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ABSTRACT

We use the ATLAS3Dsample to perform a study of the intrinsic shapes of early-type
galaxies, taking advantage of the available combined photometric and kinematic data.
Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Re-
lease 7, and additional imaging from the Isaac Newton Telescope, we first invert the
shape distribution of fast and slow rotators under the assumption of axisymmetry. The
so-obtained intrinsic shape distribution for the fast rotators can be described with a
Gaussian with a mean flattening of q = 0.25 and standard deviation σq = 0.14, and an
additional tail towards rounder shapes. The slow rotators are much rounder, and are
well described with a Gaussian with mean q = 0.63 and σq = 0.09. We then checked
that our results were consistent when applying a different and independent method to
obtain intrinsic shape distributions, by fitting the observed ellipticity distributions di-
rectly using Gaussian parametrisations for the intrinsic axis ratios. Although both fast
and slow rotators are identified as early-type galaxies in morphological studies, and in
many previous shape studies are therefore grouped together, their shape distributions
are significantly different, hinting at different formation scenarios. The intrinsic shape
distribution of the fast rotators shows similarities with the spiral galaxy population.
Including the observed kinematic misalignment in our intrinsic shape study shows
that the fast rotators are predominantly axisymmetric, with only very little room for
triaxiality. For the slow rotators though there are very strong indications that they
are (mildly) triaxial.

Key words: galaxies: elliptical and lenticular, cD — galaxies: structure
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1 INTRODUCTION

Shape is a very basic property of a galaxy, yet it contains
strong constraints for its formation history, with different
merger, accretion and assembly scenarios resulting in differ-
ent shapes. Still, intrinsic shapes of individual galaxies are
not readily obtained: detailed photometry and kinematical
information is needed to construct a dynamical model of a
galaxy, and constrain its shape (e.g. Statler 1994; Statler,
Lambright & Bak 2001; van den Bosch & van de Ven 2009).
Therefore, many studies to obtain intrinsic shapes of galax-
ies have focused on large samples, using statistical methods
to obtain the underlying intrinsic shape distribution of a
particular galaxy population (e.g., Hubble 1926; Sandage,
Freeman & Stokes 1970; Lambas, Maddox & Loveday 1992;
Tremblay & Merrit 1996; Ryden 2004; Vincent & Ryden
2005; Ryden 2006; Kimm & Yi 2007; Padilla & Strauss
2008; Méndez-Abreu et al. 2010; Yuma, Ohta & Yabe 2012).
These studies rely on measurements of the observed elliptic-
ities ǫ = 1 − b/a, with b/a the observed axis ratio of the
galaxy image, and, in principle, do not require kinematic
information (although as we mention later inclusion of kine-
matic misalignment provides additional constraints on the
shape distribution, e.g. Binney 1985; Franx, Illingworth &
de Zeeuw 1991). Especially the Sloan Digital Sky Survey
(SDSS) has been a major provider for imaging used in shape
studies: recent results based on this survey include the non-
circularity of discs in spiral galaxies (Ryden 2004; Padilla &
Strauss 2008) and the presence of triaxial and prolate galax-
ies in the early-type galaxy population (Vincent & Ryden
2005; Kimm & Yi 2007).

The selection of the galaxy populations in these pre-
vious studies has been predominantly based on morphol-
ogy, colour and structural parameters such as Sérsic index
(Sérsic 1968). With the advent of integral-field spectroscopic
studies we have an additional parameter to base our sample
selection on: kinematic structure. In this paper we exploit
this opportunity to make a stricter selection by using the
ATLAS3D sample: a volume-limited survey of 260 nearby
early-type galaxies (Cappellari et al. 2011a, hereafter Pa-
per I), that includes integral-field spectroscopy obtained by
the SAURON spectrograph (Bacon et al. 2001). We are now
able to make a distinction between two classes of early-type
galaxies, fast and slow rotators, based on their extended
kinematic properties, and as such obtain a cleaner galaxy
population sample.

In Section 2 we describe the properties of the ATLAS3D

sample and the dataset that we use for the shape inversion
in this paper, while in Section 3 we explain our methods and
show our results for an axisymmetric shape inversion. Sec-
tion 4 contains a discussion and interpretation of our results,
and we further investigate the assumption of axisymmetry,
by including kinematic misalignment angles in our shape
analysis. We summarize our work in Section 5, and provide
additional formularium for our shape distributions in the
appendices.

c© 2014 RAS, MNRAS 000, 1–18



Intrinsic shapes of early-type galaxies 3

Figure 1. Ratio between mid-infrared and optical flux (expressed
as a difference in magnitudes) as a function of ellipticity for 231
galaxies in our sample. There is no correlation between these two
quantities, indicating that our sample is not contaminated with
late-type galaxies of preferred orientations, see text for details.
The linear Pearson correlation coefficient R is printed in the top
right corner.

2 OBSERVATIONS

2.1 Sample

The ATLAS3D sample was selected from a volume-limited
parent sample of 871 galaxies in the nearby Universe. This
parent sample consists of all galaxies within a distance of
42 Mpc, down to a total luminosity of -21.5 MK , based on
the 2MASS extended source catalog (Jarrett et al. 2000).
The sample had to be observable with the William Her-
schel Telescope (WHT) from La Palma, Spain, so that only
galaxies with sky declination |δ − 29◦| < 35◦ were included.
Finally, the dusty region near the Galaxy equatorial plane
|b| < 15◦was excluded, with b the galactic latitude. From
this parent sample, early-type galaxies were morphologically
selected based on visual inspection of multi-colour images
from SDSS DR7 (Abazajian et al. 2009) or B-band DSS2-
blue images1, resulting in a sample of 260 galaxies. The main
selection criteria here were the apparent lack of spiral arms
in face-on, and dust lanes in edge-on systems, indicating
that our selected galaxies are indeed early-types. For more
details on the selection and properties of the ATLAS3D sam-
ple, we refer the reader to Paper I. Important for our work
here is to keep in mind that our sample is complete and has
integral-field kinematics available for all galaxies (Paper I;
Krajnović et al. 2011, hereafter paper II; Emsellem et al.
2011, hereafter Paper III), allowing us to perform a shape
inversion on fast and slow rotators separately.

2.2 Investigation of selection bias

For a statistical shape analysis as described in this paper
to work, we must have a galaxy sample that is randomly
oriented on the sky, such that our assumption of random

1 available on-line at http://archive.eso.org/dss

viewing angles is a valid one. Our selection criteria for re-
moving late-type galaxies from our sample (i.e., presence of
spiral arms and/or dust lanes) may however differ in reli-
ability for different viewing angles and could in principle
introduce a bias in our sample. For instance, if our method
of detecting dust lanes in edge-on galaxies is not effective
enough to identify all edge-on late-type galaxies present,
then our sample would be contaminated with an extra pop-
ulation of flat spirals. We also note that although edge-on
galaxies with large scale dust lanes were excluded from the
ATLAS3Dsample, galaxies with small, central dust features
were not, as these are not related to galaxy-wide spiral arms.
To investigate whether a bias is present, we extract band
W4 22µm from the archive of the Wide-field Infrared Sur-
vey Explorer (WISE; Wright et al. 2010) for 231 galaxies in
our sample. These fluxes are presented in Davis et al. (2014)
and are measured within elliptical apertures, see the on-line2

WISE documentation for more details. If indeed our sample
suffers from harbouring edge-on spiral galaxies, which are
dustier than early-type galaxies, then we expect the ratio
between the dust-tracing mid-infrared and the star-tracing
optical fluxes to change as a function of ellipticity. Figure 1
shows that this is not the case: there is no correlation be-
tween mid-infrared to optical flux ratio and ellipticity for
the galaxies in our sample. This is confirmed by the linear
Pearson correlation coefficient R, which is small (-0.062).
The mid-infrared fluxes correlate with the optical fluxes as
expected (Temi et al. 2009, Davis et al. 2014), which is a nec-
essary condition for our test to work. We therefore conclude
that the ATLAS3Dsample of early-type galaxies is indeed
randomly distributed on the sphere of viewing angles.

2.3 Observed shape and misalignment

distribution

The ellipticities of the galaxies in our sample were measured
and presented in Paper II, and we refer the reader there for
details. Briefly, for 212 galaxies in our sample SDSS DR7 r-
band imaging is available (Abazajian et al. 2009) and for 46
galaxies not covered by this survey we obtained comparable
r-band imaging with the Wide Field Camera on the Isaac
Newton Telescope (INT) on La Palma. These observations
and their data reduction are presented in Scott et al. (2013,
Paper XXI). For the two remaining galaxies we used 2MASS
K-band observations instead.

Since we are interested in the global shapes of the galax-
ies, and to avoid our analysis being dominated by e.g. cen-
tral bars, we measured the ellipticities using the moment of
inertia of the surface brightness distribution on the sky sub-
tracted images, with bright stars and neighbouring galax-
ies masked (see Paper II for a detailed description of this
method). This way, all components in the galaxy contribute
to a global ellipticity measurement, which would not be the
case if we measured ellipticity only at a fixed radius. How-
ever, this method of measuring ellipticity does introduce a
bias towards the shapes at larger radius. Only pixels above a
certain threshold, 3 times the rms of the sky, were included
in the measurements. For galaxies that were dominated by
bars, we lowered the threshold to 0.5 or 1 times the sky rms,

2 http://wise2.ipac.caltech.edu/docs/release/allsky/
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4 A. Weijmans et al.

