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Recently, the mechanism of Fabry-Perot (F-P) resonance in optics was extended to monochromatic water
waves propagating in a domain with two patches of sinusoidal corrugations on an otherwise flat bottom.
Assuming small-amplitude surface waves, an asymptotic linear analytical solution (ALAS) was derived by L.
A. Couston et al. Phys. Rev. E 92, 043015 (2015). When resonance conditions are met, the ALAS predicts large
amplification of the incident waves in the resonator area between the two patches of corrugations. Based on the
ALAS, the amplitude of these standing waves is expected to increase exponentially with the relative amplitude
of bottom corrugations (δ = d/h, where d is the corrugation amplitude and h the still water depth). In the present
work, we examine the effects associated with the assumptions made in deriving the ALAS regarding the effect of
a finite amplitude of bottom corrugation (i.e., finite value of δ), still in the linear wave framework. F-P resonance
is studied by means of highly accurate numerical simulations, considering either the exact linear water wave
problem (system A) or an approximate problem with a first-order expansion of the bottom boundary condition
(system B). The numerical model is first validated on a Bragg resonance case, through comparisons with the
ALAS, experimental measurements, and existing numerical simulations, showing its ability to represent well
the so-called wave-number downshift of Bragg resonance (i.e., the slight decrease in the incident wave number
where maximum resonance is reached in comparison with the value predicted by the ALAS). We then analyze
how this downshift affects the F-P resonance, especially when the corrugations are of finite amplitude, i.e., δ

varying from 0.05 to 0.4. The wave-number downshift appears to have a strong effect on the F-P resonance for
δ > 0.1: very low wave amplification manifests for the wave number predicted by the ALAS. However, when
the incident wave number is slightly decreased (by an amount increasing with δ) the F-P resonance case can
be recovered, and the maximum amplification values are found to be close to the predictions from the ALAS
(e.g., up to a factor of about 27 for δ = 0.4). The variations of the reflection coefficient and enhancement factor
obtained from systems A and B as a function of the incident wave number are discussed and compared to ALAS
predictions. In particular, it is found that the resonance peak is extremely narrow when δ = 0.2 and 0.4.

DOI: 10.1103/PhysRevE.99.053109

I. INTRODUCTION AND OBJECTIVES

In optics, a Fabry-Perot (F-P) etalon is an interference
device first described by two young French physicists at
the University of Marseille (France) at the end of the 19th
century [1]. Typically it consists of two parallel highly re-
flecting mirrors with a small interval; the incident light waves
passing through will form interference fringes after a series of
reflections. In the past century, the F-P resonance mechanism
has been comprehensively studied and applied to different
fields of physics [2,3].

In analogy to light waves, water waves can constructively
interfere when propagating over a region with a constant water
depth superimposed on two sets of small periodic bottom
corrugations or bars. Recently, Couston et al. [4] studied
water wave F-P resonance within the framework of linear
potential wave theory. Based on the asymptotic linear theory,
they found that significant amplification of incident regular
waves with particular wave numbers can be expected over the
flat-bottom area between two sets of bottom corrugations.

The mechanism behind this resonance is the well-known
Bragg scattering (or resonance), which has been extensively
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studied. By applying linear perturbation method, Davies [5]
and Davies and Heathershaw [6] have shown theoretically
that simple harmonic waves will be scattered due to wave-
bottom interactions when passing through a finite number of
sinusoidal rigid bars on an otherwise flat bottom. Experimen-
tal demonstrations confirming the effects of sandbars [6,7]
were available soon after the theory was introduced. When
the incident wavelength is twice that of the sandbars, Bragg
resonance takes place. However, Davies and Heathershaw’s
regular perturbation method [6] fails when it is close to the
resonance condition (i.e., the reflection coefficient becomes
unbounded for resonance condition for a large number of
bars). By considering two wave components with opposite
propagation directions on the surface and introducing a cut-
off frequency, Mei [8] developed an analytical approximate
theory via multiple-scale perturbation method. This theory
is able to predict the resonance. The leading order of Mei’s
theory agrees reasonably well with Heathershaw’s experi-
ments with the same linearization assumptions adopted by
Davies [7]. Yu and Mei [9] also pointed out the unreliability
for shore protection using Bragg resonance: it may result
in suppression of waves after the sandbars, but amplifica-
tion is also possible when considering reflection from the
shoreline.
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Higher-order Bragg resonance can be defined by the num-
ber of components participating in the interactions. The afore-
mentioned case is denoted class I Bragg resonance, which
is second-order triad interactions (one bottom and two sur-
face waves). In class II Bragg resonance, doubly sinusoidal
corrugations on the bottom and two surface wave compo-
nents interact [10,11]. Note that the F-P resonance, which
includes two corrugation modes on the bottom, involves only
second-order interactions. Such resonances are classified as
I2 Bragg resonance (see [12]). In class III, monochromatic
sinusoidal corrugations and three surface wave components
are included [13]. The aforementioned high-order Bragg
resonances are third-order quartet wave-bottom interactions.
Higher-order nonlinearities of incident waves and bottom
corrugations can be included by keeping more terms in the
perturbation methods [10,14]. However, the increase in accu-
racy comes at the expense of simplicity of formulations.

With a family of special shapes of bottom corrugations,
the constraints on the bottom steepness and/or amplitude
can be released by using Floquet theory for linear wave
motion [15–17]. Recently an experimental demonstration of
this theory was realized [18]. However, in this case the bottom
corrugations are no longer sinusoidal perturbations.

