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MAXIMIZATION OF THE STEKLOV EIGENVALUES WITH A DIAMETER

CONSTRAINT

A. AL SAYED, B. BOGOSEL, A. HENROT, F. NACRY

Abstract. In this paper, we address the problem of maximizing the Steklov eigenvalues with
a diameter constraint. We provide an estimate of the Steklov eigenvalues for a convex domain

in terms of its diameter and volume and we show the existence of an optimal convex domain.

We establish that balls are never maximizers, even for the first non-trivial eigenvalue that
contrasts with the case of volume or perimeter constraints. Under an additional regularity

assumption, we are able to prove that the Steklov eigenvalue is multiple for the optimal
domain. We illustrate our theoretical results by giving some optimal domains in the plane

thanks to a numerical algorithm.

Keywords. Shape optimization, shape derivative, spectral geometry, Steklov eigenvalues,
diameter constraint.
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1. Introduction

Among classical questions in spectral geometry lies the problem of minimizing/maximizing
under geometric constraints one (or several) eigenvalues of the Laplace operator with various
boundary conditions. It has attracted much attention since the first conjecture by Lord Rayleigh
stated in this famous book: The Theory of Sound. In particular, several important open problems
have been solved these last twenty years. We refer the reader to the survey [2], the monograph
[17] and the recent book [18] for a good overview on that topic.

In this paper, we deal with the eigenvalue problem for the Laplace operator with Steklov
boundary conditions. For a nice survey covering many properties and questions related to these
eigenvalues, we refer to [16] (see also [18, Chapter 5]). Recall that a real σ ≥ 0 is a Steklov
eigenvalue provided that there is u ∈ H1(Ω) with u 6= 0 such that{

∆u = 0 in Ω,
∂u
∂n = σu on ∂Ω .

(1)

Here and below, ∂
∂n stands for the outward normal derivative and Ω is a smooth (say Lipschitzian)

bounded and open set in Rd. As usual, the problem (1) is considered in the weak sense, that is∫
Ω

∇u.∇vdx = σ

∫
∂Ω

uvds ∀v ∈ H1(Ω).

In our framework, it is known that the so-called Steklov spectrum is nothing but a discrete
sequence satisfying

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω) ≤ . . .↗ +∞.
We also point out that each (Steklov) eigenvalue can be computed through the usual min-max

formula:

σk(Ω) = min
S∈Sk+1

max
v∈S\{0}

∫
Ω
|∇v|2dx∫
∂Ω
v2ds

= min
v∈[1,u1,...,uk−1]⊥

∫
Ω
|∇v|2dx∫
∂Ω
v2ds

, (2)

where Sk+1 denotes the set of subspaces of dimension k + 1 of H1(Ω).

In this work, we are interested in the maximization of σk(Ω) with a diameter constraint on
the set Ω:

max
Ω∈C,D(Ω)=d0

σk(Ω), (3)

for a suitable class C of open sets in Rd and where D(Ω) denotes the diameter of the open set
Ω. Thanks to the positive homogeneity of the Steklov eigenvalues (i.e., σk(tΩ) = σk(Ω)/t for
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every real t > 0) we can replace the problem (3) by any of the following ones:

max
Ω∈C,D(Ω)≥d0

σk(Ω) (4)

and

max
Ω∈C

D(Ω)σk(Ω). (5)

More precisely, problems (3) and (4) have the same set of solutions while (3) and (5) are equiv-
alent (that is, any solution of one problem is a solution to the other one up to a suitable
dilatation).

The study of the maximization problem for Steklov eigenvalues under a diameter constraint
is quite natural in view of the work [5]. Indeed, B. Bogosel, D. Bucur and A. Giacomini have
established ([5, Proposition 4.3]) an isodiametric control for Steklov eigenvalues, namely the
existence of a positive constant C(d) (depending only on the dimension d) such that for every
(smooth, bounded and connected) open set Ω ⊂ Rd

D(Ω)σk(Ω) ≤ C(d)k
2
d +1 k = 1, 2, . . . (6)

It should be noted that the problem (5) merely reduces in finding the optimal upper bound in
the estimate (6).

Besides the later general result, a particular attention has been devoted over the years to the
case k = 1, i.e., to the first (non-trivial) Steklov eigenvalue σ1(Ω). In 1954, R. Weinstock ([25])
proved that the disk maximizes σ1 among simply connected plane domains of a given perimeter.
In fact, for such a maximization problem, the diameter constraint is stronger than the perimeter
constraint (itself stronger than the volume constraint) in the sense that if we show that the ball
maximizes σ1 with a diameter constraint, it would entail that it also maximizes σ1 with a
perimeter constraint and then implies Weinstock’s result for simply connected plane domains.
Very surprisingly, we establish in any dimension (see Theorem 3.1) that the ball is never a
maximizer of σ1 under a diameter constraint.