Figure 2. Top: histogram of observed ellipticities. The distribu-
tion of fast rotators is presented in blue (open histogram), while
the slow rotators are denoted by the red, dashed histogram. The
1-σ errorbars are based on Monte Carlo simulations, taking the
individual measurement errors for each galaxy into account. Bot-
tom: same as top panel, but now for observed kinematic misalign-
ments. The y-axis is now given in log-scale.

to better probe the underlying stellar disc. This resulted in
ellipticity measurements representative of the galaxy out to
typically 2.5 to 3 effective radii. We compared these global
ellipticity values to radial profiles, determined by fitting el-
lipses along isophotes with kinemetry (Krajnović et al.
2006), and found that these values agree well: the standard
deviation of the differences between the two measurements
was 0.03, see Paper II.

Uncertainties were determined by repeating the ellip-
ticity measurements for each galaxy at different thresholds
(0.5, 1, 3 and 6 times the sky rms) and the standard de-
viations of these measurements were adopted as errors. We
show the resulting observed ellipticity distribution for our
sample in Figure 2, both for the fast and slow rotators. The
1-σ errors in the histograms have been determined using
Monte Carlo simulations, based on the errors in ellipticity
of the individual galaxies. These individual values can be
found in Table 1 of Paper II.

Paper II also provides values for the photometric and
kinematic position angles, used to measure the kinematic
misalignment Ψ between the projected rotation axis and
the minor axis of a galaxy. The photometric position angle
was measured on the SDSS, INT or 2MASS imaging, using

the same method as described above for the ellipticity. The
kinematic position angle was measured on the SAURON ve-
locity maps using the method outlined in Appendix C of
Krajnović et al. (2006). Both these position angles, as well
as the kinematic misalignment are tabulated in Table 1 of
Paper II, and we show the histogram of observed kinematic
misalignments for fast and slow rotators in Figure 2. The
majority of the fast rotators have small kinematic misalign-
ments, with 76 per cent having misalignments smaller than
5◦. The slow rotators on the other hand show more kine-
matic misalignment, with less than half of them (44 per
cent) having Ψ < 5◦.

3 INTRINSIC SHAPE DISTRIBUTIONS FOR

FAST AND SLOW ROTATORS

Fast and slow rotators are two distinct classes of early-type
galaxies, as was shown by Emsellem et al. (2007) and Cap-
pellari et al. (2007). They defined slow rotators to have a
specific angular momentum λR < 0.1, while fast rotators
in their classification have λR > 0.1. Later, this classifica-
tion was refined in Paper III, considering the regularity of
the velocity maps (Paper II). In the resulting classification,
the separation between slow and fast rotators takes the pro-
jected ellipticity of the systems into account, with slow ro-
tators having λR < 0.31

√
ǫ, and fast rotators λR > 0.31

√
ǫ.

Figure 6 in Paper III illustrates that this new division of
the early-type galaxy population into fast and slow rota-
tors nicely follows the kinematic classification based on the
velocity maps. This figure also shows that λR is a more reli-
able separator between fast and slow rotators than the V/σe

quantity, with V the velocity amplitude, and σe the velocity
dispersion measured within one Re. We refer to paper III
for more details on this classification scheme. Important for
our analysis is that the separation of our sample in slow and
fast rotators does not introduce any biases in viewing direc-
tions: this is discussed in Paper III (see their sections 5.1
and 5.2), but also shown in simulations performed indepen-
dently by Jesseit et al. (2009) and Bois et al. (2011, Paper
VI). In particular, Jesseit et al. (2009) perform an extensive
study of variations in λR with inclination, and find that λR

does not deviate significantly from its maximum value for
a large range of viewing angles. This makes λR a reliable
and robust estimator of the intrinsic angular momentum.
Jesseit et al. (2009) quote a confusion probabiliy of 4.6 per
cent of mistakingly classifying a fast rotating galaxy as a
slow rotator. They add that this probability will be even
lower in practise, as their simulated merger sample has a
significantly larger number of prolate shaped galaxies than
observed in galaxy surveys, and most of the wrongly clas-
sified galaxies in their sample fall into this category. In our
ATLAS3Dsample we only have two clear examples of pro-
late galaxies: one of them is classified as a fast rotator, but
both have non-regular rotation (Paper II). We therefore are
confident that any contaminations in our sample due to mis-
classification of fast and slow rotators is negligible for our
intended purposes.

Based on papers II and III fast rotators are galaxies with
regular, aligned velocity fields that often possess discs and
bars, while slow rotators are often kinematically misaligned,
have kinematically distinct cores (KDCs) and are located on

c© 2014 RAS, MNRAS 000, 1–18



Intrinsic shapes of early-type galaxies 5

Figure 3. Contours of constant ellipticity on the sphere of view-
ing angles, for an oblate galaxy (p = 1 and q = 0.5, left) and a
triaxial galaxy (p = 0.9 and q = 0.5, right). The ellipticity varies
between 0 and 1− q.

the more massive end of the luminosity function. In addition,
Cappellari et al. (2011b, hereafter Paper VII) show that
slow rotators are predominantly found in the high-density
environment, which for our sample is the core of the Virgo
cluster, and are almost non-existent in the field.

These all are hints that fast and slow rotators have dif-
ferent formation scenarios (see also Paper VI). It is therefore
unlikely that these two classes of objects have a similar shape
distribution, and indeed a simple Kolmogorov-Smirnov test
confirms at the 5 per cent significance level that the ellip-
ticity distributions of the fast and slow rotators in our sam-
ple are not drawn from the same underlying distribution
(pKS = 3×10−5, see also Figure 2). A Mann-Whitney U-test
also rejects the notion that the two ellipticity distributions
have the same mean (pMW = 1.7× 10−4). We therefore con-
sider the fast and slow rotators separately, when inverting
their shape distributions. As explained below, we assume
an axisymmetric underlying shape distribution in this sec-
tion, and we will explore deviations from this axisymmetric
assumption later on in this paper in § 4.4.

3.1 Intrinsic and observed shape distributions

The intrinsic shape of a galaxy can be modeled as an ellip-
soid, with intrinsic axis ratios p and q, such that 1 > p > q >

0. The observed shape or ellipticity ǫ of a galaxy then de-
pends on its intrinsic shape and on the viewing angles (incli-
nation ϑ and azimuthal angle ϕ), such that ǫ = ǫ(p, q, ϑ, ϕ),
see Figure 3 for an example of ellipticity plotted on the
sphere of viewing angles. It is therefore impossible to deduce
the intrinsic shape (p, q) for an individual galaxy, based on
its observed ellipticity only. Early work (e.g. Hubble 1926;
Sandage et al. 1970) therefore used the observed distribu-
tion F (ǫ) for a sample of galaxies, assuming that the galaxies
were axisymmetric (p = 1 for oblate galaxies, p = q for pro-
late galaxies) to determine the intrinsic shape distribution
f(q). This distribution is then uniquely determined, assum-
ing that the galaxies are oriented randomly in space (random
viewing angles).

For triaxial galaxies (p 6= 1) this is no longer the case, as
F (ǫ) cannot uniquely determine f(p, q) (e.g. Binggeli 1980;
Binney & de Vaucouleurs 1981). Binney (1985) and subse-
quently Franx et al. (1991) showed that progress could be
made by use of the kinematic information of the galaxies,

namely by incorporating the kinematics misalignment angle
(Ψ) between the observed minor axis and the projected rota-
tion axis in the probability distribution3. F (Ψ, ǫ) is however
also not able to uniquely define f(p, q), as Ψ also depends on
the intrinsic rotation axis, which for a triaxial galaxy can lie
anywhere in the plane containing the short and long axis of
the galaxy (see for example Franx et al. 1991). In an oblate
galaxy, however, the rotation axis coincides with the short
axis of the system, and no kinematic misalignment will be
observed.

Our integral-field observations show that the fast ro-
tators in our sample have zero or at most very small mis-
alignments, and for this reason we first assume that the fast
rotators are exactly oblate. This assumption allows us to
invert the observed ellipticity distribution F (ǫ) to obtain
the distribution of intrinsic flattening f(q) of the fast rota-
tors. For this inversion we use Lucy’s method (1974), which
is an iterative technique to solve for the underlying distri-
bution function. We relax this assumption of oblateness in
§ 4.4, where we put an upper limit on the deviations from
perfectly oblate shapes, using the observed kinematic mis-
alignments as an extra constraint. Note that in the studies
mentioned above, and in the analysis we present in this pa-
per, galaxies are approximated by triaxial spheroids, while
in reality many of them consist of separate bulge and disc
components. By measuring our ellipticities at large radius,
we assume that for disc-dominated galaxies we can ignore
any bulge (and bar) contributions, and that we are mostly
probing the outer disc, while for bulge-dominated galaxies
we will be mostly sensitive to the shape of the spheroid.