Alternatively, the nonlinearities associated with surface
waves and bottom corrugations were also studied by using
different numerical models solving the water wave problem
to different target orders. For instance, using a boundary
integral equation method, Dalrymple and Kirby [19] placed
the bottom elements directly on the bars, keeping an exact
bottom elevation in a linear wave framework. Kirby [20]
extended the mild-slope equation of Berkhoff to the Bragg
resonance case considering not only the bars on the seabed,
but also the variable mean elevation of the bottom. Porter [21]
extended the equation to the three-dimensional (3D) case. The
high-order spectral (HOS) method developed by Dommer-
muth and Yue [22] was used to study the high-order Bragg
resonance with the fourth-order (for both bottom and free
surface) model [13].

The present work mainly focuses on a better understanding
of the effects associated with the modeling of the bottom
boundary condition on Bragg and F-P resonances within
the linear wave theory framework, by taking advantage of
an accurate and efficient numerical model. The linearized
water wave problem as well as the assumptions associated
with Bragg resonance, the F-P resonance condition, and the
asymptotic linear analytical solution (ALAS) of the problem
are recalled in Sec. II. The numerical model is introduced and
validated against Bragg resonance experiments in Sec. III.
Then the model is applied to study the F-P resonance in
Sec. IV, considering various relative corrugation amplitudes,
with most attention paid to the influence of the bottom bound-
ary condition. The main conclusions and outlook for future
work are summarized in Sec. V.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING

A. Bathymetry for Bragg and Fabry-Perot cases

Considering long-crested plane waves, the problem is
formulated in a two-dimensional (2D) Cartesian coordinate

system (x, z), with the x axis coinciding with the still water
level and the z axis pointing upwards. The elevation of the
impermeable bottom is expressed as

z = −h̃(x) = −h + ζ (x), (1)

where h > 0 is a constant water depth and ζ (x) describes the
elevation of the bottom corrugations. These corrugations are
assumed to have a sinusoidal shape over one zone (Bragg
case) or two distinct zones (Fabry-Perot case) of finite length.
In the latter case, these zones are labeled 1 and 2, respectively,
and we assume that the bars have the same wavelength Lb

(and wave number kb = 2π/Lb) and the same amplitude d .
Each patch is composed of an integer number of bars Nj , thus
covering a distance Lj = NjLb between the abscissa xs

j and
xe

j = xs
j + NjLb. The perturbation of the bottom elevation for

each patch j ( j = 1, 2) thus reads

ζ (x) = d sin
[
kb

(
x − xs

j

) − θ j
]
, x ∈ [

xs
j, xe

j

]
, (2)

where θ j is the phase of the corrugation patch j, chosen here
to be either 0 or π in order to have a continuous bottom
profile. The distance between the two patches, denoted Lr ,
is called the resonator length. Without loss of generality, we
set xs

1 = 0 for the first patch (the second one then starting
at xs

2 = N1Lb + Lr). A representation of the F-P resonator
configuration is shown in Fig. 1.

We consider monochromatic incident waves coming from
x = −∞ with amplitude a and wave number k in the region
of uniform water depth h, associated with a wave period T
and an angular frequency ω = 2π/T . The nondimensional
parameter μ = kh is used as a measure of the relative water
depth (or dispersive effects), and ka measures the steepness
of water waves (or nonlinear effects). The slope of the bottom
corrugations is characterized by kbd , and the nondimensional
corrugation amplitude is defined as δ = d/h.

B. Linear mathematical modeling approaches

1. Exact linear model: System A

The fluid is assumed inviscid and homogeneous with a
constant density. The flow is assumed irrotational, so that
a velocity potential φ can be introduced. The velocity field
is then �u = ∇φ. The surface tension is neglected and the
atmospheric pressure at the free surface is assumed uniform
and constant in time (set here to 0 without loss of generality).

We further assume that surface waves are of small ampli-
tude compared to both the wavelength and the mean water
depth, i.e., ka � 1 and a/h � 1. In this case, the free surface
boundary conditions can be linearized and applied at the
still water level z = 0. The governing equations for φ thus
simplify to

φxx + φzz = 0, −h̃(x) � z � 0, (3a)

−ω2φ + gφz = 0, z = 0, (3b)

−ζxφx + φz = 0, z = −h̃(x), (3c)

where g is the acceleration due to gravity, and subscripts
denote partial derivatives (e.g., φx = ∂φ

∂x ). The free surface
elevation η is obtained via η(x, t ) = −φt (x, z = 0, t )/g. In
this system, no assumption is made regarding the amplitude of
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FIG. 1. Sketch of the problem setup for F-P resonance.

the bars, implying that the bottom boundary condition (BBC),
Eq. (3c), is applicable for arbitrary δ and hereafter referred
to as the exact BBC. System (3) is called “system A” in the
following.

2. Linear model with a small bar amplitude: System B

As marine sandbars are usually of small amplitude with a
stabilized pattern provided the sea state is steady, it is often
reasonable to assume that the nonlinearity of the bars is small,
i.e., δ � 1. With this assumption, the exact BBC, Eq. (3c),
can be approximated, using a truncated Taylor expansion of
the potential around the mean elevation z = −h and omitting
second- and higher-order terms in δ, as

−(ζφx )x + φz = 0, z = −h. (4)

Hereafter, Eq. (4), now applied at the uniform elevation
z = −h, is referred to as the approximate BBC, and the system
composed of Eqs. (3a), (3b), and (4) is called “system B.”
Note that with this approximate system, the Laplace equation,
Eq. (3a), has to be solved over a rectangular domain of
constant height h.

