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ARTICLE

Plasmepsin II–III copy number accounts for bimodal
piperaquine resistance among Cambodian
Plasmodium falciparum
Selina Bopp 1, Pamela Magistrado1, Wesley Wong1, Stephen F. Schaffner 1,2, Angana Mukherjee1,

Pharath Lim 3, Mehul Dhorda4,5,6, Chanaki Amaratunga3, Charles J. Woodrow5, Elizabeth A. Ashley6,7,

Nicholas J. White5,7, Arjen M. Dondorp5,7, Rick M. Fairhurst3, Frederic Ariey8, Didier Menard9,10,11,

Dyann F. Wirth1,2 & Sarah K. Volkman1,2,12

Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria

elimination and threatens to spread to other malaria endemic areas. Understanding

mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread,

and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ

resistance in Cambodian parasites. Isolates exhibit a bimodal dose–response curve when

exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased

copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when

exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the

importance of plasmepsin II–III copy number to enhanced PPQ survival. We conjecture that

factors producing increased parasite survival under PPQ exposure in vitro may drive clinical

PPQ failures in the field.
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Drug resistance is a major threat to global efforts to control,
eliminate and eradicate malaria. Artemisinin (ART) and
related compounds are currently the main class of

antimalarial drugs; they are used in combination with partner
drugs to forestall the emergence and spread of resistance.
Accordingly, ART combination therapies (ACTs) provide first-
line drug treatment for uncomplicated Plasmodium falciparum
infection1. Recent emergence and spread of increasingly
ART-resistant parasites is evident in Southeast Asia (SEA),
characterized by increased parasite clearance half-life in
patients2,3 and increased survival in vitro when assessed by the
ring-stage survival assay4. Mutations in the Pfkelch13 locus are
associated with5 and confer ART resistance6,7. Partner drug
resistance is also evident; including emergence of piperaquine
(PPQ) resistance in Cambodia and Viet Nam8–10, and mefloquine
(MEF) resistance on the Thailand–Myanmar border11,12.
Recently, a dominant parasite lineage from Cambodia that
harbors both ART and PPQ resistance was shown to be
widespread13, heightening concern about highly resistant
parasites that threaten dihydroartemisinin (DHA)–PPQ-based
interventions such as mass drug administration.

Despite clinical evidence that DHA–PPQ treatment failures
have increased in SEA, detection of PPQ resistance has been
challenging and time consuming, with conventional in vitro
dose–response assays frequently yielding non-interpretable
data14,15. A PPQ survival assay (PSA) was developed to identify
PPQ resistance and treatment failures more easily and reliably16,
but remains time intensive owing to manual slide counting
requirements. Thus, a better phenotypic test would facilitate
tracking of PPQ resistance. Key genetic markers associated with
PPQ resistance include copy number variations (CNV) in both
the P. falciparum multidrug resistance gene 1 (pfmdr1, resistance
associated with decreased copy number)17,18 and plasmepsin II
and plasmepsin III (plasmepsin II–III, resistance associated with
increased copy number)18–20. Other loci that potentially have a
role in PPQ resistance have been identified17,18,21–23, but the
biological mechanisms underlying PPQ resistance are not well
understood.

To better understand the biology of PPQ resistance, we ana-
lyzed a set of culture-adapted Cambodian parasites from the
Tracking Resistance to Artemisinin Collaboration (TRAC), col-
lected in Pursat and Pailin in 201124 when the first cases of

recrudescence were reported19. We tested 37 culture-adapted
parasites from this collection of 157 parasites25, and found
differential response to increasing concentrations of PPQ, with
several isolates exhibiting a bimodal dose–response under high
levels of drug. We interrogated the correlation between this
bimodal response and genetic loci including copy numbers for
several genes including plasmepsin II–III and pfmdr1. To disen-
tangle the contributions of these two loci to PPQ resistance in this
population, we studied a panel of isogenic parasite isolates with a
single pfmdr1 copy but variable plasmepsin II–III CNVs, and
found that plasmepsin II–III is the major driver of PPQ resistance.
However, evidence of discordance between PPQ resistance and
plasmepsin II–III CNV suggests that additional genetic variants or
expression profiles are involved in PPQ resistance among these
Cambodian parasites. Characterizing the survival of cultured
parasites exposed to PPQ reveals changes that inform possible
mechanisms of clinical PPQ resistance evident in Cambodia. We
thus describe the biological response of these parasites to PPQ,
and investigate potential involvement of genetic loci to advance
our knowledge about emerging PPQ resistance in Cambodia.

Results
Area under the curve (AUC) as a measure of PPQ resistance.
One challenge to investigating PPQ resistance is defining the
in vitro drug resistance phenotype for PPQ. Conventional drug
susceptibility testing over 72 h to measure the half-maximal
effective concentration (EC50) resulted in incomplete parasite
killing, with several parasite isolates surviving the highest drug
concentration used. Using the PSA was not optimal since it was
very labor-intensive and prone to microscopist bias. To gain
better understanding of the biological response of parasites to
PPQ and define PPQ resistance within this Cambodian parasite
population, culture-adapted clinical isolates were subjected to a
modified dose–response approach that resulted in complete
parasite killing. To achieve complete parasite killing for all
isolates, the starting PPQ concentration was increased 100-fold
(from 0.5 to 50 μM) and the dilution series extended from 12 to
24 points. Highly synchronized ring-stage parasites (0–6 h) were
exposed to these conditions for 72 h. Under these conditions,
complete killing of all parasites at the highest drug concentration
was achieved (Fig. 1a, Supplementary Fig. 1).
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Fig. 1 Bimodal distribution of parasite response to PPQ exposure. The Area Under the Curve (AUC) value was determined using the local minima as
boundaries to describe the parasite response to PPQ. Increasing the starting concentration and number of data points for the conventional SYBR Green
dose–response curve a provided a better curve representation and brought percent survival to zero at higher concentrations. Bimodal growth was observed
with increasing PPQ concentrations for a subset of parasites. Representative PPQ-resistant parasites KH004_057 (red) and KH001_053 (orange) and a
PPQ-sensitive parasite KH004_051 (blue) are shown. Similar data for all 37 isolates tested can be found in Supplementary Fig. 1. Hypoxanthine assays
b confirmed that these dose–response results were derived from viable parasites. All drug assays were done in triplicate and repeated two times, with the
mean and s.d. shown for each concentration