3.2 The intrinsic shapes of fast rotators

We first consider our fast rotators to be oblate systems, as
validated by their small kinematic misalignment. For oblate
galaxies, observed ellipticity is a function of intrinsic flat-
tening q and inclination ϑ only:

e = (1− ǫ)2 = cos2 ϑ+ q2 sin2 ϑ, (1)

with e the eccentricity, introduced here to simplify some of
our notations. Assuming random orientations, integrating ϑ
over the sphere of viewing angles then yields a probability
function P (ǫ|q) such that:

P (ǫ|q) =
√
e

√

1− q2
√

e− q2
. (2)

With Lucy’s method (1974) we solve for the intrinsic shape
distribution f(q):

F (ǫ) =

∫

f(q)P (ǫ|q)dq. (3)

For the observed distribution F (ǫ) we approximate each fast
rotator galaxy with a Gaussian distribution function, cen-
tred at its measured ellipticity, with a standard deviation
given by its measurement error. F (ǫ) is then the superpo-
sition of these 224 Gaussian functions (one for each fast
rotator), see top panel of Figure 4. We applied some mild
smoothing with a boxcar before inverting this curve. We

3 We present a shape analysis based on kinematic misalignment
in Appendix B.

c© 2014 RAS, MNRAS 000, 1–18
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Figure 4. Top panel: observed distribution F (ǫ) for the 224 fast
rotators in the ATLAS3Dsample, obtained by approximating each
galaxy as a Gaussian function with mean given by its measured el-
lipticity, and width (standard-deviation) by its 1-σ measurement
error. Some mild smoothing is applied. Lower panel: the inverted
intrinsic shape distribution f(q) for the fast rotators, shown by
the black solid line. We plot 1 − q on the horizontal axis such
that round objects are on the left and flattened ones on the right,
to be consistent with our observed ellipticity plots. The red solid
line shows a Gaussian fit to the intrinsic shape distribution. The
intrinsic shape distribution peaks around q = 0.25, but has an
extended tail towards rounder shapes. The grey area shows the
area enclosing 95 per cent of inversions for our Monte Carlo sim-
ulations (see text for details).

checked that Lucy’s method converges within 25 iterations,
and the resulting inverted distribution f(q) is shown in the
lower panel of Figure 4, as the black solid line. The intrin-
sic flattening distribution f(q) can be approximated by a
Gaussian function (red solid line), with mean µq = 0.26 and
standard-deviation σq = 0.13. Interestingly, this mean value
is very similar to the intrinsic flattenings found in similar
studies for spiral galaxies (e.g. Lambas et al. 1992; Ryden
2006; Padilla & Strauss 2008), and we will discuss this in
more detail in § 4.1.

Although our inversion does technically take the mea-
surement errors of our observed ellipticities into account by
approximating each measurement as a Gaussian, we should
ask ourselves how sensitive our inversion is to small devi-
ations in the so obtained observed distribution F (q). We
therefore repeated our inversion another 100 times with a
Monte Carlo simulation: we again approximated our ob-

Figure 5. Top panel: observed ellipticity distribution of the fast
rotators in the ATLAS3Dsample (blue dashed histogram), com-
pared to a mock ellipticity distribution of 106 galaxies (black open

histogram), drawn from the intrinsic shape distribution f(q) with
random viewing angles. Bottom panel: same as above, but now
for the slow rotators (red dashed histogram).

served ellipticities with a Gaussian function and applied
some mild smoothing, but for its mean we drew from a
Gaussian distribution, centred on the observed ellipticity
and with a standard deviation given by the measurement
error. We show the central 95 per cent of the resulting in-
version curves f(q) in Figure 4 with the grey shaded area.
This figure shows that our inversion is fairly robust: we fit-
ted Gaussians to all of f(q) resulting from this Monte Carlo
exercise, and found that the best fitting Gaussian of the
overall intrinsic shape distribution parametrized with mean
µq = 0.25± 0.01 and σq = 0.14 ± 0.02.

In the top panel of Figure 5 we compare the predicted el-
lipticity distribution from our model with our observations,
by generating a mock sample of 106 galaxies, drawn from
the intrinsic shape distribution f(q). The predicted elliptic-
ity distribution does deviate somewhat from our observed
distribution, but a one-sided KS-test shows that these devi-
ations are not significant (pKS = 0.19) given the relatively
small sample size of our observed sample.

We also investigated whether we could find differences
in intrinsic shape distributions based on environment. Since
different formation processes are at play in clusters than in
the field (see e.g. Blanton & Moustakas 2009 for a review),
we could expect that therefore the intrinsic shape distribu-
tion of fast rotators in the Virgo cluster would be different

c© 2014 RAS, MNRAS 000, 1–18



Intrinsic shapes of early-type galaxies 7

from that for fast rotators in less dense environments. We
did however not detect any significant deviations in shape
distribution between these two sets of galaxies, as could in-
deed already have been inferred from a Kolmogorov-Smirnov
test on the observed ellipticity distributions. The hypothe-
sis that the ellipticity distributions of both field and Virgo
fast rotators are drawn from different underlying distribu-
tions is rejected at the 5 per cent significance level with
pKS = 0.96, while also the Mann-Whitney U-test rejects
the hypothesis of different means for the distributions with
pMW = 0.46, at the same significance level (see left panel
of Figure 6). Similarly, we also did not find any differences
in shape distributions and means of distributions if we di-
vide our sample based on mass4 (MJAM < 1011M⊙ versus
MJAM > 1011M⊙), with pKS = 0.79 and pMW = 0.29 (right
panel Figure 6). These masses were determined based on
dynamical modeling, and the values for individual galaxies
are listed in Cappellari et al. (2013a, paper XV).

3.3 The intrinsic shapes of slow rotators

The slow rotators in our sample show clear signs of triaxial-
ity, such as kinematic misalignment. For the moment how-
ever we approximate these systems as oblate, so that we
can invert their observed ellipticity distribution to obtain
an estimate of their intrinsic flattening.

Following the same technique as described for the fast
rotators, we then arrive at the intrinsic shape distribution
shown in the bottom-left panel of Figure 7. The distribu-
tion is clearly double peaked, with the larger peak being
well approximated with a Gaussian centred at µq = 0.61
with σq = 0.09. The smaller peak around q = 0.3 coincides
with the shape distribution of the fast rotators. It there-
fore looks like our sample of slow rotators consists of two
populations, with the majority being roundish objects, sup-
plemented with a second smaller population of more flat-
tened galaxies. Indeed, 4 of our 36 slow rotators are flat-
tened, counter-rotating disk galaxies (so-called 2σ-galaxies
exhibiting a double peaked profile in velocity dispersion,
see Paper II for details). These are NGC3796, NGC4191,
NGC4528 and NGC4550 with the latter the most extreme
case with ǫ = 0.68. Removing these galaxies from our slow
rotator sample did not change the larger peak significantly
(the best-fit Gaussian remained the same), but did remove
the secondary peak. In fact, removing just NGC4550 from
the slow rotator sample resulted in the disappearance of
the secondary peak altogether, showing the sensitivity of
our inversion method. Though the parameters of the best-fit
Gaussian remain the same when removing the 2σ-galaxies,
most of the inverted distributions f(q) from the Monte Carlo
simulations that define the grey 95 per cent area in the
lower right panel of Figure 7 are shifted towards rounder

4 Mass was taken from Paper XV as MJAM = L× (M/L)e ≈ 2×
M1/2, with (M/L)e the total mass-to-light ratio measured within
one half-light radius Re, with self-consistent Jeans Anisotropic
modelling, and M1/2 the total mass within a sphere of radius Re,
enclosing half of the galaxy light. The contribution of dark matter
to (M/L)e within one Re is small (see Paper XV for details), so
MJAM can be interpretated as a dynamical estimate of stellar
mass. Throughout this paper, we will therefore refer to MJAM as
a stellar mass estimate.

shapes: the Gaussians fit to these Monte-Carlo inversions
are µq = 0.63 ± 0.01 and σq = 0.09 ± 0.01.

As for the fast rotators, we compare the ellipticity dis-
tribution of a mock galaxy sample drawn from the intrinsic
distribution f(q) derived above, to the observed ellipticities
in the ATLAS3Dsample. The results are shown in the bot-
tom panel of Figure 5. A one-sided KS-test indicates that we
can indeed accept the hypothesis that the observed distri-
bution (pKS = 0.29) was drawn from the proposed intrinsic
distribution.

In Figure 8 we contrast the intrinsic flattening of fast
rotators and slow rotators in our ATLAS3D sample. It is
obvious that on average the fast rotators are much more
flattened than the slow rotators, as already emphasized in
our morphological classification ’comb’ diagram in Figure 2
of Paper VII, though it is interesting to see that there is
also a large overlap between the two distributions, with the
tail towards rounder shapes of the fast rotator distribution
overlapping with the one of the slow rotators.

4 DISCUSSION

4.1 Fast rotators and spirals

Our fast rotators are significantly flatter than the slow rota-
tors in our sample, and are in fact close to the intrinsic flat-
ness observed in spiral galaxy populations, although we do
observe a tail towards rounder shapes. Lambas et al. (1992)
for instance find µq = 0.25 for their sample of 13,482 spiral
galaxies, based on imaging of the APM Bright Galaxy Sur-
vey, which is consistent with the intrinsic flattening that we
found in § 3.2 for the fast rotators. In contrast, the 2135 ellip-
tical and 4782 lenticular galaxies in their sample are best de-
scribed with intrinsic flattening µq = 0.55 and µq = 0.59, re-
spectively. They note that all three galaxy populations need
to be slightly triaxial, which is something we will explore
in § 4.4. More recently, Padilla & Strauss (2008) reported
similar results based on SDSS Data Release 6 imaging, with
their 282,203 spirals having µq = 0.21±0.02, although their
303,390 ellipticals are flatter than the Lambas et al. result,
with µq = 0.43±0.06. We note that the slow rotators in our
sample with µq = 0.63 are slightly rounder than the ellipti-
cal samples in both these previous studies. These deviations
could be caused by our smaller sample sizes, but could also
be indicative of the fact that we classified our early-type
galaxies kinematically, while the early-type galaxies sam-
ples based on imaging only contain a mixture of fast and
slow rotators. Indeed, in Paper III we show that 66 per cent
of the galaxies in the ATLAS3D sample classified as ellip-
tical (E) are in fact fast rotators. Another recent study of
axis ratio measurements at both local and higher redshift
(1 < z < 2.5) finds that the total population of early-type
galaxies in both samples is well-described with an intrinsic
shape distribution consisting of a triaxial, round component,
and an oblate, flattened (q ∼ 0.3) component, with the frac-
tions of these two populations varying as a function of stellar
mass and redshift (Chang et al. 2013). These results would
agree with our observations of the different shape distribu-
tions for our slow and fast rotator sample.

