

Resource production of written forms of Sign Languages by a user-centered editor, SWift (SignWriting improved fast transcriber).

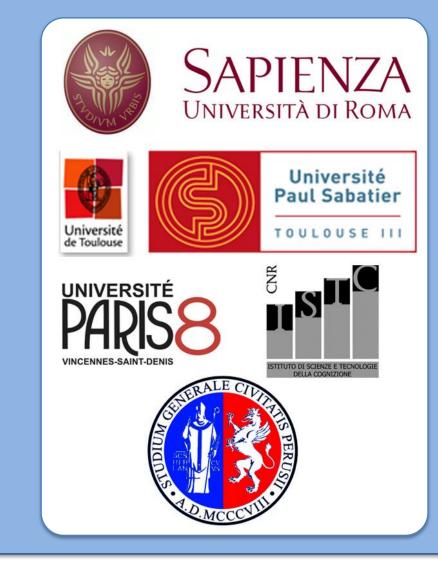
Claudia S. Bianchini, Fabrizio Borgia, Patrice Dalle, Maria de Marsico

► To cite this version:

Claudia S. Bianchini, Fabrizio Borgia, Patrice Dalle, Maria de Marsico. Resource production of written forms of Sign Languages by a user-centered editor, SWift (SignWriting improved fast transcriber).. VIII International Conference on Language Resources and Evaluation (LREC2012), ELRA, May 2012, Istanbul, Turkey. pp.135, 10.13140/RG.2.1.5127.6646. hal-02558675

HAL Id: hal-02558675 https://hal.science/hal-02558675

Submitted on 13 May 2020 $\,$


HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Resource production of written forms of sign languages by a user-centered editor:

SWift (SignWriting improved fast transcriber)

Fabrizio Borgia¹⁻², Claudia S. Bianchini³⁻⁴⁻⁵, Patrice Dalle¹, Maria De Marsico² fabrizio.borgia@uniroma1.it dalle@irit.fr chiadu14@gmail.com demarsico@di.uniroma1.it ¹Université Toulouse III - Paul Sabatier, ²Dip. Informatica – "Sapienza" Università di Roma, ³Université Paris 8 ED-CLI / CNRS-UMR7023-SFL, ⁴Università degli Studi di Perugia, ⁵CNR ISTC-SLDS

INTRODUCTION

278 million people worldwide are deaf or have hearing difficulties, and many of them use sign language as their mother tongue.

Sign languages, similarly to many other world languages, have not developed their own writing system yet.

Most digital resources (such as the WWW) are only available in verbal language, which is difficult to acquire for the deaf.

A deaf person who wants to venture into the digital

SWIFT FEATURES

SWift allows digital representation of sign languages using SignWriting framework. It has been designed and tested for over one year in close contact with the SLDS team, which includes deaf researchers, therefore a true sample of the main target users. SWift's features are:

SIGNWRITING (SW)

SignWriting (SW) is a graphical framework which uses visual symbols (called glyphs) to represent both manual (configurations, movements, etc.) and non-manual (facial expressions, gaze, etc.) components of signs.

Researches of SLDS team in Rome have shown that SW can be used to properly represent sign languages.

SW can be used either to write or to transcribe signed speech. SW alphabet currently lists about 37,000 glyphs.

Facial Expression

Shoulders Position

world must overcome several linguistic barriers, just like those he faces in everyday life!

SCREENSHOTS

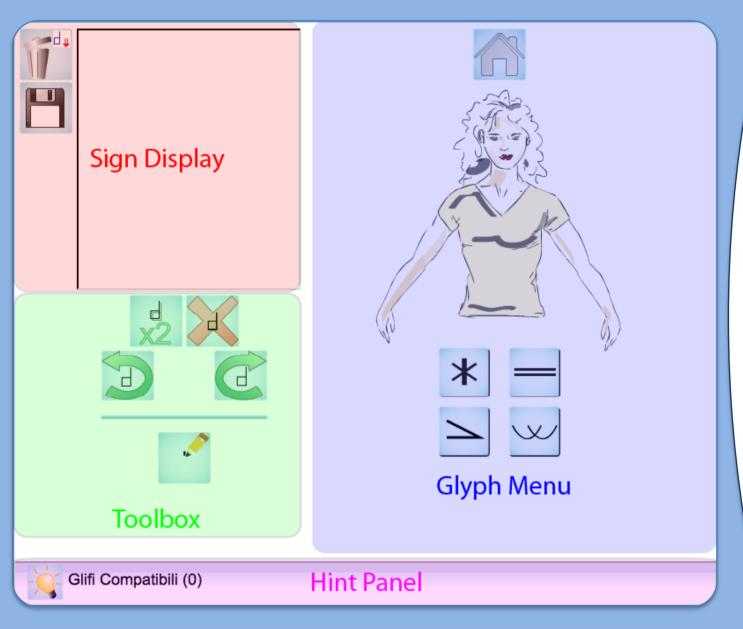


Fig. 2: Home screen of SWift, split in four areas of interest (highlighted by different colors).