For the sake of completeness, let us mention that F. Brock in [7] has proved that the ball in Rd
is always a maximizer of σ1(Ω) with a volume constraint. A. Girouard and I. Polterovich ([16])
observed that the disk is not a maximizer in the plane under a perimeter constraint whenever we
remove the simple connectedness assumption: an annulus with a small inner radius provides a
better value than the disk. Nevertheless, recently in [10], D. Bucur, V. Ferone, C. Nitsch and C.
Trombetti extended Weinstock’s result to convex domains in Rd proving that the ball maximizes
σ1 with a perimeter constraint among convex domains.

The paper is organized as follows: in Section 2, we give an estimate of σk(Ω) for a convex
domain in terms of its diameter and volume and we prove existence of an optimal convex domain.
Let us mention here that we do not address the question of regularity which seems to be very
difficult as it is often the case for such problems. Assuming regularity of the optimal set, we
recall the shape derivative of the Steklov eigenvalue and the shape derivative of the diameter
which will be useful for the numerical simulation provided in Section 4 in order to perform some
gradient-type algorithm. Section 3 is devoted to qualitative results. First, we show that the ball
is never a maximizer for σk with k = 1, 2.... Then, we state and prove (see Theorem 3.3) that a
(regular) optimal domain in the plane has necessarily a multiple eigenvalue. This is an important
result which is suspected to hold for most optimization problems related to eigenvalues. To the
best of our knowledge, Theorem 3.3 provides the first proof of such a multiplicity property.
However, the result still remains a conjecture in other situations (see, e.g., [17, Open problem
1]). At last, we illustrate our theoretical results in Section 4 by giving some optimal domains in
the plane thanks to a numerical algorithm.

2. Existence, optimality conditions

2.1. Existence. To prove the existence of a maximizer, we will use the classical method of
calculus of variations. Compactness of any class of open sets is almost for free when we work
with a diameter constraint, since, by translation invariance, we can assume that our maximizing
sequence lies in a given ball and then, by [20, Theorem 2.2.25] we can extract a subsequence
converging with respect to the Hausdorff metric to some open set. Now, we have to deal with
two major issues:
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(1) In general, the diameter is not (sequentially) continuous for the Hausdorff convergence
of open sets, see e.g. [20, Figure 2.4].

(2) The continuity of Steklov eigenvalues requires additional assumptions as uniform regu-
larity (see [4] for the use of the so-called ε-cone property) or a uniform control of norm
of the trace operator (see [12]). Let us note that we can also work in a relaxed setting
as in [5].

The two above remarks naturally lead us to work in the setting of convex domains, that is,

Cd := {Ω ⊂ Rd : Ω open and convex, D(Ω) = d0},
where d0 ≥ 0 is fixed. It is well known (see, e.g., [20]) that the convexity property is preserved
by the Hausdorff convergence. Now, let us assume that a sequence (Ωn)n≥1 of open convex sets
of diameter d0 converges to a convex open set Ω which is nonempty. We are going to prove that
D(Ω) = d0.

Fix any real number ε > 0. Choose two points x, y ∈ Ω such that |x − y| > D(Ω) − ε. By
virtue of [20, Proposition 2.2.17], we know that the points x, y ∈ Ωn for n ∈ N large enough.
Therefore, we see that

lim inf
n→∞

D(Ωn) ≥ lim inf
n→∞

|x− y| ≥ D(Ω)− ε.

Then, letting ε ↓ 0 gives the estimate

lim inf
n→∞

D(Ωn) ≥ D(Ω). (7)

Now, fix some increasing function s : N→ N such that

lim sup
n→∞

D(Ωn) = lim
n→∞

D(Ωs(n)).

For each integer n ≥ 1, let us choose xs(n), ys(n) ∈ such that |xs(n)− ys(n)| ≥ D(Ωs(n))− 1/s(n).
Keeping in mind that (Ωs(n))n≥1 is a sequence of convex sets contained in a fixed ball B, we can
write

[xs(n), ys(n)] ⊂ Ωs(n) ⊂ B for all n ≥ 1.

