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THE HARTREE FUNCTIONAL IN A DOUBLE WELL

We consider a non-linear Hartree energy for bosonic particles in a symmetric double-well potential. In the limit where the wells are far apart and the potential barrier is high, we prove that the ground state and first excited state are given to leading order by an even, respectively odd, superposition of ground states in single wells. The corresponding energies are separated by a small tunneling term that we evaluate precisely.

CONTENTS

• that DW , + and -are given to leading order in terms of the ground state problem in a single well (left or right).

.

functional

 DW [ ] = ∫ ℝ |∇ ( )| 2 + ∫ ℝ DW ( )| ( )| 2 + 2 ∬ ℝ ×ℝ | ( )| 2 ( -)| ( )| 2 ,
(1.1) with , ⩾ 0 a coupling constant and a repulsive pair interaction potential. The crucial feature we tackle is that we take DW to be a double-well potential defined as ( and stand for left and right) DW ( ) = min ( ), ( ) , (1.2) where for some ⩾ 2

( ) = | + | and ( ) = | -| . (1.3)
Here ∈ ℝ is of the form

= 2 , 0, … , 0 (1.4) 
for a large 1 parameter → +∞. Hence DW models a potential landscape with two wells, both the distance and the energy barrier between them being large, and becoming infinitely so in the limit.

In [START_REF] Spehner | Localized regime for mean-field bosons in a double-well potential[END_REF][START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF] we are primarily concerned with the mean-field limit of the many-boson problem in such a double-well potential. As input to the second paper [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF] we use crucially several properties of the ground state problem

DW = inf  DW [ ] | ∈ 1 (ℝ ) ∩ 2 ℝ , DW ( ) , ∫ ℝ | ( )| 2 = 1 (1.5)
and of the associated low energy states. Namely, let + be the (unique modulo a constant phase, fixed so as to have + > 0) minimizer for (1.5) and

ℎ DW ∶= -Δ + DW + * | + | 2 (1.6)
the associated mean-field Hamiltonian (functional derivative of  DW at + ). One easily shows that ℎ DW has compact resolvent, and we study its eigenvalues and eigenfunctions. The Euler-Lagrange variational equation for + reads ℎ DW + = + + with

+ = DW + 2 ∬ ℝ ×ℝ | + ( )| 2 ( -)| + ( )| 2 .
(1.7)

Since ℎ DW has a positive ground state (unique up to phase, see [21, Section XIII.12]), and + is chosen positive, it follows that + is the lowest eigenvalue of ℎ DW , with corresponding eigenfunction + .

We denote -the smallest eigenvalue above + , -an associated eigenfunction, and ex the third eigenvalue. We aim at proving

• asymptotics for the first spectral gap:

--+ → →∞ 0 (1.8)
with a precise rate (both as an upper and lower bound). • asymptotics for the associated eigenfunctions: that they both converge to superpositions of eigenfunctions of the single wells and that

| | | | | + | -| -| | | | | → →∞ 0 (1.9)
in suitable norms, and with a precise optimal rate. • a -independent lower bound to the second spectral gap: ex --⩾ , independently of .

(1.10)

The spectral theory of Hamiltonians with multiple wells has a long and rich history, selected references most relevant to the following being [START_REF] Morgan | Behavior of molecular potential energy curves for large nuclear separations[END_REF][START_REF] Davies | The twisting trick for double well Hamiltonians[END_REF][START_REF] Combes | Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians[END_REF][START_REF] Seiler | On the electronic spectrum of the diatomic molecular ion[END_REF][START_REF] Harrell | On the rate of asymptotic eigenvalue degeneracy[END_REF][START_REF]Double wells[END_REF][START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF]Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues, ii. tunneling[END_REF]. See also [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF] for reviews. Corresponding non-linear results are also available [START_REF] Daumer | Hartree-Fock equations in tight-binding approximation[END_REF][START_REF]Equations de Hartree-Fock dans l'approximation du tight-binding[END_REF][START_REF]Equations de Schrödinger avec potentiels singuliers et á longue portée dans l'approximation de liaison forte[END_REF]], but we have not found proofs of the aforementioned bounds for the setting just described (dictated by the model of interest in [START_REF] Spehner | Localized regime for mean-field bosons in a double-well potential[END_REF][START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF]). Typically, and in particular regarding results with the level of precision we aim at, the analysis in the aforementioned references is performed in a semi-classical regime, namely one studies the spectral properties of ℏ 2 Δ + (1.11) as ℏ → 0, with a fixed multi-well potential. Say the above, symmetric, DW but with fixed. One obtains that at leading order the eigenvalues are grouped in pairs around the eigenvalues corresponding to a single well (with appropriate modifications for more than two wells, asymmetric wells, or degenerate one-well eigenvalues). This corresponds to eigenfunctions being strongly suppressed in the classically forbidden region far from the wells. The (small) splitting between pairs of eigenvalues can be estimated with some precision, and corresponds to the tunnel effect, due to quantum eigenfunctions being small but non-zero in the classically forbidden region. That is, quantum mechanically, there is a flux of particles through potential barriers, that is manifested in a lifting of classical energy degeneracies.

In fact, if ,+ and ,-are the eigenfunctions corresponding respectively to the smallest and largest eigenvalue in the -th pair, one has

,+ ≃ , + , √ 2 
(1.12)

and

,-≃ , -, √ 2 
, ( 1.13) 
with , and , the -th eigenfunction of (respectively) the left and right well. The results on eigenvalues are a reflection of this fact.

Our main results (1.8)-(1.9)-(1.10) (stated more precisely below) are adaptations of the above well-known findings to the case at hand, namely ℏ fixed and → ∞. For the applications in [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF] we need the optimal rates in (1.8) and (1.9), i.e. to exactly identify the order of magnitude of the tunneling term. To a large extent, the sequel is an adaptation of known techniques, but we face two main new difficulties:

• the fact that we start from the non-linear Hartree problem.

• the lack of semi-classical WKB expansions for single-well eigenfunctions, that are essentially fixed in our setting. The second point is particularly relevant to the derivation of the optimal rates in (1.8) and (1.9).
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MAIN RESULTS

We carry on with the previous notation, and also denote

( ) = | | , ( 2.1) 
with ⩾ 2, our single-well potential, appropriately translated in (1.3), recalling that = ∕2, 0, … , 0 ∈ ℝ .

As regards interactions, we consider them repulsive, i.e. assume ⩾ 0 and let ∈ ∞ (ℝ ) with compact support such that ( ̂ stands for the Fourier transform)

⩾ 0, ̂ ⩾ 0. (2.2)
Regularity assumptions could be relaxed to some extent, but we do not pursue this. We consider the Hartree functional in the double-well (1.1) The existence of a minimizer for (1.5) follows from standard techniques [START_REF] Lieb | Analysis[END_REF]Theorem 11.8], combined with the fact that DW prevents mass losses at infinity. The uniqueness of the minimizer + up to a constant phase factor follows from the assumption ̂ ⩾ 0. Let + be the unique minimizer. Being unique, it is even under reflections across the 1 = 0 hyperplane. We also know that + is the unique ground state of the mean-field double-well Hamiltonian (1.6), i.e.

ℎ DW + = + + .
Due to the growth of DW the Hamiltonian ℎ DW has compact resolvent. We call -and ex the eigenvectors whose corresponding energies -and ex are, respectively, the first and second eigenvalue of ℎ DW above + . In other words

ℎ DW = + | + ⟩⟨ + | + -| -⟩⟨ -| + ex | ex ⟩⟨ ex | + ∑ ⩾4 | ⟩⟨ |, (2.3) 
where

+ < -⩽ ex ⩽ , ∀ ,
and { + , -, ex , 4 , 5 , … } form an o.n. basis.

Since | + | 2 is symmetric under reflections across the 1 = 0 hyperplane, the Hamiltonian ℎ DW commutes with those. We can thus choose each eigenvector + , -, ex , , ⩾ 4 to be either symmetric or anti-symmetric with respect to such a reflection. In particular, + being positive, it must be symmetric. We will also consider Hartree functionals with external potential or , that is,

 [ ] = ∫ ℝ |∇ ( )| 2 + ∫ ℝ ( )| ( )| 2 + 2 ∬ ℝ ×ℝ ( -)| ( )| 2 | ( )| 2  [ ] = ∫ ℝ |∇ ( )| 2 + ∫ ℝ ( )| ( )| 2 + 2 ∬ ℝ ×ℝ ( -)| ( )| 2 | ( )| 2 .
We will use combinations of the minimizers of  and  to approximate the function + .

To this end, we define minimal energies at mass 1∕2

= inf  [ ] | ∈ 1 (ℝ ) ∩ 2 ℝ , ( ) , ∫ ℝ | ( )| 2 = 1 2 = inf  r [ ] | ∈ 1 (ℝ ) ∩ 2 ℝ , r ( ) , ∫ ℝ | ( )| 2 = 1 2 .
(2.4)

As for the full double-well problem, our assumptions on and are sufficient to deduce the existence and uniqueness of a minimizer using standard methods in the calculus of variations. Since the functionals  and  coincide up to a space translation of the external potential,

= =  [ ] =  [ ],
where and are, respectively, the unique positive ground states of

ℎ = -Δ + + * | | 2 , ℎ = -Δ + + * | | 2 (2.5)
with ground state energies = . Again, since the functionals coincide up to a translation, the minimizers coincide up to a translation, i.e.,

( ) = ( -2 ) = 0 ( -),
where 0 is the minimizer obtained by setting = 0 in (2.4). We are adopting here the normalization

‖ ‖ 2 2 = ‖ ‖ 2 2 = 1∕2, which implies ⟨ , ℎ ⟩ = 2 , ⟨ , ℎ ⟩ = 2 .
Next we define the main small parameter (in the limit → ∞) entering our analysis. Associated to (2.1) is a semi-classical Agmon distance [2, 9, 14]

( ) = ∫ | | 0 √ ( ′ ) ′ = 1 1 + ∕2 | | 1+ ∕2 . (2.6)
The above governs the decay at infinity of eigenfunctions of the single-well Hamiltonians (2.5). Accordingly it sets the -dependence of the tunneling term (splitting between eigenvalue pairs)

∶= -2 2 → →∞ 0. (2.7)
This is the energetic contribution of classically forbidden regions:

is the order of magnitude of double-well wave-functions close to the potential barrier at 1 = 0 (i.e. at distances ∕2 from the potential wells). It has to be squared for the tunneling term is essentially an overlap of two such wave functions. We will express all our estimates in terms of the above parameter.

