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Generating natural adversarial Remote Sensing
Images

Jean-Christophe BurnglKilian Fatray, Rémi Flamary, Nicolas Courty

Abstract—Over the last years, Remote Sensing Images (RSI) tremendous impact on security decision or evolution of public
analysis have started resorting to using deep neural networks to policies. This is notably the case in a military context [4],
solve most of the commonly faced problems, such as detectlon,where an attacker could input malicious images to fool a

land cover classication or segmentation. As far as critical
decision making can be based upon the results of RSI analysis, iIdEteCt(Jr system. The attack can occur both at the level of

is important to clearly identify and understand potential security & computing system [5] (by manipulating the data owing to
threats occurring in those machine learning algorithms. Notably, the recognition system), or even at the physical level [6], by

it has recently been found that neural networks are particularly  changing the physical properties of the signal arriving to the
sensitive to carefully designed attacks, generally crafted given the remote captor. These modi cations could be envisaged both

full knowledge of the considered deep network. In this paper, . th trical i f th but also in th
we consider the more realistic but challenging case where one N the geometrical properties of the scene, but aiso 1n the

wants to generate such attacks in the case of a black-box neural SPectral domain [7]. Moreover, RSI pose its own challenges
network. In this case, only the prediction score of the network with this respect to adversarial image generation because of

is accessible, given a speci ¢ input. Examples that lure away the the heterogeneity of captors, that generally go beyond RGB
network’s prediction, while being perceptually similar to real images. It is worth noting that the question of generating

images, are called natural or unrestricted adversarial examples. dversarial examples for multi- or h ; tral im SAR
We present an original method to generate such examples, baseg@dVersarial examples for muiti- or hyper-spectral images, 7

on a variant of the Wasserstein Generative Adversarial Network. Lidar or even multi-modal inputs is still an open question, each
We demonstrate its effectiveness on natural adversarial hyper- tasks €.g.detection, classi cation or segmentation) having its

spectral image generation and image modi cation for fooling own speci cities. We propose in this papgigeneric principle
a state-of-the-art detector. Among others, we also conduct a gor yilding adversarial examples generatorsin all those
perceptual evaluation with human annotators to better assess . . .
the effectiveness of the proposed method. cases, anq vyhenever the machine Iea'mmg' algorithm useq for
the analysis is solely known through given input-output pairs.
While disposing of such a generator could be used for its rst
purpose of luring machine learning algorithms, we also foresee
its use in cases where one wants to inspect the potential failure
. INTRODUCTION cases of a learning algorithm, or to design more robust models
Deep neural networks (DNN) have established as a donttat are less sensitive to adversarial attacks.
nant class of learning models to handle Remote Sensing Im-Turning to the existing literature on adversarial examples,
ages (RSI) on a vast amount of tasks, ranging from detectiohere exists two main strategies to generate such examples. The
classi cation or segmentation (seeg.[1] for a comprehensive rst strategy is to add a small perturbation to images that are
review). Their ability to handle a vast amount of data, bottorrectly classi ed. The small perturbation fools the classi er
at train and test times, and to work on dedicated processingich makes the wrong prediction. The small perturbation is
hardware, makes them ubiquitous nowadays in RSI analysismputed from the classi er gradients. Intuitively, the gradient
Yet, it is well known in the machine learning communityeads toward the direction with the most variation in the
that those models are strongly sensitive to carefully craft@dlediction. This is the main idea of the Fast Gradient Sign
attacks also called adversarial attacks, that aim at foolilgethod (FGSM) algorithm [2]. One problem from this ap-
the network prediction based on imperceptible modi cationsroach is that one needs to know the full classi er architecture
of the submitted entry [2], [3]. This issue has been vasttp compute the gradients. Another problem is that even a small
underlooked for now in the remote sensing community, despferturbation can harm the image quality and lead to images
the fact that it poses signicant security issues, as soahat are not similar to original data anymore. Such images
as decisions taken from RSI analysis can potentially hagan be easily detected as adversarial images [3], [9]. The
JEqual constribution second paradigm QOes not require access .to the classier. It
JC. Bumel, K. Fatras and N. Courty are with the univerJOOKs for adversarial examples only by having access to the
sity Bretagne Sud, CNRS, IRISA, UMR 6074, France e-mail: jearclassier's prediction. Most of techniques using the second

Index Terms—Adversarial Examples, Generative models, Re-
mote sensing, Deep Learning.

christophe.bumel@irisafr _ strategy try to nd adversarial examples using Generative
R. Flamary is with Universé Cbte d'Azur, Laboratoire Lagrange, d ial K ft. .
Observatoire de la &e d'Azur. Adversarial Networks (GANs) [10]. After training a generator,