Hence, there is no loss of generality to assume that xs(n) → x and ys(n) → y for some x, y ∈ Rd.
Since the Hausdorff convergence preserves the inclusion, we must have x, y ∈ Ω. Thus, we arrive
to the inequality

lim sup
n→∞

D(Ωn) = lim
n→∞

D(Ωs(n)) ≤ |x− y| ≤ D(Ω). (8)

It remains to put together (7) and (8) to get

lim
n→∞

D(Ωn) = D(Ω).

We are now in position to prove the following result:

Theorem 2.1. For any k ≥ 1, the problem

max
Ω∈C

σk(Ω)

has a solution.

Proof. The proof will follow the same lines as in [4]. Let (Ωn)n≥1 be a maximizing sequence (of
open convex sets with diameter d0). We recall that, by translation invariance, we can assume
that the sequence (Ωn)n≥1 lies in a given ball and then, by [20, Theorem 2.2.25] we can extract
a subsequence converging with respect to the Hausdorff metric to some open set. There are two
possibilities:

(1) there is a subsequence that converges to a (nonempty) open convex set Ω. Moreover, by
the continuity property proved above D(Ω) = d0;

(2) the sequence (Ωn)n≥1 converges to the empty set. This means that it shrinks to a convex
body of dimension at most d− 1 and |Ωn| → 0.

Due to the maximizing property of (Ωn)n≥1, the case (2) cannot occur. In fact, we are going to
prove that if D(Ωn) = d0 and |Ωn| → 0, then σk(Ωn)→ 0. In order to prove such a convergence
result, the following proposition will be needed. It provides an estimate which can be seen a
counterpart of the classical estimate of Steklov eigenvalues by Colbois, El Soufi, Girouard in
terms of the isoperimetric ratio (see [13]). For convex domains, we are able to get a more precise
estimate involving volume and diameter.
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Proposition 2.2. Let Ω be a convex domain of diameter D(Ω) = D in Rd. Then, there exists
an explicit constant C = C(d, k) depending only on the dimension d and on k such that

σk(Ω) ≤ C |Ω|
1

d−1

D
2d−1
d−1

.

Proof of the proposition. We will proceed as in the proof of [4, Proposition 4.2]. Let us denote
D := D(Ω). Pick any diameter ρ of Ω. We associate to it a set Ω0 (called region) which is
defined as the part of Ω contained between two hyperplanes orthogonal to the diameter ρ. The
width of the region is denoted by L.

Step 1. Following Part 1 of the proof of [4, Proposition 4.2], we can get through elementary
geometric arguments, the following estimate

|Ω0| ≥
Ld

Dd
|Ω|. (9)

More precisely, the basic idea to get the latter inequality is to make a comparison with a cone:
the smallest volume for a portion of a cone is near its vertex for which we get exactly this
estimate.

Step 2. We also need a lower bound of the (lateral) perimeter of the region Ω0. To that
purpose, we first perform a Steiner symmetrization Ω∗0 of Ω0 with respect to the direction of the
choosen diameter. This preserves the volume and decreases the perimeter. Also, all sections of
Ω∗0 orthogonal to the diameter are (d− 1)-dimensional balls. Among these ones, pick the one of
maximal radius r. Obviously, the cylinder of radius r and height L contains the region Ω∗0, so
its volume given by ωd−1Lr

d−1 is greater than |Ω∗0|. Here and below, ωk denotes the volume of
the unit ball in Rk. Using (9), this allows us to obtain a lower bound for r

rd−1 ≥ Ld−1|Ω|
ωd−1Dd

,

in particular,

r ≥ L
(
|Ω|

ωd−1Dd

)1/(d−1)

. (10)

On the other hand, note that we can always include in Ω∗0 two cones with basis balls of radius
r and heights which sum up to L. The perimeter of convex sets is monotone with respect to
inclusion (see, e.g., [9, Lemma 2.2.2.]) therefore the (lateral) perimeter of Ω∗0 can be bounded
from below by the sum of the ones for the two cones, and a lower bound of the following form
can be found:

P (Ω∗0) ≥ ωd−2

d− 1
Lrd−2.

Using (10) we arrive to

P (Ω0) ≥ ωd−2

d− 1
Ld−1

(
|Ω|

ωd−1Dd

)(d−2)/(d−1)

. (11)

Step 3. Finally we obtain an upper bound for the Steklov eigenvalues by using the min-max
formula (2). Assume that the diameter is in the direction of the first coordinate x1. Let us
divide the diameter D of Ω into k + 1 equal parts and build a test function ui, depending only
on x1 in the region defined by each one of these segments.

