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Generating natural adversarial Remote Sensing
Images

Jean-Christophe Burnely, Kilian Fatrasy, Rémi Flamary, Nicolas Courty

Abstract—Over the last years, Remote Sensing Images (RSI)
analysis have started resorting to using deep neural networks to
solve most of the commonly faced problems, such as detection,
land cover classi�cation or segmentation. As far as critical
decision making can be based upon the results of RSI analysis, it
is important to clearly identify and understand potential security
threats occurring in those machine learning algorithms. Notably,
it has recently been found that neural networks are particularly
sensitive to carefully designed attacks, generally crafted given the
full knowledge of the considered deep network. In this paper,
we consider the more realistic but challenging case where one
wants to generate such attacks in the case of a black-box neural
network. In this case, only the prediction score of the network
is accessible, given a speci�c input. Examples that lure away the
network's prediction, while being perceptually similar to real
images, are called natural or unrestricted adversarial examples.
We present an original method to generate such examples, based
on a variant of the Wasserstein Generative Adversarial Network.
We demonstrate its effectiveness on natural adversarial hyper-
spectral image generation and image modi�cation for fooling
a state-of-the-art detector. Among others, we also conduct a
perceptual evaluation with human annotators to better assess
the effectiveness of the proposed method.

Index Terms—Adversarial Examples, Generative models, Re-
mote sensing, Deep Learning.

I. I NTRODUCTION

Deep neural networks (DNN) have established as a domi-
nant class of learning models to handle Remote Sensing Im-
ages (RSI) on a vast amount of tasks, ranging from detection,
classi�cation or segmentation (seee.g.[1] for a comprehensive
review). Their ability to handle a vast amount of data, both
at train and test times, and to work on dedicated processing
hardware, makes them ubiquitous nowadays in RSI analysis.
Yet, it is well known in the machine learning community
that those models are strongly sensitive to carefully crafted
attacks also called adversarial attacks, that aim at fooling
the network prediction based on imperceptible modi�cations
of the submitted entry [2], [3]. This issue has been vastly
underlooked for now in the remote sensing community, despite
the fact that it poses signi�cant security issues, as soon
as decisions taken from RSI analysis can potentially have
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tremendous impact on security decision or evolution of public
policies. This is notably the case in a military context [4],
where an attacker could input malicious images to fool a
detector system. The attack can occur both at the level of
a computing system [5] (by manipulating the data �owing to
the recognition system), or even at the physical level [6], by
changing the physical properties of the signal arriving to the
remote captor. These modi�cations could be envisaged both
in the geometrical properties of the scene, but also in the
spectral domain [7]. Moreover, RSI pose its own challenges
with this respect to adversarial image generation because of
the heterogeneity of captors, that generally go beyond RGB
images. It is worth noting that the question of generating
adversarial examples for multi- or hyper-spectral images, SAR,
Lidar or even multi-modal inputs is still an open question, each
tasks (e.g.detection, classi�cation or segmentation) having its
own speci�cities. We propose in this papera generic principle
for building adversarial examples generatorsin all those
cases, and whenever the machine learning algorithm used for
the analysis is solely known through given input-output pairs.
While disposing of such a generator could be used for its �rst
purpose of luring machine learning algorithms, we also foresee
its use in cases where one wants to inspect the potential failure
cases of a learning algorithm, or to design more robust models
that are less sensitive to adversarial attacks.

Turning to the existing literature on adversarial examples,
there exists two main strategies to generate such examples. The
�rst strategy is to add a small perturbation to images that are
correctly classi�ed. The small perturbation fools the classi�er
which makes the wrong prediction. The small perturbation is
computed from the classi�er gradients. Intuitively, the gradient
leads toward the direction with the most variation in the
prediction. This is the main idea of the Fast Gradient Sign
Method (FGSM) algorithm [2]. One problem from this ap-
proach is that one needs to know the full classi�er architecture
to compute the gradients. Another problem is that even a small
perturbation can harm the image quality and lead to images
that are not similar to original data anymore. Such images
can be easily detected as adversarial images [8], [9]. The
second paradigm does not require access to the classi�er. It
looks for adversarial examples only by having access to the
classi�er's prediction. Most of techniques using the second
strategy try to �nd adversarial examples using Generative
Adversarial Networks (GANs) [10]. After training a generator,
several recent work [11], [12] look for adversarial vectors in
the latent space and then generate adversarial data with the
generator. This strategy is appealing as it gives them data
which look like the true data but are wrongly classi�ed.
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Our proposed method follows the second strategy but rely
on a different approach to generate natural adversarial exam-
ples. We train a GAN which is specialized for adversarial data
generation. To this end we propose to weight the training data
for training our adversarial GAN. The weight values depend
on the probability for a datum to be misclassi�ed. This is
in opposition to classical GAN strategies that use uniform
weights on samples in their dataset. Hence, our method only
needs to know the output of a given pre-trained classi�er, seen
as a ”black box” classi�er. From the re-weighted distribution
of the true data, a generator is trained to generate adversarial
examples for the pre-trained classi�er. The idea is to create a
map between the latent space and the set of natural adversarial
images which are present in the true data. Our approach is
called ARGAN and stands for Adversarial Reweighted GAN
in the following.