3. Asymptotic linear model: System C

To obtain an analytical solution of system B, Mei [8]
adopted a multiple-scale expansion method and solved the
leading-order problem. By introducing fast variables (x, t )
and slow variables (x′ = εx, t ′ = εt ), assuming that ε is a
small parameter, the multiple-scale expansion of the velocity
potential φ(x, x′, z, t, t ′) reads

φ = εφ(1) + ε2φ(2) + O(ε3), (5)

where the terms at order O(ε3) and higher have been ne-
glected. Assuming that the second-order term φ(2) is small
compared to φ(1), the first-order potential φ(1) can be ex-
pressed over the jth patch as

φ(1) = f (z)[A j (x
′, t ′)e−ikx + B j (x

′, t ′)eikx]eiωt + c.c., (6)

where c.c. denotes the complex conjugate. A j and B j are
the slowly varying complex amplitudes of the incident and
reflected waves over patch j, and

f (z) = − ig

2ω

cosh k(h + z)

cosh kh
(7)

gives the vertical dependence of the potential for the (assumed
uniform) water depth h.

Applying Eqs. (5)–(7) to system B and enforcing the solv-
ability and compatibility conditions (see [12] for details) for
φ(2), the following system is obtained, governing the evolution
of amplitudes A j and B j over patch j (hereafter referred to as
“system C”),

∂A j

∂t ′ + CgB
∂A j

∂x′ = −�ceiθ jB j, (8a)

∂B j

∂t ′ − CgB
∂B j

∂x′ = �ce−iθ jA j, (8b)

where the angular frequency ωB = ω(kB) and the group celer-
ity CgB = Cg(kB) of incident waves at resonant Bragg wave
number kB = kb/2 (with corresponding wavelength LB =
2Lb) are computed from linear wave theory for the water depth
h (note that subscript B is used for the “Bragg resonant” case
as predicted by the ALAS). �c denotes the so-called “cutoff
frequency”

�c = ωB

4

kbd

sinh kbd
. (9)

The wave number k and frequency ω of incident waves are
assumed to vary in the vicinity of the Bragg resonance values,
i.e., k = kB + κ with κ � kB, and ω = ωB + � with � =
κCgB � ωB.

The time variation of complex amplitude can be written
explicitly, e.g., A j (x′, t ′) = Aj (x′)ei�t ′

and ∂A j/∂t ′ = i�A j

for the periodic steady state. Over the flat-bottom sections, the
right-hand sides of Eqs. (8a) and (8b) are 0, which means that
the incident and reflected waves are no longer coupled and
that they propagate at the speed of their own group velocity.

One interesting feature of system C is that it can be solved
analytically: its solution (i.e., the ALAS) is the envelopes of
the amplitudes of incident and reflected waves, as functions
of the slow variable x′. The ALAS provides reasonable results
near the resonance condition when applied to the experiments
by Heathershaw [7] on Bragg resonance.

This ALAS was recently extended to the case of two
patches by Couston et al. [4] to study the F-P resonance.
The main results are the global reflection and transmission
coefficients (for the set of two patches), which are recalled
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below:

RFP
ALAS

∣∣
xs

1
=

√√√√
(
RB

1

)2 + (
RB

2

)2 − 2RB
1 RB

2 cos γ

1 + (
RB

1 RB
2

)2 − 2RB
1 RB

2 cos γ
, (10a)

T FP
ALAS

∣∣
xe

2
=

√√√√
[
1 − (

RB
1

)2][
1 − (

RB
2

)2]
1 + (

RB
1 RB

2

)2 − 2RB
1 RB

2 cos γ
, (10b)

where RB
j = B j (xs

j )/A j (xs
j ) = RB

j exp (iαB
j ) and T B

j =
A j (xe

j )/A j (xs
j ) = T B

j exp (iβB
j ) are the (complex) reflection

and transmission coefficients for a single patch (Bragg)
case, they are functions of �/�c (see [4] for more details),
evaluated at the beginning xs

j and the end xe
j of the jth patch,

respectively, and

γ = π − 2θ1 + 2kLr − αB
1 − αB

2 . (11)

In addition to Bragg resonance condition (i.e., k = kB), the
wave energy will be trapped within the resonator when γ in
Eq. (11) is an integer multiple of 2π , which gives a condition
on the possible values of the resonator length when k = kB:

kbL(m)
r = (2m + 1)π + θ1 + θ2, with m ∈ N. (12)

This is denoted the F-P resonance condition, under which
the standing waves with the highest achievable amplitude are
expected between the two patches. The nondimensional am-
plitude of the standing waves within the resonator is defined
as the enhancement factor EFP in [4]

EFP
ALAS = A1

(
xe

1

) + B1
(
xe

1

)
A1

(
xs

1

) = (
1 + RB

2

)T FP
ALAS

T B
2

. (13)

The aforementioned results indicate that large amplifica-
tion of the incident waves could take place in the resonator
area, with enhancement factors greater than 2 or even larger
depending on the incident wave conditions and bottom char-
acteristics. For instance, in the case simulated in [4], the
following setup is chosen: N1 = 11, N2 = 15, θ1 = θ2 = 0,
kbh = 1.64, kbd = 0.164 (i.e., δ = 0.1), and kbLr = 11π [i.e.,
m = 5 in the F-P resonance condition, Eq. (12)].