That the fast rotators have a similar shape distribution
to spiral galaxies is in line with previous studies that have
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Figure 6. Histogram of observed ellipticities for fast rotators, divided based on environment (left) and mass MJAM (right). The left
plot shows the 49 fast rotators in Virgo (dashed histogram) versus the 175 field fast rotators (open histogram) for our sample. The
right plot shows the fast rotators with MJAM > 1011M⊙ (34 galaxies, dashed histogram) versus the lower mass fast rotators with
MJAM < 1011M⊙ (190 galaxies, open histogram). The 1-σ errorbars are based on Monte Carlo simulations, taking the individual
measurement errors for each galaxy into account. The division in environment and in stellar mass do not result in statistically significant
different shape distributions. See text for details.

Figure 7. Top left panel: observed distribution F (ǫ) for the 36 slow rotators, similar to top panel of Figure 4. Bottom left panel:
inverted shape distribution f(q) for the 36 slow rotators in our sample (solid black line). The red dashed line shows a Gaussian fit to
the distribution, and the grey area indicates a 95 per cent spread around our Monte-Carlo simulations (see text for more detail). Right
panels: same as left panels, but now the four 2σ-galaxies with counter-rotating discs have been removed from the slow rotator sample,
resulting in a cleaner and overall slightly rounder shape distribution. We use this instrinsic distribution for our subsequent discussions
and analysis.
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Figure 8. Comparing the oblate intrinsic shape distributions f(q) of fast (blue solid line) and slow rotators (red solid line). Left:
distribution scaled with absolute number of galaxies in each sample (224 fast rotators versus 32 slow rotators). Right: normalized
distributions.

shown that spiral galaxies display a large range of disc-to-
total (D/T) ratios (e.g. Graham 2001; Weinzirl et al. 2009),
which is also found to hold true for the galaxies in our sam-
ple: Krajnović et al. (2013, paper XVII) performed bulge-
disc decompositions for the ATLAS3D sample and found
that 83 per cent of the non-barred galaxies in the sample
have disc-like components. The resemblance between spiral
and early-type galaxies was most notably pointed out by Van
den Bergh (1976), who redesigned the Hubble tuning fork
to include a parallel sequence of lenticular galaxies (S0) to
the spiral galaxies, with decreasing D/T ratios when moving
from S0c to S0a closer to the elliptical galaxies.

In Paper VII we revisited Van den Bergh’s classification
scheme by showing that it are the fast rotators who form a
parallel sequence to the spiral galaxies, re-emphasizing the
importance of this parallelism to understand how galaxies
form, see also Laurikainen et al. (2011) and Kormendy &
Bender (2012).

4.2 Shape as a function of stellar mass

In § 3.2 we showed that there is no clear difference between
shape distributions of fast rotators above and below a stel-
lar mass of 1011M⊙ (see Figure 6, right-hand plot). At first
sight, this seems in contradiction with Tremblay & Merritt
(1996), and more recently, with van der Wel et al. (2009)
and Holden et al. (2012), who based on a sample of quies-
cent galaxies selected from the Sloan Digital Sky Survey, find
that galaxies with stellar mass M∗ > 1011M⊙ are predomi-
nantly round, while galaxies with lower masses have a large
range in ellipticity. This change in shape at a characteristic
mass of MJAM ∼ 2 × 1011M⊙ is also evident in our sample
when studying the mass-size relation (Figure 7 of Cappellari
et al. 2013b, hereafter Paper XX). However, as already illus-
trated in Figure 14 of Paper XX, the picture changes when
we include the kinematical information. In Figure 9 we show
the ellipticities of both fast and slow rotators as a function
of stellar mass, and we also indicate different kinematical
classes as defined in Paper II: class a includes galaxies which
do not show any significant rotation (non-rotators), class b
comprises galaxies with complex velocity maps, but without
any distinct features, class c consists of galaxies with kine-

Figure 9. Ellipticity as a function of stellar mass (as introduced
in § 3.2), for fast (blue symbols) and slow rotators (red sym-
bols). Fast rotators show a large spread in ellipticity over all mass
ranges, while the most massive galaxies are predominantly round
slow rotators. The symbols labeled a-e define different kinemati-
cal classes, and are explained in the text. The galaxy marked with
a cross (X) could not be kinematically classified.

matically distinct cores (including counter-rotating cores),
class d has galaxies with double peaks in their dispersion
maps (the 2σ-galaxies, consisting of counter-rotating discs)
and finally, class e is the group of galaxies with regularly ro-
tating velocity maps. Taking this subdivision into account,
we note that above MJAM ∼ 1011M⊙ the number of fast
rotators quickly declines, and the highest mass galaxies are
predominantly round non-rotators (class a). This indicates
that the observed trend with more massive galaxies being on
average rounder than less massive ones can be explained by
the increasing fraction of slow rotators at high masses, and
that the orbital make-up drives the dependency of shape on
mass.

Figure 10 shows the fraction of galaxies with axis ra-
tios below 0.8, 0.6 and 0.4 as a function of stellar mass for
the total ATLAS3Dgalaxy sample, and compares these frac-
tions with the results from van der Wel et al. (2009). The
ATLAS3D fractions remain constant up to M∗ ∼ 1011.3, as
our sample is dominated by fast rotators (216/240 galax-
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Figure 10. Fraction of galaxies with axis ratio smaller than
0.8 (solid line), 0.6 (dotted-dashed line) and 0.4 (dashed line),
for the ATLAS3Dsample (black stars) and van der Wel sam-
ple (red diamonds), as a function of stellar mass M∗. For the
ATLAS3Dsample, the bins boundaries (in logM⊙) are given by
10.3, 10.8 and 11.3. The van der Wel sample shows a clear trend
with more massive galaxies being rounder: this trend is also seen
in the ATLAS3Dsample in the largest mass bin, which contains a
relatively large fraction of slow rotators.

ies) in that mass range. The fractions from the van der Wel
sample show a clear trend between axis ratio and stellar
mass, with more massive galaxies being rounder. We re-
produce that trend in our sample in the highest massbin
(M∗ > 1011.3), which contains a relatively large number of
slow rotators (12/20 galaxies).

4.3 A lack of round galaxies?

For a family of perfect oblate objects, we expect the shape
distribution to peak at ǫ = 0 (see Equation 2, which behaves
asymptotically at q = 1). However, our observed elliptic-
ity distribution for fast rotators decreases towards round
shapes (see Figure 2). This lack of round galaxies has been
observed before (e.g. Fasano & Vio 1991; Ryden 1996), and
before investigating deviations from axisymmetry (§ 4.4), we
first explore whether our selection or ellipticity measurement
methods could be responsible for this observation.

Our measurements of ellipticity are based on moment
of inertia, and a positive bias is introduced for nearly round
objects, as negative ellipticities are not allowed. Tests con-
ducted in Paper II show however that this positive bias is
of order 0.02, and therefore too small to expel a significant
number of galaxies out of the roundest ellipticity bin. The
influence of bars on our ellipticity measurements would be
of larger concern: although we obtain a global measurement
of the ellipticity by using moment of inertia as opposed to
a radius-dependent measurement, large bars could still sig-
nificantly increase the ellipticity of their round host galax-
ies. To investigate this effect, we simulated perfectly oblate
galaxies both with and without bars, following the methods
outlined in Lablanche et al. (2012, paper XII), and observed
these galaxies face-on (so at ǫ = 0). We found that bars in-
deed increased the observed ellipticity to about 0.15, which
is sufficient to move round galaxies from the roundest el-
lipticity bin into the next one. However, when splitting our

Figure 11. Observed ellipticity histogram for the barred (dashed
histogram) and non-barred (open histogram) fast rotators. The
non-barred galaxies in our sample are intrinsically flatter than the
barred galaxies, but this is a selection effect, as bars are easier
detected in face-on than edge-on galaxies, see text for details.

sample of fast rotators into barred and non-barred galaxies
(following the classification of Paper II), we find that the
barred galaxies are on average rounder than the non-barred
galaxies, contrary to what we expected based on our sim-
ulations (see Figure 11). This is however a selection effect:
bars are more easily identified in face-on (round) galaxies
than in edge-on (flattened) ones. It is therefore likely that
there are still some undetected bars present in our galaxy
sample at higher ellipticities, but this would not explain the
possible deficiency of low ellipticity galaxies. We therefore
conclude that it is very unlikely that barred galaxies are
biasing our observed shape distribution towards flatter sys-
tems. The perceived lack of round galaxies is therefore either
real, or has some other, more subtle cause. Despite this dis-
crepancy however, we show in the next section by including
the observed kinematic misalignment in our intrinsic shape
analysis, that an oblate distribution is indeed a very good
description of our fast rotator sample.

4.4 Deviations from axisymmetry

So far we have assumed that the fast rotators in our sample
are oblate (p = 1) systems, motivated by the observation
that almost all fast rotators have small or negligible mis-
alignment. We now investigate whether a triaxial (p 6= 1)
distribution would be preferred above an oblate one, us-
ing the observed kinematic misalignment Ψ as an additional
constraint (Binney 1985; Franx et al. 1991).