The paper is structured as follows: Section 2 introduces
the de�nitions and notations. Then, in section 3, we detail
related work on generative modelling in remote sensing and
adversarial data generation. After a short introduction on GAN
we present ourmain contributions in section 4. We detail
our modi�ed loss function which is designed for adversarial
examples generation. Section 5 gathers experiments. First, the
method is applied on hyperspectral data from the Data Fusion
Contest 2018 [13], by generating data which are misclassi�ed
by a pre-trained classi�er. Then as second experiment, a GAN
is trained for image modi�cation through a patch on Potsdam
data [14]. Finally the third and last experiment is to train train
a GAN in order to fool a state of the art detector on the
Potsdam dataset.

Notations. This paragraph details formal notations and
de�nitions. The probability distributions of true data is denoted
Pr and the generated data distribution asPG . Vectors are
expressed in bold,i.e., v . The true data of dimensionalityd
are denoted asx � Pr and the noise vectors of dimensionality
p � d are z � N (0p; I p). Data lie in a spaceX . n stands
for the number of true data andm for the batch size used
during training. For a classi�erc, the probability to belong to
the correct class of a samplex is denoted ascy (x ).

II. RELATED WORK

De�nitions. This paragraph clusters the different kind of
adversarial attacks, using notations from related work [2], [11],
[12], [15]. We de�ne y pred = c� (x ) the operation of getting
the predictiony pred of the datumx with the classi�er c� .
The classi�er is parametrized by weights� . I , f [0; 1]n g
indicates the set of all normalized images withn pixels and
N I � I stands for the subset of all natural images. Natural
images are meaningfully images similar to original images
which make them legible. An oracleo is acknowledged where
o(x ) is the ground truth of the considered problem. Now, we
make a distinction about attacks regarding the knowledge of
the classi�er. A white box attack is an attack where there
is an access to the classi�er's structure and parameters� . A
black box attack is an attack where the only knowledge is the
outputsy pred for some inputsx . Note that we suppose in the
following that we have access to bothx ; y pred but we cannot

query the classi�er on new samples (since this would allow
to compute approximated gradients similarly to FGSM). We
now give a detailed description about misclassi�ed example
categories.

The idea ofperturbation-based exampleis to add a small
perturbation to an input in order to create an adversarial
example. Most of the time the perturbation is limited by a
factor � . We give an example: let us denote� a unitary (i.e.,
k� k = 1 ) input perturbation, then a new example can be
computed asx adv = x + � � . It is an adversarial examples
if c� (x ) 6= c� (x adv). Formally, it can be written asf x adv 2
I j 9 x test 2 I ; kx adv � x test k < � ^ o(x adv ) = o(x test ) =
c(x test ) 6= c(x adv )g. Natural examples are misclassi�ed
data-like images. It can be misclassi�ed training or testing
data for instance. Some perturbation-based examples are also
natural examples. Formally, it can be written asf xadv 2
N I j o(x adv ) 6= c(x adv )g. The last category isunrestricted
examples. In this context there are both a pre-trained classi�er
and an oracle. Unrestricted examples are samples where the
oracle and the classi�er predict different result. Formally, it
can be written asf x adv 2 I j o(x adv ) 6= c(x adv )g.

We are now ready to describe the attacks against the
pre-trained classi�er,i.e., the different strategies to fool the
classi�er. Untargeted attack stands for an attack from any
adversarial example.Targeted attack acknowledges an attack
with an adversarial example from a source label, which is
classi�ed as a target label,y target = c(x adv ) 6= y source =
o(x adv ).

Generative Adversarial Networks.Generative Adversarial
Networks have become a popular unsupervised method for
data generation. Introduced in [10], several work came out
to complete and improve their use. Methods were developed
to control the label of generated data [16]. Other approaches
focused on developing GANs for super resolution tasks [17].
The use of different statistical distances or regularizations has
also been widely investigated in [18], [19], [20], [21], [22],
[23]. Recently some work focused on image inpaiting using
gans to reconstruct images [24] or even modify them with
some given labels [25], lastly GAU-GAN [26] proposed to
synthesize an image solely on given labels.

Generated modelling for remote sensing data.Generative
modelling for remote sensing data has been investigated in
several references. GANs were used by [27] to generate remote
sensing data. They used a conditional GAN architecture, where
they take as inputs an hyperspectral class and a random noise,
to control the class of generated data. They showed that the
generated spectra quality is genuine-looking and physically
plausible. Furthermore, they experimentally validated that the
generated samples can be used for data augmentation strategy
to improve classi�cation accuracy. The generation of super
resolved remote sensing data was investigated in [28]. To
this end they relied on two main subnetworks: an ultradense
subnetwork and an edge-enhancement subnetwork combined
with an adversarial learning strategy. GANs has also been
used to learn unsupervised representations as done in [29].
They used the generator to generate data-like images and the
discriminator was used as a feature extractor for classi�cation
purposes. [30] also used GANs for learning representation by
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incorporating a non-local layer into their architecture. GANs
have also been used in remote sensing for domain adaptation
on hetereogenous data [31] which might be seen as transfer
learning with different type of data.

Generated adversarial data.To generate adversarial ex-
amples without requiring the classi�er's gradients, [11] uses a
GAN and an invertor. The generator is a function which goes
from the latent space to the true data space while the invertor is
an inverse function. From the true data, they use the invertor to
go to the latent space and look for adversarial examples. They
add small perturbations to the latent vectorz� which represents
a datax � until they �nd an adversarial example. This method
allows them to have very realistic adversarial examples without
using the classi�er's gradients. In [12] authors use an AC-
GAN [16] to model the data distribution with the assumption
that an ideal model could generate all the set of legitimate
data. With such a model they search in the latent space for all
the adversarial examples. Their search is done by minimizing
the con�dence score of a classi�er while having the auxiliary
classi�er still predicting the correct class. So the adversarial
examples look like true images and are adversarial for the
attacked classi�er.