Considering each patch individually, with the Bragg con-
dition satisfied, the reflection and transmission coefficients
are RB

1 ≈ 0.597 and T B
1 ≈ 0.803 for the first patch and RB

2 ≈
0.734 and T B

2 ≈ 0.679 for the second patch. Relatively strong
reflection of incident waves is expected, based on the principle
of energy conservation, and waves passing through a single
patch are of smaller amplitude. In the F-P case with precisely
chosen resonator length kbLr = 11π , the overall reflection
and transmission coefficients are RFP

ALAS ≈ 0.245 and T FP
ALAS ≈

0.970. The standing waves in the resonator are amplified by a
factor of EFP

ALAS ≈ 2.476.
In Fig. 2, we show the relationship between EFP

ALAS and
δ (keeping N1 = 11, N2 = 15, θ1 = θ2 = 0, kbh = 1.64, and
kbLr = 11π fixed). It can be observed that within the linear
framework, EFP

ALAS increases exponentially as the amplitude
of bars increases. As δ becomes larger, one can anticipate that
the results from the ALAS will become unrealistic, mainly
for two reasons: on one hand, the standing waves will be of a
high amplitude so that nonlinear effects due to the finite wave

0 0.1 0.2 0.3 0.4 0.5
100

101

102

FIG. 2. Enhancement factor EFP
ALAS as a function of the nondi-

mensional corrugation amplitude δ = d/h. The water depth, setup of
two patches, and length of the resonator are the same as those used
in [4].

amplitude will be significant; on the other hand, these waves
might become too steep to preserve their shape and wave
breaking should occur. Regarding the ALAS, the assumption
on the smallness of the bottom slope is violated, and so is the
assumption of linearity of the water waves over the resonator
area.

III. NUMERICAL MODELING AND VALIDATION IN THE
BRAGG RESONANCE CASE

A. Description of the numerical model

The numerical simulations of systems A and B are per-
formed with a highly accurate code, called WHISPERS-3D. This
code is developed to solve the fully nonlinear potential wave
problem with variable bottom conditions, in the form of two
coupled nonlinear equations, corresponding to the two nonlin-
ear free surface boundary conditions (FSBCs). In dimensional
form for the case of a single horizontal dimension [23], they
are expressed as

ηt = −ηx�̃x + w̃[1 + (ηx )2], (14a)

�̃t = −gη − 1
2 (�̃x )2 + 1

2 w̃2[1 + (ηx )2], (14b)

where �̃(x, t ) ≡ �(x, z = η(x, t ), t ) is the free surface veloc-
ity potential and w̃(x, t ) ≡ �z(x, z = η(x, t ), t ) is the vertical
velocity at the free surface. Note that these equations involve
only free surface variables, though a 2D vertical (x, z) situa-
tion is modeled.

In order to march Eqs. (14) in time, the vertical velocity
w̃(x, t ) has to be determined as a function of [η(x, t ), �̃(x, t )],
corresponding to a so-called Dirichlet-to-Neumann prob-
lem. The modeling approach used is presented in previous
works [24,25] and summarized hereafter. Following Tian and
Sato [26], a spectral approach is used in the vertical to
approximate the velocity potential. Using the set of orthogonal
Chebyshev polynomials of the first kind, denoted Tn(s), n =
0, 1, . . . , NT , with s ∈ [−1, 1], as an expansion basis, the
potential is approximated at any given time t (omitted for
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brevity hereafter) as

�(x, z) = ϕ(x, s) ≈
NT∑

n=0

an(x)Tn(s), (15)

where s(x, z, t ) is the scaled vertical coordinate allowing us
to map the water column z ∈ [−h̃(x), η(x, t )] into the fixed
range s ∈ [−1, 1], and the an coefficients (n = 0, 1, . . . , NT )
depend upon the local abscissa x (and time t).

The main steps involved in solving the Dirichlet-to-
Neumann problem and integrating Eqs. (14) in time are sum-
marized as follows: (i) first, the system of governing equations
composed of the Laplace equation, a Dirichlet FSBC on the
potential, and the BBC is expressed in the (x, s) coordinate
system; (ii) then the approximation given in Eq. (15) is
inserted into these equations; (iii) the so-called Chebyshev-
tau method, a variant of the Galerkin method, is used to
project the Laplace equation onto the Tn polynomials for n =
0, 1, . . . , NT − 2, eliminating the s coordinate and giving a set
of NT − 1 equations on the an coefficients at each location x;
(iv) two additional equations are obtained by considering the
Dirichlet FSBC and the BBC so that a system of NT + 1 linear
equations with NT + 1 unknowns (an, n = 0, . . . , NT ) at each
abscissa is formed; and (v) once this linear system is solved
for the an coefficients, the vertical velocity at the free surface
is obtained as

w̃(x, t ) = 2

h̃(x) + η(x, t )

NT∑
n=1

an(x, t )n2, (16)

allowing Eqs. (14) to be integrated in time.
In WHISPERS-3D, horizontal derivatives are approximated

using fourth-order finite-difference formulas using stencils
of five nodes on a regular grid and an explicit third-order
Runge-Rutta scheme (SSP-RK3) is used for time marching.
The maximum order NT of polynomials in Eq. (15) determines
the accuracy of the model. With this representation of the
potential, the model exhibits a geometric convergence as a
function of NT , so that a high accuracy of the vertical structure
of the flow can be obtained with a limited number of terms,
usually in the range NT ∈ [5, 10]. This property was carefully
verified for a number of cases with regular or irregular waves
over flat or variable bottom conditions [24,25].