Similarly one can associate a distance to the double-well potential (1.2)

DW ( ) = ( -) 1 ⩾ 0 ( + ) 1 ⩽ 0. (2.8) 
The value DW ( ) represents the Agmon distance between the point and the closest of the two bottoms of the wells, namely, either or -. In Section 5 we will need to introduce a further refinement of DW , namely the distance within the potential landscape DW between any two points. We shall prove the following result, for space dimensions 1 ⩽ ⩽ 3 (the upper restriction only enters through the Sobolev embedding, and we certainly believe it could be relaxed).

Theorem 2.1 (Hartree problem in a double-well).

Assume 1 ⩽ ⩽ 3. We take > 0 to stand for an arbitrarily small number, fixed in the limit → ∞. Generic constants , > 0 only depend on this number. We have ( ) Bounds on the first spectral gap.

1+ ⩽ --+ ⩽ 1-.
(2.9) ( ) Bounds on the second spectral gap.

ex --⩾ .

(2.10)

independently of . ( ) Convergence of lower eigenvectors. ‖ ‖ ‖ | + | 2 -| -| 2 ‖ ‖ ‖ 1 ⩽ 1- (2.11) ‖ ‖ | + | -| -| ‖ ‖ 2 ⩽ 1∕2- (2.12) ‖ ‖ | + | -| -| ‖ ‖ ∞ ⩽ 1∕2-. ( 2 

.13)

A few comments:

(1) As mentioned above, corresponding results for the semi-classical setting have a long history [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF]. Obtaining the (almost) sharp lower bound in (2.9) in this case usually relies on WKB expansions, unavailable in the present context. We however need this sharp bound in [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF] and have to come up with an alternative method.

(2) The relevance of the definition (2.7) is vindicated by (2.9). With extra effort one should be able to show that gives the order of magnitude of the first spectral gap up to at most logarithmic corrections. (3) Item (iii) is also crucial in [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF], in particular (2.11). It reflects the expectation (1.12)-(1.13), i.e. that + and -mostly differ by a sign change in a half-space. This will be put on a rigorous basis later, following [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF]Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF]. With a suitable choice of , , we indeed vindicate (1.12)-(1.13), with remainders ( 1+ ). Then (2.11) follows, using also decay estimates for the product , , . The less sharp estimates (2.12)-(2.13) are mostly stated for illustration (and will serve as steps in the proof). (4) The results in Theorem 2.1 do not depend, in their essence, on the particular form * | | 2 of the non-linearity. A possible generalization, modulo a number of adaptations in the proof, would include a cubic local (Gross-Pitaevskii) non-linearity corresponding to ( ) = ( ).

The following statement on higher eigenvalues/eigenfunctions follows from variants of the arguments establishing Theorem 2.1, as we quickly explain in Appendix B. We denote by , = 1 … ∞ the eigenvalues of the left Hamiltonian ℎ (identical to those of ℎ ), ( ) their multiplicities and

( ) = ∑ =1 ( ),
with the convention that (0) = 0.

Theorem 2.2 (Higher spectrum). Assume 1 ⩽ ⩽ 3. Let ⩾ 1 and 2 ( -1)+1 , … , 2 ( ) the ordered eigenvalues of ℎ DW in a corresponding spectral window (counted with multiplicities). We have:

( ) Bounds on small spectral gaps. For all 2 ( -1) + 1 ⩽ ⩽ 2 ( ) for some constant > 0 independent of .

| | | - | | | → →∞ 0. ( 2 

( ) Convergence of higher eigenvectors. One can pick an eigenbasis

+ 1 , - 1 , … , + ( ) , - ( ) of 1 2 ( -1)+1 ⩽ℎ DW ⩽ 2 ( ) ℎ DW such that for all 1 ⩽ ⩽ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ± - ± √ 2 ‖ ‖ ‖ ‖ ‖ ‖ 2 → →∞ 0, (2.16 
)

where 1 , … , ( ) form an orthonormal basis of 1 ℎ = ℎ and 1 , … , ( ) are their reflections. Moreover

‖ ‖ ‖ | + | 2 -| -| 2 ‖ ‖ ‖ 1 → →∞ 0 (2.17) ‖ ‖ | + | -| -| ‖ ‖ 2 → →∞ 0 (2.18) ‖ ‖ | + | -| -‖ ‖ ∞ → →∞ 0, (2.19) 
and

∫ 1 ⩽0 | | + + -| | 2 → 0, ∫ 1 ⩾0 | | + --| | 2 → →∞ 0.
(2.20)

We do not state convergence rates here, but believe the same rates as in Theorem 2.1 can be achieved, for fixed in the limit → ∞ (or, better said, for convergence rates whose -dependence is left unspecified). We do not pursue the details, nor the dependence on , for we do not need this in our applications [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF]. Certainly, if the eigenvalues are taken high enough in the spectrum ( → ∞ fast enough as → ∞) the two-mode approximation (1.12)-(1.13), on which the result relies, breaks down.

The rest of the paper contains the proof of Theorem 2.1, organized as follows:

• Section 3: optimal bounds on the decay of eigenfunctions far from the potential wells, and first consequences thereof. • Section 4: proof of Items (i) and (ii) in Theorem 2.1. The hardest part is the lower bound on the first gap in Item (i). • Section 5: adaptation of techniques of Helffer-Sjöstrand [START_REF]Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF] to deduce Item (iii) from the previous bounds. • Appendix A: a collection of straightforward consequences of the decay estimates of Section 3. Finally, in Appendix B, we briefly sketch the additional ingredients needed for the proof of Theorem 2.2.

PRELIMINARY ESTIMATES

3.1. Regularity and uniformity results. We start by stating and proving in this subsection a number of important properties of the eigenvectors and eigenvalues of ℎ MF , ℎ , and ℎ .

Lemma 3.1 (Regularity).

The functions + , -, ex , , , and with ⩾ 4, belong to ∞ (ℝ ).

Proof. We discuss the case of + only. Define

∶= DW + * | + | 2 -+ .
Then + then solves the elliptic equation with locally Lipschitz coefficients

-Δ + + + = 0. (3.1)
This means that we can apply [START_REF] Trüdinger | Elliptic partial differential equations of second order[END_REF]Theorem 8.8] and deduce that + ∈ 2 ( ) for every compact set ⊂ ℝ . In order to prove higher regularity we will use a bootstrap argument.

Recall that, for a sufficiently regular ,

‖ ‖ ( ) ⩽ ‖ ‖ 1 ( ) ‖ ‖ 2 ( )
for < 1 + 2 -∕2. The validity of the above formula if is replaced by ℝ is well known, and to deduce it for compact domains one uses Stein's extension Theorem [1, Theorem 5.24]. Now, since + ∈ 2 ( ) and ∈ 1 ( ), the above inequality proves in particular that + ∈ 1 ( ). Due to (3.1), this means Δ + ∈ 1 ( ), and therefore + ∈ 3 ( ). We can now iterate the procedure, because + ∈ 3 ( ) and ∈ 1 ( ) imply ∈ 2 ( ). In this way we deduce that + ∈ ( ) for any > 0. This implies that + is ∞ in any sufficiently regular compact set, which means it is ∞ on the whole of ℝ . The same argument can be repeated for all the other functions.

Lemma 3.2 (Uniform bound for the eigenvalues).

For each , the -th eigenvalue of ℎ MF 2 satisfies

0 < ⩽ , ( 3.2) 
for a constant that does not depend on .

Proof. First we observe that, as operators, By the min-max principle, this means that the -th (ordered) eigenvalue of ℎ MF is bounded by the -th (ordered) eigenvalue of ℎ plus a constant. However, the spectrum of ℎ does not depend on , because ℎ coincides with the translation (by -) of a fixed Hamiltonian.

ℎ MF ⩽ ℎ + ,
We will also need an analogous result on the uniformity of Sobolev norms of the eigenvectors of ℎ MF . To this end, we start with the following Lemma 3.3 (Estimate on ℎ 2 DW ). We have the quadratic form bound 1 2 (-Δ) 2 ⩽ ℎ 2 DW + , for a constant that does not depend on .

Proof. Let = DW + * | + | 2 . For ∈ [ℎ 2 DW ]
with ‖ ‖ 2 = 1 we have, after expanding the square and integrating by parts,

⟨ , ℎ 2 DW ⟩ = ⟨ , Δ 2 ⟩ + ⟨ , 2 ⟩ + ⟨∇ , (∇ ) ⟩ + 2⟨∇ , ∇ ⟩ + ⟨ , (∇ )∇ ⟩ ⩾ ⟨ , Δ 2 ⟩ + ⟨ , 2 ⟩ + ⟨∇ , (∇ ) ⟩ + ⟨ , (∇ )∇ ⟩, 2
We are adopting the convention 1 = + , 2 = -, and 3 = ex .

where for a lower bound we used ⩾ 0. By Cauchy-Schwarz we have

⟨∇ , (∇ ) ⟩ + ⟨ , (∇ )∇ ⟩ ⩾ -⟨ , (-Δ) ⟩ -⟨ , |∇ | 2 ⟩,
and the further inequality

-Δ ⩽ 1 2 Δ 2 + 2 yields ⟨ , ℎ 2 DW ⟩ ⩾ 1 2 ⟨ , Δ 2 ⟩ + ⟨ , 2 -|∇ | 2 -2 ⟩ .
The lemma follows from the claim

2 -|∇ | 2 ⩾ -
that we now prove. Let us consider the half-space { 1 ⩾ 0}. Here, For the 2 -term in |∇ | 2 we have, by Young's and Hölder's inequalities,

-2 * ( + ∇ + ) 2 ⩾ -4 2 ‖ ‖ 2 ∞ ‖ + ‖ 2 2 ‖ + ‖ 2 1 ⩾ -, because ‖ + ‖ 2 1 ⩽ + ⩽ by Lemma 3.2.
For the -term in |∇ | 2 we use Cauchy-Schwarz followed by Young and Hölder inequalities to get

-4 | -| -1 - | -| ⋅ * ( + ∇ + ) ⩾ -| -| 2 -2 -.
The three last inequalities imply

2 ( ) -|∇ ( )| 2 ⩾ | -| 2 -( 2 + )| -| 2 -2 --⩾ -′ .
This concludes the proof.

Lemma 3.4 (Uniform Sobolev regularity).

For each , the -th (normalized

) eigenvector of ℎ MF satisfies ‖ ‖ 2 (ℝ ) ⩽ , ‖ ‖ ∞ (ℝ ) ⩽ , (3.3)
for a constant that does not depend on .