¢ 20XX IEEE. Personal use of this material is permitted. Permissiceeveral recent work [11], [12] look for adversarial vectors in
from IEEE must be obtained for all other uses, in any current or future medije |atent space and then generate adversarial data with the
including reprinting/republishing this material for advertising or promotional . . . .
purposes, creating new collective works, for resale or redistribution to serv&gnerator' This strategy Is appeallng as It gives them data
or lists, or reuse of any copyrighted component of this work in other workevhich look like the true data but are wrongly classi ed.
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Our proposed method follows the second strategy but redyery the classi er on new samples (since this would allow
on a different approach to generate natural adversarial exam-compute approximated gradients similarly to FGSM). We
ples. We train a GAN which is specialized for adversarial dateow give a detailed description about misclassi ed example
generation. To this end we propose to weight the training datategories.
for training our adversarial GAN. The weight values depend The idea ofperturbation-based exampleis to add a small
on the probability for a datum to be misclassi ed. This iperturbation to an input in order to create an adversarial
in opposition to classical GAN strategies that use uniforexample. Most of the time the perturbation is limited by a
weights on samples in their dataset. Hence, our method ofdgtor . We give an example: let us denotea unitary {.e.,
needs to know the output of a given pre-trained classi er, segnk = 1) input perturbation, then a new example can be
as a "black box” classi er. From the re-weighted distributiorcomputed asx,qy = X + . It is an adversarial examples
of the true data, a generator is trained to generate adversafia (x) 6 ¢ (Xaqy). Formally, it can be written abx gy 2
examples for the pre-trained classi er. The idea is to createl @ 9 Xest 2 | jKXagv  Xtest K < 0(Xadv) = O(Xtest) =
map between the latent space and the set of natural adversafiales; ) 6 ¢(Xaqv)g. Natural examples are misclassi ed
images which are present in the true data. Our approachdega-like images. It can be misclassi ed training or testing
called ARGAN and stands for Adversarial Reweighted GANata for instance. Some perturbation-based examples are also
in the following. natural examples. Formally, it can be written Bs,qy 2

The paper is structured as follows: Section 2 introduc®é j o(Xadv) 6 C(Xadv)g. The last category isinrestricted
the de nitions and notations. Then, in section 3, we deta@ixamples In this context there are both a pre-trained classi er
related work on generative modelling in remote sensing aadd an oracle. Unrestricted examples are samples where the
adversarial data generation. After a short introduction on GAdtacle and the classi er predict different result. Formally, it
we present oumain contributions in section 4. We detail can be written a$xaqy 21j 0(Xadv) & ¢(Xadv)Q-
our modi ed loss function which is designed for adversarial We are now ready to describe the attacks against the
examples generation. Section 5 gathers experiments. First, phe-trained classi er,i.e., the different strategies to fool the
method is applied on hyperspectral data from the Data Fusidassi er. Untargeted attack stands for an attack from any
Contest 2018 [13], by generating data which are misclassi edlversarial exampl&argeted attack acknowledges an attack
by a pre-trained classi er. Then as second experiment, a GANth an adversarial example from a source label, which is
is trained for image modi cation through a patch on Potsdagiassi ed as a target labe} o1 = C(Xadv) & Ysource =
data [14]. Finally the third and last experiment is to train train(X agy )-

a GAN in order to fool a state of the art detector on the Generative Adversarial Networks. Generative Adversarial
Potsdam dataset. Networks have become a popular unsupervised method for

Notations. This paragraph details formal notations andata generation. Introduced in [10], several work came out
de nitions. The probability distributions of true data is denotetb complete and improve their use. Methods were developed
P, and the generated data distribution Bs. Vectors are to control the label of generated data [16]. Other approaches
expressed in bold,e., v. The true data of dimensionality focused on developing GANs for super resolution tasks [17].
are denoted as P, and the noise vectors of dimensionalityThe use of different statistical distances or regularizations has
p darez N (0Op;lp). Data lie in a spac&. n stands also been widely investigated in [18], [19], [20], [21], [22],
for the number of true data anm for the batch size used[23]. Recently some work focused on image inpaiting using
during training. For a classi ec, the probability to belong to gans to reconstruct images [24] or even modify them with
the correct class of a sampkeis denoted agY (x). some given labels [25], lastly GAU-GAN [26] proposed to
synthesize an image solely on given labels.

Generated modelling for remote sensing dataGenerative
modelling for remote sensing data has been investigated in

De nitions. This paragraph clusters the different kind okeveral references. GANs were used by [27] to generate remote
adversarial attacks, using notations from related work [2], [11densing data. They used a conditional GAN architecture, where
[12], [15]. We de ney g = C (x) the operation of getting they take as inputs an hyperspectral class and a random noise,
the predictiony 4 Of the datumx with the classierc . to control the class of generated data. They showed that the
The classi er is parametrized by weights | , f[0;1]"g generated spectra quality is genuine-looking and physically
indicates the set of all normalized images withpixels and plausible. Furthermore, they experimentally validated that the
N, | stands for the subset of all natural images. Naturgenerated samples can be used for data augmentation strategy
images are meaningfully images similar to original imagde improve classi cation accuracy. The generation of super
which make them legible. An oracteis acknowledged where resolved remote sensing data was investigated in [28]. To
o(x) is the ground truth of the considered problem. Now, wihis end they relied on two main subnetworks: an ultradense
make a distinction about attacks regarding the knowledge safbnetwork and an edge-enhancement subnetwork combined
the classi er. Awhite box attack is an attack where therewith an adversarial learning strategy. GANs has also been
is an access to the classier's structure and paramete®s used to learn unsupervised representations as done in [29].
black box attack is an attack where the only knowledge is th&hey used the generator to generate data-like images and the
outputsy ,q for some inputs<. Note that we suppose in thediscriminator was used as a feature extractor for classi cation
following that we have access to bothy .4 but we cannot purposes. [30] also used GANs for learning representation by