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04104-z

2 NATURE COMMUNICATIONS |  (2018) 9:1769 | DOI: 10.1038/s41467-018-04104-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Investigation of responses to PPQ exposure revealed that
several isolates showed a bimodal response to PPQ rather than a
classical sigmoidal dose–response curve typical for antimalarial
drugs (Fig. 1a, Supplementary Fig. 1). Although parasites were
killed at the same rate between 1 and 10 nM PPQ concentrations,
there was a difference in how well parasites could survive under
higher drug concentrations (0.1 μM–10μM), resulting in a
second peak of survival for a subset of the parasites (Fig. 1a,
Supplementary Fig. 1). The first half of the second dose–response
peak overlaps with PPQ plasma concentrations between 30 and
300 ng/ml (or 56–560 nM) found in patients after 3 days of PPQ
treatment26. We confirmed that parasites exhibiting this high
secondary peak were also viable at high PPQ concentrations
assessed by [3H]-hypoxanthine incorporation assays (Fig. 1b),
which requires the parasite to actively synthesize DNA. As it was
impossible to determine a conventional EC50 value for PPQ
response for the bimodal curve, we calculated the AUC to
quantify the parasite survival response to PPQ. AUC was
calculated within the region of curve bounded by drug
concentrations of 0.1 μM and 30 μM, defined by the average
location of local minima flanking the second dose–response peak
in samples displaying a bimodal dose–response. Thus, the AUC
quantified the PPQ resistance phenotype for each of these
Cambodian parasites.

We observed a range of AUC values (Supplementary Fig. 1)
with a distribution that suggested three discrete groups
(Supplementary Fig. 1b), with the first breakpoint at ~35 and
the second at ~100. We compared AUC values for nine isolates
with results obtained using the published PSA16 to establish a
resistance cutoff (Supplementary Fig. 2). In contrast to the
dose–response assay, the PSA exposes 0–3 h ring-stage parasites
to 200 nM PPQ for 48 h before determining parasitemia by
microscopy. The relative growth of the drug-treated parasite
compared with non-drug-treated control parasite culture after 72
h was used to measure PPQ response with isolates demonstrating
relative growth of > 10% considered PPQ-resistant16. Among

these nine representative isolates, we found that PSA survival
rates between 0 and 30% correlated well with AUC values
(Spearman r= 0.85, p= 0.0061; Supplementary Fig. 2). Isolates
with AUC > 100 were well above the > 10% resistance cutoff
defined in the PSA and we consider them PPQ resistant (PPQR).
Isolates with AUC < 35 were all below the 10% cutoff and
considered sensitive (PPQS).

PPQ resistance is present on different genetic backgrounds.
The P. falciparum population in SEA is highly structured27,28,
with only a few distinct subpopulations or clades. Our parasite
isolates from Pursat and Pailin fall within two clades (KH1 and
KH4), both of which harbor PPQ resistance27,28. To test whether
PPQ resistance occurred on a similar genetic background, we
leveraged sequencing data for 157 parasites29 and carried out an
identity by descent (IBD) analysis for relatedness30,31. Multiple
highly related clusters (i.e., those that share > 90% of their gen-
ome) were evident, with the largest cluster containing parasites
exhibiting both intermediate (AUC= 35–100) and high levels
(AUC > 100) of PPQ responses. However, multiple PPQR para-
sites were genetically unrelated (Fig. 2). As ART resistance has
contributed to this population substructure, we investigated the
distribution of PPQ response among parasites either harboring or
lacking mutations in Pfkelch13 that confer ART resistance
(Supplementary Fig. 3). PPQR isolates contained either a C580Y
or Y493H mutation, whereas PPQS isolates were either wild-type
or had one of several different PfKelch13 mutations
(C580Y, E270K, R539T, I543T, D584V, or H719N). PPQR
isolates with intermediate phenotypes (AUC= 35–100) were
either wild-type or had a C580Y mutation. The only PfKelch13
mutation exclusively found in PPQR parasites was Y493H; and,
parasites with this mutation were distributed both among highly
related and unrelated subpopulations. This Y493H allele was
represented in 6 of the 157 isolates overall, two of which were
phenotyped for PPQ response25.
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Fig. 2 PPQR parasites detected within both highly related and unrelated parasite populations. Identity By Descent (IBD) analysis was performed on 157
parasite isolates and a gray line connects parasites sharing > 90% of their genome sequences a. Parasites that were phenotyped for PPQ resistance are
shown in color, and those not tested are shown in gray. PPQR and PPQS parasites are shown in red and blue, respectively, with the scale of AUC shown. A
representative PPQS parasite (KH004_051) is labeled blue, an intermediate PPQR parasite (KH001_053) orange, and a highly-PPQR parasite
(KH004_057) red. a shows all 157 parasites genotyped, and b shows all the phenotyped parasites from a
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These data indicate that the presence of ART resistance is not
required for PPQ resistance, but that parasites with the highest
levels of PPQ resistance were also ART resistant. Furthermore,
these data suggest that PPQ resistance occurs on multiple genetic
backgrounds in this population, rather than in a single parasite
lineage.