In a segment Si of length D/(k + 1) consider a = D/(4(k + 1)) and define the function ui
piecewise affine as follows:

• on the segment of length 2a whose midpoint coincides with the middle of Si define ui = 1.
• on the outer segments of length a let the function ui goes to zero with gradient 1/a.

Now, let us estimate the Rayleigh quotient associated to ui:

•
∫

Ω
|∇ui|2 ≤ 1

a2 |Ω|.
•
∫
∂Ω
u2
i ≥ P ({ui = 1}). Since the set {ui = 1} is a region of width 2a, we can use the

estimate (11) to get

P ({ui = 1}) ≥ Cd(2a)d−1

(
|Ω|
Dd

) d−2
d−1

,
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with Cd := ωd−2/(d− 1)ω
(d−2)/(d−1)
d−1 . Therefore, we have∫

Ω
|∇ui|2∫
∂Ω
u2
i

≤ [2(k + 1)]d+1|Ω|
1

d−1

4CdD
2d−1
d−1

.

Since we can construct k + 1 such functions with disjoint supports in Ω, we conclude that this
also gives an upper bound for σk(Ω). �

Now, let us come back to the proof of the existence result. We have established (thanks to
the latter proposition) that the maximizing sequence (Ωn)n≥1 converges (up to a subsequence)
with respect to the Hausdorff distance to some open set Ω. Since the convexity and the diameter
are preserved, Ω belongs to the class C. Let B be a (compact) ball included in Ω. By [20,
Proposition 2.2.17], B is also included into Ωn for n large enough. By [20, Proposition 2.4.4],
all the sets Ωn and Ω satisfy the ε-cone property with the same constant ε (related to this ball
B). Moreover, we also have (due to the convexity) the convergence of the involved perimeters,
i.e., P (Ωn) → P (Ω). Thus, by [4, Theorem 3.5], we have σk(Ωn) → σk(Ω) and the existence
follows. �

Remark 2.3. The diameter constraint is, in some sense, more flexible that the volume or the
perimeter constraint. Let us illustrate this by considering a domain Ω with holes (that is, the
complement Rd \ Ω is disconnected). Filling those holes does not modify the diameter but
it would increase the associated Steklov eigenvalues (this can be seen through the Rayleigh
quotient of any test function: the numerator will increase while the denominator will decrease).
As a consequence, there is no loss of generality to state the maximization problem on the class of
domains without holes (i.e., simply connected domains in the plane). Nevertheless, the existence
of a maximizer is far being clear in such a class.

2.2. Derivative of Steklov eigenvalues. We are interested in writing optimality conditions
for our maximization problem involving a diameter constraint. For that purpose, we use the
classical notion of shape derivative (see, e.g., [20, Chapter 5] for more details on that concept).
The theorem below gives the formulae for the shape derivative of Steklov eigenvalues. It is
a particular case of a more general result which appears in the paper by Dambrine, Kateb,
Lamboley [14] devoted to the so-called Wentzell operator and its eigenvalues.

Theorem 2.4. Let Ω be a nonempty open bounded set of class C3. The following hold for any
V ∈W 3,∞(Ω,Rd).
(a) If σk := σk(Ω) is a simple eigenvalue of the Steklov problem, then the application t 7→
σk(t) := σk(Ωt) (where as usal Ωt := (I + tV )(Ω)) is differentiable and the derivative at 0 is

(σk)′(0) =

∫
∂Ω

(|∇τu|2 −
∣∣∣∣∂u∂n

∣∣∣∣2 − σkH |u|2)V.n,

where u(·) is the normalized (Steklov) eigenfunction associated to σk.
(b) Let (uk)1≤k≤m be the family of (Steklov) eigenfunctions associated to a multiple eigenvalue
σ of order m ≥ 2. Then, there exists m functions t 7→ σk(t) defined in a neighborhood of 0 such
that

(1) σk(0) = σk;
(2) For every t near 0, σk(t) is an eigenvalue of Ωt := (I + tV )(Ω);
(3) The functions t 7→ σk(t) admit derivatives and their values at 0 are eigenvalues of the

matrix M = (Mi,j)1≤i,j≤m defined by

Mi,j =

∫
∂Ω

(∇τui.∇τuj −
∂ui
∂n

∂uj
∂n
− σHuiuj)V.n

2.3. Shape derivatives of the diameter. The development of optimality conditions for our
maximization problem also requires the shape derivative of the diameter. This is the aim of
what follows.