We cannot use a Lucy inversion as above to invert the
observed distribution, as we now have two observables (Ψ, ǫ)
and three unknowns (p, q and the intrinsic misalignment
θint, which is defined such that θint=0 corresponds to align-
ment of the intrinsic rotation axis with the short axis of the
galaxy). We therefore fit the observed two-dimensional dis-
tribution F (Ψ, ǫ) to simulated distributions, generated by
assuming a Gaussian distribution in q with mean and stan-
dard deviation µq and σq , and a log-normal distribution in
Y = ln(1−p) with mean and standard deviation µY and σY ,
following e.g. Padilla & Strauss (2008). For θint we assume
that this angle only depends on the intrinsic shape, such
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that θint coincides with the viewing direction that generates
a round observed ellipticity (ǫ = 0, see right-hand plot of
Figure 3). Mathematically, this corresponds to:

tan θint =

√

T

1− T
, (4)

with T the triaxiality parameter defined by Franx et al.
(1991) as:

T =
1− p2

1− q2
. (5)

This assumption ensures that in systems close to oblateness,
θint is small and close to the short axis, and only increases
for larger triaxiality. This assumption is valid for many self-
consistent models (e.g., Hunter & de Zeeuw 1992; Arnold,
de Zeeuw & Hunter 1994), and we will give a more detailed
overview of the geometry and probability distributions for
such systems in appendix A.

To determine the best-fitting simulated distribution, we
calculate χ2 as:

χ2(µY , σY , µq , σq) =
∑

i,j

(Oi,j −Mi,j)
2

δO2
i,j

, (6)

where Oi,j is the number of observed galaxies in each bin
(Ψi, ǫj), with Ψ ranging from 0◦ to 90◦ and ǫ from 0 to 1,
in binsteps of 5◦ and 0.1, respectively. The corresponding
errors δOi,j are determined with Monte Carlo simulations,
similar to the errors for the one-dimensional histograms in ǫ
used before. For many of our bins with large misalignment
this error is zero, which raises problems in our χ2 determi-
nation. We therefore replaced these zero errors with artifi-
cially small values, corresponding to 0.1 times the minimal
error in the total histogram. As a result, our χ2 values are
not statistically valid, but as we are interested in locating
the best-fitting intrinsic distribution, we simply restrict our
analysis to finding the minimal χ2.

Mi,j is the number of galaxies predicted for each
bin given by the model, generated with the parameters
µY , σY , µq , σq, and under the assumption that θint is given
by Equation 4. For each combination of these four param-
eters, we generate 100,000 random viewing angles and con-
struct a distribution of an equal number of observed galax-
ies, drawing their intrinsic axis ratios p and q from their log-
normal and Gaussian distributions, respectively. We then
calculate for each galaxy its observed ellipticity and mis-
alignment, using the formularium outlined in appendix A.

Before exploring the full grid of µY , σY , µq , σq, we first
apply the above analysis to an oblate model, and only fit the
one-dimensional histogram in ellipticity presented in Fig-
ure 2, ignoring the kinematic misalignment for the moment.
As such, we are repeating the analysis presented in the pre-
vious section, though with a very different method. We plot
the resulting χ2 contours in Figure 12, both for our fast and
slow rotator samples. For the fast rotators, we find a min-
imal χ2 for µq = 0.33 and σq = 0.11, which is somewhat
rounder than the distribution we found with the direct in-
version described in § 3.2, although the Gaussian fit to the
intrinsic distribution does not take the tail towards higher
q into account. For the slow rotators, we find µq = 0.66 and
σq = 0.08, which is very similar to the direct inversion de-

scribed in § 3.3. This shows that the results we presented for
the intrinsic shape distributions are not method dependent.

We now relax our assumption of oblateness on the fast
rotator sample and explore the full grid µY , σY , µq, σq, and
fit the two-dimensional histogram in Ψ and ǫ, with θint given
by Equation 4, as described above. The best-fit in this tri-
axial model space has values for µq and σq that are very
close to the best-fit values for the oblate model discussed
above, and therefore to limit the parameter search, we run
a finer grid in µY and σY , keeping µq and σq fixed to 0.33
and 0.11, respectively. The best-fit model that we so obtain
is very close to oblate, with µY = −5.0 (which corresponds
to p ∼ 0.99), and σY = 0.08. In fact, µY = −5.0 is one of the
boundaries in our grid, meaning that the best-fit model is as
oblate as allowed by our grid choice. The resulting χ2 con-
tours are shown in Figure 13. Unfortunately, we cannot put
any statistical significance to these contours, but we do note
that models close to oblate (large negative µY ) are strongly
preferred, while σY is largely unconstrained.

Interestingly, the deviation from axisymmetry of our
fast rotators is smaller than that of the spiral galaxies stud-
ied by Ryden (2006), who used the same methods to obtain
a triaxial intrinsic shape distributions of her sample. She
finds for her early-type spirals (Hubble type Sbc and earlier)
a median value for p of 0.82 (in B-band). For her late-type
spirals (Sc and later), she reports a median value of p ∼ 0.93,
which is more in agreement with the results we find for our
fast rotators, although our sample is again closer to axisym-
metry. This may not be so surprising though, given that
the shape measurements of our sample of early-type galax-
ies do not suffer from additional structures introduced by
spiral waves and dust, which are commonly present in spiral
galaxies. Another possible explantion for the non-circularity
of disc galaxies could come from lopsidedness (e.g. Rud-
nick & Rix 1998). We also compare our results with Padilla
& Strauss (2008), who for their elliptical galaxies report
µY = −2.2 ± 0.1, µq = 0.43 ± 0.06 and for their spirals
µY = −2.33 ± 0.13, µq = 0.21 ± 0.02. Again, in comparison
to both galaxy populations, our fast rotators are intrinsically
closer to axisymmetry.

To check that our best-fit model is a reasonable fit to
the data (and not simply the best of a set of only bad
models), we plot in the bottom panel of Figure 13 the
expected observed distribution F (Ψ, ǫ) given our best-fit
f(µY , σY , µq , σq), generated with Monte Carlo simulations,
and we overplot the observed (Ψ, ǫ) values for our fast rota-
tor galaxy sample. Errorbars have been omitted, but can be
found in Paper II: the median error in ellipticity is 0.03,
while the median error in kinematic misalignment is 6◦.
Apart from a few (mostly barred or interacting) outliers
with high Ψ, the predicted distribution by our best-fit model
closely follows the observed distribution.

Finally, we fit an intrinsic aligned model (θint = 0) to
our data. In triaxial systems, alignment occurs when the
long-axis tube orbits cancel each other out, or when the sys-
tem is dominated by short-axis tube and box orbits instead.
The observed kinematic misalignment therefore cannot orig-
inate from intrinsic misalignment, and has to be caused by
projection of the triaxial intrinsic shape only (see Appendix
A1, and in particular Equations A4-A6 for details). This
model would therefore set a firm upper limit on the allowed
amount of triaxiality in our galaxy population. We find again
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Figure 12. Contours of constant χ2 assuming oblate intrinsic shapes with a Gaussian distribution in q for the fast rotator (left) and
slow rotator (right) samples. Contours increase logarithmically from light to darker colours, and the minimal χ2 value is indicated with
a black asterisk.

a best fit for µY = −5 (or equivalently, p ∼ 0.99), although
with a larger best-fit standard-deviation σY = 0.42. We
therefore conclude that the fast rotators are indeed oblate
systems, and that if there are any deviations from axisym-
metry, these would have to be small.

Unfortunately, a similar analysis for the slow rotators in
our sample failed due to the small sample size compared to
the parameter space, as well as the lack of a clearly defined
projected rotation axis in many of the systems (most notably
for the non-rotators, or class a galaxies in our sample). Fix-
ing the intrinsic flattening to µq = 0.66 and σq = 0.08, as
derived from the axisymmetric distributions, we find for the
model with θint a best-fit of µY = −5.0 and σY = 0.08, which
is an oblate shape. However, as we show in Figure 14, the
minimum is not clearly defined, and the best-fit model is not
able to reproduce the observed kinematic misalignment. We
also note that a model with a larger triaxiality µY = −3.0
does allow for the larger observed misalignments, but does
not reproduce the rounder observed shapes. The derived
numbers are therefore not trustworthy. A model with no
intrinsic misalignment (θint = 0) did prefer a triaxial model,
but also did not show a clear minimum in χ2, and also was
not able to reproduce the observed distributions.

5 SUMMARY AND CONCLUSION

We inverted the observed ellipticity distributions of the
early-type galaxies in the ATLAS3D sample to obtain their
intrinsic shapes. Based on kinematical classification, we di-
vided our sample into fast and slow rotators, and inverted
these populations separately. We find that the fast rotator
population is significantly flatter than the slow rotator popu-
lation (µq = 0.25 versus µq = 0.63, assuming axisymmetry),
and that we cannot treat early-type galaxies as one single
population, but that we need to consider fast and slow ro-
tators separately. This is consistent with the conclusions in
previous papers of this series: in Paper II we noted that
based on their kinematic alignment, fast rotators are consis-
tent with being axisymmetric, while slow rotators are not. In
Papers III and VII we pointed out the difference in observed
axial ratios between fast and slow rotators, while in Paper

XVII we uncovered a distinction between fast and slow ro-
tators in terms of the presence of discs from photometric
decomposition. Finally, in Paper XX we showed dynami-
cal models to deproject the galaxies, while in this paper we
use a statistical inversion to show the difference in intrinsic
flattening between fast and slow rotators. Given that both
lenticular and elliptical galaxies are present in the fast ro-
tator class, a purely morphological classification would not
have been sufficient for the shape study presented in this
paper.

We did not observe any trends of intrinsic shape with
environment or stellar mass for the fast rotators, but we did
note a decrease in observed ellipticity above stellar masses
of ∼ 1011M⊙ for the total early-type galaxy population,
which is mainly driven by round massive, non-rotating slow
rotators. We showed with simulations that our results are
not affected by (weak) bars, which could potentially increase
the observed ellipticity of their host galaxies.