Il. RELATED WORK
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incorporating a non-local layer into their architecture. GANs Wasserstein GAN. There are several statistical distances
have also been used in remote sensing for domain adaptatioeit can be used for measuring the distance between proba-
on hetereogenous data [31] which might be seen as trandféity distributions. Wasserstein GAN [18] is a GAN variant
learning with different type of data. which relies on optimal transport tools to compare two proba-
Generated adversarial data.To generate adversarial ex-bility distributions (P;;P,) 2 M 1 (X) M 1(X). Optimal
amples without requiring the classi er's gradients, [11] usestsansport seeks a transportation map which minimizes the
GAN and an invertor. The generator is a function which goelisplacement cost between the distributions with respect to
from the latent space to the true data space while the invertorisground metric on the input spacé [32]. The ground
an inverse function. From the true data, they use the invertorrteetric is usually taken as the euclidean distance. Formally,
go to the latent space and look for adversarial examples. THeg Wasserstein distandd/, that relies on optimal transport
add small perturbations to the latent vectomwhich represents between two distributions_can be expressed as :
a datax until they nd an adversarial example. This method z _
allows them to have very realistic adversarial examples withoufVp(Pr; Pz) = ZUTFL”_P )( kx ykad (x;y)*P; (2)
using the classi er's gradients. In [12] authors use an AC- o XY o - o
GAN [16] to model the data distribution with the assumptio¥here U (P:;P;) is the set of joint probability distribution
that an ideal model could generate all the set of legitimafdth marginals Prand P, such that U(P:;P;) =
data. With such a model they search in the latent space for all 2 M X Y):Px# =PiPy# =P, . Px#
the adversarial examples. Their search is done by minimiziff§SP-P v# ) is the marginalization of over X (resp.Y).
the con dence score of a classi er while having the auxiliany\§hen the ground cost is chosen as the Euclidean distance on
classi er still predicting the correct class. So the adversariﬁ_’ Wy is a metric as W_eII. NotablMl can k_)e_ rewritten
examples look like true images and are adversarial for tHéth the Kantorovich-Rubinstein duality [32], giving :

attacked classi er. W1 (P;; P;) = min fzmalfx) Ex p [f(X)] E; pIf (G (2))];
Ill. ADVERSARIAL REWEIGHTED GAN (ARGAN) where Lip *(X) is the set of 1-Lipschitz functions. [18]

. , ) .ﬂroposed to use the following approximation:
The section is divided as follows. We start this section wit

a brief introduction on GANSs. After, we describe the linkVi(Pr;Pz) =min maxEx p [D (X)] E; p,[D (G (2))];
between probability distribution of the true data and image 3
generation. Then, our probability distribution reweighting foshere D is the dual potential and is within the set of 1-
adversarial data generation and nally, the use of minibatghpschitz functions parameterized by weights Analogous
to improve training. to GANSs, we still callD the "discriminator” although it is
actually a real-valued function. In order to respect the 1-
Lipschitz constraint, [18] used a weight clipping trick for
the discriminator's weights during the optimization procedure.
Generative Adversarial Networks (GAN). The principle However this practice leads to unstability during optimization
of a GAN [10] is to generate realistic datar.t. a training and poor minima. Another approach proposed in [33] involves
dataset. It has been expressed as a two player game betwegradient penalty and enforces the gradient to be less or equal
two DNNs, a generator and a discriminator. The discriminat@s one makingD 1-Lipschitz. The WGAN variant used in the
tries to predict if an image is real or fake and the generatmst of the paper is:
tries to fool the discriminator with its generated images. _
Intuitively to fool the discriminator, the GAN tries to minimize minmaxg, p [D (x)] E; p.[D (G (2))]
the_ (_Jlistance betw_een the _distributior_1§ of genergteq o!ata and + Eq p,[(MaxfO;krD  (R)ky  10)7; 4)
training data. In this formalism the ability of the discriminator
to separate generated and real data can be seen as a divergdéigee Pz is the distribution of samples along the straight
between the two distributions. This notion of divergence f§€s between a pair of points frol, and P and the
critical and has led to several variants of GAN. The generattigularization parameter. In practice, the true distributfon
takes as inpuz P, to generate dat&(z) Pg, it forms IS unknown and only an empirical counterpBrtwith n i.i.d.
the generator's distribution. Then, it tries to reduce the distang@mples fromP: is available. .
with the real data distributiof;. P, is usually a gaussian Furthermore, we investigated the use of an AC-GAN which
or a uniform distribution. GANs improve the generated datjould allow us to control the label of the generated data.

quality by minimizing the Jensen-Shannon divergence betwedRfortunately, AC-GAN learns a biased distribution [34],
the distributionsPg andP; : the distribution of easy to classify data. Since the learned

distribution is the opposite distribution of what the wanted
minmaxEyx p [logD (x)] E; p,[log(l D (G (z)))]: distribution, we chose to extend WGAN instead of AC-GAN.
@ _ _
However as the true distributiof®s andP; are unknown, we B. Adversarial Reweighting
only consider their empirical distributions from the available To generate data similar to the true data and are diversi ed,
true data and the generated ones. each true data have a uniform weight in the classical GAN

A. Generative Adversarial Networks
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Fig. 1: lllustration of different reweighting strategies for adversarial data generation. (a) is the standard uniform weight between
data. (b) is a hard weighting where we only consider misclassi ed data. (c), (d) and (e) are softmax weighting strategy for
different temperatures. (f) is the combination of softmax and clipping strategies.