Proof. By the Sobolev embedding

‖ ‖ ∞ (ℝ ) ⩽ ‖ ‖ 2 (ℝ ) ,
that holds for = 1, 2, 3, the second inequality follows from the first one. To prove the first one, we recognize that

‖ ‖ 2 2 = ‖ -Δ ‖ 2 2 + ‖ ‖ 2 2 ⩽ ⟨ , ℎ 2 MF ⟩ + ,
where the second inequality follows from Lemma 3.3. Since is an eigenvector of ℎ MF , we have ‖ ‖ 2 2 ⩽ 2 + ⩽ , thanks to Lemma 3.2.

Decay estimates.

Key ingredients for all our estimates are the following estimates on the decay of the eigenvectors of ℎ DW far from and -.

Proposition 3.5 (Decay estimates for eigenmodes).

Let be an arbitrarily small parameter and DW be as in (2.8).

• Integral bound. Let be any eigenvector of ℎ DW , corresponding to eigenvalue and with normalization ‖ ‖ 2 = 1. There exists , > 0 (depending on and but not on ) such that

∫ ℝ | | | ∇ (1-) DW | | | 2 + ∫ ℝ 2(1-) DW | | 2 ⩽ , . (3.4) 
• Pointwise bound. Let be as above. For > 0 large enough, there exists , > 0

such that | ( )| ⩽ , -(1-) DW ( ) (3.5 
)

for every such that | -|, | + | ⩾ .
• Pointwise bound for one-well modes. For > 0 large enough, there exists such that

( ) ⩽ -(1-) ( -) (3.6) for | -| ⩾ and ( ) ⩽ -(1-) ( + ) (3.7) for | + | ⩾ .
We start the proof with the following Lemma.

Lemma 3.6 (Integral decay bounds).

Let Φ be locally Lipschitz and let its gradient be defined as the ∞ limit of a mollified sequence ∇Φ . Let moreover be an eigenvector of ℎ DW , corresponding to the eigenvalue and with normalization ‖ ‖ 2 = 1. Define the total potential Proof. To avoid a number of boundary terms that would arise after integration by parts, let us introduce the sequence of smooth localization functions

∶= DW + * | + | 2 - and assume that ⩾ |∇Φ| 2 outside of a compact set. Then ∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ -|∇Φ| 2 2Φ | | 2 ⩽ 0. ( 3 
( ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 | | ⩽ 0 | | ⩾ 2 1 1-| |∕ 1 1-| |∕ + | | ⩽ | | ⩽ 2 .
Since is obtained by dilating a fixed function by a factor , we have

‖ ‖ ‖ ∇ ‖ ‖ ‖ ∞ (ℝ ) ⩽ , ‖ ‖ ‖ Δ ‖ ‖ ‖ ∞ (ℝ ) ⩽ 2 .
The localization function will tend to one pointwise as → ∞, thus yielding integrals on the whole ℝ , while the terms depending on its derivatives will vanish thanks to the above bounds. We further define, for ∈ ℕ,

Φ ( ) ∶= min{Φ( ), }.
This is a uniformly Lipschitz version of Φ , which tends to Φ as → ∞.

By definition the function satisfies

(-Δ + ) = 0.
Recall that we fixed all phases so as to have only real-valued eigenvectors of ℎ DW , so is real-valued. We multiply the above equation by 2Φ , and integrate by parts. We get

0 = ∫ ℝ Φ ∇ Φ ⋅ ∇ + ∫ ℝ 2Φ ∇Φ ⋅ ∇ + ∫ ℝ 2Φ ∇ ⋅ ∇ + ∫ ℝ 2Φ | | 2 .
By using Leibniz rule in the first term in the right hand side we get

0 = ∫ ℝ | | | ∇ Φ | | | 2 -∫ ℝ Φ ∇ Φ ⋅ ∇Φ + ∫ ℝ 2Φ ∇Φ ⋅ ∇ + ∫ ℝ 2Φ ∇ ⋅ ∇ + ∫ ℝ 2Φ | | 2 = ∫ ℝ | | | ∇ Φ | | | 2 -∫ ℝ 2Φ 2 | | ∇Φ | | 2 + ∫ ℝ 2Φ ∇ ⋅ ∇ + ∫ ℝ 2Φ | | 2 ,
which is rewritten as

∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ -| | ∇Φ | | 2 2Φ | | 2 = ∫ ℝ 2Φ ∇ ⋅ ∇ .
We need to show that the term in the right hand side converges to zero as → ∞, and that the quantity in the left hand side is controlled when

→ ∞ followed by → ∞. First, | | | | ∫ ℝ 2Φ ∇ ⋅ ∇ | | | | ⩽ ‖∇ ‖ ∞ (ℝ ) ∫ ℝ |∇ | | | ⩽ ‖ ‖ 2 ‖ ‖ 1 .
This implies

lim →∞ ∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ -| | ∇Φ | | 2 2Φ | | 2 = 0,
which, by monotone convergence, means

∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ -| | ∇Φ | | 2 2Φ | | 2 = 0.
Since Φ → Φ pointwise as → ∞, Fatou's Lemma yields the desired result.

We are now ready to provide the Proof of Proposition 3.5. We will apply Lemma 3.6 and show how to recover (3.4). We fix a constant > 0, and consider the set

Ω ∶= { ∈ ℝ | 2 -2 DW -⩾ } ≡ ∈ ℝ | | -| ⩾ ( + )∕(2 -2 ) 1∕ , 1 ⩾ 0 | + | ⩾ ( + )∕(2 -2 ) 1∕ , 1 ⩽ 0 Ω = ℝ ⧵ Ω .
We also define, for any < 1∕2,

Φ = (1 -) DW , so that |∇Φ| 2 = (1 -) 2 DW . Notice that the function (2 -2 ) DW -appearing in the definition of Ω is smaller than -|∇Φ| 2 , where = DW + * | + | 2 -.
As a consequence, ⩾ on the whole Ω .

We thus have

∫ ℝ | | | ∇ Φ | | | 2 + ∫ Ω 2Φ | | 2 ⩽ ∫ ℝ | | | ∇ Φ | | | 2 + ∫ Ω -|∇Φ| 2 2Φ | | 2 ⩽ ∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ -|∇Φ| 2 2Φ | | 2 -∫ Ω -|∇Φ| 2 2Φ | | 2 ,
and, by Lemma 3.6 and the inequality -|∇Φ| 2 ⩾ -, we get

∫ ℝ | | | ∇ Φ | | | 2 + ∫ Ω 2Φ | | 2 ⩽ ∫ Ω 2Φ | | 2 .
This in turn implies

∫ ℝ | | | ∇ Φ | | | 2 + ∫ ℝ 2Φ | | 2 ⩽ + ∫ Ω 2Φ | | 2 .
Since 2Φ is easily seen to be bounded by a -dependent constant on Ω , the above inequality implies (3.4) after choosing, for example, = 1.

Let us now prove (3.5). The function

| | 2 satisfies Δ| | 2 = 2|∇ | 2 + 2 DW + * | + | 2 - | | 2 ,
and therefore

Δ| | 2 ( ) ⩾ 0 for | -|, | + | ⩾
with large enough. Hence, by the mean value property for subharmonic functions (see, e.g., [START_REF] Trüdinger | Elliptic partial differential equations of second order[END_REF]Theorem 2.1] or [17, Section 9.3]),

| ( )| 2 ⩽ 1 Vol (1) ∫ (1) | ( )| 2 ,
where (1) is the ball of radius 1 centered at (assume is large enough so that is subharmonic on the whole (1)). We multiply and divide by 2(1-) DW inside the integral and use the Taylor-like expansion

| | | -2(1-) DW ( ) --2(1-) DW ( ) | | | ⩽ -2(1-′ ) DW ( ) ∈ (1),
which holds for some < ′ < 1∕2 used to absorb the growth of the gradient. This gives

| ( )| 2 ⩽ -2(1-′ ) DW ( ) ∫ (1) | ( )| 2 2(1-) DW ( ) .
The remaining integral is bounded by a constant thanks to (3.4), and we thus get

| ( )| ⩽ , -(1-′ ) DW ( ) .
This is precisely of the form (3.5) after a redefinition of the constants. The bounds for and are obtained through similar arguments, which we do not reproduce.

The above allows to efficiently bound most terms that have to do with the tunneling effect in the sequel. A list of such is provided in Appendix A.

3.3. First approximations. An important ingredient for the sequel is a first approximation of + in terms of functions localized in the left or right wells: Proposition 3.7 (First properties of + and -.). Let 1 ⩾0 , 1 ⩽0 be a smooth partition of unity such that

2 1 ⩾0 + 2 1 ⩽0 = 1, 1 ⩾0 ( ) = 1 ⩽0 (-1 , 2 , … , ), 1 ⩾0 ( ) = 0 on { 1 ⩽ -}, ‖∇ 1 ⩾0 ‖ ∞ ⩽ .
Then, with and the left and right Hartree minimizers solving (2.4), and the tunneling parameter (2.7),

‖ ‖ ‖ 1 ⩾0 + - ‖ ‖ ‖ 2 ⩽ 1∕2- ‖ ‖ ‖ 1 ⩽0 + - ‖ ‖ ‖ 2 ⩽ 1∕2-, (3.9)
and, for an appropriate choice of the phase of -,

‖ ‖ ‖ 1 ⩾0 -- ‖ ‖ ‖ 2 ⩽ 1∕4- ‖ ‖ ‖ 1 ⩽0 -+ ‖ ‖ ‖ 2 ⩽ 1∕4-. ( 3.10) 
The approximation (3.10) has a worse rate than (3.9), and therefore it does not allow to directly deduce (2.12) with the desired rate yet. It follows from the above and standard elliptic regularity estimates that

1 ⩾0 + ( -) → →∞ 0 1 ⩽0 + ( + ) → →∞ 0 1 ⩾0 -( -) → →∞ 0 1 ⩽0 -( + ) → →∞ -0 , (3.11)
where 0 is the minimizer of the one-well Hartree functional (obtained by setting = 0 in the definition (2.4) of the left and right well functionals). For any fixed smooth bounded set Ω the convergence is strong in any Sobolev space (Ω) and (by Sobolev embeddings) in any Hölder space  (Ω). Indeed, repeatedly differentiating the elliptic PDEs satisfied by + and -one obtains uniform bounds in any Sobolev space. Using local compact embeddings one can then extract convergent subsequences in these spaces, and the above Proposition uniquely identifies the limit.