III. A DVERSARIAL REWEIGHTED GAN (ARGAN)

The section is divided as follows. We start this section with
a brief introduction on GANs. After, we describe the link
between probability distribution of the true data and image
generation. Then, our probability distribution reweighting for
adversarial data generation and �nally, the use of minibatch
to improve training.

A. Generative Adversarial Networks

Generative Adversarial Networks (GAN). The principle
of a GAN [10] is to generate realistic dataw.r.t. a training
dataset. It has been expressed as a two player game between
two DNNs, a generator and a discriminator. The discriminator
tries to predict if an image is real or fake and the generator
tries to fool the discriminator with its generated images.
Intuitively to fool the discriminator, the GAN tries to minimize
the distance between the distributions of generated data and
training data. In this formalism the ability of the discriminator
to separate generated and real data can be seen as a divergence
between the two distributions. This notion of divergence is
critical and has led to several variants of GAN. The generator
takes as inputz � Pz , to generate dataG(z) � PG , it forms
the generator's distribution. Then, it tries to reduce the distance
with the real data distributionPr . Pz is usually a gaussian
or a uniform distribution. GANs improve the generated data
quality by minimizing the Jensen-Shannon divergence between
the distributionsPG andPr :

min
�

max
�

Ex � Pr [logD� (x )] � Ez � Pz [log(1 � D � (G� (z)))] :

(1)
However as the true distributionsPG andPr are unknown, we
only consider their empirical distributions from the available
true data and the generated ones.

Wasserstein GAN. There are several statistical distances
that can be used for measuring the distance between proba-
bility distributions. Wasserstein GAN [18] is a GAN variant
which relies on optimal transport tools to compare two proba-
bility distributions (Pr ; Pz ) 2 M 1

+ (X ) � M 1
+ (X ). Optimal

transport seeks a transportation map which minimizes the
displacement cost between the distributions with respect to
a ground metric on the input spaceX [32]. The ground
metric is usually taken as the euclidean distance. Formally,
the Wasserstein distanceWp that relies on optimal transport
between two distributions can be expressed as :

Wp(Pr ; Pz ) = min
� 2 U (Pr ;Pz )

(
Z

X �Y
kx � ykp

2d� (x ; y ))1=p; (2)

where U (Pr ; Pz ) is the set of joint probability distribution
with marginals Pr and Pz such that U (Pr ; Pz ) =�

� 2 M 1
+ (X ; Y) : P X # � = Pr ; P Y # � = Pz

	
. P X # �

(resp.P Y # � ) is the marginalization of� over X (resp.Y).
When the ground cost is chosen as the Euclidean distance on
Rd, Wp is a metric as well. Notably,W1 can be rewritten
with the Kantorovich-Rubinstein duality [32], giving :

W1(Pr ; Pz ) = min
�

max
f 2 Lip 1 (X )

Ex � Pr [f (x )]� Ez � Pz [f (G� (z))] ;

where Lip 1(X ) is the set of 1-Lipschitz functions. [18]
proposed to use the following approximation:

W1(Pr ; Pz ) = min
�

max
�

Ex � Pr [D� (x )] � Ez � Pz [D� (G� (z))] ;

(3)
where D is the dual potential and is within the set of 1-
Lipschitz functions parameterized by weights� . Analogous
to GANs, we still call D the ”discriminator” although it is
actually a real-valued function. In order to respect the 1-
Lipschitz constraint, [18] used a weight clipping trick for
the discriminator's weights during the optimization procedure.
However this practice leads to unstability during optimization
and poor minima. Another approach proposed in [33] involves
a gradient penalty and enforces the gradient to be less or equal
to one makingD 1-Lipschitz. The WGAN variant used in the
rest of the paper is:

min
�

max
�

Ex � Pr [D� (x )] � Ez � Pz [D� (G� (z))]

+ � Ex̂ � Px̂ [(maxf 0; krD � (x̂ )k2 � 1g)2]; (4)

where Px̂ is the distribution of samples along the straight
lines between a pair of points fromPr and PG and � the
regularization parameter. In practice, the true distributionPr

is unknown and only an empirical counterpartbPr with n i.i.d.
samples fromPr is available.

Furthermore, we investigated the use of an AC-GAN which
would allow us to control the label of the generated data.
Unfortunately, AC-GAN learns a biased distribution [34],
the distribution of easy to classify data. Since the learned
distribution is the opposite distribution of what the wanted
distribution, we chose to extend WGAN instead of AC-GAN.