Fast rotators have similar intrinsic flattening as spiral
galaxies, which is in line with the results of Paper XVII,
where we showed that fast rotators show a large span in
disc-to-total ratios, and with the classification scheme intro-
duced by Van den Bergh (1976), and revisited in Paper VII
to emphasize the parallelism between fast rotators and spi-
rals (see also Laurikainen et al. 2011; Kormendy & Bender
2012). This observation could hint to a similar evolutionary
path of spirals and fast rotators, and it would be interest-
ing to study this further in the context of the morphology-
density relation, as mentioned in e.g. Paper VII, and Cap-
pellari (2013c).

Next, we relaxed our assumption of axisymmetry and
fitted triaxial models to our observations. We again took
advantage of having integral-field data available for our
dataset, by including the kinematic misalignment as an extra
constraint in this fit. Assuming that the intrinsic misalign-
ment is a function of intrinsic shape, we show convincingly
that fast rotators are very close to oblateness, with only
small deviations from axisymmetry allowed by our observa-
tions. Due to their small numbers in our sample, we could
not repeat this analysis for the slow rotators, but based on
their observed kinematic misalignment, we do expect this
population to be more triaxial. That slow rotators are sys-
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Figure 13. Top: contours of constant χ2 for fast rotators as a

function of µY and σY , assuming tan θint =
√

T/(1 − T ) and a
Gaussian distribution in q, with parameters as indicated in the
text. Contours are increasing logarithmically from light to dark
colours, and the minimum in χ2 is indicated with a black asterisk.
Middle: contours indicate the distribution F (Ψ, ǫ), as predicted
by the best-fit model indicated by the asterisk in the top panel.
Contours increase linearly from light to dark colours. Overplotted
in black dots is our observed fast rotator sample, indicating the

nice agreement between model and observations. There are some
galaxies with significant larger misalignment than predicted by
our best-fitting model: these systems however all are dominated
by strong bars or are interacting systems. Bottom: same as mid-
dle, but here we show a model with µY = −3.0. The correspond-
ing distribution is overprediciting the number of galaxies with
larger (Ψ > 10◦) misalignment compared to the observations.

Figure 14. Same as Figure 13, but now for the slow rotators in
our sample. Error bars have been added for Ψ, taken from Paper
II. In the bottom plot we show again the predicted distribution
for µY = −3.0. This model is too triaxial, as it overpredicts the
number of flattened objects compared with the observations.

tematically rounder than fast rotators could also contribute
to explain why, at a given mass, they appear to hold on bet-
ter to their hot-gas medium and show brighter X-ray haloes
(Sarzi et al. 2013, Paper XIX).

Despite the small size of the ATLAS3D sample com-
pared to the larger SDSS samples used in various previous
shape studies, our sample has the big advantage of having
kinematic information available. This not only allowed us to

c© 2014 RAS, MNRAS 000, 1–18



14 A. Weijmans et al.

separate the early-type galaxy populations in two distinct
kinematical classes, which showed to have significantly dif-
ferent intrinsic shape distributions, but also made it possi-
ble to include the kinematic misalignment in our exploration
of triaxial shape distributions. We therefore conclude that
integral-field data is crucial to refine intrinsic shape studies,
and to separate galaxy populations into distinct kinematical
classes.

ACKNOWLEDGEMENTS

The authors thank Arjen van der Wel for kindly sharing his
data, as well as fruitful discussions. The authors also thank
the referee, for his/her constructive comments. This work
was supported by the rolling grants Astrophysics at Ox-
ford PP/E001114/1 and ST/H002456/1 and visitors grants
PPA/V/S/2002/00553, PP/E001564/1 and ST/H504862/1
from the UK Research Councils. RLD acknowledges travel
and computer grants from Christ Church, Oxford and sup-
port from the Royal Society in the form of a Wolfson
Merit Award 502011.K502/jd. RLD is also grateful for sup-
port from the Australian Astronomical Observatory Distin-
guished Visitors programme, the ARC Centre of Excellence
for All Sky Astrophysics, and the University of Sydney dur-
ing a sabbatical visit. MC acknowledges support from a
Royal Society University Research Fellowship. SK acknowl-
edges support from the Royal Society Joint Projects Grant
JP0869822. RMcD is supported by the Gemini Observa-
tory, which is operated by the Association of Universities
for Research in Astronomy, Inc., on behalf of the interna-
tional Gemini partnership of Argentina, Australia, Brazil,
Canada, Chile, the United Kingdom, and the United States
of America. TN and MBois acknowledge support from the
DFG Cluster of Excellence ‘Origin and Structure of the Uni-
verse’. MS acknowledges support from a STFC Advanced
Fellowship ST/F009186/1. PS acknowledges support of a
NWO/Veni grant. TAD: The research leading to these re-
sults has received funding from the European Community’s
Seventh Framework Programme (/FP7/2007-2013/) under
grant agreement No 229517. MBois has received, during this
research, funding from the European Research Council un-
der the Advanced Grant Program Num 267399-Momentum.
LY acknowledges support from NSF AST-1109803. The au-
thors acknowledge financial support from ESO. This paper
is based on observations obtained at the William Herschel
Telescope and the Isaac Newton Telescope, operated by the
Isaac Newton Group in the Spanish Observatorio del Roque
de los Muchachos of the Instituto de Astrof́ısica de Canarias.
Funding for the SDSS and SDSS-II was provided by the
Alfred P. Sloan Foundation, the Participating Institutions,
the National Science Foundation, the U.S. Department of
Energy, the National Aeronautics and Space Administra-
tion, the Japanese Monbukagakusho, the Max Planck Soci-
ety, and the Higher Education Funding Council for England.
The SDSS was managed by the Astrophysical Research Con-
sortium for the Participating Institutions. This publication
makes use of data products from the Wide-field Infrared
Survey Explorer, which is a joint project of the University
of California, Los Angeles, and the Jet Propulsion Labora-
tory/California Institute of Technology, funded by the Na-
tional Aeronautics and Space Administration.

REFERENCES

Abazajian K.N., et al., 2009, ApJS, 182, 543

Arnold R., de Zeeuw P.T., Hunter C., 1994, MNRAS, 271, 924

Bacon R. et al., 2001, MNRAS, 326, 23

Binggeli B., 1980, A&A, 82, 289

Binney J., de Vaucouleurs G., 1981, MNRAS, 194, 679

Binney J., 1985, MNRAS, 212, 767

Blanton M.R., & Moustakas J, 2009, ARA&A, 47, 159

Bois M, et al., 2011, MNRAS, 416, 1654 (paper VI)

Cappellari M., 2002, A&A, 333, 400

Cappellari M., et al., 2007, MNRAS, 379, 418C

Cappellari M., et al., 2011a, MNRAS, 413, 813 (Paper I)

Cappellari M., et al., 2011b, MNRAS, 416, 1680 (Paper VII)

Cappellari M., et al., 2013a, MNRAS, 432, 1709 (Paper XV)

Cappellari M., et al., 2013b, MNRAS, 432, 1862 (Paper XX)

Cappellari M., 2013c, ApJL, 778, 2

Chang Y.-Y., et al., 2013, ApJ, 773, 149

Contopoulos G., 1956, Zeitschr. f. Astroph., 39, 126

Davis T.A., et al., 2014, MNRAS, in press (arXiv:1403.4850)

de Zeeuw P.T., Pfenniger D., 1988, MNRAS, 235, 949

de Zeeuw P.T., Franx M., 1989, ApJ, 343, 617

Emsellem E., et al., 2007, MNRAS, 379, 401

Emsellem E., et al., 2011, MNRAS, 414, 888 (Paper III)

Fasano G., Vio R., 1991, MNRAS, 249, 629

Franx M, 1988, MNRAS, 231, 285

Franx M., Illingworth G., de Zeeuw P.T., 1991, ApJ, 383, 112

Graham A.W., 2001, AJ, 121, 820

Holden B.P., van der Wel A., Rix H.-W., Franx M., 2012, ApJ,
749, 96

Hubble E.P., 1926, ApJ, 64, 321

Hunter C., de Zeeuw P.T., 1992, ApJ, 389, 79

Jarrett T.H., Chester T., Cutri R., Schneider S., Skrutskie M,
Huchra J.P., 2000, AJ, 119, 2498

Jesseit R., Cappellari M., Naab T., Emsellem E., Burkert A.,
2009, MNRAS, 397, 1202

Kimm T, Yi S.K., 2007, ApJ, 670, 1048

Kormendy J., Bender R., 2012, ApJS, 198, 2
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APPENDIX A: TRIAXIAL INTRINSIC SHAPE

DISTRIBUTIONS

In this section we explore the triaxial shape distributions
used in §4.4 in more detail. We first give the expression
for ellipticity and kinematic misalignment as function of in-
trinsic axis ratio (p, q) and viewing angle (ϑ,ϕ) that were
used to populate the simulated distributions, when we ex-
plored deviations from axisymmetry in our galaxy sample.
We then give analytical expressions for the probability dis-
tributions P (Ψ, ǫ) and P (Ψ), in the case of intrinsic mis-
alignment coinciding with the viewing direction that yields
an observed round galaxy (Equation 4), which is one of the
assumptions we made in our triaxial analysis. We include
these expressions here, as this case smoothly connects oblate
models with the intrinsic rotation axis along the short axis
(in agreement with their observed dynamics) with prolate
models where the instrinsic rotation axis coincides with the
long axis (again, in agreement with their observed dynam-
ics). Many triaxial dynamical models therefore follow this
relation. In addition, somewhat surprisingly given the need
to calculate roots of polynomials, in this special case both
the expressions P (Ψ, ǫ) and P (Ψ) are elementary functions,
and they were not previously recorded in Franx et al. (1991).

