + GO2

I ·∆I(x) +
1

2
HO1

I : (∆I(x)⊗∆I(x))

)
dS +O

(
∆2+d

)
(50)

We can now introduce the facelet surface (both scalar and vector):

Sf =

∫
∂f

dS and Sf = Sfn
f

(51)

and the various facelet moments with respect to I:

1
f

=
1

Sf

∫
∂f

1 dS = 1 (52)

∆I
f

=
1

Sf

∫
∂f

∆I (x) dS (53)

∆I ⊗∆I
f

=
1

Sf

∫
∂f

∆I (x)⊗∆I (x) dS (54)
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Similarly to the control-volume moments, all these quantities can be computed exactly as a function of the coordi-

nates of the simplex vertices. Now Eq. 50 becomes:

FI,f = u · Sf

(
φO3
I + GO2

I ·∆I
f

+
1

2
HO1

I :
(
∆I ⊗∆I

f
))

+O
(
∆2+d

)
(55)

It can be seen that the integrated flux is of order 2 + d, as the integration over the CV boundary introduces an

additional d− 1 order to the flux evaluation order. The residual will then be computed by dividing this integrated

flux by the measure VI of the CV and the residual will thus be of second order (for a third-order deconvolution).

However, in the context of unsteady simulations, this residual is multiplied by the timestep to obtain the solution

at the next discrete time. The error on the solution at the next iteration is thus O
(
∆2 ×∆t

)
. If this timestep is

subject to a stability constraint such as the CFL condition, it is proportional to the grid size and the error on the

solution is finally O
(
∆3
)
.

Three different flux evaluations will be examined to assess the performance of the proposed method.

The first one, named S (for Simple), approximates the convective flux on facelet f from node I with the formula:

FS
I,f = u · Sfφ

ΩI
(56)

where the usual non-deconvoluted value of the transported variable is used in the integration.

The second one uses the deconvolution limited to order 2 and is named D2:

FD2

I,f = u · Sf

(
φO2
I + GO1

I ·∆I
f
)

(57)

Finally, the method D3 uses the third-order deconvolution presented above:

FD3

I,f = u · Sf

(
φO3
I + GO2

I ·∆I
f

+
1

2
HO1

I :
(
∆I ⊗∆I

f
))

(58)

The purpose of the present work is not to design a specific numerical scheme but to show that it is possible to

build a high-order approximation of the flux at the control volume interface. The convective residuals associated

to the aforementioned fluxes will be built in very simple ways, by considering either fully upwind (Eq. 59) or fully

centered (Eq. 60) fluxes at the facelets:

F?u

f =


F?

I,f if u · IJ > 0

0 if u · IJ = 0

F?
J,f if u · IJ < 0

(59)

F?c

f =
1

2

(
F?

I,f + F?
J,f )
)

(60)

where I and J are the two vertices that share the facelet f .

The 6 methods introduced above (Sc, Su, Dc
2, Du

2 , Dc
3 and Du

3 ) have been applied to the convection of the

bump function described in section 3.1. The results presented below show the discrepancies between the numerical

solution and the analytical solution after the signal has been convected for one period. Figures 7, 8 and 9 show the

L2-norm of the errors for the same 1D, 2D and 3D domains than those described in section 3.1.

All three figures share the same trend except for one specific feature that will be discussed in detail below. It can

be first noticed that the S schemes (first lines of the figures) exhibit their usual features: when used in conjunction
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Figure 7: Errors after one turn-over in 1D using the S, D2 and D3 schemes. Dotted lines correspond to convergence

order 1, 2, 3 and 4 respectively.
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Figure 8: Errors after one turn-over in 2D using the S, D2 and D3 schemes. Dotted lines correspond to convergence

order 1, 2, 3 and 4 respectively.
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Figure 9: Errors after one turn-over in 3D using the S, D2 and D3 schemes. Dotted lines correspond to convergence

order 1, 2, 3 and 4 respectively.
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with a centered formulation (Sc), it is second-order on regular meshes with a loss of accuracy on distorted meshes.