B. Adversarial Reweighting

To generate data similar to the true data and are diversi�ed,
each true data have a uniform weight in the classical GAN
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Fig. 1: Illustration of different reweighting strategies for adversarial data generation. (a) is the standard uniform weight between
data. (b) is a hard weighting where we only consider misclassi�ed data. (c), (d) and (e) are softmax weighting strategy for
different temperatures. (f) is the combination of softmax and clipping strategies.

training. Formally, it means that the empirical distribution
bPr is uniform, i.e bPr = 1=n

P n
i � x i . It is customary for

empirical distributions to suppose that the samples are drawn
i.i.d., from the underlying distribution. One way of changing
GAN's goal is to change the empirical distributionbPr . Instead
of encouraging the generator to generate data close to the
true data, it is encouraged to generate realistic data that
make the classi�er fail. It means that the true data which
are misclassi�ed have a bigger weight in the GAN training
than correctly classi�ed data. Our main idea is to reweight a
datum's weight according to the classi�er's prediction. The
resulting weighted distribution, denotedbPa

r , must have the
following form: bPa

r =
P n

i =1 pi � x i , where:
P n

i =1 pi = 1 .
The GAN is trained to minimize the distance between the
generator distributionbPG and the reweighted true distribution
bPa

r . Finally, our new loss function is of the form:

min
�

max
�

Ex � bPa
r
[D� (x )] � Ez � Pz [D� (G� (z))]

+ � Ex̂ � bPx̂
[(maxf 0; krD � (x̂ )k2 � 1g)2]: (5)

Intuitively, the generator is a map between the latent space
and the adversarial data area of the true distribution. To the
best of our knowledge, it is the �rst time the distribution is
modi�ed for generative purpose. Now we describe and review
the impact of different reweighting methods.

C. Reweighting data distributions

We give a list of the different weight strategy forp(x ). We
start by recalling the basic GAN case.

Uniform weight. Having a uniform true data distribution
corresponds to the typical GAN setting. Each datum is given
the same weight, hence there is no particular reason for the
generator to produce adversarial examples. It can be visualized
in �gure 1.(a) where there is a distribution where all points
got the same weight,p(x ) , 1=n.

Hard weighting. An intuitive way to generate adversarial
examples is to only consider misclassi�ed data, where a con-
stant weight is given to misclassi�ed data and0 for correctly
classi�ed data. LetNm be the number of misclassi�ed data,
then the misclassi�ed data are normalized weights as1=Nm .
The downside of this weighting strategy is that few data are
left for training in the context of a very accurate classi�er.
And unfortunately, GANs are data hungry which means that
this method is not ef�cient to generate adversarial examples.

With c(x ) the result of the classi�er for the targeted class
p(x ) , b1 � c(x )e.

Soft weighting. Another weighting approach is to use the
prediction score from the classi�er. Such approach could take
into account examples which are correctly classi�ed but with a
low con�dence. We refer to those samples assoft adversarial
examples. In order to consider the soft adversarial examples,
we can use a softmax function. It is de�ned as:

S(cy (x ); w) ,
exp(w � [cy (x ) � cy (x )max])

KP

i =0
exp(w � [cy (x i ) � cy (x )max])

; (6)

wherecy (x ) is the prediction to belong to the correct class,
cy (x )max is the maximal probability among the batch of data
to belong to the correct class andw is a temperature coef�cient
that controls the entropy of the resulting distribution. However
as the objective is to generate adversarial data, we consider
1 � cy (x ) rather thancy (x ). The soft weighting strategy can
be expressed asp(x ) , S(1 � cy (x ); w). Figure 1.(c) is
an example of weighting using the softmax function with a
temperaturew = 5 . Note that in the speci�c case ofw = 0 ,
the softmax approach corresponds to the WGAN loss function
and whenw tends to in�nity, it becomes the hard weighting
strategy.

To demonstrate the relevance of the different reweighting
methods, we use a toy dataset to illustrate the softmax ap-
proach. See Figure 1. (a) to (e), where we represent data
from a certain class with points cloud, the classi�er's decision
boundary with a black line, so that points under the line are
correctly classi�ed and points over the line are misclassi�ed.
When we get closer and beyond the classi�cation line, the
point clouds become bigger with a bigger weight. However,
this might be problematic in the presence of outlier data or
in the presence of a variation of misclassi�ed prediction. For
instance, in the presence of few misclassi�ed data with high
inaccurate predictions and a majority of misclassi�ed data with
medium inaccurate prediction, the latter get bigger weights
than the former as shown in �gure 1.(e).

Weight clipping. In order to make the softmax strategy
more robust we decide to apply a clipping function to all
prediction vectorsp(x ). Let us denote the threshold� and the
threshold functiont. It means that if the prediction vectorp(x )
is above the threshold, it is clipped to the threshold value. The
clipping function is applied to the prediction vectors before the
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softmax strategy. In our experiments, we selected a threshold
of 75%. Putting all together, the weighted distribution is :

p(x ) , S(min( �; (1 � cy (x )) ; w): (7)

D. Minibatch weighting

We numerically found that computing the reweighting di-
rectly on the full distributions gives numerical instabilities
when batches with small weighted data are selected. A pos-
sible solution to this problem is to compute the reweighting
strategy on batches from the distributions. The loss function
becomes an expectation over mini-batches:

min
�

max
�

L (x ; z; �; � ); (8)

whereL (x ; z; �; � ) =

Ex � Pa
r


 m [D� (x )] � Ez � P
 m
z

[D� (G� (z))]

+ � Ex̂ � P
 m
x̂

[(maxf 0; krD � (x̂ )k2 � 1g)2];

wherem is the minibatch size. This strategy is similar to the
minibatch Wasserstein distance which was widely used for
generative models [23], [35] and studied in [36].

Regarding the extreme cases, two effects can be highlighted
from the classi�er's performance. In the case of a performing
classi�er, i.e really high overall accuracy, the softmax term is
close to 1 for each datum. In this case the original WGAN
is recovered, the generated data look like the true data but
they are not adversarial. However if the classi�er is not
competitive, the generated data are adversarial, showing the
trade-off between the generation of adversarial data and the
generation of real data.