AUC is associated with previously identified CNVs and SNPs.
We tested for CNVs for which copy number was either positively
(plasmepsin II–III) or negatively (pfmdr1) associated with PPQ
resistance18,19. For this analysis we first used whole-genome
sequencing (WGS) data for these isolates obtained from the Pf3k
project29 to estimate pfmdr1 and plasmepsin II–III CNV
(Supplementary Data 1), and then applied quantitative real-time
PCR (qPCR) to corroborate these data among a subset of samples
to confirm both DNA copy number (Spearman: pfmdr1: r= 0.6,
p= 0.003, N= 20, plasmepsin II: r= 0.7, p= 0.0008, N= 20) and
to correlate RNA expression levels with those CNV levels. In
accordance with previous results18,19, we detected a significant
positive correlation between AUC and plasmepsin II–III copy
number (Spearman: plasmepsin II: r= 0.53, p= 0.0007; plas-
mepsin III: r= 0.54, p= 0.0006, Fig. 3, Supplementary Fig. 4) and
a negative correlation between AUC and pfmdr1 copy number
(Spearman: r=−0.55, p= 0.0004, Fig. 3). We found a positive
correlation between pfmdr1 copy number and both MEF and
lumefantrine (LUM) EC50 values (Spearman: r= 0.61 and

r= 0.70, respectively; p < 0.0001); and, a negative correlation
between pfmdr1 copy number and chloroquine (CQ) EC50

(Spearman: r=−0.34, p= 0.043, Supplementary Fig. 5). There
was no correlation between pfmdr1 copy number and ART EC50.
We also detected a significant negative correlation between
plasmepsin II–III copy number and both MEF and LUM EC50

values (Spearman: r=−0.39, p= 0.0169; and r=−0.38,
p= 0.0202; respectively), but not for CQ or ART EC50s
(Supplementary Fig. 5). Although a general association was
observed between AUC and either increased plasmepsin II–III or
decreased pfmdr1 copy number, there were discordant isolates.
Specifically, KH001_026 and KH001_081 were highly sensitive to
PPQ, but both had increased plasmepsin II–III and pfmdr1 copy
numbers (Fig. 3). On the other hand, KH001_061 was highly
resistant to PPQ, yet harbored a single copy of both plasmepsin
II–III and pfmdr1 (Fig. 3). We tested plasmepsin II and pfmdr1
expression levels in two of the discordant and two control
parasites to confirm that expression of plasmepsin II and pfmdr1
was higher in isolates with increased copy numbers
(Supplementary Fig. 6).

In addition to the CNVs, several single nucleotide polymorph-
isms (SNPs) have been associated with PPQ resistance18,19. A
candidate locus association study was carried out to test whether
AUC tracks with any of these previously identified SNPs in this
independent set of Cambodian parasite samples (Supplementary
Fig. 7). Twelve of 17 loci identified by Amato et al.18

(Supplementary Data 2) exhibited a significant association
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(unpaired Student’s t-test, p < 0.05) with AUC, strengthening
their possible role in modulating parasite responses to PPQ.
Included in these loci is the exonuclease (PF3D7_1362500)
identified as top hit by Amato et al.18. In contrast, only one of 19
SNPs reported by Agrawal et al.22 was associated with PPQ
resistance in this population. Several pfcrt mutations have been
associated with PPQ resistance in vitro, but most of the isolates in
this study had the same Dd2-like pfcrt genotype, with only two
isolates harboring additional mutations (KH004-027: G353V,
KH004-015: M104K, Supplementary Data 3). Thus, we were
unable to detect any association between AUC and pfcrt
mutations among these isolates.

Plasmepsin II–III CNVs contribute to PPQ resistance. To
further characterize the role of plasmepsin II–III CNVs in PPQ
resistance, we cloned the KH001_053 parasite isolate by limiting
dilution and derived nine sub-cloned lines. All subclones and the
initial patient isolate had the same 24-SNP molecular barcode
genotype32 and exhibited a bimodal response to PPQ (Fig. 4a).
WGS was performed on three of these subclones to confirm that
identical molecular barcode genotypes represented isogenic lines
—parasites that have the same or closely similar genotypes. These
data confirmed that the bimodal response detected in the PPQ
dose–response testing (Fig. 1) was not due to a mixture of parasite
genotypes within the culture-adapted sample. All individual
clones had only a single copy of pfmdr1, but variable copy
numbers of plasmepsin II–III (ranging between 1 and 2.7 by
qPCR). This provided an opportunity to test the impact of plas-
mepsin II–III CNV in the context of a single pfmdr1 locus among
otherwise genetically identical parasites (based upon the mole-
cular barcode or WGS data). Evaluation of the PPQ response
among these isogenic clones revealed a range of AUC values that
tracked with plasmepsin II–III copy number (Fig. 4a). That these
isogenic lines all harbored a single copy of pfmdr1, confirmed that
plasmepsin II–III levels play a key role in PPQ resistance in the

absence of changes in pfmdr1 copy number. To further corro-
borate these findings, we analyzed 10 parasite isolates with PPQ
response data from among the highly related cluster (Fig. 4b).
Although these isolates share > 90% IBD by SNP
variants across the genome they carry different copy numbers of
plasmepsin II–III and pfmdr1 and range in their AUC response to
PPQ. All isolates except KH004_019 had more than one
plasmepsin II–III copy (Fig. 4b) and two isolates had more than
one pfmdr1 copy (KH001_009, KH001_016). These three parasite
isolates also had the lowest AUC, further confirming that their
increased plasmepsin II–III CNV has an important role in PPQ
resistance in the context of a single pfmdr1 copy.