We work here in the context of a general (real) normed space (X, ‖·‖). Let us consider a
multimapping (i.e., a set-valued mapping) C : I ⇒ X with bounded values defined on a real
interval I := [T0, T ] with T0 < T . We introduce the function δ : I → R defined by

δ(t) := D(C(t)) := sup
(x,y)∈C(t)2

‖x− y‖ for all t ∈ I.
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Observe first that the function δ(·) has no differentiability properties in general since for a given
function f : I → R+, we obviously have

δ(t) = D([0, f(t)]) = f(t) for all t ∈ I.

This leads to require some regularity assumptions on the multimapping C(·). Assume that C(·)
is γ-Lipschitz relative to the Hausdorff distance for some real γ ≥ 0, i.e.,

C(t) ⊂ C(s) + γ |t− s|B for all s, t ∈ I,

where B stands for the closed unit ball of (X, ‖·‖). Such an hypothesis entails for every s, t ∈ I,

δ(t) = sup
x,y∈C(t)

‖x− y‖ ≤ sup
x,y∈C(s)+γ|t−s|B

‖x− y‖

= sup
x,y∈C(s),b1,b2∈B

‖x− y + γ |t− s| (b1 − b2)‖

≤ 2γ |t− s|+ sup
x,y∈C(s)

‖x− y‖

= 2γ |t− s|+ δ(s),

hence the mapping δ(·) is 2γ-Lipschitz continuous on I. In particular, if dimX <∞, Rademacher’s
theorem says that δ(·) is almost everywhere differentiable on I.

Coming back to shape optimization, we are going to assume that 0 ∈ int I along with

C(t) := {x+ tV (x) : x ∈ Ω} = (IdX + tV )(Ω) =: Ωt for all t ∈ I,

where IdX denotes the identity mapping on X and where Ω is a given nonempty relatively
compact subset of X and V : Ω→ X is a bounded continuous mapping. Writing

x+ tV (x) = x+ sV (x) + (t− s)V (x) for all x ∈ Ω, all t, s ∈ I

we then see

Ωt ⊂ Ωs + sup
x∈Ω
‖V (x)‖ |t− s|B.

According to what precedes, we know that the diameter δ(·) is differentiable almost everywhere
on I whenever X = Rd. Besides the latter differentiability property, we are going to establish
the existence of the one-sided limit

lim
t↓0

δ(t)− δ(0)

t
.

This amounts to say that D(·) has a shape derivative in the direction V . Let us introduce the
set of diameter points of the set Ω:

DΩ := {(x, y) ∈ Ω : ‖x− y‖ = D(Ω)}.

As usual, here and below, Ω denotes the closure of Ω in X. First, note that

C(t) =
{
x+ tV (x) : x ∈ Ω

}
for all t ∈ I.

Fix any (x0, y0) ∈ DΩ. We obviously have for any t ∈ I,

1

2

(
δ2(t)− δ2(0)

)
≥ 1

2

∥∥x0 + tV (x0)−
(
y0 + tV (y0)

)∥∥2 − 1

2
‖x0 − y0‖2

= t 〈x0 − y0, V (x0)− V (y0)〉+
t2

2
‖V (x0)− V (y0)‖2 ,

hence

lim inf
t↓0

δ2(t)− δ2(0)

2t
≥ 〈x0 − y0, V (x0)− V (y0)〉 .

Since (x0, y0) has been arbitrarily chosen in the set DΩ, we get

lim inf
t↓0

δ2(t)− δ2(0)

2t
≥ sup

(x,y)∈DΩ

〈x− y, V (x)− V (y)〉 .

Now, let (tn)n≥1 be a sequence of positive real numbers such that tn → 0 and

lim sup
t↓0

δ2(t)− δ2(0)

2t
= lim
n→∞

δ2(tn)− δ2(0)

2tn
.
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For each integer n ≥ 1, pick any xn, yn ∈ C(tn) such that

δ2(tn)− t2n < ‖xn − yn‖
2 ≤ δ2(tn).

According to the definition of C(·), we may write for every integer n ≥ 1, xn = un+tnV (un) and
yn = vn + tnV (vn) for some un, vn ∈ Ω. From the compactness of Ω, we may suppose without
loss of generality that un → u and vn → v for some u, v ∈ Ω. It is straightforward to check that

δ2(tn)− δ2(0) < ‖xn − yn‖2 + t2n − ‖un − vn‖
2

< 2tn 〈un − vn, V (un)− V (vn)〉+ t2n ‖V (un)− V (vn)‖2 + t2n,

in particular

lim sup
t↓0

δ2(t)− δ2(0)

2t
≤ 〈u− v, V (u)− V (v)〉 .

