
HAL Id: hal-02558763
https://hal.science/hal-02558763v1

Submitted on 29 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding scheduler performance : a feature-based
approach

Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller, Baptiste Lepers,
Willy Zwaenepoel, Jean-Pierre Lozi, Nicolas Palix

To cite this version:
Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller, Baptiste Lepers, et al.. Understanding
scheduler performance : a feature-based approach. Compas 2019 - Conférence d’informatique en
Parallélisme, Architecture et Système, Jun 2019, Anglet, France. �hal-02558763�

https://hal.science/hal-02558763v1
https://hal.archives-ouvertes.fr

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

Understanding scheduler performance : a feature-based
approach
Redha Gouicem∗, Julien Sopena∗, Julia Lawall∗, Gilles Muller∗, Baptiste LepersΛ, Willy
ZwaenepoelΛ, Jean-Pierre Lozi♦, Nicolas PalixΩ

∗ Sorbonne Université, LIP6, Inria, first.last@lip6.fr
Λ University of Sydney, first.last@sydney.edu.au
♦ Oracle Labs, jean-pierre.lozi@oracle.com
Ω Université Grenoble Alpes, nicolas.palix@univ-grenoble-alpes.fr

Résumé
The thread scheduler of an operating system is a performance-critical service for applications.
However, general-purpose operating systems’ schedulers do not offer the best performance for
all applications, despite an increasing complexity in features and heuristics. Understanding the
impact of individual features on the performance of applications is a difficult task because of
these features’ entanglement. We propose a feature-based model for scheduler and an expe-
rimental methodology in order to better understand the ins and outs of process scheduling.

1. Introduction

The thread scheduler is the operating system service allocating CPU time to threads in order
to provide the best performance possible. However, the best performance cannot be achieved
in the same way for all applications. For example, it is a widespread intuition that interactive
applications usually require frequent short CPU time slices, while batch applications benefit
more from having long time slices with no interruption. General-purpose operating systems
such as Linux, FreeBSD or Windows usually provide a scheduling policy that is expected to
perform well for most applications (i.e. CFS [1], ULE [9] and the Windows system scheduler [2],
respectively). However, the development of other schedulers for Linux that perform better with
specific use cases, such as BFS [5] or MuQSS [6] that target desktop systems, shows that it is no
easy task. This claim has been recently confirmed by Bouron et al. [4] who have compared CFS
and ULE by implementing the latter in Linux and comparing it with CFS on a large number of
applications. They show that neither scheduler is always best : depending on the application,
either CFS or ULE performs better.
However, the aforementioned scheduler comparisons share a common flaw : the difficulty to
pinpoint which part of the studied schedulers makes one better than the other with a given
application. In this paper, we propose a methodology to better understand the origin of the
performance, or lack thereof, of a schedulers on specific applications. To do so, we model a
process scheduler as a feature tree [8] in order to explore multiple variations of features, such
as the choice of the thread to run on a core 1 or the load balancing algorithm. We have currently
defined twenty-two features in our model, mainly inspired by CFS and ULE, and generate 5.832

1. In this paper, a core is a synonym for a hardware thread

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

Variable featureMandatory Alternative Or CFS ULE

Scheduler

Election Time slice

RBtree Linked list FIFO Infinite Fixed Split

Dispatcher

Choice of src/dstLoad metric Executor

Placement distanceImbalance formula

nrRun nrRunBlock usedTime

SMT LLC all

all node core

Timing

Event

Idle

Period

new/unblocknever random nrCores
x ≠ y x ⩾ α% y

FIGURE 1 – Scheduler feature tree

schedulers by combining these selected features. We also propose a methodology to identify the
good and bad features of a scheduler for a given application.
This paper is organised as follows. Section 2 presents our scheduler feature model. Section 3
presents our first preliminary results. Section 4 concludes.

2. Feature-based schedulers

The formalisation of process schedulers first requires a thorough study of multiple ones. Our
study targeted the schedulers of general-purpose operating systems such as CFS and ULE. We
expose multiple recurring features in all the studied schedulers. These features are implemen-
ted in various ways in order to achieve different performance goals. We choose the feature
model described by Kang et al. [8] to represent as a formalism these recurring features. This
model describes a system as a set of features and sub-features that can be mandatory, optional
or alternatives (xor).
Figure 1 shows the resulting feature tree. Our study of existing process schedulers exposed two
main features : the choice of which thread runs on a core (election) and for how long (time slice).
In addition to these features, we must take into consideration the operating system’s design at
the scheduler level. In our case, we use the Linux kernel to implement our schedulers. On mul-
ticore systems, Linux instantiates one runqueue per core, thus raising the need for a mechanism
that places threads on cores. The thread placement policy is determined by the dispatcher. This
feature has four sub-features : load metric, timing, executor and choice of source and destination.
For each recurring feature (dashed green circle), we propose multiple implementations. The
features that are the closest to what Linux CFS or FreeBSD ULE implement are marked with
the corresponding OS logo as well. The rest of this section describes these features in detail.