We will prove Proposition 3.7 using energy inequalities, which requires the following two lemmas.

Lemma 3.8. Stability inequality for gapped Hamiltonians.

Let ℎ be a self-adjoint Hamiltonian with compact resolvent on a Hilbert space . Let 0 be the ground state energy with ground state 0 (with ‖ 0 ‖  = 1), and let ⩾ 0 be the gap between ground state and first excited state. Then, for any ∈ (ℎ) with ‖ ‖  = 1,

⟨ , ℎ ⟩  ⩾ 0 + 2 min ∈[0,2 ] ‖ ‖ ‖ -0 ‖ ‖ ‖ 2  . (3.12)
The assumption of compactness of the resolvent is clearly not crucial for this Lemma. We anyway keep it since that is the only case we will encounter. We also remark that in the case = 0, i.e., a degenerate ground state, the statement is trivial.

Proof. By the assumptions we have the decomposition

ℎ = 0 | 0 ⟩⟨ 0 | + ∑ | ⟩⟨ | with ⩾ 0 + for every . Then ⟨ , ℎ ⟩  ⩾ 0 | | | ⟨ 0 , ⟩  | | | 2 + ( 0 + ) 1 - | | | ⟨ 0 , ⟩  | | | 2 = 0 + 1 - | | | ⟨ 0 , ⟩  | | | 2 .
On the other hand we have

min ∈[0,2 ] | | | -0 | | | 2  = 2 -2 max ∈[0,2 ] Re ⟨ 0 , ⟩  = 2 -2 | | | ⟨ 0 , ⟩  | | | . Since 1 -|⟨ 0 , ⟩  | ⩽ 1 -|⟨ 0 , ⟩  | 2
, the last two equations yield the desired estimate.

Lemma 3.9 (Stability inequality for the one-well Hartree functionals.).

For a generic ∈ 2 (ℝ ) ∩ 2 ℝ , r ( ) with ‖ ‖ 2 2 = 1 2 , the following stability inequality holds:

 [ ] ⩾  [ ] + min ∈[0,2 ] ‖ ‖ ‖ - ‖ ‖ ‖ 2 2 . (3.13)
Proof. First, let us notice that an application of Lemma 3.8 for ℎ = ℎ yields (the different normalization has no effect since the whole inequality is homogeneous with respect to an overall factor)

⟨ , ℎ ⟩ ⩾ ⟨ , ℎ ⟩ + min ∈[0,2 ] ‖ ‖ ‖ - ‖ ‖ ‖ 2 2 . (3.14)
Indeed, ℎ is obtained from a -independent Hamiltonian by a translation by , and therefore its spectrum does not depend on . The properties of and imply that ℎ must have a gap (see, e.g., [START_REF]Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF]Theorem XIII.47]). The -independence of the spectrum implies that such a gap does not depend on . We can therefore apply Lemma 3.8 and consider ∕2 as a fixed constant.

To deduce (3.13), a simple computation gives

 [ ] - [ ] = ⟨ , ℎ ⟩ -⟨ , ℎ ⟩ + 2 ∫ ℝ ( * | | 2 )| | 2 -2 ∫ ℝ ( * | | 2 )| | 2 + ∫ ℝ * (| | 2 -| | 2 ) | | 2 = ⟨ , ℎ ⟩ -⟨ , ℎ ⟩ + 2 ∫ ℝ * (| | 2 -| | 2 ) | | 2 -| | 2 .
Since ̂ ⩾ 0, the last integral on the right hand side is non-negative. We discard it for a lower bound and get

 [ ] - [ ] ⩾ ⟨ , ℎ ⟩ -⟨ , ℎ ⟩, (3.15) 
which proves (3.13) thanks to (3.14).

We are now ready to give the Proof of Proposition 3.7. Let us first show the upper bound

 DW [ + ] ⩽ 2 [ ] + 1-. (3.16)
The normalized state ( + )∕‖ + ‖ 2 is an admissible trial function for the minimization of  DW at unit mass. Notice that, by positivity of and ,

‖ + ‖ 2 2 = 1 + 2Re⟨ , ⟩ ⩾ 1
, and hence we can ignore the norms in the denominator for an upper bound. We have

 DW [ + ] ⩽  DW + ‖ + ‖ 2 ⩽ ∫ ℝ |∇ | 2 + ∫ ℝ DW | | 2 + 2 ∫ ℝ | | 2 ( * | | 2 ) + ∫ ℝ |∇ | 2 + ∫ ℝ DW | | 2 + 2 ∫ ℝ | | 2 ( * | | 2 ) + 2 ∫ ℝ ∇ ⋅ ∇ + 2 ∫ ℝ DW + 2 ∬ ℝ ×ℝ ( -) 2 ( ) ( ) | | | ( ) + ( ) | | | 2 + 2| ( )| 2 | ( )| 2 + 2 ( ) ( ) . 
(3.17)

In the first two lines in the right hand side we can use, respectively, DW ⩽ and DW ⩽ . In this way the first line equals  [ ] and the second one equals  [ ], which actually coincide by translation invariance. The terms in the third line are remainders as follows from (A.4) and (A.7). We then deduce

 DW [ + ] ⩽ 2 [ ] + 1- + 2 ∬ ℝ ×ℝ ( -) 2 ( ) ( ) | | | ( ) + ( ) | | | 2 + 2| ( )| 2 2 ( ) ( ) + | ( )| 2 .
and the scalar product on the right is estimated using (A.1). The only remaining term to estimate is

∬ ℝ ×ℝ ( -)| ( )| 2 | ( )| 2 ,
which we bound using (A.14). We thus precisely obtain (3.16).

Let us now prove the lower bound

 DW [ + ] ⩾ 2 1 ⩾0 + - 1-. (3.18)
Using the IMS localization formula we have

-Δ + DW = - 1 ⩾0 Δ 1 ⩾0 - 1 ⩽0 Δ 1 ⩽0 + DW 2 1 ⩾0 + DW 2 1 ⩽0 -(∇ 1 ⩾0 ) 2 -(∇ 1 ⩽0 ) 2 . Moreover, ∫ ℝ ( * | + | 2 )| + | 2 = ∫ ℝ ( * | 1 ⩾0 + | 2 )| 1 ⩾0 + | 2 + ∫ ℝ ( * | 1 ⩽0 + | 2 )| 1 ⩽0 + | 2 + 2 ∫ ℝ ( * | 1 ⩽0 + | 2 )| 1 ⩾0 + | 2 .
The last summand in the right hand side of the last equation is positive and we will simply discard it for a lower bound. We thus have

 DW [ + ] ⩾ 2 1 ⩾0 + + ∫ ℝ DW -) 2 1 ⩾0 | + | 2 + ∫ ℝ DW -) 2 1 ⩽0 | + | 2 -∫ ℝ (∇ 1 ⩾0 ) 2 | + | 2 -∫ ℝ (∇ 1 ⩽0 ) 2 | + | 2 .
The first two integrals in the right hand side are estimated in (A.9). The integrals in the second line are smaller or equal than the quantities estimated in (A.2), because |∇ 1 ⩾0 | and |∇ 1 ⩽0 | are by construction bounded by a constant and localized in {-⩽ 1 ⩽ }. This proves (3.18).

Comparing (3.16) and (3.18) we deduce

 1 ⩾0 + ⩽  [ ] + 1-.
On the other hand, a direct application of Lemma 3.9 with = 1 ⩾0 + (notice that the property 2 1 ⩾0 + 2 1 ⩽0 = 1 together with the symmetry of + imply ‖ ‖ 2 2 = 1∕2) yields

 1 ⩾0 + ⩾  [ ] + min ∈[0,2 ] ‖ ‖ ‖ 1 ⩾0 + - ‖ ‖ ‖ 2 2 =  [ ] + ‖ ‖ ‖ 1 ⩾0 + - ‖ ‖ ‖ 2 2
, having noticed that the minimum is attained at = 0 since 1 ⩾0 + and are positive. The last two formulae imply the first estimate in (3.9). The second one immediately follows since + is symmetric under reflection across the 1 = 0 axis, while is mapped into by such a reflection.

Let us now prove (3.10). As a first ingredient, let us show the following inequality:

| | | ∬ ℝ ×ℝ ( -)| ( )| 2 | + ( )| 2 -| ( )| 2 | | | ⩽ 1∕2-. (3.19)
Clearly, an analogous inequality holds if is replaced by . To prove (3.19), let us decompose

∬ ℝ ×ℝ ( -)| ( )| 2 | + ( )| 2 -| ( )| 2 = ∬ ℝ ×ℝ ( -)| ( )| 2 | 1 ⩾0 ( ) + ( )| 2 -| ( )| 2 + ∬ ℝ ×ℝ ( -)| ( )| 2 | 1 ⩽0 ( ) + ( )| 2 = ∬ ℝ ×ℝ ( -)| ( )| 2 1 ⩾0 ( ) + ( ) -( ) 1 ⩾0 ( ) + ( ) + ( ) + ∬ ℝ ×ℝ ( -)| ( )| 2 | 1 ⩽0 ( ) + ( )| 2 .
The first term is estimated using Young's inequality for * | | 2 , then Cauchy-Schwartz in the -integration, and then (3.9). The second term is estimated by recognizing that

∬ ℝ ×ℝ ( -)| ( )| 2 | 1 ⩽0 ( ) + ( )| 2 ⩽ ∫ 1 ⩽ | ( )| 2 ⩽ 1∕2-
thanks to (A.8). This shows (3.19). Notice that the error estimate in the right hand side of (3.19) is worse than the one in (3.9). This is the reason why we will obtain a similarly worse error estimate in (3.10).