CORPUS MANAGEMENT

Web-based application, developed using XHTML, Javascript, PHP, ActionScript.

Ŧ

19

User-friendly interface, featuring:

- Minimization of the information provided by each screen
- Intuitive and familiar icons (triggering mouseover-animated clips for further explanation).
- Minimization of text labels

Fig. 3: Anatomical interface used as starting point for the glyph

The user does not need to

"learn" how to use the

interface, he should

rather "understand" it.

Hand Configuration Contact Movement

Fig. 1: The LIS sign for "various" written using SW.

SCREENSHOTS

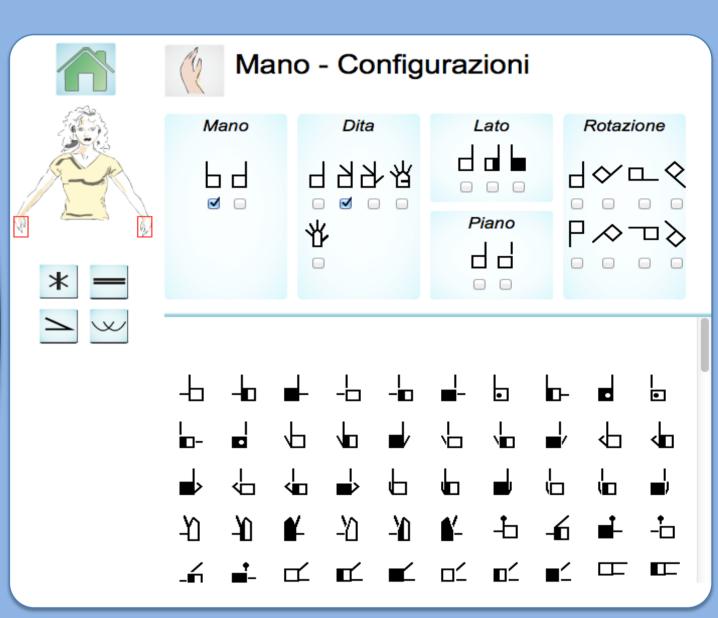
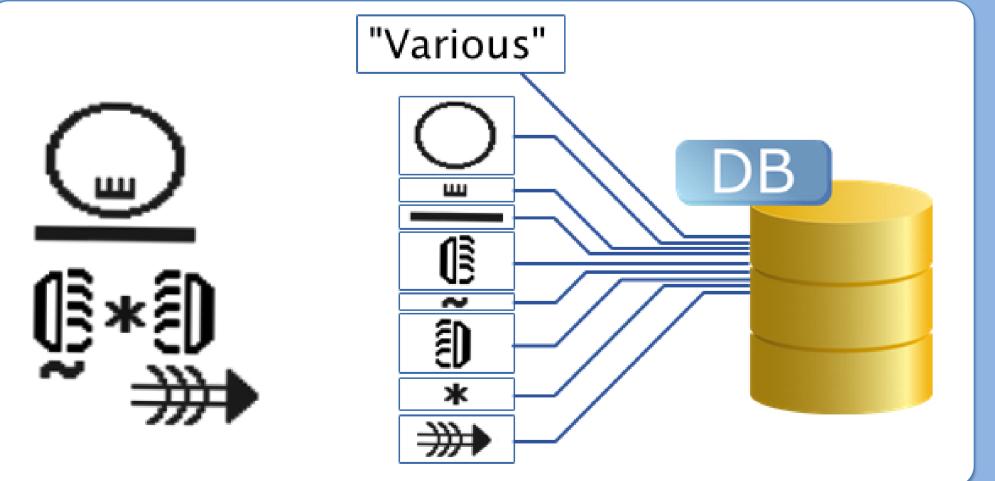



Fig. 4: SWift's glyph search engine in action. The user is here viewing all glyphs which may be performed with the left hand using two fingers.