training. Formally, it means It_hat the empirical distributioWVith c(x) the result of the classi er for the targeted class
P, is uniform, i.eP, = 1=n" ! . It is customary for p(x), bl c(x)e

empirical distributions to suppose that the samples are drawrBoft weighting. Another weighting approach is to use the
i.i.d., from the underlying distribution. One way of changingrediction score from the classi er. Such approach could take
GAN's goal is to change the empirical distributi®. Instead into account examples which are correctly classi ed but with a
of encouraging the generator to generate data close to It con dence. We refer to those samplessadt adversarial
true data, it is encouraged to generate realistic data tl@amplesin order to consider the soft adversarial examples,
make the classier fail. It means that the true data whictve can use a softmax function. It is de ned as:

are misclassi ed have a bigger weight in the GAN training exp( y y

than correctly classi ed data. Our main idea is to reweight a S(c¥(x);w) , pW_[e"(x)  C"(X)ma) N (5))
datum's weight according to the classier's prediction. The expW  [¢¥(Xi)  €¥(X)mad)

resulting weighted distanution, denotd?f‘, pust have the i=0

following form: P2 = = U p ,, where: L p = 1. iy -
The GAN is trained to minimize the distance between th\%herec (x) is the prediction to belong to the correct class,

enerator distributiolg and the reweighted true distributionfO g)xe)lg‘gx '?Ot?ﬁerg(?r);g?::g ?szgg';yai?rﬂng;ﬁrzegng?:fiednat‘ta
2. Finally, our new loss function is of the form: 9 P

that controls the entropy of the resulting distribution. However
minmaxE, p.[D (X)] E; p,[D (G (2))] as the objective is to generate adversarial data, we consider
' 1 c¢Y(x) rather thancY(x). The soft weighting strategy can
+ Eq p(maxfO kD (R)k2 19)°1:  (5) be expressed ap(x) , S(I  c’(x);w). Figure 1.(c) is

Intuitively, the generator is a map between the latent spa% example of weighting using the softmax function with a

and the adversarial data area of the true distribution. To t pe][taturew =5. Nr(])te that in t:e Spﬁd\(/:vgi\ss I(w :fO, .
best of our knowledge, it is the rst time the distribution jghe softmax approach corresponds to the 0ss function

modi ed for generative purpose. Now we describe and revieaﬁd whenw tends to in nity, it becomes the hard weighting

the impact of different reweighting methods. strategy. . o
To demonstrate the relevance of the different reweighting

methods, we use a toy dataset to illustrate the softmax ap-

C. Reweighting data distributions proach. See Figure 1. (a) to (e), where we represent data
We give a list of the different weight strategy fpfx). We from a certain class with points cloud, the classi er's decision
start by recalling the basic GAN case. boundary with a black line, so that points under the line are

Uniform weight. Having a uniform true data distribution correctly classi ed and points over the line are misclassi ed.
corresponds to the typical GAN setting. Each datum is givéithen we get closer and beyond the classi cation line, the
the same weight, hence there is no particular reason for theint clouds become bigger with a bigger weight. However,
generator to produce adversarial examples. It can be visualitei$ might be problematic in the presence of outlier data or
in gure 1.(a) where there is a distribution where all pointén the presence of a variation of misclassi ed prediction. For
got the same weighp(x) , 1=n. instance, in the presence of few misclassi ed data with high

Hard weighting. An intuitive way to generate adversarialinaccurate predictions and a majority of misclassi ed data with
examples is to only consider misclassi ed data, where a comedium inaccurate prediction, the latter get bigger weights
stant weight is given to misclassi ed data af@dor correctly than the former as shown in gure 1.(e).
classi ed data. LetN,, be the number of misclassi ed data, Weight clipping. In order to make the softmax strategy
then the misclassi ed data are normalized weightslaN,,. more robust we decide to apply a clipping function to all
The downside of this weighting strategy is that few data aprediction vectorp(x). Let us denote the thresholdand the
left for training in the context of a very accurate classi erthreshold functiont. It means that if the prediction vectp(x)
And unfortunately, GANs are data hungry which means thist above the threshold, it is clipped to the threshold value. The
this method is not ef cient to generate adversarial exampledipping function is applied to the prediction vectors before the
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softmax strategy. In our experiments, we selected a threshold
of 75% Putting all together, the weighted distribution is :

p(x) . S(min(; (1 ¢’ (x));w): )

D. Minibatch weighting

We numerically found that computing the reweighting di-
rectly on the full distributions gives numerical instabilities
when batches with small weighted data are selected. A pos-
sible solution to this problem is to compute the reweighting
strategy on batches from the distributions. The loss function
becomes an expectation over mini-batches: Fig. 2: Adversarial data generation with WGAN (left) and
ARGAN (right) on two moons dataset. The black line is the
classi er boundary. The kernel density estimation of generated
data is in red.