Election feature. This feature determines how the scheduler chooses the next thread to run on
a core. On each core, threads are stored in a runqueue. We study two possible election mecha-
nisms : choosing the thread that has run the least in the runqueue or the thread that arrived first
in the runqueue. The first mechanism is implemented by sorting threads by ascending runtime
in the runqueue, i.e. the thread with the lowest execution time has the highest priority. This

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

allows the scheduler to be fair to interactive threads that need to be scheduled frequently for
a short period of time. We implement two versions of this mechanism : one that uses a red-
black tree [7] (called rbtree) and one that uses a circular doubly linked list (called linked
list). Red-black trees provide insertion, deletion and pop operations with an O(logn) ave-
rage complexity, but may be costly because of the rotations needed to keep the tree balanced.
Sorted doubly-linked lists provide deletion and pop operations in constant time, but insertion
is more costly (O(n)) because the list needs to be traversed to place the thread in the correct
location and keep the list sorted. CFS implements this mechanism with a red-black tree. The
second mechanism is implemented using a FIFO (First-In First-Out) circular doubly linked list.
A FIFO provides insertion, deletion and pop operations in constant time. Since threads are not
sorted by runtime but follow a first-in first-out pattern, latency sensitive applications may be
delayed if there are a lot of threads in the runqueue. ULE implements a variant of this feature
with two FIFO lists, one for interactive threads and one for batch threads.

Time slice feature. When a thread is given the right to run on a core, it owns this right for
the duration of its time slice. The time slice feature determines how this duration is computed.
We consider three alternatives for this feature. The infinite time slice alternative disables
preemption. Context switches are driven by the thread voluntarily yielding the CPU or being
blocked on a resource. This is present in batch scheduling policies. The fixed alternative allo-
cates the same time slice for all threads. In our experiments, the fixed time slice is set to 10 ms.
The split alternative allocates a time slice that depends on the number of threads present in
the runqueue.

timeSlice =

X ms if |threads| > T
Y

|threads|
ms otherwise

CFS and ULE both implement this feature with different values for X, Y and T (on our testing
systems, X = 3, Y = 24 and T = 8 for CFS, X = 4, Y = 25 and T = 6 for ULE). Our implemen-
tations follows the definition used by CFS. If the core is overloaded (i.e. more than 8 threads in
the runqueue), each thread is allocated a 3 ms time slice. Otherwise, each thread is allocated an
equal share of a 24 ms period.

Load metric feature.. This feature is used to represent the amount of work available on a
core. This metric allows the dispatcher to compare cores and decide if threads should be mi-
grated from one core to another. We consider three alternative metrics : nrRun, nrRunBlock
and usedTime. nrRun measures the load of a core as the number of threads in the runqueue
(i.e. runnable threads), as implemented in ULE. nrRunBlock takes into account the number
of runnable threads as well as the number of threads that blocked last on this core. This al-
lows the scheduler to keep track of threads that blocked on a core and will eventually wake
up on it. This can be useful when blocked threads wake up immediately since it prevents the
scheduler from migrating a distant thread to balance a load that will immediately be balanced
anyway. However, threads that stay blocked for a long time will weight on the load and may
prevent balancing even if there is no runnable thread in the runqueue. usedTime defines the
load of a thread as the proportion of time the thread spent runnable (runnableTime) regar-
ding its allocated time slice (timeSlice). This alternative also takes previous loads into account
to smooth the load over time : 80% of the load corresponds to the previous load while 20%
depends on runnableTime and timeSlice. This is a simplified version of CFS’s implementa-
tion of decaying load average. Therefore, the load of a thread at time t (loadt) is computed as
follows :

loadt = 0.8 loadt−1 + 0.2
runnableTime

timeSlice

Timing feature.. This feature is used to choose at which moment threads are migrated among
cores. We divide this feature into two sub-features : period and event. The period feature de-
termines if a load balancing operation should be triggered periodically and, if so, the period

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

between those operations. We implement three alternatives for this feature. The never alterna-
tive disables periodic load balancing altogether. The random alternative determines the time
of the next balancing event by randomly picking a value in the [0.5, 1.5] seconds range at each
periodic load balancing event. This is ULE’s implementation of this feature. The nrCores al-
ternative determines the period of load balancing depending on the number of cores on the
machine : on an n-core machine, a load balancing event is triggered every n milliseconds. CFS
implements this feature in this way.
The event feature triggers migrations when a core has no more threads to run (idle event) or
when a thread is created or wakes up from a blocking operation like a synchronous IO opera-
tion (new/unblock event). When an idle event occurs, the scheduler can either reduce the power
consumption of this core by entering a lower power state or perform idle balancing to try to
keep it busy. In the latter case, when becoming idle, a load balancing operation is triggered
on this core to allow it to find pending work on another core. This feature determines if idle
balancing is enabled or disabled. As for the new/unblock event, the scheduler can migrate the
thread concerned at this moment. CFS and ULE both balance threads during these events. The
choice of the core where the thread that triggered this event is determined by the placement
distance feature presented later on.