IV. EXPERIMENTS AND RESULTS

In this section we describe the different experiments and
results. ARGAN is applied on synthetic data and compared
to the well known WGAN. The �rst experiment on real-life
data is the generation of adversarial hyperspectral images.
Then, image modi�cation through a patch is considered on
IRRGB images. Finally, the method aims at fooling a state
of the art detector with generated data and compared it with
a usual WGAN. For all experiments the used optimizer is a
RMSProp optimizer [37], with a learning rate of0:00005for
the generator and0:0001 for the critic.

A. Synthetic data

The �rst experiment illustrate ARGAN on the well known
two moons toy dataset with 4000 points. On this toy task,
we generate data which belong to class1 but are classi�ed
as belonging to class 2, i.e., the white point clouds in �gure
2. The classi�er used is a pre-trained dense 2-layer with a
classi�cation accuracy of92%. The classi�er boundary is
represented as a black line. The generator and discriminator
share the same dense 3 hidden layers architecture of size
respectively of 128, 128 and 64. The input noise dimension
z � bPz is 10. The batch size is 256 and the networks is
trained for 1000 epochs. We then train WGAN and ARGAN
to see in which zone they generate class1 data. To estimate

Fig. 2: Adversarial data generation with WGAN (left) and
ARGAN (right) on two moons dataset. The black line is the
classi�er boundary. The kernel density estimation of generated
data is in red.

Fig. 3: Data from the DFC2018 dataset. Example of false RGB
image (left) and the ground truth (right).

the generation area, 1500 samples are generated and a kernel
density estimation of these data is performed. For ARGAN,
the temperaturew is set to20 and the clipping valuec is 0:5.
We see that WGAN generates data all over the class1 while
ARGAN only generates data where the points are misclassi�ed
by the classi�er. This shows the effectiveness of our method to
focus on generating adversarial data for a pre-trained classi�er.

B. Generation of hyperspectral spectra

We now investigate the effectiveness of ARGAN on real
world data. Unlike traditional RGB images, hyperspectral
imagery divides the color spectrum in multiple contiguous
bands that can outreach the visible spectrum. In those images a
pixel is a spectrum, and we can identify the materials in a pixel
with an analysis of the pixel spectral signature. To test our
algorithm, a pixel-based classi�cation task on hyperspectral
images is �rst considered. The classi�er takes a spectrum as
input and gives a material classi�cation probability vector as
output.

Dataset and classi�er. The DFC2018 dataset [13], which
was acquired over the University of Houston campus and
its neighbourhoods, is considered in this experiment. The
hyperspectral data cover a 380-1050 nm spectral range with 48
bands at a 1-m Ground Sampling Distance. Here the classes
do not only cover urban classes (buildings, cars, railways,
etc.) but it also covers vegetation classes (healthy or stressed
grass, arti�cial turf, etc.). An overview of the dataset is given
with �gure 3, where we only take 3 of the 48 bands for
visualization purpose, and the ground truth labels are shown in
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Generator Critic
INPUTS: 128� 1 INPUTS: 48� 1

Dense 128! 384, ReLU Conv1D k=3 stride=2, 24� 16 ReLU
Reshape 384! 6� 64 Conv1D k=3 stride=2, 12� 32 ReLU
Conv1D| k=3 stride=2, 12� 32 ReLU Conv1D k=3 stride=2, 6� 64 ReLU
Conv1D| k=3 stride=2, 24� 16 ReLU Reshape 6� 64 ! 384
Conv1D| k=5 stride=2, 48� 1 TanH Dense 384! 1

Fig. 4: Generator (Top) and critic (Bottom) 3 convolutional
layer architectures to generate adversarial hyperspectral data.

the same �gure. The considered classi�er is based on [38] and
have an overall accuracy of 52% with � = 0 :43 on disjoint
train/test, which is consistent with the result observed in recent
reviews [39]. The objective is to generate natural adversarial
hyperspectral data for this pre-trained classi�er.

Experimental setting. For this experiment, we investigate
different adversarial class spectra: adversarial healthy grass
spectra, adversarial car spectra and adversarial cross-walk
spectra. For the WGAN architecture, we choose 1-dimensional
convolution layers for both the generator and the critic as it
keeps coherence between close spectral bands. The architec-
ture is detailed in Figure 4. We use the whole dataset with a
batch size of64, � is set to 20 and in this experimentw is
set to 20. Regarding the classi�er, its accuracy performance
is 82% for the healthy grass spectra on the whole dataset,
on the Cars class the classi�er has an accuracy of39% and
Crosswalks where the classi�er has an accuracy of only5%.
This allows us to discuss the quantity of adversarial generated
data according to the classi�er performance on a speci�c class.

Results.Our approach can generate adversarial spectra, so
in order to create an image we generate adversarial spectra
for all the pixels of the class we attack. A visualization of the
adversarial image for healthy grass can be viewed in Figure
5 in false colors. To evaluate the pertinence of ARGAN we
need to check two aspects of the generated spectra. We �rst
need to check that the generated spectra indeed belong to the
correct class which can be done partially by comparing spectra
means and standard deviations. Then we need to check that the
classi�cation performance is lower on the generated spectra
than the original spectra to know if we are actually able to
generate adversarial spectra.