The linearized version of the numerical model, solving the
system of Eqs. (3), was extensively studied in [27], for both
flat and variable bottom profiles. The dispersion relation of the
linear model was derived analytically [27],

C2
NT

gh
= 1 + ∑NT −2

p=1 αpμ
2p

1 + ∑NT −1
p=1 βpμ2p

, (17)

where CNT denotes the approximation of the phase celerity of
the waves given by the model at order NT . The computational
method for obtaining the analytical expressions of αp and βp

coefficients can be found in [27].
In order to illustrate the resolving capability of the

model for the water depth conditions considered here (μ =
kh ≈ kBh = 0.82), the evolution of the relative error |CNT −
CAiry|/CAiry on the phase celerity of the linearized version of
the model with respect to the exact Airy phase celerity under
flat-bottom conditions [given by C2

Airy/(gh) = tanh(μ)/μ)] is

3 4 5 6 7 8 9 10 11 12 13
10-20

10-15

10-10

10-5

100

FIG. 3. Relative error on the phase celerity of the linear version
of the numerical model (with respect to the exact Airy celerity) for
the relative water depth μ = 0.82 as a function of the maximum
order of polynomials NT .

plotted as a function of NT in Fig. 3. It is shown that this error
decreases exponentially with increasing NT . For this relative
water depth μ = 0.82, the difference between CNT and CAiry

drops below the machine precision as NT exceeds 12. In the
simulations performed hereafter, a value of NT = 7 will be
systematically used. With this value the relative error on phase
celerity is about 2 × 10−9.

We point out that Liu and Yue [13] simulated Bragg
resonance cases by solving Eqs. (14) with the (nonlinear)
HOS method. In the HOS method [13,22], assuming periodic
boundary conditions in the horizontal direction, the velocity
potential is represented by a large number of free wave
modes whose amplitudes are determined via a pseudospectral
method. The problem is solved by combining a perturbation
expansion method for the potential and Taylor expansions of
the nonlinear FSBCs and the BBC around their mean levels,
giving an approximate solution at a given target order in wave
steepness. The numerical model adopted here does not assume
spatial periodicity of the spatial domain, the BBC is applied
at the exact position of the bottom (in system A), and the
FSBCs are applied at the exact position of the free surface
(in the nonlinear version of the model). The vertical variation
of the potential at each horizontal node is instead represented
by a series of Chebyshev polynomials given by Eq. (15). By
increasing the order NT of this vertical approximation (and
concurrently decreasing the spatial grid size), extremely ac-
curate representations of the potential can be reached over the
fluid domain, for both the linearized and the fully nonlinear
versions of the code.

B. Simulation results of the Bragg resonance case

The experiments conducted by Davies and Heather-
shaw [6] on Bragg resonance have been intensively studied
since their publication, e.g., in [8,13,19,20,28]. We start by
simulating one case of these experiments in order to validate
the linearized version of WHISPERS-3D.

In the experiments in [6], patches with N = 2, 4, and 10
bars were tested. We select the case with the longest patch
(N = 10) because in this case stronger wave-bottom interac-
tion is expected, resulting in significant reflection of incident
waves. Besides, this case clearly showed a wave-number
downshift effect and is thus considered most challenging for
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FIG. 4. The simulation results (system A) of Davies and Heather-
shaw’s experiments [6] with 10 bars are compared with the ex-
perimental measurements. The ALAS prediction based on Mei’s
theory [8] is also given as a reference.

the numerical model. In the experiments, the bottom corru-
gations are fixed at d = 0.05 m and Lb = 1 m. The relative
corrugation amplitude δ = 0.16 is achieved by adjusting the
water depth h. The wavelength of incident waves is deter-
mined from the Bragg resonance condition L = LB. Regarding
the numerical model, sinusoidal waves are generated and
absorbed by using relaxation zones with 4LB in length. Before
and after the patch of corrugations, two zones with constant
water depth h and length 3LB are used. The domain is meshed
with a regular grid defined by �x = LB/64. The time step
is chosen as �t = T/64, giving a Courant-Friedrichs-Lewy
number CFL = 1 (CFL = C�t/�x, with phase velocity C =
L/T ). It should be noted that in the numerical simulations,
instead of using the dispersion relationship of Airy wave
theory, the wave period T is determined by the analytical
dispersion relationship, Eq. (17), of WHISPERS-3D at order NT .

A series of runs is performed by varying the wave num-
ber of incident waves around the value kB corresponding to
expected resonance based on the ALAS. Once a periodic
state is reached over the domain, the reflected and transmitted
waves are separated by Goda and Suzuki’s method [29], and
the corresponding reflection coefficient from the ALAS RB is
evaluated following Eq. (6a) in [4]. The reflection coefficients
are compared in Fig. 4, from which it can be concluded
that the numerical results show good agreement with the
experimental results as well as theoretical predictions for the
primary resonance tongue.

However, it is also clear that the maximum reflection
coefficient is not obtained for the Bragg condition kB = kb/2,
as is predicted by the ALAS, but for a slightly smaller wave
number. This effect corresponds to the so-called wave-number
downshift (or, equivalently, frequency downshift). Liu and
Yue [13] explained this slight detuning by showing that the
spatially averaged local wave number over the patch is always
larger than the incident wave number, while it was considered
uniform over the whole domain during the derivation of the
ALAS. In other words, the “effective” wave number over the
patch (whose mean water depth is h) is greater than the wave
number of a uniform water depth h (this is further discussed in
Sec. IV C below). A slightly smaller incident wave number is
thus required to compensate this increase due to the presence
of bars; then the Bragg condition is met again.

We also note that Liu and Yue [13] obtained results very
similar to those for system A in Fig. 4 using the HOS method
(see Fig. 6 in [13]), although the nonlinearity of water waves
is excluded in the present model. This implies that the wave-
number downshift in this configuration is mainly a BBC
effect, and not a nonlinear effect. Overall, the good agreement
of the present results of system A with the experimental, the
ALAS, and the numerical results of [13] validates the current
numerical model for the Bragg resonance case.