min maxL(x;z; ; ); (8)

whereL(x;z; ; )=
Ex = n[D (X)] E, p,»[D (G (2))]
+ Eg p nl(maxfOkiD  (R)kz 19)?];

wherem is the minibatch size. This strategy is similar to the
minibatch Wasserstein distance which was widely used for
generative models [23], [35] and studied in [36].
Regarding the extreme cases, two effects can be highlighted
from the classi er's performance. In the case of a performing
classi er, i.e really high overall accuracy, the softmax term igjg. 3: Data from the DFC2018 dataset. Example of false RGB
close to 1 for each datum. In this case the original WGAhage (left) and the ground truth (right).
is recovered, the generated data look like the true data but
they are not adversarial. However if the classier is not
competitive, the generated data are adversarial, showing the generation area, 1500 samples are generated and a kernel
trade-off between the generation of adversarial data and nsity estimation of these data is performed. For ARGAN,

generation of real data. the temperaturey is set t020 and the clipping value is 0:5.
We see that WGAN generates data all over the classile
V. EXPERIMENTS AND RESULTS ARGAN only generates data where the points are misclassi ed

In this section we describe the different experiments afy the classi er. This shows the effectiveness of our method to
results. ARGAN is applied on synthetic data and comparé@cus on generating adversarial data for a pre-trained classi er.
to the well known WGAN. The rst experiment on real-life

data is the generation of adversarial hyperspectral imaggs. Generation of hyperspectral spectra

Then, image modi cation through a patch is considered on . . .
IRRGB images. Finally, the method aims at fooling a state We now investigate the effectiveness of ARGAN on real

of the art detector with generated data and compared it W}%orld datg._ Unlike traditional RGB IMages, hyperspectral
imagery divides the color spectrum in multiple contiguous

a usual WGAN. For all experiments the used optimizer is kﬁaands that can outreach the visible spectrum. In those images a
RMSProp optimizer [37], with a learning rate 6f00005for P ) 9

the generator and:0001 for the critic. pixel isa spectr.um, and we can identify the materials in a pixel
with an analysis of the pixel spectral signature. To test our
. algorithm, a pixel-based classi cation task on hyperspectral
A. Synthetic data images is rst considered. The classi er takes a spectrum as
The rst experiment illustrate ARGAN on the well knowninput and gives a material classi cation probability vector as
two moons toy dataset with 4000 points. On this toy taskhutput.
we generate data which belong to clds$ut are classied  Dataset and classi er. The DFC2018 dataset [13], which
as belonging to class 2, i.e., the white point clouds in gurezas acquired over the University of Houston campus and
2. The classier used is a pre-trained dense 2-layer withis neighbourhoods, is considered in this experiment. The
classi cation accuracy 0f92% The classi er boundary is hyperspectral data cover a 380-1050 nm spectral range with 48
represented as a black line. The generator and discrimindbands at a 1-m Ground Sampling Distance. Here the classes
share the same dense 3 hidden layers architecture of gipenot only cover urban classes (buildings, cars, railways,
respectively of 128, 128 and 64. The input noise dimensiatc.) but it also covers vegetation classes (healthy or stressed
z P, is 10. The batch size is 256 and the networks grass, arti cial turf, etc.). An overview of the dataset is given
trained for 1000 epochs. We then train WGAN and ARGANvith gure 3, where we only take 3 of the 48 bands for
to see in which zone they generate cldsdata. To estimate visualization purpose, and the ground truth labels are shown in
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Fig. 5: [Best viewed in color] Healthy grass visualization.

Generator Critic . . 7
INPUTS: 128 1 INPUTS: 48 1 (Top) False RBG image built from original spectra (left) and
[l Dense 128 384, RelU [ | ConviD k=3 stride=2, 2416 ReLU  from adversarial spectra (right). (Bottom) Classi er prediction

Reshape 384 6 64 [ | ConvlD k=3 stride=2, 1232 ReLU . . .
o ConviD k=3 stride=2, 12 32 ReLU | ] ConviD k=3 stride=2. 664 ReLU on the original spectra (left) and adversarial spectra (right).

ConviD k=3 stride=2, 24 16 ReLU i Reshape 664! 384
[ ] ConviD k=5 stride=2, 48 1 TanH Jll Dense 384 1

Fig. 4: Generator (Top) and critic (Bottom) 3 convolutional
layer architectures to generate adversarial hyperspectral data.

the same gure. The considered classi er is based on [38] and
have an overall accuracy of @2with = 0:43 on disjoint
train/test, which is consistent with the result observed in recent
reviews [39]. The objective is to generate natural adversarial
hyperspectral data for this pre-trained classi er.

Experimental setting. For this experiment, we investigate
different adversarial class spectra: adversarial healthy grass
spectra, adversarial car spectra and adversarial cross-walk

spectra. For the WGAN architecture, we choose 1-dimensionaly. 6: [Best viewed in color] Comparison between several

convolution layers for both the generator and the critic as dfass spectra means against healthy grass spectra. All means
keeps coherence between close spectral bands. The archies-reported centered around the mean spectrum of healthy
ture is detailed in Figure 4. We use the whole dataset Withggass for better visualization. The spectra means are denoted

batch size of64, is set to 20 and in this experiment is in plain line and the standard deviations are in dotted lines.
set to 20. Regarding the classi er, its accuracy performance