Stage-specific enhanced survival under high PPQ pressure. To
better understand the biology of the observed bimodal response
to PPQ for resistant parasites, we evaluated the effect of PPQ
exposure on different lifecycle stages, comparing a PPQS isolate
(KH004_051) and a PPQR isolate (KH004_057) at 12-hour
intervals to determine whether PPQ exhibits a stage-specific
mode of action. Drug-treated and non-drug-treated control
parasites were examined throughout the 48-hour life cycle at 12-
hour intervals by microscopy (Fig. 5a) and parasitemia was
determined by fluorescence-activated cell sorting (FACS) ~ 72 h
from the start of the experiment (Fig. 5b). Using parasitemia as a
proxy for parasite viability, we analyzed the PPQS and PPQR
isolates exposed to five different PPQ concentrations ranging
across the concentrations used to calculate the AUC (40 nM, 200
nM, 580 nM, 2 μM, and 10 μM). A 12-hour exposure to 40 nM
PPQ had no effect on either the PPQS or PPQR parasite (Fig. 5b).
However, exposure of the PPQS isolate to all other concentrations
of PPQ for 12 h at any stage prevented completion of the growth
cycle, except when drug was applied at the latest stages (36–48 h)
where a few parasites could reinvade and form new ring-stage
infections (Fig. 2b). Growth arrest was evident by either con-
densed pyknotic parasite forms or parasites with enlarged

0

1

2

3

4

5

C
N

V

Plasmepsin II
Pfmdr1

1_
53

_G
10

1_
53

_1
_F

8

1_
53

_2
_C

8

1_
53

_1
_F

4

1_
53

_2
_G

9

1_
53

_2
_E

5

1_
53

_1
_F

9

1_
53

_1
_C

8

1_
53

_2
_G

8

A
U

C

KH00
1-

00
9

KH00
1-

01
6

KH00
4-

01
9

KH00
1-

05
3

KH00
1-

06
6

KH00
4-

00
6

KH00
1-

04
7

KH00
4-

05
7

KH00
1-

07
6

KH00
4-

03
8

C
N

V

50

100

150

A
U

C

a b

0

1

2

3

4

5

50

100

150

Fig. 4 Isogenic lines confirm association between plasmepsin II CNV and AUC. a Subclones of KH001_053, identical by a 24-SNP barcode (all clones) and
WGS (3 sequenced clones), had variable plasmepsin II CNV levels but only a single pfmdr1 copy. b Isolates with > 90% relatedness vary in plasmepsin II and
pfmdr1 CNVs. Plasmepsin II CNV levels correlated with AUC values, confirming that this locus has a role in conferring PPQ resistance. All drug assays were
done in triplicate and repeated two times, shown are the means with s.d. CNVs are shown as mean+ s.d. from three biological replicates done in
quadruplicate by qPCR a or as average read depth of whole-genome sequencing+ s.d. in b

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04104-z ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1769 | DOI: 10.1038/s41467-018-04104-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


vacuoles (Fig. 5a), and by reduction in parasitemia compared to
controls (Fig. 5b). Gametocytes seemed unaffected by drug
exposure (Fig. 5a). In contrast, exposure of the PPQR isolate to
similar drug concentrations revealed partial completion of the
lifecycle when drug was applied for 12 h, evident by the presence
of ring-stage parasites and increased parasitemia over baseline in
the subsequent cycle. These data indicate that PPQ acts primarily
on parasite stages younger than 36 h, and that a 12-hour exposure
to ≥ 200 nM PPQ is sufficient to kill PPQS parasites. In contrast,
PPQR parasites could complete their lifecycle and reinvaded
uninfected erythrocytes after a 12-hour exposure of up to 10 μM
PPQ. A modified PSA (mPSA) method using a higher con-
centration of PPQ (20 μM) was used to confirm that PPQR
parasites had consistently higher survival rates at 20 μM PPQ
than parasites exposed to 200 nM PPQ, indicating that PPQR
parasites grow better under higher PPQ concentrations (paired
Student’s t-test, p= 0.0021, Supplementary Fig. 8).

Discussion
The emergence of PPQ resistance among P. falciparum in
Cambodia raises concerns about both the utility of ACTs like
DHA–PPQ for treatment in SEA, and the potential risk for these
drug resistant parasites to spread to other geographical settings
where DHA–PPQ is being used. To explore mechanisms of PPQ
resistance we leveraged cultured parasites from Cambodia, where
clinical PPQ resistance has recently emerged, to identify pheno-
typic and genotypic characteristics of PPQ response among these
parasites that may help elucidate possible mechanisms of clinical
PPQ resistance observed among patients. Current PPQ response
assays are often unreliable or time consuming, so we developed a
new, robust method to quantify PPQ resistance. Our investigation
of recent patient isolates from Cambodia revealed that parasites
exhibit a bimodal response to increasing PPQ concentrations that
can be quantified by an AUC value. Using isogenic parasite lines
we demonstrated a primary role for increased plasmepsin II–III