IV. SIMULATION AND ANALYSIS OF FABRY-PEROT
RESONANCE

A. Description of the numerical setup

Now consider the F-P resonance; we aim at investigating
whether large enhancement factors (see Fig. 2) for finite-
amplitude bars can be realized within the exact linear frame-
work (system A). In other words, we focus on the effects
associated with the assumption of smallness of the corrugation
amplitude. To this end, the assumption of small-amplitude
surface waves is preserved, and the height of standing waves
in the resonator should in principle remain small for the linear
approach to apply.

Regarding the numerical setup, we again follow the work
in [4] as introduced in Sec. II except for the amplitude of cor-
rugations. Here, four kinds of tests with different corrugation
amplitudes are studied: δ = 0.05, 0.1, 0.2, and 0.4. Note that,
for this bottom configuration, ALAS predicts EFP

ALAS ≈ 27.579
when δ = 0.4. With such large amplification, even small to
moderate incident waves could lead to very large standing
waves, with possible dramatic effects on the local structures.
For the numerical settings, the generation and absorption
zones are 4LB in length. The domain is uniformly meshed with
�x = LB/128. The time step is chosen as �t = T/256, giving
CFL = 0.5. The duration of the simulations depends on the
corrugation amplitude δ. Indeed, for F-P resonance, runs with
higher bar amplitudes take more time to reach a time-periodic
steady state.

B. Simulations with ALAS-tuned incident waves for small
to moderate corrugation amplitudes

For the considered setup, the free surface motion consists
of left- and right-propagating components with the same
frequency, i.e., reflected and transmitted waves. The reflected
waves are the comprehensive results of all the bars down-
stream at any given x. This suggests that no reflected wave is
expected after the second patch. Standing waves are expected
over the flat-bottom zones before the first patch and within
the resonator. Over the patches, not only the phase of the free
surface envelope but also its amplitude is slowly modulated
because of the change in the total number of downstream
bars. By excluding the fast oscillations, the ALAS describes
the envelope of the free surface elevation and indicates the
slow space modulation of the wave amplitude. Its computation
formula can be found in the Appendix in [4].

In this section, we present results of simulations of sys-
tem A and system B (done with the linearized version of
WHISPERS-3D) using an incident wave number as predicted by
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FIG. 5. Computed envelope of the free surface elevation at the
end of the simulations of systems A and B (t = 100T ) for the case
δ = 0.05 with the wave number k = kB, compared to the envelope
from the ALAS.

the ALAS, namely, k = kB, for different cases with increasing
values of δ.

For the case with small bottom corrugation amplitude δ =
0.05, Fig. 5 shows that the simulated results of systems A
and B are almost superimposed. For this case, the reflec-
tion and enhancement coefficients predicted by the ALAS
are both small, namely, RFP

ALAS ≈ 0.124 and EFP
ALAS ≈ 1.586.

Nice agreement with the ALAS is observed throughout the
computational domain, and the time required to achieve a
quasi–steady state is less than 100 incident wave periods. This
case validates the applicability of the current numerical model
to the F-P resonance case.

The simulation results with the higher corrugation ampli-
tude δ = 0.1 are shown in Fig. 6. The duration of simulation
is now 200T . For this case, the results of systems A and B are
still too close to be distinguished on the global scale, which
means that the assumption on the BBC adopted by Davies [5]
and Mei [8] remains appropriate. However, simulation results
deviate slightly from the ALAS results. The reflection coeffi-
cient from system A, RFP

A ≈ 0.329 (RFP
B ≈ 0.336 from system

B), is larger than the RFP
ALAS ≈ 0.245 from the ALAS, and

the enhancement factor from system A, EFP
A ≈ 2.385 (EFP

B ≈
2.397), is smaller than the expected EFP

ALAS ≈ 2.476 from the
ALAS.
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FIG. 6. Same as Fig. 5, for the case δ = 0.1. The simulation
duration is t = 200T .
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FIG. 7. Same as Fig. 5, for the case δ = 0.2. The simulation
duration is t = 900T .

The corrugation amplitude is then increased to δ = 0.2.
It is clearly shown in Fig. 7 that the results from systems
A and B and from ALAS predictions are different. Before
the first patch, simulations with systems A and B show that
the incident waves are nearly fully reflected with a reflection
coefficient RFP

A ≈ 0.956 for system A, resulting in little energy
being transferred through the second patch of corrugations.
Within the resonator, the enhancement factor does not reach
the predicted value by the ALAS, EFP

ALAS ≈ 5.785: only EFP
A ≈

1.711 is obtained with system A. Clearly, the F-P resonance
does not manifest in this case with either system A or system
B. In addition, it is also noteworthy that the results of systems
A and B are no longer superimposed, implying that the
assumption on the smallness of bottom corrugations is less
acceptable for δ = 0.2 or larger. Finally, we point out that this
case is much more time-consuming compared to the cases
with smaller corrugation amplitudes: no less than 900T is
required to approach the steady state.

C. Simulations with slightly detuned incident waves for a finite
corrugation amplitude

As the linearized version of WHISPERS-3D with the exact
BBC has been proven valid for the Bragg and F-P resonances
(at least for small-amplitude bars), it is interesting to investi-
gate whether large enhancement factors could be achieved in
the case where the bottom corrugations are of finite amplitude
and to analyze why the F-P resonance could not be realized for
δ = 0.2 in the previous subsection. For this purpose, tests with
finite corrugation amplitudes are performed here, namely, δ =
0.2 and then 0.4.