Let us now proceed to the actual proof of (3.10). We aim at first proving an upper bound of the form

-⩽ + 1∕2-. (3.20)
Recall that we have

-= ⟨ -, ℎ DW -⟩ = inf ⟨ , ℎ DW ⟩ | ‖ ‖ 2 = 1, ⟂ + .
The function ( -)∕‖ -‖ 2 is then a trial state for this minimization since, by the even parity of + ,

⟨ , + ⟩ = ⟨ , + ⟩.
Moreover, using (A.1) we deduce

‖ -‖ 2 2 = 1 -2Re⟨ , ⟩ ⩾ 1 - 1-.
Hence by the variational principle we have

-⩽ 1 ‖ -‖ 2 2 ⟨ -, ℎ DW ( -)⟩ ⩽ ⟨ , ℎ ⟩ + ⟨ , ℎ ⟩ -2 ∫ ℝ ∇ ∇ + ∫ | | 2 + ∫ | | 2 -2 ∫ ℝ DW -∫ | | 2 -∫ | | 2 -∬ ℝ ×ℝ ( -) ( ) ( )| + ( )| 2 + 2 ∬ ℝ ×ℝ ( -)| ( )| 2 | + ( )| 2 -| ( )| 2 + 2 ∬ ℝ ×ℝ ( -)| ( )| 2 | + ( )| 2 -| ( )| 2 + 1-. (3.21)
In the right hand side of (3.21), the first line equals 2⟨ , ℎ ⟩. The second line contains remainders that can be estimated using (A.4) and (A.12). The third and fourth lines are negative and we can safely discard them for an upper bound. The fifth and sixth lines account for the presence of * | | 2 and * | | 2 in ℎ and ℎ , and their estimate was provided in (3.19). The only further term in the right hand side of (3.21) is the last line, which comes from the estimate of ‖ -‖ -2 2 . We therefore proved (3.20). The lower bound

-= ⟨ -, ℎ DW -⟩ ⩾ 2⟨ 1 ⩾0 -, ℎ 1 ⩾0 -⟩ + 1∕2- (3.22)
is easily obtained using IMS formula and proceeding as in the proof of (3.18), using also (3.19), (A.2), and (A. 

‖ ‖ ‖ 1 ⩾0 -- ‖ ‖ ‖ 2 2 ⩽ 1∕2-.
Repeating the arguments for the function 1 ⩽0 -we also deduce

min ∈[0,2 ] ‖ ‖ ‖ 1 ⩽0 -- ‖ ‖ ‖ 2 2 ⩽ 1∕2-.
By continuity, the minimizations have to be realized at some 1 and 2 (that a-priori depend on the distance ), i.e.,

‖ ‖ ‖ 1 ⩾0 --1 ‖ ‖ ‖ 2 2 ⩽ 1∕2- ‖ ‖ ‖ 1 ⩽0 --2 ‖ ‖ ‖ 2 2 ⩽ 1∕2-. (3.23)
Moreover, since -and are real-valued functions, we have

‖ ‖ ‖ 1 ⩾0 --1 ‖ ‖ ‖ 2 2 = 1 -cos 1 ∫ ℝ 1 ⩾0 - ,
and similarly for the other norm. This shows that the minimization can occur for 1 ∈ {0, } and 2 ∈ {0, } only, depending on the sign of the integral in the right hand side. Modulo a change of sign of -, we can certainly assume that 1 = 0 for every . There remains to show that 2 = for every . But this follows from

0 = ⟨ -, + ⟩ = ⟨ 1 ⩽0 -, 1 ⩽0 + ⟩ + ⟨ 1 ⩾0 -, 1 ⩾0 + ⟩ = ⟨ 1 ⩽0 --2 , 1 ⩽0 + ⟩ + ⟨ 1 ⩾0 -- , 1 ⩾0 + ⟩ + -2 ⟨ , 1 ⩽0 + ⟩ + ⟨ , 1 ⩾0 + ⟩ .
Indeed, the first two scalar products in the right hand side converge to zero due to (3.23) (with the choice 1 = 0), while the second two scalar products converge to one due to (3.9). This shows that 1 must converge to as tends to infinity. Since it can only attain the values 0 and by what discussed above, it must coincide with for large enough.

ESTIMATES ON SPECTRAL GAPS

In the present section we prove the claims (2.9) and (2.10) from our main result. The proof of the lower bound in (2.9), being the most involved, requires an extra amount of information on + and -, beyond the preliminary estimates of Proposition 3.5. We discuss this in Subsection 4.2.

Upper bound on the first gap.

To deduce the upper bound in (2.9) we consider the function

∶= 1 ⩾0 - 1 ⩽0 + ‖ ‖ ‖ 1 ⩾0 - 1 ⩽0 + ‖ ‖ ‖ 2 ⟂ +
as a trial function for the minimization

-= min ⟨ , ℎ DW ⟩, ‖ ‖ 2 = 1, ⟂ + . Here 1 ⩾0
and 1 ⩽0 are localization functions as in Proposition 3.7, and this ensures

‖ ‖ ‖ 1 ⩾0 - 1 ⩽0 + ‖ ‖ ‖ 2 2 = 1 -2 ∫ ℝ 1 ⩾0 1 ⩽0 | + | 2 ⩾ 1 - 1- (4.1)
thanks to (A.2). By the variational principle we have

-⩽ ⟨ , ℎ DW ⟩ = 2⟨ 1 ⩾0 + , ℎ DW 1 ⩾0 + ⟩ -2⟨ 1 ⩾0 + , ℎ DW 1 ⩽0 + ⟩ ‖ ‖ ‖ 1 ⩾0 - 1 ⩽0 + ‖ ‖ ‖ 2 2 .
The second term in the numerator is bounded in absolute value by 1-as can be seen using (A.5), (A.11), and (A.13). For the first term we use IMS formula which implies

⟨ + , ℎ DW + ⟩ ⩾ 2⟨ 1 ⩾0 + , ℎ DW 1 ⩾0 + ⟩ - 1-, (4.2)
as can be seen using once again (A.5), (A.11), and (A.13). This, together with (4.1) gives

-⩽ ⟨ + , ℎ DW + ⟩ + 1-= + + 1-.
4.2. Further properties of + and -. We start with the following proposition, which provides a lower bound analog to (3.5) for + , vindicating the sharpness of the latter estimate.

Proposition 4.1 (Lower bound for + ).

Let ∶= 2 -2+ 4 > 2 2 -2+ 4 -+ 2 = 2.
Then there exists > 0 independent of such that, for every 0 < < 1, there exists a constant > 0, also independent of , such that

+ ( ) ⩾ -DW ( ) DW ( ) + + (4.3 
)

for any such that | -|, | + | ⩾ .
A pointwise lower bound for -and ex is not to be expected, since excited eigenfunctions have to change sign.

Proof. For a number ∈ ℝ, define the function

( ) = -DW ( ) DW ( ) -∕ = -(1+ ∕2) -1 | -| 1+ ∕2 | -| - 1 ⩾ 0 -(1+ ∕2) -1 | + | 1+ ∕2 | + | - 1 ⩽ 0. Using the fact that only depends on | -| for 1 ⩾ 0 or | + | for 1 ⩽ 0, we compute Δ ( ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ | -| + 2 - 2 -+ 1 | -| ∕2-1 + 2 + 2 - | -| -2 ( )
for 1 > 0 | + | + 2 - 2 -+ 1 | + | ∕2-1 + 2 + 2 - | + | -2 ( ) for 1 > 0. (4.4) 
Notice that for 1 = 0 the Laplacian is defined in a distributional sense only. Since * Since + > 0, we have 3 that > 0. Let us consider the continuous function = +low . We will prove that is positive. Then (4.3) follows thanks to

| + | 2 -+ is uniformly ∞ -bounded (
⩾ min | -|< | + |< + ( ) max | -|< | + |< low ⩾ ‖ + ‖ ∞ ( ( )∪ -( ) ) .
Here we used Harnack's inequality [10, Section 6.4.3] for the set ( ) ∪ -( ) (the resulting constant depends only on , not on ). The right-hand side of the above is bounded away from 0 as → ∞, for otherwise + would converge to 0 in 2 ( ) ∪ -( ) , contradicting Proposition 3.7. Thus is bounded away from zero as → ∞ and there only remains to prove that is positive.

The function , being continuous and decaying at infinity, could have either of the three following behaviors. (i) it attains a global minimum inside ( ) ∪ -( ), (ii) it attains a global minimum outside of ( ) ∪ -( ), or (iii) it has no global minimum and is everywhere positive. In the latter case (iii) there is nothing to prove. In case (i) the proof is complete because is by construction positive inside ( ) ∪ -( ). Finally, consider case (ii): attains a global minimum at some ( 1 , … , ) = ∉ ( ) ∪ -( ). We can exclude the possibility that 1 = 0. Indeed, on the hyperplane { 1 = 0}, + has (by parity) a 1 -directional critical point where (by smoothness) ∇ + vanishes. On the other hand, low has by construction a 1 -directional minimum there, with 1 low making a jump between two different non-zero values. Hence, in the 1 direction, + converges at least quadratically to its value at 1 = 0, while low decays as ∼ | 1 | to its value on the hyperplane. It follows that has a 1 -directional maximum on the hyperplane 1 = 0. Thus the global minimum must belong to a region where is smooth, implying Δ ⩾ 0 at . We then use the eigenvalue equation for + and (4.5) to deduce

-Δ + DW ( ) + * | + | 2 ( ) -+ ( ) = - -Δ + DW ( ) + * | + | 2 ( ) -+ low ( ) ⩾ 0 3
This is the place where the argument ceases to apply to -or ex

In order to prove the lower bound, we apply the above with = -∕ + , and drop the integration in the right-hand side outside of a hyper-rectangle. Notice that is smooth since both + and -are, and + is strictly positive (see, e.g., [START_REF]Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF]Thm. XIII.47]). This gives

--+ = 1 2 ∫ ℝ |∇ | 2 | + | 2 ⩾ 1 2 ∫ 2 = 2 =- ⋯ ∫ = =-∫ 1 = ∕2- 1 =-∕2+ |∇ | 2 | + | 2 1 … ,
where is an arbitrary fixed positive number, and is large enough so that one can apply Proposition 4.1, which we do. For a lower bound on + we use (4.3) and evaluate DW at its minimum = 0 in the right-hand side. This gives

--+ ⩾ 1+ ∫ 2 = 2 =- ⋯ ∫ = =-∫ 1 = ∕2- 1 =-∕2+ |∇ | 2 1 … .
For the gradient of we use the trivial inequality

|∇ | 2 ⩾ | 1 | 2 ,
as well as Cauchy-Schwarz in the form

∫ 2 = 2 =- … ∫ = =-∫ 1 = ∕2- 1 =-∕2+ | 1 | 2 1 … ⩾ 1 ∫ 2 = 2 =- ⋯ ∫ = =-∫ 1 = ∕2- 1 =-∕2+ 1 1 … 2 = 1 ∫ 2 = 2 =- ⋯ ∫ = =- × ( ∕2 -, 2 , … , ) -(-∕2 + , 2 , … , ) 2 … 2 = 2 ∫ 2 = 2 =- ⋯ ∫ = =- ( ∕2 -, 2 , … , ) 2 … 2 .
The last step follows from the fact that = -∕ + is odd under reflection around the 1 = 0 axis, since -is odd (see Lemma 4.2) and + is even. Since the -1 factor can be absorbed inside 1+ with a slight modification of , we only have to show that the integral in the right hand side is bounded away from zero uniformly in . This is a consequence of (3.11) and of the Sobolev embedding (see the discussion after Proposition 3.7), which imply that + and -converge in ∞ to the same function in ( , ) for fixed. This completes the proof. We now want to bound from below the right hand side using (a suitable modification of)

1 ⩾0 ex as a trial state for the minimization problem

,ex ∶= inf ⟨ , ℎ ⟩ | ‖ ‖ 2 = 1, ⟂ .
Define then

∶= 1 ⩾0 ex -2⟨ , 1 ⩾0 ex ⟩ ‖ ‖ ‖ 1 ⩾0 ex -2⟨ , 1 ⩾0 ex ⟩ ‖ ‖ ‖ 2
.