12 h 24 h 36 h 48 h

KH004_051 10µM

67 h

0–12 h

No drug

0–48 h

0–12 h

No drug

0–48 h

12–24 h

24–36 h

36–48 h

12 h 24 h 36 h 48 h
KH004_057 10µM

67 h

Trophozoite
Gametocyte 

Schizont
Dead

Ring

Stages

12–24 h

24–36 h

36–48 h

Stages

0

2

4

6

8

%
 p

ar
as

ite
m

ia

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h

B
aseline

N
o drug

0

2

4

6

8
0–12 h
12–24 h
24–36 h
36–48 h

0–48 h

B
aseline

N
o drug

%
 p

ar
as

ite
m

ia

PPQ sensitive PPQ resistant

Trophozoite
Gametocyte 

Schizont
Dead

Ring

40 nM 200 nM 580 nM 2000 nM

KH004_057 resistant 

0

1

2

3

%
 p

ar
as

ite
m

ia

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12–24 h
24–36 h
36–48 h

0–48 h
N

o drug

0–12 h
12-24 h
24–36 h
36–48 h

0–48 h
N

o drug

40 nM 200 nM 580 nM 2000 nM

KH004_051 sensitive

a

b

Fig. 5 Late-stage parasites are less susceptible to PPQ and resistant parasites can tolerate high PPQ doses for 12 h. PPQS (KH004_051, blue) and PPQR
(KH004_057, red) were synchronized and exposed to PPQ for 12 h, and their ability to survive to the next life cycle was visualized by microscopy a to
determine both stage and parasitemia b. Representative images a and parasite stage distribution (blue= ring, red= trophozoite, green= schizont, purple
= gametocyte, and yellow= dead) were calculated and represented by pie charts. Parasitemias resulting from these PPQ exposures were analyzed by
FACS 72 h after exposure b. Under high drug concentrations (10 µM, a), there is evidence that the PPQR parasite (KH004_057, red) can tolerate 12 h of
PPQ exposure up to 2000 nM. Conversely, the PPQS parasite (KH004_051, blue) does not survive at PPQ concentrations of≥ 200 nM, except a few
parasites that survive in the later (36–48 h) time of exposure, where there was evidence of some parasite survival

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04104-z

6 NATURE COMMUNICATIONS |  (2018) 9:1769 | DOI: 10.1038/s41467-018-04104-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


copy number for PPQ resistance in the presence of a single copy
of pfmdr1. Biologically, PPQR parasites survive high PPQ
concentrations and can withstand 12-hour PPQ exposure up
to concentrations of 10 μM. This bimodal phenotype for PPQ
suggests a biological survival mechanism for PPQR parasites
under high drug concentrations.

PPQR parasites do not show a typical shift in EC50 values in
conventional drug assays, but rather yield non-interpretable
dose–response curves10,33–35 that are often excluded from
analysis. By increasing both the PPQ starting concentration and
the number of concentrations tested, we identified a new and
unusual PPQ phenotype whereby parasites survive better
under higher PPQ concentrations than under some lower
concentrations of drug. Other groups have likely missed this
phenotype when using EC90 values or excluding data points
as outliers22,35,36. A collection of evidence, including use of
[3H]-hypoxanthine incorporation and visualization of viable
parasites, indicates that parasites exhibiting a bimodal response
with high AUC values can survive these elevated PPQ
concentrations (2 μM) better than low concentrations (200 nM).
This is reminiscent of the survival of certain bacterial strains
to penicillin and other beta lactam antibacterials at higher
concentrations, and has been termed the “Eagle effect”37,38. AUC
data correspond with previously reported PSA phenotypes and
correlate with plasmepsin II–III copy number, demonstrating that
the bimodal response with high AUC is a valid phenotype for
PPQ resistance. The AUC assay is advantageous because it is easy,
quick, and robust and does not require tight synchronization
in vitro, or counting parasitemia by microscopy. AUC provides a
broad dynamic range for PPQ response and may reveal
intermediate phenotypes (AUC= 35–100) that may be useful for
monitoring the emergence and spread of PPQ resistance as many
of these intermediate isolates had increased plasmepsin II–III
copy numbers. This bimodal PPQR phenotype suggests a unique
mechanism of survival under high PPQ concentration. For
example, perhaps PPQ induction of stress response pathways
enables PPQR parasites to survive under high PPQ levels. Studies
of this response can guide our understanding of PPQ resistance
mechanisms to help explain how PPQR parasites survive drug
exposure.

The association of PPQ resistance with increased plasmepsin
II–III and decreased pfmdr1 copy numbers has been observed
before; however, without functional analysis it was unclear how
these two detected changes contribute to PPQ resistance. Using
our highly related parasite lines we demonstrated the positive
effect of increased plasmepsin II–III copy numbers on PPQ
resistance on the genetic background of a single pfmdr1 copy.
These data strengthen the role for plasmepsin II–III in PPQ
resistance in the absence of any compensatory changes in pfmdr1
copy number, but do not rule out a separate role for pfmdr1
amplification in decreasing PPQ susceptibility. Interestingly, these
parasites are highly related to each other by SNP genotyping but
vary in their plasmepsin II–III copy numbers suggesting several
recent duplication events. Finding different plasmepsin II–III
copy numbers in a single sub-cloned isolate could indicate a
fitness cost for the duplication and that loss is frequent, or that
parasites lose multiple copies upon culture adaptation in vitro.
That we did not see an overall loss of CNV in two isolates
that were cultured in vitro for over 6 months suggests that the
pressure in vivo might be more important to fitness. However,
there is an overall decrease of pfmdr1 copy numbers observed in
Cambodia, which has encouraged reintroduction of AS-MEF for
treatment in this region39. In addition, a triple ACT strategy
(ART+ MEF+ PPQ) is under evaluation in TRAC II40. On the
other hand, emergence of PPQ resistance could jeopardize the
proposed use of the drug in combination with new partners for

non-ACTs for malaria such as fosmidomycin–PPQ, which is
under evaluation in Phase II clinical trials41.