On the other hand, the upwind formulation (Su) always produces a first-order convergence, whatever the mesh

quality. Moreover, as it will be illustrated below, it introduces a large amount of numerical dissipation.

The D2 scheme (second lines of the figures) shows a second-order convergence in all situations, whatever the

mesh quality or the amount of upwinding. This is the expected behaviour: the method was demonstrated to be

second-order in all situations. Moreover, it appears that just like in the S schemes, the D2 scheme is stable even in

the centered case and does not require any flux limiting technique.

Finally, the D3 scheme (third lines of the figures) shows a specific behavior that was not observed with the S and

D2 schemes. When used with a centered approach (Dc
3), it is unstable in 2D and in 3D (on distorted grids only):

this is illustrated by the error which increases when the mesh is refined, on the lower left graph of Fig. 9. However,

it can be observed that these instabilities totally disappear when an upwind formulation (Du
3 ) is used. This last

choice still provides a third-order convergence on all meshes for 1D, 2D and 3D domains. It can also be observed

that before becoming unstable, the Dc
3 approach offers a fourth-order convergence. As shown recently by [16], once

a high-order evaluation of the flux is available, it is always possible to apply a convex-limiting technique to mix

low-order and high-order approximations to guarantee both the precision and stability of the numerical scheme:

such a technique could be used to mix FDc
3 and FDu

3 to have fourth-order convergence where the mesh is regular

and third-order on distorted meshes.

To get a better idea of the improvement provided by the new formulation, the solution after one turn-over time

are represented in Fig 10 (for the 1D case only). The left side of the figure is obtained with the centered formulation

while the right side is obtained with the upwind scheme. The upper part corresponds to a regular mesh and the

lower part represents the solution on a distorted mesh (this can be seen directly on the position of the nodes). Both

meshes are composed of 32 cells.

The first observation is that the S schemes behaves poorly in all situations except for the Sc formulation on

regular grids. On a distorted mesh, large spurious oscillations are observed near the gradients. On the other hand,

when using the Su formulation, the signal is strongly dissipated: the peak value of the bump has been divided by

a factor of 2.

The second major observation is that both D2 and D3 schemes are very insensitive to either the mesh quality or

the amount of upwinding. In all cases, the transported signal is mush closer to the exact solution, more particularly

for the D3 scheme. All these observations are confirmed by the values of the L2-norm of the errors associated to

each signal, which are reported in the legend box of each figure.

As already mentioned, the deconvolution and flux reconstruction procedure presented here has a computational

overhead compared to simpler methods such as the S scheme. However, this additional CPU remains low, and it is

rapidly counterbalanced by the better accuracy of the method. This is illustrated by Fig. 11 which shows the error

evolution with respect to the CPU time needed to obtain the solution for the 3D convection problem. Each point

of the figure has been obtained with anM3
0.2 grid but with different resolutions: the leftmost points corresponds to

coarse grids while the rightmost points have been obtained on fine meshes. It can be observed that the Du
3 scheme

can achieve a given accuracy much faster than the low order Sc scheme.
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4 Conclusion

Increasing the order of convergence of Finite Volume schemes while keeping an efficient and compact formulation

is highly challenging. The development of such schemes requires a rigorous framework which enables to control

all the discretization errors. One of these errors comes from the fact that FV methods solve for the averaged

quantities, which need to be deconvoluted to build local higher-order polynomial reconstructions of these quantities.

Several methods were proposed in the past to deal with this issue, such as the k−exact formulation (standard and

successive correction formulations), the MOOD procedure or the Compact Least-Squares Finite-Volume method.

These procedures were mainly studied in the context of the cell-centered FV formulation and to the authors’

knowledge, less attention was paid to the node-centered FV approach.