By construction is orthogonal to (since ‖ ‖ 2 2 = 1∕2), which makes it a trial function for the ,ex minimization. We want to estimate the norm in the denominator. Recall that ex must be either even or odd under reflection across the { 1 = 0} hyperplane. Assume it is even. Then

0 = ⟨ + , ex ⟩ = ⟨ 1 ⩾0 + , 1 ⩾0 ex ⟩ + ⟨ 1 ⩽0 + , 1 ⩽0 ex ⟩ = 2⟨ 1 ⩾0 + , 1 ⩾0 ex ⟩, which implies ‖ ‖ ‖ 1 ⩾0 ex -2⟨ , 1 ⩾0 ex ⟩ ‖ ‖ ‖ 2 2 = 1 2 -2 | | | ⟨ , 1 ⩾0 ex ⟩ | | | 2 = 1 2 -2 | | | ⟨ - 1 ⩾0 + , 1 ⩾0 ex ⟩ | | | 2 ⩾ 1 2 - 1-,
where the inequality follows by Cauchy-Schwartz and by approximation of + that we deduced in (3.9). If, on the other hand, ex is odd, then we can repeat the same calculation with + replaced by -. The variational principle then implies

,ex ⩽ ⟨ 1 ⩾0 ex , ℎ 1 ⩾0 ex ⟩ -2 | | | ⟨ , 1 ⩾0 ex ⟩ | | | 2 ‖ ‖ ‖ 1 ⩾0 ex -2⟨ , 1 ⩾0 ex ⟩ ‖ ‖ ‖ 2 2 ⩽ 2⟨ 1 ⩾0 ex , ℎ 1 ⩾0 ex ⟩ + 1-,
having ignored the second term in the numerator because it is negative. Comparing this with (4.9) we find ex ⩾ ,ex -1∕2-. Now, we know that the spectrum of ℎ does not depend on , since ℎ coincides with the translation of a fixed Hamiltonian. Hence, the gap between and ,ex is a fixed constant. Moreover, by (3.20), we have

⩾ -- 1∕2-.
This gives

ex ⩾ ,ex - 1∕2-⩾ + - 1∕2-⩾ -+ - 1∕2-,
which proves (2.10).

REFINED ESTIMATES, FOLLOWING HELFFER-SJÖSTRAND

The aim of this section is to prove (2.11), (2.12), and (2.13). The optimal rate in (2.11) will follow from a careful choice of approximating quasi-modes inspired by [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF]Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF].

Let us denote by ( ) the (normalized) ground state of the Dirichlet problem

-Δ + DW + * | + | 2 = ( ) = 0, for 1 ⩽ - 2 +
(5.1) with eigenvalue ( ) . Let us, in turn, denote by ( ) the (normalized) ground state of the Dirichlet problem

-Δ + DW + * | + | 2 = ( ) = 0, for 1 ⩾ - 2 + .
(

By symmetry across the { 1 = 0} hyperplane we have ( ) (-1 , 2 , … , ) = ( ) ( ) and therefore the eigenvalue corresponding to ( ) coincides with ( ) . The cutoff distance > 0 will eventually be chosen to depend (non-uniformly) on the parameter appearing in the right hand side of (2.11), which we will take arbitrarily small. As a consequence, since most quantities depends on , they will implicitly depend on . We will however not keep track of such a dependence. 5.1. Agmon decay estimates. The first step in the proof of (2.11) is to show suitable decay estimates for ( ) and ( ) . These will be more refined that what we have proved so far.

We start by defining the double-well Agmon distance between two points , ∈ ℝ DW ( , ) = inf

piecewise 1 curve ∫ 1 0 √ DW ( ( ))| ′ ( )| , | (0) = , (1) = . (5.
3)

The exponentials of the functions DW ( ⋅ , ) and DW ( ⋅ , -) will model the decay of, respectively, ( ) and ( ) . The following general properties are well-known (see, e.g., [14, Equations (3. This shows that it is always favorable to only consider paths restricted to the line. Let then ̃ ∶ [0, 1] → ℝ be a piecewise 1 curve such that ̃ (0) = ∕2 and ̃ (1) = 1 . We have

(| -|) = 1 1 +

Proposition 5.2 (Decay estimates for the Dirichlet modes).

For every ⩾ 0 there exist > 0 and > 0 such that

‖ ‖ ‖ (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 1 = ‖ ‖ ‖ (1-) DW ( ⋅ ,.-) ( ) ‖ ‖ ‖ 1 ⩽ (5.9) and ‖ ‖ ‖ (1-) DW ( ⋅ , ) ∇ ( ) ‖ ‖ ‖ 2 = ‖ ‖ ‖ (1-) DW ( ⋅ ,-) ∇ ( ) ‖ ‖ ‖ 2 ⩽ , ( 5.10) 
having used (5.5) and ⩾ 0 in the second step. This shows that -|∇Φ| 2 can be smaller than a fixed constant only in the regions close to and -. As a consequence, for every > 0, there exists > 0 such that ( ) -|∇Φ( )| 2 ⩾ for -∕2 + ⩽ 1 ⩽ 0. We pick equal to such a in the definition (5.1) of ( ) . The only other region in which -|∇Φ| 2 can be small is the region of small | -|. We take care of this by defining

2 + ( ) ∶= ⎧ ⎪ ⎨ ⎪ ⎩ ( ) -|∇Φ( )| 2 , | -| ⩾ + ( ) 2 -2 1∕ and 1 ⩾ - 2 + , | -| ⩽ + ( ) 2 -2 1∕
.

Correspondingly, we define

2 -( ) = 2 + ( ) -( ) + |∇Φ( )| 2 ⎧ ⎪ ⎨ ⎪ ⎩ = 0, | -| ⩾ + ( ) 2 -2 1∕ and 1 ⩾ - 2 + ⩽ , | -| ⩽ + ( ) 2 -2 1∕
.

It is then straightforward to verify that, by construction,

2 + ⩾ , 2 -⩽ , supp( -) ⊂ | | -| ⩽ + ( ) 2 -2 1∕ .
We are then ready to apply (5.11), which yields (recall that ℎ = 0)

∫ { 1 ⩾-∕2+ } | | | ∇ (1-) DW ( ⋅ , ) ( ) | | | 2 + 2 ∫ { 1 ⩾-∕2+ } | | | (1-) DW ( ⋅ , ) ( ) | | | 2 ⩽ 3 2 ∫ | -|⩽ + ( ) 2 -2 1∕ | | | (1-) DW ( ⋅ , ) ( ) | | | 2 .
As proven in Lemma 5.1, the function DW ( , ) for 1 ⩾ 0 depends on the radial coordinate | -| only. As a consequence, the integral in the right hand side does not depend on , and therefore it is estimated by a ( -dependent) constant. This completes the proof of (5.9). In order to prove (5.10) we write

‖ ‖ ‖ (1-) DW ( ⋅ , ) ∇ ( ) ‖ ‖ ‖ 2 2 ⩽ ‖ ‖ ‖ (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 1 + ‖ ‖ ‖ ∇ DW ( ⋅ , ) (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 2 ⩽ ‖ ‖ ‖ √ DW (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 2 +
, where the second inequality follows from (5.5) and (5.9). Using Lemma 5.1, DM ( ⋅ , ) has at least polynomial growth, and therefore one deduces that, for every > 0, there exists > 0 such that √ DW ⩽ DW ( ⋅ , ) . We then deduce,

‖ ‖ ‖ (1-) DW ( ⋅ , ) ∇ ( ) ‖ ‖ ‖ 2 2 ⩽ 2 ‖ ‖ ‖ (1-+ ) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 2 + ⩽ 2 -+ , 2- (5.16) |⟨ , ⟩| = |⟨ , ⟩| ⩽ 2- (5.17) 0 ⩽ ⟨ , ⟩ ⩽ 1-. ( 5 

.18)

Proof. As usual, we can consider only the right functions. To prove (5.15), let us start from (5.14). Multiplying and dividing by (1-) DW ( ⋅ , ) we find

‖ ‖ 2 ⩽ ‖ ‖ ‖ -(1-) DW ( ⋅ , ) (Δ ) (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 + 2 ‖ ‖ ‖ -(1-) DW ( ⋅ , ) (∇ ) (1-) DW ( ⋅ , ) ∇ ( ) ‖ ‖ ‖ 2 ⩽ ‖ ‖ ‖ (1-) DW ( ⋅ , ) ( ) ‖ ‖ ‖ 2 + ‖ ‖ ‖ (1-) DW ( ⋅ , ) ∇ ( ) ‖ ‖ ‖ 2 × sup
The two norms inside the parenthesis were estimated in Proposition 5.2. To estimate the supremum, we deduce from (5.8) that

sup 2 ⩽ 1 + ∕2⩽3 -(1-) DW ( , ) ⩽ sup 2 ⩽ 1 + ∕2⩽3 -(1-) 2 2 -
and therefore we find

sup -∕2+2 ⩽ 1 ⩽ ∕2-2 -(1-) DW ( , )-(1-) DW ( ,-) ⩽ -2(1-) 2 ,
which completes the proof.