As to the mechanism of PPQ resistance involving plasmepsin
II–III, PPQ is thought, like CQ, to accumulate in the food vacuole
(FV) and inhibit conversion of toxic heme moieties to non-toxic
hemozoin crystals during hemoglobin digestion. We have shown
that PPQ is acting on all stages of the parasite life cycle but is least
effective at the latest stages (Fig. 5). High-resolution live-cell
imaging has shown that hemoglobin degradation is initiated early
after invasion of the RBC by the parasite42. These authors suggest
that cytostome-mediated endocytic events are the first step in the
genesis of the hemoglobin-degrading apparatus of P. falciparum.
Endocytosis of the host compartment is then followed by a
process that concentrates the contents of the endocytic
compartment and hemozoin crystals start to accumulate in late
ring-stage parasites. It is therefore not surprising that PPQ is
acting on early stages as well as later stages. There is less data
available on hemoglobin degradation in late trophozoites/
schizonts but it is possible that degradation slows down once
parasites are converted into merozoites and are ready to egress.
Plasmepsin II, plasmepsin III, and pfmdr1 are located in the food
vacuole, with plasmepsin II and III directly involved in
hemoglobin degradation generating small peptides and eventually
amino acids for protein synthesis but also the toxic byproduct
heme. Treatment of parasites with PPQ leads to a depletion of
ribosomes and swelling of the FV with undigested hemoglobin
vesicles and reduced hemozoin crystals43 as well as an
accumulation of free heme21. Although the free heme is toxic for
the parasite, inhibition of hemoglobin degradation will starve the
parasite and increased plasmepsin II–III might help the parasite
to maintain amino-acid production when hemoglobin
degradation is otherwise inhibited by PPQ. More experiments are
needed to understand how plasmepsin II–III and PPQ influence
hemoglobin degradation and the role of this process in PPQ
resistance.

In addition to demonstrating a primary role of plasmepsin
II–III CNV in PPQ resistance in the absence of pfmdr1 CNV in
this population, we found a significant correlation between a
majority of previously identified SNPs and PPQ resistance by
AUC phenotype. Interestingly, in this population only two
haplotypes were seen surrounding a putative exonuclease SNP
that was most strongly associated with PPQ resistance
previously18. One of these haplotypes is completely absent from
the PPQS population. Although a majority of the PPQ pheno-
types can be explained by plasmepsin II–III CNV, there were four
discordant parasite lines in this study. None of the proposed
SNPs could explain the discrepancy between the PPQ phenotype
and plasmepsin II–III copy number. Mutations in pfcrt that are
associated with PPQR were not detected among these parasites.
Population structure analysis indicates highly related parasite
clusters, but no evidence of simple clonal expansion of a single
PPQR parasite in this population. Pfkelch13 genetic variation did
not correlate with PPQ resistance, and both PPQS and PPQR
parasites had evidence of the common C580Y genetic
background. The only PfKelch13 mutation exclusively identified
in PPQR parasites was Y493H, found among highly related and
unrelated subpopulations. These data suggest that PPQ resistance
developed several times on at least two different Pfkelch13
backgrounds.

Understanding mechanisms of PPQ resistance is paramount to
successful control and elimination of P. falciparum. The bimodal
PPQ phenotype suggests these parasites may induce biological
responses that promote survival under high PPQ concentrations.
Coupled with the role of plasmepsin II–III in modulating PPQ
response, additional genetic or expression
variation may be important for this antimalarial phenotype.
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Definition of the AUC phenotype and the parasite lines derived in
this study provide key resources to aid our understanding of
biological changes required to attain high levels of PPQ resistance
and can promote strategies to track resistance and identify
alternative antimalarial strategies to circumvent or overcome this
resistance phenotype in P. falciparum.

Methods
Culture adaptation and maintenance of TRAC parasites. All parasite samples
were collected under protocols approved by ethical review boards in Cambodia, at
Oxford University (OxTREC), National Institutes of Allergy and Infectious Dis-
eases, and at the Harvard T.H. Chan School of Public Health. Culture adaptation of
parasites was accomplished by thawing cryopreserved material containing infected
red blood cells (iRBCs) that had been mixed with glycerolyte. Parasites were
maintained in fresh human erythrocytes (O+) in Hepes buffered Rosewell Park
Memorial Institute (RPMI) media containing 10% O+ human serum (heat inac-
tivated and pooled). Human blood products (erythrocytes and serum) were
obtained from Interstate Blood Bank, Inc., Memphis, TN. Cultures were placed in
modular incubators and gassed with 1%O2/5% CO2/balance N2 gas and incubated
with rotation (50 rpm) in a 37 °C incubator. Parasite lines were frozen within a few
cycles ( < 2 weeks) after parasites first appeared; and, never maintained for longer
than 2 months in culture after these initial stocks were thawed. The 37 parasites
used in this study were selected from among 157 previously adapted lines25. An
initial sample subset (n= 28) was randomly identified, but an additional set (n= 9)
was included based upon their barcode identity to KH001_053 to enrich for
parasites that might have genetic variants that contribute to PPQ resistance.

In vitro 72 H drug susceptibility by SYBR green staining. Drug susceptibility
was measured using the SYBR Green I method as previously described44. In brief,
tightly synchronized 0–6 h rings were grown for 72 h in the presence of different
concentrations of drugs in 384-clear-bottom well plates at 1% hematocrit, 1%
starting parasitemia and 40 μl of 0.5% Albumax culture media. Growth at 72 h was
measured by SYBR Green I (Lonza, Visp, Switzerland) staining of parasite DNA. A
24-point dilution of PPQ (Sigma-Aldrich, St. Louis, MO) and a 12-point dilution
series of the rest of the drugs (DHA, ART, AS, MEF, and LUM; Sigma-Aldrich, St.
Louis, MO) were carried out in triplicate and repeated with at least three biological
replicates. Drug stocks were resuspended in dimethyl sulfoxide except for CQ
prepared in 0.1% Triton X-100 in water and PPQ prepared in 0.1% Triton X-100
and 0.5% lactic acid in water to ensure complete dissolution, as lactic acid
enhanced PPQ solubility45. Drugs dispensed by a HP D300 Digital Dispenser
(Hewlett Packard Palo Alto, CA), with the Triton X-100 enhancing dispensing of
aqueous drug stocks. Relative fluorescence units was measured at an excitation of
494 nm and emission of 530 nm on a SpectraMax M5 (Molecular Devices Sun-
nyvale, CA) and analyzed using GraphPad Prism version 7 (GraphPad Software La
Jolla, CA). EC50 values were determined with the curve-fitting algorithm log
(inhibitor) vs. response–Variable slope except for PPQ. PPQs bimodal
dose–response would not allow for any curve-fitting hence susceptibility was
measured by calculating the area under the second response curve (AUC). AUC
was calculated by fitting a six-dimensional least-square polynomial equation to
each sample’s dose–response curve and integrating the fitted equation over the
region corresponding to the second response curve. These equations were fit to the
data using the polyfit module in NumPy, a fundamental package for scientific
computing using Python. We chose to use a six-dimensional least-square
polynomial equation because it captures the dynamics of the second response curve
better than equations with fewer dimensions. Using equations with dimensions > 6
do not result in major differences in calculated AUC values. In fact, AUC values
calculated using the boundaries identified by our equation fitting method (0.10 μM
– 30 μM) gave roughly the same result. The boundaries of the second response
curve were determined by identifying the drug concentration corresponding to the
average local minima before and after the second response curve across all drug-
assayed samples.