is 82% for the healthy grass spectra on the whole dataset,

on the Cars class the classier has an accuracg® and target class. Figure 6 gathers all spectra statistics. We compare
Crosswalks where the classi er has an accuracy of &%y the target class against the generated adversarial examples
This allows us to discuss the quantity of adversarial generategm ARGAN, the generated adversarial examples from [12]
data according to the classi er performance on a speci ¢ clasgnd the two most predicted classes by the classi er (evergreen
Results. Our approach can generate adversarial spectra,ts@es and stressed grass classes). In both cases we see that the
in order to create an image we generate adversarial spe@®{RGAN adversarial spectra statistics match the targeted class
for all the pixels of the class we attack. A visualization of theetter than the predicted class and state of the art adversarial
adversarial image for healthy grass can be viewed in Figutata generation. Hence, ARGAN generated data belong to the
5 in false colors. To evaluate the pertinence of ARGAN weorrect class and is more convincing than the adversarial data
need to check two aspects of the generated spectra. We figim [12].
need to check that the generated spectra indeed belong to th@/e now compare the (mis)-classi cation performance be-
correct class which can be done partially by comparing specti@en original data and generated adversarial data. We use
means and standard deviations. Then we need to check thatthee pre-trained network on healthy grass spectra from the
classi cation performance is lower on the generated spec#iginal image, where its accuracy is 88%7 Then, we
than the original spectra to know if we are actually able tgse the network over the adversarial spectra. An illustration
generate adversarial spectra. of difference in prediction can be found in Figure 5. The
We apply the different methods for healthy grass spectctassi cation performance are gathered in Table |. The pre-
generation and we check if the generated data belong to thened classi er has an overall accuracy 82% on real



JOURNAL OF BIEX CLASS FILES, VOL. X, NO. X, SEPTEMBER 20X 7

TABLE I: Classi cation accuracy for the pre-trained classi er
over ARGAN generated spectra and real data (over 10 runs)

Mean Std Real data

Healthy Grass  0.34 0.06 0.82
Car 0.19 0.05 0.39
Crosswalks 0.01 0.009 0.05

Fig. 8: example of Potsdam dataset patch[14]

Fig. 7. [Best viewed in cqlor] Comparison between severgl ot of noise and does not t the target class as good as
class spectra means against car and cross-walk spectra. fiGAN generated spectra. Finally for the Crosswalks class,

means are reported centered around the mean spectrum ofgj algorithm was not able to produce spectra that t the real
or cross-walk for better visualization. The means are in plaiihectra unlike ARGAN.

and the standard deviations are in dotted lines.
C. Mask modi cation

healthy grass spectra while its performance decreasesdy 50 We now describe the second experiment which objective is
over our generated spectra. It shows us that the classi er déid {0 generate an image but to modify one in order to fool a
not succeed to correctly classify ARGAN generated specise-trained classi er. In order to modify an image, we focus on
as healthy grass spectra, making ARGAN generated spe@rdiask, denotet , on the center of the image. A mask is a
adversarial healthy grass spectra. center_ed_ square s_ubpart of the image and we aim at modifying
We now investigate the performance of ARGAN to generat’?éhat is inside .thIS magk to create an adversarial data. Our
adversarial cross-walk and cars spectra. The spectra statisfidddes have pixels which are composed of Red-Green-Blue-
can be found in Figure 7. We compare the target C|aég,fraRed channels. In this task of semantic segmentation eaph
ARGAN generated data, the state of the art adversarial dgféel ha_s a Ia_bel, hence we use both speciral and spatial
and the most predicted class by the classi er. We can see tffgprmation unlike the rst experiment. L
ARGAN generated data ts better the target class than theDataset. We consider the Potsdam da}taset [14] which is a
most predicted class by the classi er or the adversarial ddt§taset composed of 38 6000x6000 pixels patches over the
when those are available. We deduce that ARGAN genera@B’ of Potsdam, Germany. The patqhes are true orthophotos
data indeed belong to the target class. Regarding the cIassiV\QFh four channels red,.gre_en, blue, mfre_tred.and have a GSD
accuracy, we see in table | that the classi cation accura&? 5-cm (see example in Figure 8), making it possible to see
of ARGAN generated spectra is smaller than for real data€ary objects such as cars. We used 28 images as training
it decreases b0% for the car class and% for the cross- set and thg remaining 10 images as test set. In total,_ we have
walk class. This makes ARGAN generated spectra adversariat38 cars in the dataset and from the patchgs, small images of
We also see that there is a correlation between the classi@'S Of Size 128 by 128 where extracted using center of mass
performance and the number of adversarial examples &;rmdmdual cars on patches. Regarding the Iearnmg task, we
batch. Indeed, better the classi er is, smaller is the number B€ @ Segmentation network (segnet) [40] (see an illustration
natural adversarial data. This phenomenon is expected as wiRigure 9)'A_ common way to evaluate its performances it to
the classi er has a big accuracy, the number of adversarial d4$€ @ confusion matrix (Figure 10). . .
in the training set is small. Not only there is less misclassi ed Experimentation. The purpose of this experiment is 10

data, but also the margin between well-classi ed data and tHbOd'fy the car segment_atlon ofa given Image in order to make
classi cation boundary tends to increase. it adversarial for the given pre-trained classi er. In order to

Qualitative comparison with state of the art. We now achieve this, the car segmentation is within a 64 by 64 mask

compare more deeply ARGAN with [12] We adapted their in the cerjter of the IMages. The generator is a U-Net [#1] and
method to the same architectures considered here. We u s as inputs both the image and the mask instead of a latent

untargeted attacks, which means that we want our spectra to’ 8"_?;2' then |ttoutputska S|r]1cg:|e new_ |matge as shtown In gured
misclassi ed but we do not want it to be classi ed as a speci éL .I ¢ etg_er;era otr_ worths as r? ows: ||n|i)_u S ?re (rjs corln?resse
label. The results are visible with gure 6,7. Regarding th atent information through convolutional and pool layers,