In this paper, a deconvolution method is presented for the node-centered FV approach. It was shown that the

node-centered formulation gives a general framework to attain a third-order reconstruction, using only the direct

neighbors of a control volume in an unstructured grid composed of simplices. The reconstruction needs to solve a

linear system Ax = b of size 10x10 (in 3D) or 6x6 (in 2D) or 3x3 (in 1D) on each node of the mesh, where A depends

on local metrics only and thus can be computed and inverted in a pre-processing step. As a consequence, the CPU

overhead associated to the proposed deconvolution is very limited. Near a boundary, the number of mesh vertices

linked to a boundary node is not large enough to attain a third-order of accuracy but a second-order reconstruction

can still be obtained. If needed, third-order can also be achieved at boundaries by using the polynomial expansion

from neighbouring nodes.

Several applications from different physical domains were proposed and analyzed, namely high-order interpo-

lation, levelset curvature computation and flux computation for hyperbolic transport equations. It is shown that

the proposed technique is efficient and gives results of better quality than the standard scheme. Focusing on the

Navier-Stokes equations, another analysis should be performed in the near future to treat the diffusion scheme as
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well as the case of variable transport coefficients.
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A Grid moments computation

The technical details to compute the moments of a generic simplex are briefly explained hereafter. Let us consider a

generic d-dimensional simplex, whose vertices coordinates are noted x1, . . . , xd+1. We can first compute its volume

with the classical formula:

V =

∫
Ω

dV =
1

d!
|X| (61)

where X is a d× d matrix formed by the coordinates of d edges of the simplex that all share a common vertex, for

example:

X =

 x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1

 for d = 3 (62)

By adapting the formulas given by [35] for a tetrahedron, it is then possible to derive the first two moments of

any simplex, with respect to the origin.

M1
O =

1

V

∫
Ω

x dV (63)

=
1

d+ 1

d+1∑
i=1

xi (64)

M2
O =

1

V

∫
Ω

x⊗ x dV (65)

=
1

(d+ 1)(d+ 2)

d+1∑
i=1

d+1∑
j=1

xi ⊗ xj

+

(
d+1∑
i=1

xi ⊗ xi

) (66)

Deriving similar expressions for higher order moments, although tedious, is not a problem and can be conducted

for any simplex.

The next ingredient that is needed to compute the moments of a simplex with respect to any point I is the

translation formulas, which are given here only for orders 1 and 2 but which can be derived to any order without

any difficulty with the binomial formula in a non-commutative ring:

M1
I = M1

O − xI (67)

M2
I = M2

O − xI ⊗M1
O −M1

O ⊗ xI + xI ⊗ xI (68)

Finally, thanks to the linearity of the integration operator, the full control-volume moments can be computed

by first performing a simplicial decomposition of the CV and then by summing up the moments of the elementary

simplices which compose the control-volume (as long as they are computed with respect to the same position, I in

the present case).

B Mesh Quality

In the present work, numerical experiments are performed to assess the quality of various operators, i.e. their order

of convergence, both on regular and distorted simplicial meshes. The specific procedure that was used to build

these meshes is detailed below.
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In 1D, the procedure is straightforward: the 1D domain of size L is divided into N segments of identical size to

produce a regular mesh whose cells have an equal size of ∆ = L
N . The 1D distorted meshes are then constructed by

applying a perturbation to each node of this regular mesh. For the node I, the amplitude of this perturbation is

equal to rI∆ where rI is a random variable with a uniform distribution on [−b/2; +b/2], where b is a perturbation

parameter which is fixed for a given mesh. Those meshes will be noted M 1
b .

In 2D, a regular triangular mesh is built by performing a Friedrichs and Keller triangulation of a Cartesian mesh

(see Fig. 12-a). Following the same procedure as in 1D, this grid is then perturbed by randomly shifting its vertices

inside a square box of size b∆ surrounding each node, as depicted in Fig. 12-b. Those meshes will be noted M 2,FK
b .

Just by stretching and shifting the M 2,FK
0 mesh described above (but without modifying the connectivity), it is

also possible to build a mesh only composed of equilateral triangles (Fig. 12-c). In this situation, the control volume

is a regular hexagon: this is the most isotropic CV that can be obtained with this connectivity. This mesh can also

be perturbed by the technique described above and those meshes will be noted M 2,iso
b .