Spearman correlation analysis was performed to assess the relationship between
the antimalarial EC50 values and PPQ AUC, in vivo clearance half-life, ring survival
assay survival rate or pfmdr1 copy number. P values < 0.05 were considered
significant.

[3H]-hypoxanthine incorporation assays. To determine whether the PPQ
bimodal drug dose–response observed in the SYBR Green I method is consistent
with another drug susceptibility assay, [3H]-hypoxanthine incorporation of live
parasites was measured. This assay is based on the previously published method of
Desjardins et al.46 with some modifications. Tightly synchronized 0–6 h ring-
infected erythrocytes were plated at 2% hematocrit and 0.5% parasitemia in 100 μl
volumes in a 96-well plate. The RPMI media used to suspend the parasites
contained 1/20th the amount of hypoxanthine normally used in parasite in vitro
culture (2.8 mg/L) and then supplemented with 5% Albumax and gentamicin. The
96-well plates used contained pre-dispensed PPQ as described above. The
parasites were incubated for 72 h until the next ring stage after which 20 μl of [3H]-
hypoxanthine (50 μl/ml of hypoxanthine-low media, PerkinElmer Waltham, MA)

was added to each well. The parasites were incubated further for 37 h until the
trophozoite stage, lysed by freezing at −80 °C overnight, parasite DNA transferred
from lysed cells to 96-well filter plates (UniFilter GF/B PerkinElmer Waltham, MA)
using a cell harvester (Filtermate Harvester, Packard PerkinElmer Waltham, MA),
30 μl each of microscintillation fluid (Microscint-O, PerkinElmer Waltham, MA)
added per well and radioactivity measured in a microplate scintillation counter
(TopCount-NXT, Packard PerkinElmer Waltham, MA).

Copy number variation assay. To determine copy numbers of pfmdr1, plasmepsin
II, and III, qPCR was performed on genomic DNA (extracted with QIAmp Blood
Mini Kit, Qiagen, Hilden, Germany) as previously described47 with the following
modifications: amplification reactions were done in MicroAmp 384-well plates in
10 μl SYBR Green master mix (Applied Biosystems, Foster City, CA), 150 nM of
each forward and reverse primer and 0.4 ng template. Forty cycles were performed
in the Applied Biosystems ViiATM 7 Real-time PCR system (Life Technologies,
Carlsbad, CA). pfmdr1 forward (5’-TGCATCTATAAAACGAT
CAGACAAA-3’) and reverse primers (5’-TCGTGTGTTCCATGTGACTGT-3’)
were designed after Price, et al.48, whereas β- tubulin forward (5’-CGTGCTGGCC
CCTTTG-3’) and reverse (5’-TCCTGCACCTGTTTGACCAA-3’) primers for the
endogenous control were designed after Ribacke, et al.47. Two primer sets were
designed for plasmepsin II: 1st set: forward (5’-TCCTTGGTTTAGGATGGAA
AGA-3') and reverse 5’-CCACCAATGGTTAAGAATCCTG-3’) 2nd set: forward
(5’-CCATTGGTGGTATTGAAGAAAGA-3’) and reverse (5’-TTTCCAACGT
GTGCATCTAAA-3’); and, one set for plasmepsin III: forward (5’-GGTAGTGA
GTTTGATAATGTGG-3’) and reverse (5’-CACAAGACTCTGATGTACA-3’).
Technical replicates were run in quadruplicates. Copy numbers were considered
increased ( > 1) when the average of three biological replicates was above 1.6.

PSA and modified PSA. The PSA was performed as described previously16. In
brief, 0.75% 0–3 h ring-infected erythrocytes in 2 ml 0.5% Albumax culture media
at 2% hematocrit were cultivated without drug and with 200 nM PPQ in 24-well
plates. After 48 h, cultures were washed, resuspended in 2 ml 0.5% Albumax culture
media and further incubated for 24 h. Thin blood smears were prepared and
Giemsa stained. The proportions of viable parasites in exposed and unexposed
cultures or the PSA survival rate (%) were evaluated by microscopic assessment of
at least 20,000 erythrocytes infected with second-generation rings and trophozoites
with normal morphology by two blinded microscopists; and, by using FACS with
SYBR Green I as described below. Only those samples with ≥ 1.5 × growth rates
(parasitemia at 72 h/parasitemia at 0 h) were deemed interpretable for PSA survival
rate.

In addition, a mPSA assay was performed as described above with the following
modifications: In brief, parasites were exposed to the drug for 72 h. Moreover, 2 μM
PPQ concentration was tested in addition to 200 nM, and microscopic assessment
was done for ≥ 500 erythrocytes infected with second-generation rings and
trophozoites with normal morphology. Those with ≥ 2% parasitemia for the
unexposed cultures were deemed interpretable for mPSA survival rate.