Healthy grass class, the produced adversarial spectrum exhi thg resulting Iatent' VeCtOr IS decodg d with transposed
convolutional layers to give a single new image. With a new

following their online implementation : https://github.com/ermongroup?je_Signed loss function, the GAN aims at modifying qnly what
generativeadversary is inside the mask. Our modi cation task can be viewed as
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INPUTS: 128 128 4
Conv2D k=3, 128 128 64, ReLU, MaxPool
Conv2D k=3, 64 64 128 RelLU, MaxPool
Conv2D k=3, 32 32 256 RelLU, MaxPool
Conv2D k=3, 16 16 512 RelLU, MaxPool
Conv2D k=3, 8 8 1024 RelLU, upsample
Conv2D k=3, 16 16 512 RelLU,

Conv2D k=3, 16 16 512 RelLU, upsample

[ ] Conv2D k=3, 32 32 256 RelLU,

Conv2D k=3, 32 32 256 RelLU, upsample

[ ] Conv2D k=3, 64 64 128 RelU,

Conv2D k=3, 64 64 128 RelLU, upsample

[ ] Conv2D k=3, 128 128 64 RelLU,

Conv2D k=3, 128 128 32, ReLU

Conv2D k=3, 128 128 6, Softmax

Fig. 10: Confusion matrix of our segmentation network on the
Potsdam dataset [14]

Fig. 9: Segmentation network architecture used for detection
on the Potsdam dataset [14]

image inpainting and following this analogy, we designed a
network close to [25] which showed impressive results using
dilated convolutions [42]. INPUTS: 128 128 5
We now give more details about the training procedure. We [ | GatedConv k=5, s=2, 6464 32, LRelLU
used a batch size of 32 andis set to 50. Regarding the [ | GatedConv k=3, s=2, 3232 64, Im, LReLU

modi ed loss function, we add a regularization term to the
generator's loss, eq. 9, to ensure that only the misiskis
modi ed and we also add an optional term to favor adversarial
segmentation. The latter modi cation of the loss function,
penalizes the GAN when it modi ed other pixels than the
car pixels. Both of these terms can be weighted by constants

[ ] GatedConv k=3, s=2, 1616 128, Irn, LReLU

[l GatedConvDilat k=3, r=2, 1616 128, I, LRelLU
 GatedConvDilat k=3, r=4, 1616 128, Irn, LReLU
] GatedDeconv k=3, s=2, 332 64, Irn, LRelLU
D GatedConv k=3, 3232 64, Irn, LReLU

] GatedDeconv k=3, s=2, 6464 32, Irn, LRelLU

[ ] GatedConv k=3, 6464 32, Irn, LReLU

[T] GatedDeconv k=3, s=2, 12828 4, Irn, LRelLU

and , and taking only = =1 gave meaningful results.
GatedConv k=5, stride=1, 12828 4, TanH

In this experiments, the modi ed loss function is equal to:

Lo(:M 3y )= Fig. 11: Generator architecture designed for mask modi cation
20V Yored s on the Potsdam dataset [14]

Ex p n[D (X)] E, pn[D (G (x;M))]

+ Eg p n[(maxfOkiD (R)k2 19)%]
N ' even if the segmentation is altered, modi ed the car heavily
+ @ M) (G(x;M)i xi)? and it does not look as a natural image. And last, the
i=0 modi cation can lead to a better segmentation. Note that these
X failure cases do not happen often. This can be seen with the
(y M)logl(1 Yped) ML (9) following perceptual evaluation that we designed to investigate

i=0 if our results can be convincing and adversarial.

Results. The results on the test set are gathered in FigurePerceptual evaluation.To assess the quality of our gen-
12. We see in the rst line two different cases where ARGANrated patches we conduct a perceptual evaluation where
performed well. In the rst case few modi cations of the imagave compare the ability of the trained classi er and humans
led to huge difference in segmentation, the differences for tte classify adversarial samples. The classi er performance
RES column are in red if the car is not segmented anymaee evaluated using the test set, for both original and mask
or in green if the car is better segmented. modi ed images. And as we can see with the rst line of

In the second case we have much more modi cation to erasable II, the classi er looses 28 points of accuracy when it
the car from the segmentation. The second line shows tigevaluated on data from ARGAN. However those results are
failure cases, when we have the case where our modi catiamly meaningful if those are real natural adversarial example
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RGB IRRG RES RGB IRRG RES

Original

Modi ed

Differences

Original

Modi ed

Differences

Fig. 12: Results for patches modi cation, the rst line show example where our method worked, the second line show failure
cases

.. . . Original image | Modi ed image | Image w/o cars
ad
as we de ne(_JI it in the rst sectl_on, meaning that the generat@.aslSi er accuracy 0767 0481 7
patches are indeed cars. To this end we conducted a percepighan accuracy 0.018 0.835 0.945
evaluation similar to [12], with the assumption that if a humarMean con dence 2.524 2.240 2.229

can detect a car then its segmentation is trivial. This allows

us to have a much simpler task to conduct while having

comparable results. We conducted the perceptual evaluation
by _rst taking randomly 50 images where we had cars ang. car generation