We apply the different methods for healthy grass spectra
generation and we check if the generated data belong to the

Fig. 5: [Best viewed in color] Healthy grass visualization.
(Top) False RBG image built from original spectra (left) and
from adversarial spectra (right). (Bottom) Classi�er prediction
on the original spectra (left) and adversarial spectra (right).

Fig. 6: [Best viewed in color] Comparison between several
class spectra means against healthy grass spectra. All means
are reported centered around the mean spectrum of healthy
grass for better visualization. The spectra means are denoted
in plain line and the standard deviations are in dotted lines.

target class. Figure 6 gathers all spectra statistics. We compare
the target class against the generated adversarial examples
from ARGAN, the generated adversarial examples from [12]
and the two most predicted classes by the classi�er (evergreen
trees and stressed grass classes). In both cases we see that the
ARGAN adversarial spectra statistics match the targeted class
better than the predicted class and state of the art adversarial
data generation. Hence, ARGAN generated data belong to the
correct class and is more convincing than the adversarial data
from [12].

We now compare the (mis)-classi�cation performance be-
tween original data and generated adversarial data. We use
the pre-trained network on healthy grass spectra from the
original image, where its accuracy is 88.77%. Then, we
use the network over the adversarial spectra. An illustration
of difference in prediction can be found in Figure 5. The
classi�cation performance are gathered in Table I. The pre-
trained classi�er has an overall accuracy of82% on real
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TABLE I: Classi�cation accuracy for the pre-trained classi�er
over ARGAN generated spectra and real data (over 10 runs)

Mean Std Real data
Healthy Grass 0.34 0.06 0.82
Car 0.19 0.05 0.39
Crosswalks 0.01 0.009 0.05

Fig. 7: [Best viewed in color] Comparison between several
class spectra means against car and cross-walk spectra. All
means are reported centered around the mean spectrum of car
or cross-walk for better visualization. The means are in plain
and the standard deviations are in dotted lines.

healthy grass spectra while its performance decreases by 50%
over our generated spectra. It shows us that the classi�er does
not succeed to correctly classify ARGAN generated spectra
as healthy grass spectra, making ARGAN generated spectra
adversarial healthy grass spectra.

We now investigate the performance of ARGAN to generate
adversarial cross-walk and cars spectra. The spectra statistics
can be found in Figure 7. We compare the target class,
ARGAN generated data, the state of the art adversarial data
and the most predicted class by the classi�er. We can see that
ARGAN generated data �ts better the target class than the
most predicted class by the classi�er or the adversarial data
when those are available. We deduce that ARGAN generated
data indeed belong to the target class. Regarding the classi�er
accuracy, we see in table I that the classi�cation accuracy
of ARGAN generated spectra is smaller than for real data,
it decreases by20% for the car class and4% for the cross-
walk class. This makes ARGAN generated spectra adversarial.
We also see that there is a correlation between the classi�er
performance and the number of adversarial examples per
batch. Indeed, better the classi�er is, smaller is the number of
natural adversarial data. This phenomenon is expected as when
the classi�er has a big accuracy, the number of adversarial data
in the training set is small. Not only there is less misclassi�ed
data, but also the margin between well-classi�ed data and the
classi�cation boundary tends to increase.

Qualitative comparison with state of the art. We now
compare more deeply ARGAN with [12]� . We adapted their
method to the same architectures considered here. We used
untargeted attacks, which means that we want our spectra to be
misclassi�ed but we do not want it to be classi�ed as a speci�c
label. The results are visible with �gure 6,7. Regarding the
Healthy grass class, the produced adversarial spectrum exhibits

� following their online implementation : https://github.com/ermongroup/
generativeadversary

Fig. 8: example of Potsdam dataset patch[14]

a lot of noise and does not �t the target class as good as
ARGAN generated spectra. Finally for the Crosswalks class,
their algorithm was not able to produce spectra that �t the real
spectra unlike ARGAN.

C. Mask modi�cation

We now describe the second experiment which objective is
not to generate an image but to modify one in order to fool a
pre-trained classi�er. In order to modify an image, we focus on
a mask, denotedM , on the center of the image. A mask is a
centered square subpart of the image and we aim at modifying
what is inside this mask to create an adversarial data. Our
images have pixels which are composed of Red-Green-Blue-
InfraRed channels. In this task of semantic segmentation each
pixel has a label, hence we use both spectral and spatial
information unlike the �rst experiment.

Dataset.We consider the Potsdam dataset [14] which is a
dataset composed of 38 6000x6000 pixels patches over the
city of Potsdam, Germany. The patches are true orthophotos
with four channels red, green, blue, infrared and have a GSD
of 5-cm (see example in Figure 8), making it possible to see
clearly objects such as cars. We used 28 images as training
set and the remaining 10 images as test set. In total, we have
9138 cars in the dataset and from the patches, small images of
cars of size 128 by 128 where extracted using center of mass
of individual cars on patches. Regarding the learning task, we
use a segmentation network (segnet) [40] (see an illustration
in Figure 9).A common way to evaluate its performances it to
use a confusion matrix (Figure 10).