TESTING

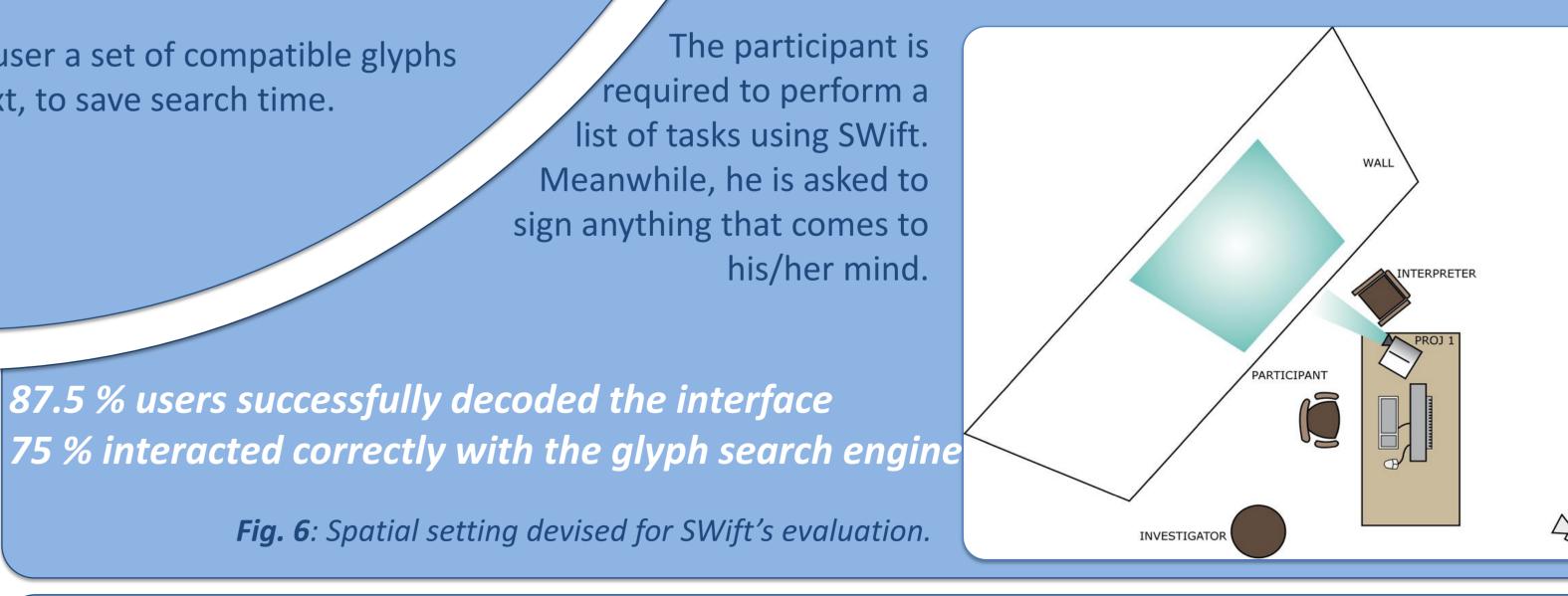
Any sign composed by the user can be saved on SWift's database, to aid in linguistic research. The sign is associated with its component glyphs and with some user-provided data (sign title, etc.). The frequency of occurrence of each involved glyph is incremented in the process.

search engine. The user can pick one anatomical area and search V///any glyph related to it using the interface shown in Fig. 4.

Glyph search engine, featuring an anatomical interface (Fig. 3) allowing the user to reach any glyph in few seconds, simply by choosing its traits (Fig. 4).

Glyph hint system, suggesting the user a set of compatible glyphs he might want to insert next, to save search time.

Fig. 5: Sketch of SWift's remote saving process.


CONCLUSIONS

An accurate design process, and a thorough test phase have granted SWift all the necessary features to become a widely-used SW editor. The application will help to weather the barriers keeping the deaf community out of the digital world.

Two development lines have been identified for the **future of SWift**:

replacement of the current glyph search engine with an OCR-like recognition engine allowing the

SWift's capabilities and usability were tested adapting the "Think-Aloud Protocol" in order to "fit" the needs of deaf users. The method has been named "Sign-Aloud **Protocol**".

SELECTED REFERENCES

Bianchini C.S. (2012). Émergence d'un système d'écriture pour les Langues des Signes et réflexions métalinguistiques conséquentes. Thèse de Doctorat, Université de Paris 8 - Università degli Studi di Perugia.

Borgia F. (2010). SWift: SignWriting improved fast transcriber. Tesi di Laurea specialistica. Università di Roma I.

Boyes-Braem P. (2012). Evolving methods for written representations of Sign Languages of the deaf. in: A. Ender, A. Leemann & B. Wälchli (eds) "Methods in Contemporary Linguistics". de Gruyter Mouton, Berlin.

Fajardo I., Vigo M., Salmerón L. (2009). Technology for supporting web information search and learning in Sign Language. Interacting with Computers, 21(4): 243-256.

Pizzuto E., Pietrandrea P. (2001). The notation of signed texts: open questions and indications for further research. Sign Language and Linguistics, 1/2: 29-43.

user to "free-hand" draw a glyph, which will be analyzed and recognized by the system

upgrade SWift with a semi-automatic image processing engine allowing the users to produce signs

and to interact by gesture in front of a webcam

Pizzuto E., Rossini P. & Russo T. (2006). Representing signed languages in written form: questions that need to be posed. Proceedings of LREC2006 2nd Workshop "Representation and processing of Sign Languages: lexicographic matters and didactic scenarios", Genova 25/05/2006. **Roberts V.L., Fels D.I.** (2005). Methods for inclusion: employing think-aloud protocols in software usability studies with individuals who are deaf.

International Journal of Human-Computer Studies, 64(6): 489-501.

87.5 % users successfully decoded the interface

Sutton V. (1995). Lessons in SignWriting: textbook & workbook. Deaf Action Committee for SignWriting, La Jolla CA.