Executor feature.. The periodic load balancing algorithm distributes work among cores. In
order to do that, load balancing events are triggered periodically on the cores of the machine.
The executor feature determines the cores that perform load balancing operations. The all
alternative allows each core to perform periodic load balancing operations to balance itself
with another core of its own choosing. All cores can do this in parallel but may take conflicting
migration decisions and fail. CFS implements this alternative. The node alternative allows only
a single core per NUMA node to perform load balancing operations. This core performs a
load balancing operation for each core in the node. On a n-node machine, n load balancing
operations can take place in parallel, thus minimising the probability of conflicts. The core
alternative allows only one core to perform load balancing for all the cores of the machine.
ULE implements this alternative.

Choice of source/destination feature.. This feature determines how the source and destina-
tion core of a migration are determined. For migrations due to the load balancing algorithm
(either periodic or after an idle event), the destination is the core for which the load balancing
is executed. The source, however, is determined by the imbalance formula sub-feature that de-
fines if two cores need to be balanced. We implement two alternatives for this formula. The
x 6= y formula considers two cores unbalanced if their loads are different. The x > 120%y for-
mula considers two cores unbalanced if there is at least a 20% difference between their loads.
For both alternatives, the chosen source is the most loaded core among those which satisfy the
formula.
For migrations due to a new or an unblock event, the source is the current position of the
thread (or of the thread’s parent for new threads), and the destination is determined by the
placement distance sub-feature. In most cases, it is beneficial to keep a thread close to its most
recently used core because the data it was using may still be available in this core’s hardware
caches. However, this can lead to a load imbalance between cores if threads are always kept
on the same subset of cores. The placement distance feature determines how far away from its
previous location a thread can be migrated. We implement three alternatives : a thread can only
be placed on a SMT sibling (SMT), a core in its last level cache domain (LLC), or any core on the
entire machine (all). The core selected is the least loaded core among the cores that respect the
placement distance.

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

Execution time (s)

Application Threads CFS CFS + Pin Best generated scheduler

blackscholes 24 39.8± 0.41% 39.7± 0.54% 39.4± 0.21% (−1.0% w.r.t. CFS)
bodytrack 16 43.1± 1.75% 43.3± 2.59% 42.56± 0.84% (−1.3% w.r.t. CFS)
canneal 12 60.6± 0.53% 59.6± 0.53% 59.4± 1.90% (−2.0% w.r.t. CFS)
facesim 16 168.9± 0.71% 169.9± 0.80% 155.0± 0.01% (−8.2% w.r.t. CFS)
ferret 12 42.2± 0.94% 42.9± 1.01% 44.3± 0.67% (+5.0% w.r.t. CFS)
fluidanimate 16 89.2± 2.43% 83.4± 1.40% 85.1± 3.54% (−4.6% w.r.t. CFS)
streamcluster 12 108.8± 1.73% 96.8± 3.20% 96.8± 0.44% (−11.0% w.r.t. CFS)

TABLE 1 – PARSEC performance with different schedulers (lower is better)

3. Preliminary results

From the feature tree described in Section 2, we can generate 5.832 schedulers by combining the
features we identified. The idea is to test all these schedulers on a set of applications and mea-
sure their performance. To do so, we developed a new API in the Linux kernel to allow sche-
duler hotplugging and generate our schedulers with this API. In this paper, we only present
preliminary results with 486 generated schedulers (some features were fixed). We then analyse
these experimental results to figure out which features have a positive impact on application
performance.

Experimental setup. We run our experiments on a two-socket hyperthreaded Intel Xeon E5645
(12 cores, 24 threads) and 64 GiB of RAM. All machines run a Debian 8 operating system, a
Linux 4.19 kernel (patched to allow our schedulers to run) and all our benchmarks and depen-
dencies installed. Each application is always run on the same machine to avoid discrepancies
due to hardware differences. We run all our generated schedulers, as well as CFS and CFS with
thread pinning as baselines, on each application 10 times. CFS with thread pinning disables
thread migration and places threads sequentially on the machine (first thread on core 0, second
thread on core 1, and so on). These preliminary results only present the evaluation for a set of
seven PARSEC [3] applications : blackscholes, bodytrack, canneal, facesim, ferret,
fluidanimate and streamcluster.