A1 Ellipticity and kinematic misalignment in

triaxial systems

For oblate systems (p = 1), the observed ellipticity only
depends on one viewing angle: the inclination ϑ (see Equa-
tion 1). For triaxial systems (p 6= 1) the observed elliptic-
ity depends on both spherical viewing angles ϑ and ϕ (see
also Figure 3, which shows observed ellipticity as function
of viewing angle). The expression for ellipticity is then given
by (e.g. Contopoulos 1956):

e = (1− ǫ)2 =
a−

√
b

a+
√
b
, (A1)

with

a = (1−q2) cos2 ϑ+(1−p2) sin2 ϑ sin2 ϕ+p2+q2,

b =
[

(1−q2) cos2 ϑ−(1−p2) sin2 ϑ sin2 ϕ−p2+q2
]2

+4(1−p2)(1−q2) sin2 ϑ cos2 ϑ sin2 ϕ. (A2)

For each triaxial shape there are four viewing directions that
yield an observed ellipticity equal to zero (see right-hand
panel in Figure 3); these viewing angles are given by ϑ =
θf , π − θf and ϕ = 0, π, with θf given by:

tan θf =

√

T

1− T
, (A3)

and T the triaxiality parameter from Franx et al. (1991), as
defined in Equation 5.

Figure A1. Contours of constant Θmin as given in Equation A6
on the sphere of viewing directions, defined by the angles (ϑ, ϕ).
Left: tan θf =

√
2. Right: θf = π/2. The dashed contour is for

Θmin = 0.

Figure A2. Contours of constant Θkin, defined in Equation (A5),
on the sphere of viewing directions defined by the angles (ϑ, ϕ).
Left: θint = π/4. Right: θint = π/2. While in the latter case all
octants are similar, in the former case two distinct sets of octants
occur. The dashed contour indicates Θkin = π/2.

Kinematic misalignment is the difference between the
projected rotation axis Θkin and the projected short axis
Θmin, and therefore defined as (e.g. Franx et al. 1991):

sinΨ = | sin(Θkin −Θmin)|, 0◦ 6 Ψ 6 90◦. (A4)

Θkin is a function of the viewing angles as well as the intrinsic
misalignment θint. Measured with respect to the projected
short axis, Θkin can be calculated with a projection matrix
(e.g. de Zeeuw & Franx 1989):

tanΘkin =
sinϕ tan θint

sinϑ− cosϕ cosϑ tan θint
. (A5)

Θmin depends on the intrinsic shape of the galaxy through
the triaxiality parameter T as defined in Equation 5, and
the viewing angles:

tan 2Θmin =
2T sinϕ cosϕ cos ϑ

sin2 ϑ− T (cos2 ϕ− sin2 ϕ cos2 ϑ)
. (A6)

Examples of Θmin, Θkin and Ψ on the sphere of viewing
angles are given in Figures A1, A2 and A3, respectively.

A2 Probability distributions P (Ψ, ǫ) for θint = θf

Franx et al. (1991) presented in their appendix probability
distributions P (Ψ, ǫ) for perfectly aligned triaxial systems,
or θint = 0. By following their analysis and integrating over
the sphere of viewing angles, we here give expressions for

c© 2014 RAS, MNRAS 000, 1–18
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Figure A3. Contours of constant misalignment angle Ψ, defined
in Equation A4, on the sphere of viewing directions defined by the
angles (ϑ, ϕ). In both cases the model has intrinsic misalignment
θint = θf . Left: T = 1/4, or θint = π/6. Right: T = 3/4, or
θint = π/3. The dashed contour corresponds to Ψ = 0.

P (Ψ, ǫ) with θint = θf , with θf corresponding to the viewing
direction from which the galaxy will appear round (ǫ = 0),
as defined in Equation A3.

We define P (ϑ,ϕ)dϑdϕ as the probability of finding ϑ
and ϕ in the ranges (ϑ, ϑ+dϑ) and (ϕ,ϕ+dϕ), respectively.
Then P (ϑ, ϕ) is equal to the area element on the sphere of
viewing angles, divided by the total area of the sphere, and
hence is given by:

P (ϑ,ϕ) =
sinϑ

4π
. (A7)

Therefore, it follows that:

P (Ψ, ǫ) dΨdǫ =
∑

(ϑi,ϕi)

sinϑ

4π

∣

∣

∣

∂(Ψ, ǫ)

∂(ϑ,ϕ)

∣

∣

∣

−1

dΨdǫ, (A8)

where the sum is over all pairs of angles (ϑi, ϕi) with 0 6

ϑi 6 π and 0 6 ϕi 6 2π for which Ψ(ϑ,ϕ) = Ψ and ǫ(ϑ,ϕ) =
ǫ). 5

Franx (1988) showed that the properties of projected
triaxial ellipsoids are more effectively described in terms of
conical coordinates (µ, ν) instead of spherical coordinates
(ϑ,ϕ), so we continue our analysis in this coordinate system
instead. The relation between conical and spherical coor-
dinates is given by (e.g. de Zeeuw & Pfenniger 1988, their
Equations 5.4-5.6):

cos2 ϑ =
(µ− q2)(ν − q2)

(1− q2)(p2 − q2)
,

tan2 ϕ =
(µ− p2)(p2 − ν)(1− q2)

(1− µ)(1− ν)(p2 − q2)
, (A9)

such that each combination (µ, ν) corresponds to eight di-
rections, given by (ϑ,±ϕ), (ϑ,±[π − ϕ]), (π − ϑ,±ϕ) and
(π − ϑ,±[π − ϕ]). The area element dΩ = sin θdϑdϕ on the
unit sphere is given by:

dΩ =
(µ− ν)dµdν

4
√

−h(µ)
√

h(ν)
, (A10)

with

5 Equation (A24) of Franx et al. (1991) erroneously replaces sinϑ
by cosϑ. This is a typographical error with no impact on their
equations (A25)–(A29).

h(τ ) = (τ − 1)(τ − p2)(τ − q2). (A11)

Combining Equations A7 and A10, it then follows that the
probability of finding µ and ν on the sphere of viewing angles
in the ranges (µ, µ+dµ) and (ν, ν+dν), respectively, is equal
to:

P (µ, ν) =
(µ− ν)

16π
√

−h(µ)
√

h(ν)
, (A12)

such that

P (Ψ, ǫ)dΨdǫ =
∑

µi,νi

P (µ, ν)

∣

∣

∣

∣

∂(µ, ν)

∂(Ψ, ǫ)

∣

∣

∣

∣

dΨdǫ, (A13)

where µi and νi are all the pairs of solutions of Ψ(µ, ν) = Ψ
and ǫ(µ, ν) = ǫ.

To continue, we have to know expressions for our ob-
servables ǫ and Ψ similar to Equations A1 and A4, but now
in conical coordinates µ, ν. For ǫ, we combine Equations A1,
A2 and A9 to arrive at (see also de Zeeuw & Pfenniger 1988,
their Equation 5.4):

ǫ = 1−
√

ν

µ
, or e =

ν

µ
. (A14)

For Ψ, it can be shown by combining Equations A4, A5, A6
and A9 that:

tanΨ =
(R1 ∓ AR2)

√

µ− p2

(R2 ∓ AR1)
√

p2 − ν
, (A15)

where we have defined the auxiliary functions

R1 =
√

(1− µ)(ν − q2), R2 =
√

(µ− q2)(1− ν), (A16)

and

A =

√

1− T

T
tan θint. (A17)

Note that for the case that we are studying θint = θf , and
therefore A = 1. We now introduce t = tanΨ, such that:

dΨ =
dt2

2t(1 + t2)
, (A18)

and therefore:
∣

∣

∣

∣

∂(µ, ν)

∂(Ψ, ǫ)

∣

∣

∣

∣

−1

=
1

4t(1+t2)µ3/2ν1/2

∣

∣

∣

∣

µ
∂t2

∂µ
+ ν

∂t2

∂ν

∣

∣

∣

∣

. (A19)

We simply the above expression by substituting ν = eµ
(Equation A14), and combining the result with Equa-
tion A13, we arrive at:

P (Ψ, ǫ) =
∑

i

(1−e)
√
e t(1+t2)µ2

i

4π
√

−h(µi)h(eµi)

∣

∣

∣

∣

dt2

dµ

∣

∣

∣

∣

−1

µ=µi

, (A20)

where the sum is over all octants, and over all physical roots
p2 6 µi 6 1 of the equation t2(µi, eµi) = t2, and h(µ) is
defined in Equation A11.

We now concentrate on the case θint = θf , and the ex-
pressions for t2 and |dt2/dµ| simplify to (see Equations A15
- A17:

t2 =
µ− p2

p2 − eµ
,

dt2

dµ
=

(1− e)p2

(p2 − eµ)2
, (A21)
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Figure A4. Probability distributions P (Ψ, ǫ) for θint = θf . Left: θint = 30◦, p = 0.9. Middle: θint = 45◦, p = 0.9. Right: θint = 60◦,
p = 0.75. The triaxiality increases in these plots from T = 0.25 (left), T = 0.50 (middle) to T = 0.75 (right). Contours are spaced
logarithmically and increase with darker colours. P (Ψ, ǫ) is singular on the boundary curves.

which is valid in all octants. Solving for µ using the left-
hand expression in Equation A21 results in a single root µ1

contributing to P (Ψ, ǫ):

µ1 =
p2(1+t2)

(1+et2)
=

p2

cos2 Ψ+ e sin2 Ψ
. (A22)

Substituting this root µ1 into Equation A20 then leads
us finally to an expression for the probability distribution
P (Ψ, ǫ) with θint = θf :

P (Ψ, ǫ) =
2(1− e)

√
e µ3

1

πp2
√
1−µ1

√

eµ1−q2
√
1−eµ1

√

µ1−q2
. (A23)

The area in the (Ψ, ǫ)-plane where P (Ψ, ǫ) is non-zero is
bounded by ǫ = 0, Ψ = 0, Ψ = π/2, and two boundary
curves, e = eI(Ψ) and e = eII(Ψ) with

eI =
q2

p2 + (p2 − q2)t2
, (0 6 Ψ 6 θf ),

eII = p2 − (1− p2)

t2
, (θf 6 Ψ 6

π
2
). (A24)

P (Ψ, ǫ) diverges on both these curves, which join at e = q2

and Ψ = θint = θf . P (Ψ, ǫ) vanishes in the limit ǫ ↓ 0, but
is finite for Ψ = 0 and π/2. In Figure A4 we show several
examples of P (Ψ, ǫ).