We claim that (u, v) ∈ DΩ. Indeed, we have

δ2(tn) ≥
∥∥x− y + tn

(
V (x)− V (y)

)∥∥2
for all (x, y) ∈ DΩ, all n ≥ 1,

which gives the inequality
lim inf
n→∞

δ2(tn) ≥ δ2(0) = D(Ω)2

and

δ2(0) = lim inf
n→∞

(δ2(tn)−t2n) ≤ lim inf
n→∞

‖xn − yn‖2 = lim
n→∞

‖un − vn + tn(V (un)− V (vn))‖2 = ‖u− v‖2 .

Putting what precedes together, we arrive to

sup
(x,y)∈DΩ

〈x− y, V (x)− V (y)〉 ≤ lim inf
t↓0

δ2(t)− δ2(0)

2t
≤ lim sup

t↓0

δ2(t)− δ2(0)

2t
≤ 〈u− v, V (u)− V (v)〉

Consequently, the function 1
2δ

2(·) has a right derivative at 0 given by

lim
t↓0

δ2(t)− δ2(0)

2t
= sup

(x,y)∈DΩ

〈x− y, V (x)− V (y)〉 .

We summarize those features in the following proposition.

Proposition 2.5. Let Ω be a nonempty open relatively compact subset of a real normed space
(X, ‖ · ‖) and let V : Ω→ X be a bounded and continuous mapping. Then, one has

lim
t↓0

D(Ωt)−D(Ω)

t
=

1

D(Ω)
sup

(x,y)∈DΩ

〈x− y, V (x)− V (y)〉 , (12)

where DΩ :=
{

(x, y) ∈ Ω : ‖x− y‖ = D(Ω)
}

and Ωt := {x+ tV (x) : x ∈ Ω} for every t > 0.

3. Qualitative properties

3.1. Case of the ball. As recalled in the introduction, the ball maximizes the quantity σ1(Ω)
with a volume constraint (see [7]). It also maximizes σ1(Ω) with a perimeter constraint among
planar simply connected domains ([25]) and in any dimension among convex domains ([10]).
Therefore, it is quite natural to expect that the ball is also a maximizer (or at least a local
maximizer) for σ1 in the setting of a diameter constraint. The following theorem shows that it
is not the case!

Theorem 3.1. The ball is not a local maximizer for Problem (5) for σ1 in any dimension.

Proof. The idea of the proof is simply to find a perturbation of the ball which increases the
product D(B)σ1(B). Without loss of generality, we work with the unit ball and we use the usual
spherical coordinates, that is,

x1 = cosϕ1

x2 = sinϕ1 cosϕ2

...
xd−1 = sinϕ1 sinϕ2 . . . sinϕd−2 cosϕd−1

xd = sinϕ1 sinϕ2 . . . sinϕd−2 sinϕd−1

where ϕj ∈ [0, π] for j ≤ d− 2 while ϕd−1 ∈ [0, 2π]. At last, the area element is given by

ds = sind−2(ϕ1) sind−1(ϕ2) . . . sin(ϕd−2)dϕ1dϕ2 . . . dϕd−1.
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Let us consider a perturbation driven by the vector field defined in a neighbourhood of the
unit sphere by

V (X) =
(
a2 cos(2ϕd−1) + a4 cos(4ϕd−1)

)
X,

for some positive coefficients a2, a4 which will be chosen later. This means that, for every
ε > 0 small enough, we consider some perturbations of the unit ball B defined by Bε :=
{X + εV (X), X ∈ B}. We have recalled in Theorem 2.4 (see also [14, Corollary 3.8]) that the
first Steklov eigenvalue σ1(Bε) has a directional derivative (even if this eigenvalue is multiple).
Such directional derivatives are given by the eigenvalues of the d × d matrix M whose entries
are (as usual ωd denotes the volume of the unit ball while δjk is the Kronecker symbol)

Mj,k =
δjk
ωd

∫
∂B

V.nds− d+ 1

ωd

∫
∂B

xjxkV.nds .