Let us now define the orthogonal projections

± ∶= | + ⟩⟨ + | + | -⟩⟨ -| and ⟂ ± = 1 -± .
Our aim is an estimate for the norm of ⟂ ± and ⟂ ± . Let us start with the following Lemma 5.5 (Further bounds on + ). We have

| + -( ) | ⩽ 1-.
Proof. An upper bound is deduced by taking as trial function for the + -minimization problem:

+ ⩽ 1 ⟨ , ⟩ ⟨ , ℎ DW ⟩ = ( ) + ⟨ , ⟩ ⟨ , ⟩ ⩽ ( ) + 2-,
where the second inequality follows from (5.17) and (5.16). A suitable lower bound, in turn, was already proven in (4.2), i.e.,

+ ⩾ 2⟨ 1 ⩾0 + , ℎ DW 1 ⩾0 + ⟩ - 1-⩾ ( ) - 1-,
where the second inequality follows once again by the variational principle for the Dirichlet minimization.

As a consequence of Lemma 5.5, and of our main results on the gaps (2.9) and (2.10), we see that ( ) is asymptotically close to + (and therefore to -), and hence it is separated from the rest of the spectrum of ℎ DW by a gap of order one. We can then write

⟂ ± = - 1 2 ∮ Γ 1 ( ) - - 1 ℎ DW - ,
where Γ is a closed contour in the complex plane that encircles + , -, and ( ) , staying at a finite distance both from them and from the rest of the spectrum. A simple calculation yields 

‖ ⟂ ± ‖ 2 ⩽ 1- ‖ ⟂ ± ‖ 2 ⩽ 1-.
(5.21)

The first square bracket in the right hand side is smaller than 1-by the estimates above. For the integral of we write

∫ 1 ⩾0 | | 2 ⩽ ∫ 1 ⩾0 | ( ) | 2 ⩽ sup 0⩽ 1 ⩽ ∕2- -2(1-) DW ( ,-) ‖ ‖ ‖ (1-) DW ( ⋅ ,-) ( ) ‖ ‖ ‖ 2 2 ⩽ 1-,
where the last inequality follows from Lemma 5.1 and Proposition 5.2. This proves (2.12).

5.3. Proof of the ∞ estimate. In order to prove the ∞ proximity in (2.13) we will improve the 2 result (2.12) to an estimate for the 2 norms. Notice that, in the notations of Proposition 3.7, the 2 convergence (2.12) implies

‖ ‖ ‖ 1 ⩾0 + -- ‖ ‖ ‖ 2 2 ⩽ 1- ‖ ‖ ‖ 1 ⩽0 + + - ‖ ‖ ‖ 2 2 ⩽ 1-, (5.23) 
which also means that (3.10) holds with an improved rate. We will improve this result to a higher Sobolev norm. ⟩ .

We then have to estimate ⟩ .

Since ℎ DW , 1 ⩾0 = Δ 1 ⩾0 + 2(∇ 1 ⩾0 ) ⋅ ∇, we deduce, using (A.2) and (A.5),

|Err 1 | ⩽ ∫ | | | (Δ 1 ⩾0 + 2(∇ 1 ⩾0 ) ⋅ ∇)( + --) | | | 2 ⩽ 2 ∫ |Δ 1 ⩾0 | 2 | + --| 2 + 4 ∫ |∇ 1 ⩾0 | 2 |∇( + --)| 2 ⩽ 1-.
The estimate of Err 2 is similar, and this completes the proof.

Proof of Proposition 5.6. Using Lemma 3.3 and then Lemma 5.7 we have

‖ ‖ ‖ Δ 1 ⩾0 ( + --) ‖ ‖ ‖ 2 2 ⩽ ‖ ‖ ‖ ℎ DW 1 ⩾0 ( + --) ‖ ‖ ‖ 2 2 + ‖ ‖ ‖ 1 ⩾0 ( + --) ‖ ‖ ‖ 2 2 ⩽ ‖ ‖ ‖ 1 ⩾0 ℎ DW ( + --) ‖ ‖ ‖ 2 2 + ‖ ‖ ‖ 1 ⩾0 ( + --) ‖ ‖ ‖ 2 2 + 1- = ‖ ‖ ‖ 1 ⩾0 ( + + ---) ‖ ‖ ‖ 2 2 + ‖ ‖ ‖ 1 ⩾0 ( + --) ‖ ‖ ‖ 2 2 + 1-.
(5.26)

The norm ‖ 1 ⩾0 ( + --)‖ 2 2 was already estimated in (5.23). To estimate the first term in the right hand side, we expand

‖ ‖ ‖ 1 ⩾0 ( + + ---) ‖ ‖ ‖ 2 2 = + + - 2 -2 + -⟨ 1 ⩾0 + , 1 ⩾0 -⟩. Since (5.23) implies -2⟨ 1 ⩾0 + , 1 ⩾0 -⟩ ⩽ -1 + 1-, we deduce ‖ ‖ ‖ 1 ⩾0 ( + + ---) ‖ ‖ ‖ 2 2 ⩽ + + - 2 -+ -+ 1- = 1 2 ( --+ ) 2 + 1- ⩽ 1-,
where the last step follows from the upper bound in (2.9). This proves (5.24). A reflection across the { 1 = 0} hyperplane sends 1 ⩾0 ( + --) into 1 ⩽0 ( + + -) and thus (5.25) also follows.

Hamiltonians corresponding to all eigenvalues up to the -th one. The claimed energy gap follows.

[24] C. J. 

  where ℎ is the one-well Hamiltonian from (2.5). Indeed, * | + | 2 and * | | 2 are uniformly bounded by sup | | since | + | 2 and | | 2 are 2 -normalized. Moreover DM ⩽ by definition.

. 8 )

 8 This is very much in the spirit of [2, Theorem 1.5], [16, Lemma 2.3] or [14, Theorem 3.1.1].

  5). Comparing (3.14), in which we choose = 1 ⩾0 -(the symmetry of | -| implies that ‖ ‖ 2 2 = 1∕2), with (3.20) and (3.22) we deduce min ∈[0,2 ]

  by Young's inequality and Lemma 3.2), picking = + + we deduce -Δ + DW ( ) + * | + | 2 ( ) -+ ( ) ⩽ 0 (4.5) for | -| ⩾ and | + | ⩾ with large enough and independent on , and away from bound in (3.5). Moreover, again for | -| ⩾ and | + | ⩾ with large enough and independent on , DW ( ) > + - * | + | 2 ( ). (4.6) Consider now a function low which is equal to (with = + + ) outside of ( ) ∪ -( ) and smoothly extended to a function bounded away from zero inside ( )∪ -( ). Since, by construction, is a -independent function of | -| or | + |, low can be chosen to be -independent as well. Define the (a priori -dependent) constant = min | -|< | + |< + ( ) low ( ) .

2 . 1 )Lemma 5 . 1 (

 2151 and (3.2.2)]) DW ( , ) ⩽ DW ( , ) + DW ( , ), ∀ , , (triangular inequality) (5.4) |∇ DW ( , )| 2 ⩽ DW ( ), ∀ , . (5.5) Furthermore, we have the following Lemma. Properties of the double-well Agmon distance). The function DW ( ⋅ , ) satisfies the three following properties, with the single-well Agmon distance (2.6) and the constant in (5.1)-(5.2):

  of the contour we have| ( ) -| -1 ⩽ , and ‖ ‖ ‖ ℎ DW --1 ‖ ‖ ‖op ⩽uniformly for ∈ Γ. Hence, recalling (5.15), we find

Proposition 5 . 6 (Lemma 5 . 7 ( 1

 56571 ∞ estimate (2.13) is an immediate consequence of Proposition 5.6 thanks to the Sobolev embedding‖ ‖ ∞ (ℝ ) ⩽ ‖ ‖ 2 (ℝ ) ,that holds for = 1, 2, 3. In order to prove Proposition 5.6 we start with a Lemma. Commuting ℎ DW and 1 ⩾0 ). ⩾0 ℎ DW ( + --), 1 ⩾0 ℎ DW ( + --)⟩ + ⟨ ℎ DW , 1 ⩾0 ( + --), ℎ DW , 1 ⩾0 ( + --) ⟩ + 2 ⟨ ℎ DW , 1 ⩾0 ( + --), ℎ DW 1 ⩾0 ( + --) ⟩ = ⟨ 1 ⩾0 ℎ DW ( + --), 1 ⩾0 ℎ DW ( + --) ⟩ + 3 ⟨ ℎ DW , 1 ⩾0 ( + --), ℎ DW , 1 ⩾0 ( + --) ⟩ + 2 ⟨ ℎ DW , 1 ⩾0 ( + --), 1 ⩾0 ( + + ---)

Err 1 = 3 ⟨ ℎ DW , 1

 31 ⩾0 ( + --), ℎ DW , 1 ⩾0 ( + --) ⟩ Err 2 = 2 ⟨ ℎ DW , 1 ⩾0 ( + --), 1 ⩾0 ( + + ---)

  4.4.Lower bound on the second gap. To prove (2.10), recall that ex is the first excited state above -, i.e., = ⟨ ex , ℎ DW ex ⟩. A lower bound for ex follows from the IMS formula and reads We further argue that (A.10) and(3.19) allow to replace ℎ DW with ℎ , i.e.,

	having used (A.6) and (A.3). Here tion 3.7. ex ⩾ 2⟨	1 ⩾0 and 1 ⩾0 ex , ℎ	1 ⩽0 are localization functions as in Proposi-1 ⩾0 ex ⟩ -1∕2-. (4.9)
	ex ⩾ 2⟨	1 ⩾0 ex , ℎ DW 1 ⩾0 ex ⟩ -	1-,
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= 0. Notice that, in the case =

2, the existence of such an is ensured by the fact that * | + | 2 decays at infinity with a rate that does not depend on , as follows from the upper

⩽ 1 + ∕2⩽3 -(1-) DW ( , ) .

INTRODUCTION

Both as a non-linear analysis problem in its own right, and as a basic input to a companion paper [START_REF] Olgiati | Bosons in a double well: two-mode approximation and fluctuations[END_REF], we are interested in the low energy states of the bosonic Hartree energy Date: December, 2020. We also state the following lemma, containing properties of -.

Lemma 4.2 (Symmetry and sign of -).

The function -is odd with respect to reflections across the 1 = 0 plane, i.e.,

(4.7)

Moreover, assume that we pick for -the same phase as in Proposition 3.7. Then -( ) > 0 almost everywhere for 1 > 0.

Proof of Lemma 4.2. Since -must be either odd or even, the fact that it is odd is a consequence of (3.10). To prove that -( ) > 0 for 1 > 0, let us first notice that by the odd symmetry

Thus, -must coincide with the ground state energy of the Dirichlet Hamiltonian

where Δ ( ) 1 ⩾0 is the Dirichlet Laplacian in the half-space { 1 ⩾ 0}. Using the Trotter product formula [START_REF] Reed | Methods of Modern Mathematical Physics. I. Functional analysis[END_REF]Theorem VII.31] and the fact that DW + * | + | 2 ⩾ 0, it is easy to see that is positivity improving ∀ > 0. On the other hand has compact resolvent, and hence the bottom of its spectrum is an eigenvalue. Using [START_REF]Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF]Theorem XIII.44] completes the proof.