1. Slightly detuned simulations with δ = 0.2

The case δ = 0.2 is repeated here, but now the wave num-
ber of incident waves is detuned by a small value, so that k/kB

varies in the range [0.92, 1.10]. The numerical parameters and
settings for systems A and B remain unchanged. The effect of
detuning the wave number k/kB on the reflection coefficient
RFP is plotted in Fig. 8. The ALAS curve is symmetric with
respect to the resonance condition k/kB = 1, where a mini-
mum value is reached. However, when departing from this
value the reflection coefficient increases very rapidly, meaning
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FIG. 8. Effect of the detuned wave number (normalized by kB)
on the reflection coefficient RFP for systems A and B. The ALAS
prediction based on Eq. (10a) is also superimposed.

that the F-P resonance is sensitive to the wave number (or,
equivalently, the frequency) of incident waves, especially for
finite-amplitude bottom corrugations. Regarding the results
for systems A and B, there are clear shifts of the symmetry
axis from k/kB = 1 toward smaller values. For this value of
δ = 0.2, the difference between the exact BBC (system A)
and the approximate BBC (system B) remains limited.

For the same set of simulations, the enhancement factor in
the resonator is plotted in Fig. 9. Again the detuning effect is
clearly visible, with a downshift of the peak of maximum EFP

A
towards a lower value, namely, k ≈ 0.992 63kB, for system A.

It is verified here that EFP
A is quite low for k = kB, as

shown in Fig. 7. This can be explained by the sensitivity
of the F-P resonance to the incident wave number and by
the wave-number downshift for finite corrugation amplitude.
Following Liu and Yue [13] for Bragg resonance, we can eval-
uate a “mean” wave number k̄ j over patch j by a numerical
averaging method,

k̄ j = 1

xe
j − xs

j

∫ xe
j

xs
j

k j (x)dx, (18)

where k j (x) denotes the local wave number over patch j as
computed from the dispersion relation for the actual water
depth h̃(x) = h − ζ (x). The ratio D j = k̄ j/k(h) is a measure
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6.5

FIG. 9. Effect of the detuned wave number (normalized by kB)
on the enhancement factor EFP for systems A and B. The ALAS
prediction based on Eq. (10a) is also superimposed.
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FIG. 10. Computed envelope of the free surface elevation at the
end of the simulations of systems A and B (t = 900T ) for the case
δ = 0.2 with the wave number slightly smaller (k′ = 0.992 63kB)
than the F-P condition, compared to the ALAS envelope (calculated
for k = kB).

of the effect of the undulated bottom. For the present case
(same corrugation amplitude for the two patches), we obtain
D1 = D2 ≈ 1/0.9933. Based on this result, it is anticipated
that the nondimensional incident wave number should be
k/kB = D−1

1 = 0.9933 to recover F-P resonance, which in-
deed is located very close to the shifted resonance condition
in Figs. 8 and 9. As shown in these figures, it is speculated that
the “real” resonance condition for the incident wave number
in the present case falls between 0.992 63 and 0.993.

In Fig. 10, the simulation results for systems A and B using
the slightly detuned incident wave number k/kB = 0.992 63
are plotted, together with the ALAS envelope curve (for
k = kB). Good agreement is achieved between the simulated
results (in particular, with system A) and the ALAS predic-
tion regarding the maximum wave amplitude over the whole
domain. It should be noted that the differences in the results
for system A vs system B are due to the difference in the
degree of downshift associated with each of the two systems
(clearly shown in the inset in Fig. 9). Thus, the wave-number
downshift is mainly a leading-order phenomenon but is also
influenced by the order of approximation of the BBC.

2. Slightly detuned simulations with δ = 0.4

To demonstrate the significance of the wave-number down-
shift and to show that the F-P resonance can be realized even
for high bottom corrugation amplitudes, an additional test for
δ = 0.4 is performed and analyzed, with system A only. As
shown in Fig. 2, the enhancement factor predicted by the
ALAS for this case should be EFP

ALAS ≈ 27.579, associated
with the reflection coefficient RFP

ALAS ≈ 0.762. The assumption
on the smallness of bottom corrugations is obviously no
longer fulfilled, and it is thus interesting to compare the results
for system A (with the exact BBC) and for the ALAS.

Considering that the “exact” condition for F-P resonance
is unknown, Eq. (18) is used to provide the first guess of
the shifted F-P resonance condition, leading to k = 0.972kB.
Then the proper incident wave number associated with the
largest enhancement factor EFP

A is found by exploring a range
of wave numbers in the vicinity of this value. The result
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FIG. 11. Effect of the detuned wave number (normalized by kB)
on the enhancement factor EFP for system A. The ALAS prediction
based on Eq. (10a) is also superimposed.

regarding the enhancement factor is shown in Fig. 11. The
region where the F-P resonance takes place is extremely sharp
and narrow, meaning that the resonance condition is very
strict. Among the set of discrete values considered in the
simulations, the detuned incident wave number corresponding
to the maximum enhancement factor is k = 0.979 313kB. The
“exact” resonance condition is found to lie between 0.9793kB

and 0.979 317kB. It should be noted that even though the
amplitude of bottom corrugations is high, the prediction of the
value of the maximum EFP by the ALAS is quite reliable: sys-
tem A gives EFP

A ≈ 26.918 at maximum, which is quite close
to EFP

ALAS = 27.579. Such a close match was not guaranteed
a priori, as the wave number corresponding to the maximum
enhancement factor is significantly shifted downwards.

As a confirmation of the realization of F-P resonance, the
envelope of the simulation done with system A using the
incident wave number k = 0.979 313kB, corresponding to the
maximum enhancement factor in Fig. 11, is shown in Fig. 12.
A reasonable agreement is found, confirming the possibility
of reaching large enhancement factors in the resonator within
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FIG. 12. Computed envelope of the free surface elevation at the
end of the simulations with system A (t = 10 000T ) for the case δ =
0.4 with the wave number slightly smaller (k′ = 0.979 313kB) than
the F-P condition, compared to the ALAS envelope (calculated for
k = kB).

the framework of the exact linear wave theory. Note that the
simulation duration to reach a steady state for this value of
δ = 0.4 needs to be significantly increased: 10 000T was used
for this run.