In our case, since n = X on the unit sphere, we have V.n = a2 cos(2ϕd−1) + a4 cos(4ϕd−1). It is
then not difficult to check that all the coefficients of the above matrix are zero exceptMd−1,d−1

and Md,d which are respectively given by

Md−1,d−1 = −d+ 1

ωd

∫
∂B

d−2∏
j=1

sin2(ϕj) cos2(ϕd−1)
(
a2 cos(2ϕd−1) + a4 cos(4ϕd−1)

)
ds

Md,d = −d+ 1

ωd

∫
∂B

d−2∏
j=1

sin2(ϕj) sin2(ϕd−1)
(
a2 cos(2ϕd−1) + a4 cos(4ϕd−1)

)
ds

Let us denote by jp :=
∫ π

0
sinp t dt (twice the classical Wallis’ integrals). The previous formulae

can be rewritten as

Md−1,d−1 = −d+ 1

ωd

d∏
p=3

jpa2
π

2
and Md,d =

d+ 1

ωd

d∏
p=3

jpa2
π

2
.

Therefore, the eigenvalues of M are 0 of order d − 2, −Ka2 and Ka2 where K is the positive

constant (which is explicitly computable) K := (d−1)π
2ωd

∏d
p=3 jp. In other words, the smallest

eigenvalue σ1(Bε) has the following expansion (keep in mind that a2 > 0)

σ1(Bε) = 1− εKa2 + o(ε).

Now, let us introduce the two antipodal points N = (0, 0, . . . , 1) and S = (0, 0, . . . ,−1). Through
the deformation they are sent to

Nε = (0, 0, . . . , 1 + ε(a2 + a4)) and Sε = (0, 0, . . . ,−1− ε(a2 + a4)) .

Thus, the diameter of Bε is greater than NεSε = 2 + 2ε(a2 + a4) and then

D(Bε)σ1(ε) ≥ 2
(
1 + ε(a2 + a4)

)(
1− εKa2 + o(ε)

)
= 2
(
1 + ε(a4 − (K − 1)a2) + o(ε)

)
.

It remains to choose the coefficient a4 such that a4 > (K − 1)a2 to get the claim. �

Let us point out here that the main idea of the latter proof is quite elementary. Indeed, we
construct a perturbation with two trigonometric terms, the first one seen by the eigenvalue and
the other one only seen by the diameter. Then, a suitable combination allows us to get a positive
first derivative. In a same way, we are able to extend Theorem 3.1 to any Steklov eigenvalue.
The details of the proof are left to the reader.

Theorem 3.2. The ball is not a maximizer for Problem (5) for any σk and any dimension.

3.2. Multiplicity. As explained in the introduction, it is suspected that most of optimization
problems for eigenvalues have solution with multiplicity. For example, if we denote by Ω∗k a
domain which minimizes the k-th eigenvalue of the Laplacian with Dirichlet boundary conditions
(see [8] and [21]) it is still an open problem (see, e.g., [17]) to prove that λk−1(Ω∗k) = λk(Ω∗k) for
any k ≥ 3 (what we know so far is the case k = 2).

In our context, we are able to prove (by contradiction) such a result for a smooth optimal
domain in the plane. We establish it in both situations: without any constraint or with a
convexity constraint.

Theorem 3.3. Let Ω? be a smooth (C3) optimal domain in the plane with or without convexity
constraints. Then, the k-th Steklov eigenvalue σk(Ω?) is multiple.
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Proof. Since there is no ambiguity here, we will denote by σ the Steklov eigenvalue and u a
normalized associated Steklov eigenfunction. Let us start with the unconstrained case. First,
note that the smoothness assumption on the optimal domain implies two things:

• we can use the shape derivative formulae stated in Theorem 2.4;
• by elliptic regularity, the eigenfunctions are at least C2 up to the boundary.

We write the usual Rellich formula valid for any smooth function v (see e.g., [22, 23]):

2

∫
∂Ω∗

(x.∇v)
∂v

∂n
−
∫
∂Ω∗

(x.n)|∇v|2=2

∫
Ω∗

(x.∇v)∆v + (2− d)

∫
Ω∗
|∇v|2.

For our eigenfunction u in dimension 2, this yields

2

∫
∂Ω∗

(x.∇u)
∂u

∂n
−
∫
∂Ω∗

(x.n)|∇u|2= 0.

Decomposing the gradient in its tangential and normal component, that is, ∇u = uττ +unn and
using un = σu yields

2σ

∫
∂Ω∗

uuτX.τ + σ2

∫
∂Ω∗

u2X.n−
∫
∂Ω∗

u2
τX.n = 0.