4.3.

Lower bound for the first gap. We now provide the proof of the lower bound in (2.9), following [START_REF] Simon | Semiclassical analysis of low lying eigenvalues, ii. tunneling[END_REF]. We start with

Lemma 4.3 (Expression for the first gap).

For any smooth such that + ∈ 1 (ℝ ), we have

Proof. The proof (from [24,[START_REF] Simon | Semiclassical analysis of low lying eigenvalues, ii. tunneling[END_REF]) follows from the equality

after taking the expectation on + .

( ) First estimate in the half-space:

(5.6)

(5.7)

( ) Second estimate in the half space:

(5.8)

Proof. For each of the three points we will only prove the property for DW ( ⋅ , ), since the one for DW ( ⋅ , -) can be then deduced by reflection symmetry. Let us prove ( ). First, notice that, in the 1 ⩾ 0 region, DW only depends on the radial coordinate | -|. Hence, the same must be true for DW ( ⋅ , ), and thus, without loss of generality, we can assume = ( 1 , 0, … , 0), the general case being then deduced from

Let us now prove that, in order to compute DW ( 1 , 0, … , 0), for 1 ⩾ 0 we can reduce ourselves, in the definition of DW ( ⋅ , ), to curves supported on the line 2 , … , = 0 only. Indeed, for any piecewise 1 curve ∶ [0, 1] → ℝ such that (0) = and (1) = ( 1 , 0, … , 0), let us define the curve projected onto the 2 , … , = 0 line 1 ( ) ∶= ( ( ) 1 , 0, … , 0).

Then, by definition,

Considering the infimum over all such curves ̃ (which we proved above to coincide with the infimum over all curves), we deduce (5.6).

Let us now prove ( ). The claim for 1 ⩾ 0 already follows from (5.6). We concentrate on 1 ⩽ 0. By repeating the arguments used above, one easily sees that in order to compute DW (( 1 , 0, … , 0), ) for 1 ⩽ 0 it is again convenient to restrict to curves supported on 2 , … , = 0. Let then ̃ ∶ [0, 1] → ℝ be any piecewise 1 curve such that ̃ (0) = ∕2 and ̃ (1) = 1 . Since 1 ⩽ 0, there exists a time ̃ , depending on the choice of the curve, such that ̃ ( ̃ ) = 0. We then write

Taking the infimum over all such curves ̃ yields the result.

Finally, ( ) is deduced by arguing, as done above, that projecting a curve onto the 2 , … , = 0 line cannot increase DW ( ⋅ , ).

The following proposition gives decay estimates for ( ) and ( ) .

where ( ) , respectively ( ) , is the ground state of (5.1), respectively (5.2), (extended to zero outside of its domain of definition) for = .

The importance of this result is the following: even though in a region at distance of order 1 fromthe total potential DW + * | + | 2 is of order 1, nonetheless ( ) is as small as the exponential of minus the Agmon distance from . Compared to the estimates proved previously, it confirms that ( ) does not see the left well at all. This is the key to prove (2.11) with such a good rate.

We need the following well-known lemma, which vindicates the importance of (5.5):

Lemma 5.3 (Computing with the Agmon distance).

Let Ω ⊂ ℝ be open with regular boundary,

Let ∇Φ be defined in ∞ as the limit of a mollified sequence ∇Φ . Define also

Moreover, assume -|∇Φ| 2 = 2 + -2 -with + , -⩾ 0, and define ∶= + + -. Then Proof of Proposition 5.2. We will estimate the norms containing ( ) only, since, by reflection symmetry, the identities in (5.9) and (5.10) are trivial. We will apply (5.11) with the following choices (recall that is the constant that appears in (5.1), its choice will be specified later on):

We now explain how to choose the functions + , -and the constant . The main idea is to define 2 + to be equal to the function -|∇Φ| 2 on the set where -|∇Φ| 2 is larger than some fixed arbitrary positive constant , and to be identically equal to the same on the set where -|∇Φ| 2 ⩽ . To this end, notice first that

which proves (5.10) if we fix < .

5.2. Quasi-modes construction and proof of 1 and 2 estimates. Now we use linear combinations of ( ) and ( ) as quasi-modes for the mean-field Hamiltonian ℎ DW . A proper smoothing (around respectively 1 = -∕2 + and 1 = ∕2 -) is required. To this end, define a smooth localization function such that 

Lemma 5.4 (Estimates for quasi-modes).

We have, with the tunneling parameter (2.7) 2 , and this proves (5.15).

To prove (5.16) let us notice that

(5.19)

We then argue as above by multiplying and dividing by (1-) DW ( ⋅ , ) . The same can be done to prove (5.17).

Finally, let us prove (5.18) (notice that the positivity of the scalar product is trivial). We write

.

Using Cauchy-Schwartz and then (5.9) we see that the integral in the right hand side is estimated by an -dependent constant. To estimate the supremum we write

where the last inequality follows from (5.6) and (5.8). However, since the function is monotone increasing, we have

Now, define

(5.22)

We have

where the last inequality follows from (5.16) and (5.18). Similarly,

Hence the norms in the denominators of (5.22) satisfy

) and combining with (5.21) we deduce

for complex numbers , . But, since + , + are even under reflections across 1 = 0 and -is odd, this must reduce to

These are our vindications of (1.12)-(1.13), as in [START_REF]Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF]. We deduce from the above that

) and (2.11) then follows from (5.18).

To deduce (2.12) let us first recall that, if 1 ⩾ 0, then -( ) is positive by Lemma 4.2, and + ( ) is positive by general arguments. This allows to write

The estimates for the first and third summand follow already from what we discussed above.

For the second summand we write

APPENDIX A. TUNNELING TERMS

Here we deduce a variety of useful bounds from the decay estimates of Section 3.2:

Proposition A.1 (Bounds on tunneling terms). Let ⩾ 0 be a fixed number. For any > 0 there exist , such that, for large enough,

Proof. (A.1) was already proven in [START_REF] Spehner | Localized regime for mean-field bosons in a double-well potential[END_REF]Proposition (3.3)]. The main point is to use the upper bounds in (3.6) and (3.7) in order to reduce the aim to estimating an integral of the form

(A.15) with = (1 + ∕2) -1 -, the being used to absorb any polynomial correction due to .

As said, the estimate of can then be found in [START_REF] Spehner | Localized regime for mean-field bosons in a double-well potential[END_REF]Proposition (3.3)]. The integrals in (A.2) and (A.3) can in the same way be bounded by an integral of the type .

To prove (A.4) we write

We can then reduce ourselves to an integral of the form (A.15) by slightly changing the value of in order to absorb the corrections coming from and * | | 2 . The same holds for every other term from (A.5) to (A.13).

To prove (A.14) we use the fact that is bounded with compact support to write

The second summand is bounded by ∫ 1 ⩾0 | | 2 , and hence a bound for it follows from (A.8). For the first summand we write

The right hand side is estimate by ∫ 1 ⩽0 | | 2 , for which we can again use (A.8) APPENDIX B. HIGHER SPECTRUM Most of the proof of Theorem 2.2 consists of suitable adaptations of the arguments already used to derive Theorem 2.1. We only discuss the modifications due to the fact that higher eigenvalues of the left and right wells are typically degenerate (see [START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] and references therein for more general situations). We do not pursue convergence rates nor the dependence on (i.e. we only deal with energies (1) apart from the ground state when → ∞).

The case = 1 of Theorem 2.2 follows from the proof of Theorem 2.1). We proceed by induction and sketch the proof that the same statements holds for provided we know it does for all smaller integers. The necessary bounds on the decay of eigenfunctions are similar to what was discussed previously and shall not be reproduced.

Using the induction hypothesis one can construct a trial state

where is an eigenfunction corresponding to the -th eigenvalue of ℎ and its reflection.

The correction term can be made very small, and renders the above orthogonal to all eigenfunctions of ℎ DW corresponding to eigenvalues below 2 ( -1)+1 . Evaluating the energy of the trial state using decay estimates as in the main text yields 2 ( -1)+1 ⩽ + (1).

Localizing the corresponding eigenfunction in the left and right wells as in the main text one deduces that 2 ( -1)+1 converges in the left well to , an eigenfunction corresponding to the -th eigenvalue of ℎ . In view of the symmetry of the double-well Hamiltonian we are at liberty to assume that 2 ( -1)+1 is even or odd with respect to reflections across the potential barrier. Hence 2 ( -1)+1 converges in the right well to ± the reflection of . We assume it converges to , with obvious modifications in the sequel if it is the other way around.

Next one can construct a trial state of the form

where is the eigenfunction ℎ that 2 ( -1)+1 converges to in the left well and is its reflection. As above this yields an upper bound to 2 ( -1)+2 and allows to deduce that a corresponding eigenfunction must converge in the left well to some ̃ , an eigenfunction corresponding to the -th eigenvalue of ℎ . Using the symmetry with respect to reflections and what has just been proved for 2 ( -1)+1 we deduce that either ̃ ⟂ and 2 ( -1)+2 converges to ± its reflection in the right well or ̃ = and 2 ( -1)+2 converges toits reflection in the right well.

Assume the latter situation occurs, again with appropriate modifications to the sequel if it is the former. One can then bound 2 ( -1)+3 from above with a trial state of the form

where is an eigenfunction of ℎ orthogonal to the just found, and its reflection. Similarly as above we deduce that 2 ( -1)+3 must converge to some in the left well and to ± its reflection in the right well, with ⟂ an eigenfunction for the -th eigenvalue of ℎ . The process can then be repeated inductively, and the claimed results follow. The induction stops when all possibilities of constructing mutually orthogonal even/odd trial states for the double-well Hamiltonian out of the eigenstates of the single wells have been exhausted, that is after ( ) iterations. One thus obtains Items (i) and (iii) of the Theorem by arguments similar to the main text. Item (ii) then follows as in Section 4.4 by localizing the next eigenfunction of ℎ DW in the left/right wells. Since said eigenfunction must be orthogonal to all lower eigenfunctions of ℎ DW , we deduce from what has been proved so far that the localizations must to leading order be orthogonal to the subspace of the single wells