Based on the same idea, the 3D tetrahedral meshes that are used in the present paper are built in two steps.

First, a Cartesian hexahedral grid is built and its vertices are shifted randomly into a cube of size b∆. Then, each

hexahedron is divided into six tetrahedra following the method proposed by Dompierre et al. [12] (see Fig. 12-d).

Those meshes will be noted M 3
b .

It must be noticed that the perturbation parameter b can not exceed a certain value (which depends on the

initial mesh) to ensure that all the cells have a positive volume.
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Figure 12: Examples of manufactured meshes used for the convergence order tests. (a), (b) and (c) correspond to

2D situations with the same coloring conventions as above while (d) represents the procedure used to partition an

hexahedron into six tetrahedrons.
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6, 4 Place Jussieu, 75005 Paris, France, 2009.

[18] F. Haider, P. Brenner, B. Courbet, and J.-P. Croisille. Efficient implementation of high order reconstruction

in finite volume methods. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages

553–560. Springer, 2011.

[19] F. Haider, P. Brenner, B. Courbet, and J.-P. Croisille. Parallel implementation of k−exact finite volume

reconstruction on unstructured grids. In High Order Nonlinear numerical schemes for evolutionary PDEs,

pages 59–75. Springer, 2014.

[20] F. Haider, B. Courbet, and J.-P. Croisille. A high-order interpolation for the finite volume method: The

coupled least squares reconstruction. Computers & Fluids, 176:20–39, 2018.

[21] J.M. Hyman, R.J. Knapp, and J.C. Scovel. High order finite volume approximations of differential operators

on nonuniform grids. Physica D: Nonlinear Phenomena, 60(1-4):112–138, 1992.

[22] S. Le Bras, H. Deniau, and C. Bogey. A technique of flux reconstruction at the interfaces of non-conforming

grids for aeroacoustic simulations. International Journal for Numerical Methods in Fluids, aug 2019.

[23] J.C. Mandal and S.P. Rao. High resolution finite volume computations on unstructured grids using solution

dependent weighted least squares gradients. Computers & Fluids, 44:23–31, 2011.

[24] E. Marchandise, P. Geuzaine, N. Chevaugeon, and J.F. Remacle. A stabilized finite element method using a

discontinuous level set approach for the computation of bubble dynamics. Journal of Computational Physics,

225(1):949–974, 2007.

[25] A. Menasria, P. Brenner, and P. Cinnella. Improving the treatment of near-wall regions for multiple-correction

k−exact schemes. Computers & Fluids, 181:116–134, 2019.

[26] P. Mullen, P. Memari, F. De Goes, and M. Desbrun. Hot: Hodge-optimized triangulations. ACM Transactions

on Graphics, 30(4):103:1–103:12, 2011.

[27] C. Ollivier-Gooch. Quasi-eno schemes for unstructured meshes based on unlimited data-dependent least-squares

reconstruction. Journal of Computational Physics, 133:6–17, 1997.

34



[28] C.F. Ollivier-Gooch, A. Nejat, and K. Michalak. Obtaining and verifying high-order unstructured finite volume

solutions to the Euler equations. AIAA Journal, 47(9):2105–2120, 2009.

[29] C.F. Ollivier-Gooch and M. Van Altena. A high-order-accurate unstructured mesh finite-volume scheme for

the advection–diffusion equation. Journal of Computational Physics, 181(2):729–752, 2002.

[30] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-

jacobi formulations. Journal of Computational Physics, 79(1):12 – 49, 1988.

[31] I.W. Turner P.A. Jayantha. A comparison of gradient approximations for use in finite-volume computational

models for two-dimensional diffusion equations. Numerical Heat Transfer, Part B: Fundamentals, 40(5):367–

390, 2001.

[32] G. Pont. Self adaptive turbulence models for unsteady compressible flows Modèles de turbulence auto-adaptatifs
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