Performance analysis. Table 1 presents the results of our benchmarks. The performance ex-
hibited in the best generated scheduler column corresponds to the best scheduler generated from
our model for the given application, excluding schedulers with too large a standard deviation.
Out of the seven tested applications, we are able to generate a scheduler that outperforms CFS
for six of them. This confirms the result of Bouron et al. [4] and scheduler developers that cur-
rently, there is no scheduler that achieves the best performance for all applications. This also
exhibits the fact that simple schedulers like the ones we generated can outperform an industry-
level scheduler such as CFS. Compared to CFS with pinned threads, our best generated sche-
duler performs similarly. This is an expected result since these applications use less threads
than available cores on the machine. This means that pinning a thread per core should be opti-
mal in terms of thread placement. However, for facesim, we are able to generate a scheduler
that outperforms CFS with pinned threads by 8.8%. This shows that local scheduling is also
important regarding performance.

Feature analysis. Now that we have a large variety of schedulers, we want to understand
which feature makes a scheduler good for a given application. There is no straightforward
way to know if a feature is always good, always bad or has no impact on the performance of

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

R F B FB
150

200

250

300

350

400

450
P
e
rf

o
rm

a
n
ce

 [
lo

w
e
r

is
 b

e
tt

e
r]

(a) Round 1
R F B FB

150

200

250

300

350

400

450

P
e
rf

o
rm

a
n
ce

 [
lo

w
e
r

is
 b

e
tt

e
r]

(b) Round 2

FIGURE 2 – Feature analysis for facesim

an application. Moreover, features can be correlated : two features can be beneficial when used
together but harmful if used separately. In this paper, we present a simple methodology to clas-
sify features as good, bad or neutral for an application, regardless of the previously mentioned
correlations.
First, we count the number of occurrences of each feature among the best performing sche-
dulers. These best schedulers are those at most 10% worst than the best scheduler (known as
B). If a feature appears in more than 80% of B, it is marked as good, and if it appears in less
than 10%, it is marked as bad. Schedulers that have all the good features and no bad feature
are in the F set. The schedulers in F and B are in the FB set. Figure 2a shows these new sets of
scheduler for facesim (to ease comprehension, points in multiple sets are only shown in the
rightmost one). To minimise the number of false positives (schedulers in F), we mark as bad the
features that are over-represented in F and underrepresented in FB. Figure 2b shows the new
sets of schedulers built after this second round. With this new decomposition, we have only 1%
of false positives, and 76% of the schedulers in B implement the features we selected as good
and bad.

4. Conclusion

In this paper, we present a new feature-based model for process schedulers in order to study the
impact of individual features on the performance of applications. We also provide some first
promising results in the identification of good features for an application thanks to a new API
that allows hotplugging schedulers in the Linux kernel. Future work will consist of applying
our methodology to a larger set of applications and try to drive the benchmarks in order to test
less schedulers without losing precision in the identification of good features.

Bibliographie

1. CFS scheduler design. – https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt. Accessed : 24-12-2018.

2. Windows Scheduler. – https://docs.microsoft.com/en-us/windows/desktop/
procthread/scheduling. Accessed : 24-12-2018.

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://docs.microsoft.com/en-us/windows/desktop/procthread/scheduling
https://docs.microsoft.com/en-us/windows/desktop/procthread/scheduling

Compas’2019 : Parallélisme/ Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

3. Bienia (C.). – Benchmarking Modern Multiprocessors. – Thèse de PhD, Princeton University,
January 2011.

4. Bouron (J.), Chevalley (S.), Lepers (B.), Zwaenepoel (W.), Gouicem (R.), Lawall (J.), Muller
(G.) et Sopena (J.). – The Battle of the Schedulers : FreeBSD ULE vs. Linux CFS. – In
USENIX Annual Technical Conference, pp. 85–96. USENIX Association, 2018.

5. Con Kolivas. – FAQs about BFS. – http://ck.kolivas.org/patches/bfs/
bfs-faq.txt. Accessed : 03-01-2019.

6. Con Kolivas. – MuQSS - The Multiple Queue Skiplist Scheduler. – http://ck.kolivas.
org/patches/muqss/sched-MuQSS.txt. Accessed : 03-01-2019.

7. Guibas (L. J.) et Sedgewick (R.). – A dichromatic framework for balanced trees. – In FOCS,
pp. 8–21. IEEE Computer Society, 1978.

8. Kang, Kyo C and Cohen, Sholom G and Hess, James A and Novak, William E and Peterson,
A Spencer. – Feature-oriented domain analysis (FODA) feasibility study. – Rapport technique,
Carnegie-Mellon University, Pittsburgh PA, Software Engineering Institute, 1990.

9. Roberson (J.). – ULE : a modern scheduler for FreeBSD. 2003.

http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt

	Introduction
	Feature-based schedulers
	Preliminary results
	Conclusion