Experimentation. The purpose of this experiment is to
modify the car segmentation of a given image in order to make
it adversarial for the given pre-trained classi�er. In order to
achieve this, the car segmentation is within a 64 by 64 mask
in the center of the images. The generator is a U-Net [41] and
takes as inputs both the image and the mask instead of a latent
vectorz, then it outputs a single new image as shown in �gure
11. The generator works as follows: inputs are �rst compressed
in latent information through convolutional and pool layers,
then the resulting latent vector is decoded with transposed
convolutional layers to give a single new image. With a new
designed loss function, the GAN aims at modifying only what
is inside the mask. Our modi�cation task can be viewed as
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INPUTS: 128� 128� 4
Conv2D k=3, 128� 128� 64, ReLU, MaxPool
Conv2D k=3, 64� 64� 128 ReLU, MaxPool
Conv2D k=3, 32� 32� 256 ReLU, MaxPool
Conv2D k=3, 16� 16� 512 ReLU, MaxPool
Conv2D k=3, 8� 8� 1024 ReLU, upsample
Conv2D k=3, 16� 16� 512 ReLU,

Conv2D k=3, 16� 16� 512 ReLU, upsample
Conv2D k=3, 32� 32� 256 ReLU,

Conv2D k=3, 32� 32� 256 ReLU, upsample
Conv2D k=3, 64� 64� 128 ReLU,

Conv2D k=3, 64� 64� 128 ReLU, upsample
Conv2D k=3, 128� 128� 64 ReLU,

Conv2D k=3, 128� 128� 32, ReLU
Conv2D k=3, 128� 128� 6, Softmax

Fig. 9: Segmentation network architecture used for detection
on the Potsdam dataset [14]

image inpainting and following this analogy, we designed a
network close to [25] which showed impressive results using
dilated convolutions [42].

We now give more details about the training procedure. We
used a batch size of 32 and� is set to 50. Regarding the
modi�ed loss function, we add a regularization term to the
generator's loss, eq. 9, to ensure that only the maskM is
modi�ed and we also add an optional term to favor adversarial
segmentation. The latter modi�cation of the loss function,
penalizes the GAN when it modi�ed other pixels than the
car pixels. Both of these terms can be weighted by constants
� and� , and taking only� = � = 1 gave meaningful results.
In this experiments, the modi�ed loss function is equal to:

L 2(x ; M ; y ; y pred ; �; � ) =

Ex � Pa
r


 m [D� (x )] � Ez � P
 m
z

[D� (G� (x ; M ))]

+ � Ex̂ � P
 m
x̂

[(maxf 0; krD � (x̂ )k2 � 1g)2]

+ �
mX

i =0

((1 � M ) � (G(x ; M ) i � x i ))2

� �
mX

i =0

(y � M ) log[(1 � y pred ) � M ]: (9)

Results. The results on the test set are gathered in Figure
12. We see in the �rst line two different cases where ARGAN
performed well. In the �rst case few modi�cations of the image
led to huge difference in segmentation, the differences for the
RES column are in red if the car is not segmented anymore
or in green if the car is better segmented.

In the second case we have much more modi�cation to erase
the car from the segmentation. The second line shows two
failure cases, when we have the case where our modi�cation,

Fig. 10: Confusion matrix of our segmentation network on the
Potsdam dataset [14]

INPUTS: 128� 128� 5
GatedConv k=5, s=2, 64� 64� 32, LReLU
GatedConv k=3, s=2, 32� 32� 64, lrn, LReLU
GatedConv k=3, s=2, 16� 16� 128, lrn, LReLU
GatedConvDilat k=3, r=2, 16� 16� 128, lrn, LReLU
GatedConvDilat k=3, r=4, 16� 16� 128, lrn, LReLU
GatedDeconv k=3, s=2, 32� 32� 64, lrn, LReLU
GatedConv k=3, 32� 32� 64, lrn, LReLU
GatedDeconv k=3, s=2, 64� 64� 32, lrn, LReLU
GatedConv k=3, 64� 64� 32, lrn, LReLU
GatedDeconv k=3, s=2, 128� 128� 4, lrn, LReLU

GatedConv k=5, stride=1, 128� 128� 4, TanH

Fig. 11: Generator architecture designed for mask modi�cation
on the Potsdam dataset [14]

even if the segmentation is altered, modi�ed the car heavily
and it does not look as a natural image. And last, the
modi�cation can lead to a better segmentation. Note that these
failure cases do not happen often. This can be seen with the
following perceptual evaluation that we designed to investigate
if our results can be convincing and adversarial.

Perceptual evaluation.To assess the quality of our gen-
erated patches we conduct a perceptual evaluation where
we compare the ability of the trained classi�er and humans
to classify adversarial samples. The classi�er performance
is evaluated using the test set, for both original and mask
modi�ed images. And as we can see with the �rst line of
Table II, the classi�er looses 28 points of accuracy when it
is evaluated on data from ARGAN. However those results are
only meaningful if those are real natural adversarial example
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RGB IRRG RES RGB IRRG RES

Original

Modi�ed

Differences

Original

Modi�ed

Differences

Fig. 12: Results for patches modi�cation, the �rst line show example where our method worked, the second line show failure
cases

as we de�ned it in the �rst section, meaning that the generated
patches are indeed cars. To this end we conducted a perceptual
evaluation similar to [12], with the assumption that if a human
can detect a car then its segmentation is trivial. This allows
us to have a much simpler task to conduct while having
comparable results. We conducted the perceptual evaluation
by �rst taking randomly 50 images where we had cars and
50 images where there were no cars, and then we applied our
method to the 50 images with cars, letting us with 150 images
in total. We have developed a simple test where 12 images are
presented to humans. Among these images 5 are ground truth
cars, 5 were modi�ed using our method and 2 do not have
cars in them. In this test you must indicate whether you see a
car or not and associate this decision with a con�dence level.
This test was carried out by 74 persons and the results are
gathered in the second and third lines of Table II. Humans
loose 8 points of accuracy, however their con�dence remains
of the same order: Moderately con�dent. When we compare
the results, we see a 36% drop of performance for the classi�er
against 9% for Humans, meaning that our method affected
far more the classi�er than the humans and that our method
produces convincing adversarial examples.