A2.1 P (Ψ) for θint = θf

For completeness, we also derive the probability distribution
P (Ψ) for the case that θint = θf . This expression can be
obtained by integrating P (Ψ, ǫ) as given in Equation A20
over dǫ = de/2

√
e, which results in:

P (Ψ) =
t(1+t2)

8π

∑

i

e+
∫

e−

de
(1−e)µ2

i
√

−h(µi)h(eµi)

∣

∣

∣

∣

dt2

dµ

∣

∣

∣

∣

−1

µ=µi

, (A25)

where the sum is taken over all octants, and all physical
roots p2 6 µi 6 1 of t2(µi, eµi) = t2. The integration limits
e− and e+ depend on p, q and θint. For our purposes, it
is convenient to substitute µ back for e into this equation,
leading to:

P (Ψ) =
t(1+t2)

8π

∑

i

µ+
∫

µ−

dµ
(µ−νi)

√

−h(µ)h(νi)

∣

∣

∣

∣

dt2

dν

∣

∣

∣

∣

−1

ν=νi

, (A26)

where the sum is over all octants, and q2 6 νi(µ, t
2) 6 p2

is a root of t2(µ, ν) = t2. This expression can also be de-
rived directly from the fundamental probability distribution
(A12) by the transformation (µ, ν) → (µ,Ψ), and has the
advantage that all quantities are functions of T only, which
is not the case for expression (A25) which contains e.

It further is useful to transform from (µ, ν) to the
rescaled conical coordinates (µ̄, ν̄), defined as:

µ̄ =
µ− p2

1− q2
, ν̄ =

ν − p2

1− q2
, (A27)

so that µ̄ > 0 and ν̄ 6 0. Substituting these coordinates in
Equation A26 and taking the sum over all eight octants then
leads to the simplified expression

P (Ψ)=
t(1+t2)

π

∑

i

µ̄+
∫

0

dµ̄ (µ̄− ν̄)
√

−h̄(µ̄)h̄(ν̄)

∣

∣

∣

∣

dt2

dν̄

∣

∣

∣

∣

−1

ν̄=ν̄i

, (A28)

where ν̄i = ν̄i(µ̄) are all solutions of t2(µ̄, ν̄) = 0 in the
interval −(1− T ) 6 ν̄ 6 0, and

h̄(τ̄) = τ̄ (T − τ̄)(τ̄ + 1− T ). (A29)

We now express Equation A21 in terms of µ̄ and ν̄ as given
by Equation A27, to arrive at:

t2 = − µ̄

ν̄
,

dt2

dν
= − t2

ν̄
, (A30)

Substituting the above expressions into Equation A28, we
finally obtain:

P (Ψ)=
(1+t2)2

πt2























(1−T )t2
∫

0

µ̄dµ̄
√

P4(µ̄)
, (0 6 t2 6

T

1−T
),

T
∫

0

µ̄dµ̄
√

P4(µ̄)
, (

T

1−T
6 t2),

(A31)

where P4 is a polynomial of degree 4 in µ̄, given by

P4(µ̄) = (T − µ̄)(µ̄+ 1− T )([1− T ]t2 − µ̄)(µ̄+ T t2). (A32)

It can be shown that:

P (Ψ;T ) = P (π
2
−Ψ; 1− T ), (A33)

so that we need to evaluate P (Ψ;T ) only for 0 6 T 6 1/2.
P (Ψ) can be expressed in terms of incomplete elliptic

integrals. It diverges logarithmically for Ψ = θint, and is
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Table A1. Special values of P (Ψ) for the case where θint = θf .

Ψ P (Ψ)

0 1
π
− (2T−1)

π
√

T (1−T )
arctan

√

1−T
T

π
2
−θint

1
π

{

[
√

T (1−T )−1]

T (1−T )
ln(1−2T )−ln(

√
T+

√
1−T )

}

π
2

1
π
− (1−2T )

π
√

T (1−T )
arctan

√

T
1−T

elementary for Ψ = 0, π/2− θint, and π/2. The expressions
for these special cases are given in Table A1.

The entire function P (Ψ) is elementary for T = 1/2,
and is given by

P (Ψ; 1/2) = −2 ln | cos 2Ψ|
π sin2 2Ψ

, (A34)

which satisfies P (Ψ) = P (π
2
−Ψ). It follows that P (0; 1/2) =

P (π/2; 1/2) = 1/π, and P (Ψ; 1/2) diverges logarithmically
at Ψ = π/4. In this case the cumulative distribution is ele-
mentary as well. It is given by

P̄ (Ψ) =
1

2
+

ln | cos 2Ψ|
π tan 2Ψ

− arcsin(cos 2Ψ)

π
. (A35)

This equals 1/2 when Ψ = π/4, in accord with the symmet-
ric nature of P (Ψ).

APPENDIX B: KINEMATIC MISALIGNMENT

AS SOLE SHAPE TRACER

As derived in the previous section, observed kinematic mis-
alignment Ψ depends on the intrinsic rotation misalignment
θint and the intrinsic shape of a galaxy. The dependence on
intrinsic shape is solely given by the triaxiality T of the sys-
tem, and as such, we could try to infer the intrinsic shape
distribution of our galaxy sample from the observed mis-
alignement distribution, parametrising the intrinsic shape
with T only. As we did before with the observed histogram
of ellipticity, we now approximate the observed histrogram
of kinematic misalignment (Figure 2) with a sum of Gaus-
sians, whose standard deviation is given by the measurement
errors. We mirror the resulting distribution around Ψ = 90◦.
As a clear rotation axis is not always easy to identify for the
slow rotators, the measurement errors for individual galax-
ies are rather large (up to 90◦), resulting in a rather flat
distribution of kinematic misalignment.

We first assume that the intrinsic misalignment is
zero (θint = 0). This is not a very realistic assumption
as especially highly triaxial models are expected to dis-
play significant intrinsic misalignment, but does showcase
the maximum allowed triaxiality, as intrinsic misalignment
does not contribute to the observed kinematic misalignment
(see Equation A4). Generating model galaxies with random
viewing angles using Monte Carlo simulations, and binning
the observed and simulated samples in bins of 5◦, we find
with a simple χ2 fit that the best-fitting intrinsic shape
for the slow rotators would have a triaxiality of T = 1,
which corresponds to a prolate shape. As prolate galaxies

are extremely rare in our sample, and previous analyses have
shown that the slow rotators in our sample are only mildy
triaxial (e.g. Paper III), we cannot take this result at face
value. Similarly, the fast rotator sample is best fitted with a
shape distribution of T = 0.45, which is unrealistically high.
This best-fitting value goes down to T = 0.35 if we exclude
galaxies that are barred or interacting (Paper II). We show
the resulting fits in Figure B1, with solid coloured lines.

A more realistic model would be to allow the intrin-
sic misalignment to increase with increasing triaxiality, by
assuming as before that θint = θf (see Equation A3). We
then obtain a best-fitting distribution T = 0.25 for the slow
rotator sample, and T = 0.05 for the fast rotator sample.
This last value does not change when excluding barred and
interacting systems. We show these fits too in Figure B1,
with dashed lines. Although these values seem more realis-
tic, the fits are worse than for the model with no intrinsic
misalignment. The results of this analysis show that kine-
matic misalignment alone is not a good tracer of intrinsic
shape. The probability distribution P (Ψ) strongly depends
on the intrinsic misalignment in the model: it has a singu-
larity for Ψ = θint, as shown in e.g. figure 9a of Franx et
al. (1991). The triaxiality T in contrast has a much milder
influence on P (Ψ) (e.g. figure 5a of Franx et al. 1991). We
therefore warn against over-interpreting this simple analy-
sis, as valuable information on the shapes of galaxies (their
ellipticities) has not been used: indeed, this exercise shows
the importance of including both shape and misalignment
information when recovering intrinsic shape distributions.
We refer the reader to the results presented in the main
body of this paper as more reliable representations of the
intrinsic shapes.
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Figure B1. Observed distributions of kinematic misalignment (black histogram), constructed from Gaussians representing individual
galaxies and their measurement errors (see text for detail). From left to right we show the slow rotators, fast rotators, and a ’clean’
sample of fast rotators excluding barred and interacting galaxies. Overplotted we show best-fit models assuming constant triaxiality and
no intrinsic misalignment (solid coloured lines) or intrinsic misalignment scaling with triaxiality as θint = θf (dashed coloured lines). The
intrinsically aligned models give by eye a good fit to the observed kinematic misalignment distributions, but yield unrealistically high
triaxiality values (T = 1.0, 0.45 and 0.35 for the slow rotators, fast rotators, and clean sample, respectively).
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