FACS with SYBR Green. Parasites were stained in 10 × SYBR Green I in 1 × PBS
for 30 min in the dark at 37 °C. The staining solution was removed and cells were
resuspended in five times the volume of the initial volume of PBS. FACS data
acquisition was performed on a MACSQuant VYB (Milteni Biotec) with a 488 nm
laser and a 525 nm filter and analyzed with FlowJo 2. RBCs were gated on the
forward light scatter and side scatter and infected RBCs were detected in channel
B1. At least 100,000 events were analyzed per sample.

Parasite set up for drug exposure at different time points. For PPQ exposure
experiments at different time points, a PPQS (KH004_051) and PPQR
(KH004_057) parasite were used. In brief, tightly synchronized 0–3 h ring-infected
erythrocytes were plated at 1 or 2% parasitemia, 2 or 2.5% hematocrit and in 2 or 4
ml volumes of 0.5% Albumax culture media in a 24- or 12-well plate. Parasites were
incubated without PPQ and in 40 nM, 200 nM, 580 nM, 2 μM or 10 μM PPQ at the
following time points: 0–12 h, 0–24 h, 0–48 h, 12–24 h, 24–36 h and 36–48 h.
Parasitemia was assessed by microscopic examination of stained blood smears
and/or by FACS of SYBR Green-labeled samples taken every 12 h until the next
generation of rings at 67–72 h.

Genotyping. Cultured parasite lines were genotyped using a molecular barcode32

to confirm that the cultured line matched the original patient material and
harbored only a single parasite genotype.

WGS analysis for SNPs and CNVs. This publication uses data generated by the
Pf3k project (www.malariagen.net/pf3k)29. Except for the KH004-057 and the
KH001-053 subclones (data deposited: https://www.ncbi.nlm.nih.gov/bioproject/
414203), we used the variant call format (VCF) files provided by the Pf3k project to
perform whole genome analyses. For KH004_057 and the KH001_053 subclones,
gDNA was extracted and sheared with a Covaris S220 Focused-ultrasonicator
(Covaris, Woburn, MA, USA). Illumina-compatible libraries were prepared on the
Apollo 324 (WaferGen Biosystems, Fremont, CA, USA) and sequenced on an
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Illumina HiSeq 2000 (Illumina, San Diego, CA, USA). P. falciparum populations
were sequenced with the goal of reaching over 60 × average fold-coverage across
the genome. Reads were aligned to the P. falciparum 3D7 reference assembly
(PlasmoDb v 7.1) using the Burrows-Wheeler Aligner (version 0.5.9-r16)49.
Variant calls were determined using the GATK Unified Genotyper50 using the
parameter and quality thresholds described in the supplementary information of a
previous paper30. The resulting VCF files were then combined with the VCF files
downloaded from the Pf3k project and filtered to remove non-variant sites using
VCFtools51.

To determine whether any previously implicated drug resistance SNPs were
associated with PPQR, we analyzed the SNPs in the genes listed in the
Supplementary Data 2. Samples were divided into two categories based on their
AUC values. Samples with an AUC ≤ 35 were considered PPQS and samples with
AUC > 35 were considered PPQR. Based on these categories, we used the software
package PLINK (version 1.8)52 to determine whether any SNP was associated with
PPQR.

To assess CNV, we quantified the fold-change in the average read depths of
non-variant sites within plasmepsin I (PF3D7_1407900), plasmepsin II
(PF3D7_140800), and a nearby conserved gene of unknown function
(PF3D7_1408200) as compared to the average read depths of non-variant sites in
several randomly chosen regions of the genome (nucleotide positions at Chr 3:
353552–361453, Chr 5: 322315–329693, Chr 14: 578376–603856). These regions
contain mostly coding sequence and have little variation in read depth. Genes
within these regions are annotated as: a putative DNA polymerase epsilon subunit
(PF3D7_0308000), a 6-cysteine protein (P38) (PF3D7_0508000), a putative
atypical protein kinase, ABC-1 family (PF3D7_1414500), an RNA
guanyltransferase (PF3D7_1414600), a putative carboxyl-terminal hydrolase
(PF3D7_1414700), a putative small nuclear ribonucleoprotein-associated protein B
(PF3D7_1414800), and several conserved proteins of unknown function
(PF3D7_0308100, PF3D7_0507800, PF3D7_0507900). P38 is suspected to be
involved with gamete fertilization53 and under some level of immune-mediate
balancing selection54, but little is known about the functions of the other genes.
None have been implicated in drug resistance studies.

Identity by descent analysis. The relatedness between two strains was calculated
as the proportion of the genome inherited from the same ancestor, or identical by
descent. Relatedness was calculated from SNP data using a hidden Markov model
described in31. Networks of relatedness were generated using NetworkX (https://
github.com/networkx/networkx), a Python package for the creation, manipulation,
and study of complex networks, and visualized using Gephi55, an open-source
software for network visualization and analysis.

Statistical analysis. Calculations of EC50, Student’s t-test, one-way analysis of
variance and correlations were performed using GraphPad Prism version 7
(GraphPad Software La Jolla, CA).

Data availability. WGS data that support the findings of this study have been
deposited in NCBI bioproject with the PRJEB22985 accession codes
(https://www.ncbi.nlm.nih.gov/bioproject/414203) or was provided by Pf3k project
(www.malariagen.net/pf3k)29. TRAC study samples are made available to the
malaria research community through the worldwide antimalarial research network
(WWARN): http://www.wwarn.org/news/news-articles/trac-study-samples-be-
made-available-malaria-research-community. All other data supporting the find-
ings of this study are available within the article and its Supplementary Information
files, or are available from the authors upon request.
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