Original image Modi�ed image Image w/o cars
Classi�er accuracy 0.762 0.481 /
Human accuracy 0.918 0.835 0.945
Mean con�dence 2.524 2.240 2.229

TABLE II: Results of perceptual evaluation

D. Car generation

In the last experiment we aim at evaluating ARGAN's
performance when dealing with state-of-the-art predictors. The
purpose is to generate adversarial car examples for a very good
object detection algorithm. Instead of semantic segmentation
where each pixel has a label, the classi�er output is bounding
boxes surrounding an object. In this experiment, we solely
focus on the cars object class object.

Dataset.We use the same Potsdam dataset [14] than in pre-
vious experiment. We transformed the potsdam segmentation
images to different images with bounding boxes around cars.
To train the classi�er we used the same train set as the patch
modi�cation experiment. However to train the GAN, we used
both training and testing sets as done in our �rst experiment,
which allows to increase the number of training data.

Experimentation. The selected detector is a YoloV3 [43]
that we trained on the train set. This classi�er achieves an
overall (Train and Test) accuracy score of 99.5% with an
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INPUTS: 128� 1
Dense 128! 8192, ReLU, reshape 8� 8� 128
GatedConv k=3, s=1, 8� 8� 128, ReLU
GatedDeconv k=3, s=2, 16� 16� 128, ReLU
GatedConv k=3, s=1, 16� 16� 128, ReLU
GatedConv k=3, s=1, 16� 16� 128, ReLU
GatedConv k=3, s=1, 16� 16� 128, ReLU
GatedDeconv k=3, s=2, 32� 32� 64, ReLU
GatedConv k=3, s=1, 32� 32� 64, ReLU
GatedConv k=3, s=1, 32� 32� 64, ReLU
GatedConv k=3, s=1, 32� 32� 64, ReLU
GatedDeconv k=3, s=2, 64� 64� 32, ReLU
GatedConv k=3, s=1, 64� 64� 32, ReLU
GatedConv k=3, s=1, 64� 64� 32, ReLU
GatedConv k=3, s=1, 64� 64� 32, ReLU
GatedDeconv k=3, s=2, 128� 128� 3, ReLU
GatedConv k=5, s=1, 128� 128� 3, ReLU

Fig. 13: Generator used for car generation from the Potsdam
dataset [14]

objectness threshold of 0.75. Our classi�cation task can be
summarized as the detection of a car on images. This task
seems very easy for our classi�er as we do not consider
the Intersection Over Union. The generator architecture we
consider contains three convolutional layers and one dense
layer (details in Figure 13). We set� to 50. We consider two
different methods, we �rst train a WGAN and we evaluate
its ability to generate adversarial data. Then we used the
WGAN generator as initialization for our method ARGAN,
and evaluate the number of generated adversarial data.

Results.State of the art classi�ers have high accuracy and
only a few natural adversarial examples making it hard to
train our methods. Nevertheless, using a pre-trained WGAN
generator as generator for our method leads to a high num-
ber of generated adversarial data with good image quality.
Example of natural adversarial car images can be found in
Figure 14. We see that our generated adversarial images have a
better quality than natural adversarial images from the ground
truth or WGAN generated images. As seen in Table III the
considered WGAN generates only 2.3% adversarial data while
our methods improve its score by more than 5 points (more
than 3 times more examples are adversarial), showing that even
in extreme scenarios, our method is still relevant to generate
adversarial data. Moreover Figure 14 shows that despite having
few good looking natural adversarial examples in the ground
truth, our method manages to generate better looking images
and has a better success rate.

Adv. generation rate std
WGAN 97:4% � 0:94%

Our method 92:2% � 2:5%

TABLE III: Classi�cation accuracy for our pre-trained classi-
�er over generated data from different methods.

adv.GT WGAN ARGAN

Fig. 14: Generated adversarial car images. The �rst column are
natural adversarial examples in our GT, the second column are
adversarial example generated with a classical WGAN, the last
column are adversarial example generated with our method

V. CONCLUSION

This paper tackles the problem of generating natural adver-
sarial images for remote sensing applications. Those images
are natural in the sense that they can be considered as a
realistic variation of the input image, while being at the same
time adversarialwrt. a given black box predictor. We propose
a novel method to generate such examples, by modifying the
WGAN loss function with a re-weighted distribution of the
training data based on a pre-trained classi�er's prediction. We
developed several different weighting strategies to specialize
the generator to generate a speci�cally natural adversarial
data. To the best of our knowledge, it is the �rst time that
a work explores a modi�cation of the data distribution for
adversarial generative modelling purpose. We have applied
our method for several generative modelling tasks such as
adversarial hyperspectral generation, image modi�cations and
adversarial image generations for a state-of-the-art classi�er.
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Future works will consider applying this method to different
modalities such as point cloud or SAR data, to further assess
the applicability of our method in real scenarios.
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