V. CONCLUSIONS

Recently, Couston et al. [4] investigated the applicability
of the F-P resonance mechanism to water waves by using
two patches of corrugations on an otherwise flat bottom. For
small bottom corrugation amplitude and linear waves, they
built an asymptotic linear approximate system and solved it
by adopting the multiple-scale method, obtaining at leading
order an asymptotic linear analytical solution (ALAS). The
ALAS is the envelope of the wave amplitude as a function
of the space coordinate x. The reflection coefficient, trans-
mission coefficient, and enhancement factor are also derived
analytically for the F-P resonance. In the linear framework,
the enhancement factor increases exponentially as the relative
amplitude of the bottom corrugations increases.

The influence of the assumption of small corrugation am-
plitude adopted in the ALAS derivation was studied here by
using an accurate numerical model solving the linear water
wave problem with either the exact BBC (system A) or the
first-order approximate BBC (system B). A detailed study was
performed for the particular case where the ratio of corru-
gation amplitude to water depth δ = d/h varies in the range
[0.05, 0.4], using the same settings as in Ref. [4] for the other
geometrical parameters. When the corrugation amplitude is
small, for example δ = 0.05, predictions from the ALAS
are in good agreement with the numerical simulations. For
larger values, however, we observe that the resonance does not
manifest under the F-P resonance condition. Based on further
analyses of the cases with finite corrugation amplitudes δ =
0.2 and 0.4, the following conclusions can be drawn.

(1) If the finite amplitude of bottom corrugations is taken
into account, F-P resonance does not occur for incident
waves with a wave number equal to the target resonant wave
number kB = kb/2. No matter whether the exact BBC or the
approximate BBC is considered, the simulation results show
that waves are almost fully reflected by the finite-amplitude
bottom corrugations (RFP → 1 before the first patch) and
that standing waves are still formed in the resonator but
the enhancement factors are not comparable to the values
predicted by the ALAS. For example, for the case δ = 0.2, in
the ALAS, the reflection coefficient RFP

ALAS ≈ 0.462 and the
enhancement factor EFP

ALAS ≈ 5.786, however, RFP
A ≈ 0.956

and EFP
A ≈ 1.711 are observed in the simulation with system

A. Clearly, F-P resonance is not realized in the simulations of
system A or system B at the expected wave number kB when
δ > 0.1.

(2) By slightly decreasing the wave number of incident
waves, however, a situation close to the predicted F-P reso-
nance can be reached with systems A and B. Even for the case
with the highest corrugation amplitude studied in the present
work, δ = 0.4, the resonance can be recovered for the incident
wave number k = 0.979 313kB. In this case, the reflection
coefficient and enhancement factor from the numerical sim-
ulation with system A are RFP

A ≈ 0.687 and EFP
A ≈ 26.918,

respectively. As shown in Fig. 12, the agreement between the
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ALAS prediction and the simulation result is good, with a
relative error of enhancement factor of only 2% compared to
the ALAS value, EFP

ALAS ≈ 27.579. This demonstrates that F-P
resonance can be effectively realized for a finite corrugation
amplitude within the linear wave theory, but only for specifi-
cally detuned incident wave numbers.

(3) In line with the previous conclusion, it appears that
the range of incident wave numbers prone to F-P resonance
is extremely narrow for high corrugation amplitudes. As
illustrated in Fig. 9 for δ = 0.2 and Fig. 11 for δ = 0.4, as
soon as the incident wave number departs from the optimal
value, even slightly, the resonance can no longer develop. The
incident waves are then strongly reflected by the two-patch
system. The deviation of the optimal wave number from the
F-P resonance condition k = kB increases with the amplitude
of bottom corrugations. This extreme narrowness of the reso-
nance range makes the possibility of realizing such resonance
for practical coastal applications questionable, or, at least,
attainable for only very particular incident wave conditions,
all the more so as the required duration to reach maximum
amplification of waves in the resonator area was observed to
increase roughly exponentially as a function of δ.

(4) The fact that the resonant wave number cannot be
accurately predicted by the ALAS for finite-amplitude bottom
corrugations is mainly related to the implied assumption
of the ALAS that the wave number maintains a constant
value over the patch of corrugations. In fact, when waves
propagate over a patch of corrugations, the effective wave
number is slightly higher over this area, as highlighted by
the analysis in [13] based on a third-order expansion of the
linear dispersion relation. In the numerical model used here,
which can cope with arbitrary bottom shapes, the variations

of local wave properties due to a variable bottom are fully
accounted for, even in the linear framework. This explains the
difference between the numerical model results and the ALAS
for prediction of the wave-number downshift. Equation (18)
can be used to provide a primary estimate of the wave-number
downshift.

(5) On the other hand, the approximation related to the
first-order expansion of the BBC (i.e., considering system B
instead of system A) appears to have less influence. At least
for the range of bottom corrugation amplitudes δ ∈ [0.05, 0.2]
considered in the present study, the differences in the results
for system A vs system B are quite limited.

In the near-future, the effects associated with the assump-
tion of small-amplitude surface waves will be studied by using
the fully nonlinear wave model, (14), and applying the fully
nonlinear version of WHISPERS-3D. Finite-amplitude incident
waves will introduce higher-order modes due to wave-bottom
interactions. Furthermore, the dispersion relation will be af-
fected by the finite amplitude of waves, which will certainly
influence the occurrence of F-P resonance, as we have shown
in this work that the F-P condition is very sensitive to the
effective wave number over the patches of corrugations.
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