50 images where there were no cars, and then we applied our ) ) )

method to the 50 images with cars, letting us with 150 images!n the last experiment we aim at evaluating ARGAN's

in total. We have developed a simple test where 12 images gﬁgforma_nce when dealing with _state—of-the—art predictors. The

presented to humans. Among these images 5 are ground tRKFPOSE is to generate adversarial car examples for a very good
cars, 5 were modi ed using our method and 2 do not hawdject detection algorithm. Instead of semantic segmentation
cars in them. In this test you must indicate whether you seéVere each pixel has a label, the classi er output is bounding

car or not and associate this decision with a con dence lev&0xes surrounding an object. In this experiment, we solely

This test was carried out by 74 persons and the results $26Us on the cars object class object.

gathered in the second and third lines of Table Il. HumansDataset.We use the same Potsdam dataset [14] than in pre-
loose 8 points of accuracy, however their con dence remailf§us experiment. We transformed the potsdam segmentation
of the same order: Moderately con dent. When we compaf@iages to different images with bounding boxes around cars.

the results, we see a 36% drop of performance for the classi E? train the classi er we used the same train set as the patch
against 9% for Humans, meaning that our method affect@%pdi cation expel’iment. However to train the GAN, we used

far more the classi er than the humans and that our meth&@th training and testing sets as done in our rst experiment,
produces Convincing adversarial examp|es_ which allows to increase the number of training data.

Experimentation. The selected detector is a YoloV3 [43]
that we trained on the train set. This classier achieves an
overall (Train and Test) accuracy score of 99.5% with an

TABLE II: Results of perceptual evaluation
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Adv. generation rate] std
WGAN 97:4% 0:94%
Our method 92:2% 2:5%

TABLE IlIlI: Classi cation accuracy for our pre-trained classi-
er over generated data from different methods.

adv.GT WGAN ARGAN

INPUTS: 128 1

[l Dense 128 8192, RelLU, reshape 8 128
[ ] GatedConv k=3, s=1, 88 128, RelLU

[] GatedDeconv k=3, s=2, 166 128, RelLU
[ ] GatedConv k=3, s=1, 1616 128, ReLU

[ ] GatedConv k=3, s=1, 1616 128, ReLU

[ ] GatedConv k=3, s=1, 1616 128, RelLU
[[] GatedDeconv k=3, s=2, 3382 64, ReLU
[ ] GatedConv k=3, s=1, 3232 64, RelLU

[ ] GatedConv k=3, s=1, 3232 64, RelLU

[ ] GatedConv k=3, s=1, 3232 64, RelLU
[] GatedDeconv k=3, s=2, 644 32, RelLU
[ ] GatedConv k=3, s=1, 6464 32, ReLU

[ ] GatedConv k=3, s=1, 6464 32, ReLU

[ ] GatedConv k=3, s=1, 6464 32, ReLU
[[] GatedDeconv k=3, s=2, 12828 3, RelLU
[ ] GatedConv k=5, s=1, 128128 3, RelLU

Fig. 13: Generator used for car generation from the Potsdam
dataset [14]

objectness threshold of 0.75. Our classi cation task can be
summarized as the detection of a car on images. This task
seems very easy for our classier as we do not consider
the Intersection Over Union. The generator architecture we

consider contains three convolutional layers and one dense ) ]
layer (details in Figure 13). We setto 50. We consider two Fig. 14: Generated adversarial car images. The rst column are

different methods. we rst train a WGAN and we evaluat@atural adversarial examples in our GT, the second column are
its ability to generate adversarial data. Then we used tgdversarial example generated with a classical WGAN, the last

WGAN generator as initialization for our method ARGAN,COlum” are adversarial example generated with our method
and evaluate the number of generated adversarial data.

Results. State of the art classi ers have high accuracy and V. CONCLUSION

only a few natural adversarial examples making it hard to This paper tackles the problem of generating natural adver-
train our methods. Nevertheless, using a pre-trained WGAddrial images for remote sensing applications. Those images
generator as generator for our method leads to a high nuane natural in the sense that they can be considered as a
ber of generated adversarial data with good image qualitgalistic variation of the input image, while being at the same
Example of natural adversarial car images can be found time adversarialvrt. a given black box predictor. We propose
Figure 14. We see that our generated adversarial images hageromvel method to generate such examples, by modifying the
better quality than natural adversarial images from the groudMdGAN loss function with a re-weighted distribution of the
truth or WGAN generated images. As seen in Table |l thieaining data based on a pre-trained classi er's prediction. We
considered WGAN generates only 2.3% adversarial data whileveloped several different weighting strategies to specialize
our methods improve its score by more than 5 points (motlee generator to generate a specically natural adversarial
than 3 times more examples are adversarial), showing that edata. To the best of our knowledge, it is the rst time that
in extreme scenarios, our method is still relevant to generatework explores a modi cation of the data distribution for
adversarial data. Moreover Figure 14 shows that despite havamdyersarial generative modelling purpose. We have applied
few good looking natural adversarial examples in the groumdir method for several generative modelling tasks such as
truth, our method manages to generate better looking imagetversarial hyperspectral generation, image modi cations and
and has a better success rate. adversarial image generations for a state-of-the-art classi er.
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Future works will consider applying this method to differenti9]
modalities such as point cloud or SAR data, to further assess
the applicability of our method in real scenarios. [20]
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