Now, assume by contradiction that the eigenvalue is simple. For any deformation field V the
shape derivative of DσK is nonpositive. Let us denote by D the set of diameter points (where the
diameter is achieved, this is the projection of the set DΩ? introduced in Section 2.3). Let x /∈ D
a point which does not belong to a diameter. A small perturbation V locally supported near x
does not change the diameter and since both V and −V are admissible, we infer dσk(Ω∗, V ) = 0
for all such V which implies, according to Theorem 2.4:

u2
τ − σ2u2 −Hσu2 = 0 at any x /∈ D. (13)

We are going to distinguish two cases:

• Case 1. The set D is discrete. In that case, the relation (13) holds everywhere on the
boundary by continuity of the function and its derivatives up to the boundary.

• Case 2. Now, let us assume that the set D (where the diameter is achieved) is not
discrete. Let us consider a point x ∈ D. If we perform a local perturbation driven by V
near x, we can consider two situations: either V.n is inward and then the diameter does
not change and we recover dσk(Ω∗, V ) ≤ 0 at such a point or V.n is outward and the
derivative of the diameter is positive, according to formulae (12) which implies

D(Ω∗)dσk(Ω∗, V ) ≤ d(Dσk)(Ω∗, V ) = σk(Ω∗)dD(Ω∗, V ) +D(Ω∗)dσk(Ω∗, V ) ≤ 0

and then in any case, we have dσk(Ω∗, V ) ≤ 0. Since this property holds for any V , we
still infer dσk(Ω∗, V ) = 0 and the equality (13) holds true on the whole boundary.

Therefore, in both cases, we have

u2
τ − σ2u2 = Hσu2 on ∂Ω∗.

Thus,

2σ

∫
∂Ω∗

uuτX.τ =

∫
∂Ω∗

u2
τ − σ2u2X.nds = σ

∫
∂Ω∗

Hu2X.n ds . (14)

Now let us compute the left-hand side of (14) integrating by parts. Since X.τ = xx′ + yy′ and
2uuτ = d

ds u
2 we have

2σ

∫
∂Ω∗

uuτX.τ = −σ
∫
∂Ω∗

u2[xx” + yy” + x′
2

+ y′
2
]ds . (15)

Now since d
dsτ = −Hn and x′

2
+ y′

2
= 1, (15) provides

2σ

∫
∂Ω∗

uuτX.τ = σ

∫
∂Ω∗

Hu2X.nds− σ
∫
∂Ω∗

u2ds

which, together with (14) would give

σ

∫
∂Ω∗

u2ds = 0

a contradiction since σ cannot be zero for the maximizer. This finishes the proof of the uncon-
strained case.
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Now let us consider the case with a convexity constraint. On strictly convex parts, we can
perform any deformation and then the identity u2

τ − σ2u2 = Hσu2 still holds true on strictly
convex parts of the boundary. The flat parts (or segments) require more attention. Let us
consider such a segment, say Σ ⊂ ∂Ω∗. In the spirit of [19] (see also [17, Theorem 4.2.2]) we can
prove the following:

Lemma 3.4. Let Ω∗ be a smooth maximizer of D(Ω)σk(Ω) among convex sets and let Σ be a
segment of extremities A and B included in the boundary of Ω∗. Let t ∈ [a, b], a parametrization
of the segment (the boundary is assumed to be oriented in the clockwise sense). Then, there
exists a nonnegative-valued function w defined on [a, b] with triple roots at a and b, such that

u2
τ − σ2u2 = w′′(t) . (16)

Proof of the Lemma: The diameter constraint cannot be achieved at any point of the segment
(but possibly its extremities). Thus, we just need to look at the derivative of the Steklov
eigenvalue which is given by Theorem 2.4:

dσk(Ω∗, V ) =

∫
∂Ω∗

[u2
τ − σ2u2 −Hσu2]V.n ds. (17)

Recall that the the curvature H = 0 on Σ. In formula (17), the only perturbations V which
are allowed are such that the deformed domain (Id+ τV )(Ω∗) is still convex (for small τ). This
holds true if and only if t 7→ V.n(t) is a concave function on [a, b]. Let us denote by v = V.n
such a concave function. Replacing in (17) and using the relation u2

τ − σ2u2 −Hσu2 = 0 which
holds on the strictly convex parts as explained above, yields on the segment Σ:∫ b

a

[u2
τ − σ2u2]v dt ≤ 0 . (18)

Setting w2(t) := u2
τ − σ2u2 this can also be rewritten∫ b

a

w2(t)v(t) dt ≤ 0. (19)

The latter estimate (19) must be true for every (regular) concave function v. In particular, in
the case v(t) = 1 and v(t) = t, both functions v and −v are concave, therefore∫ b

a

w2(t) dt = 0

∫ b

a

tw2(t) dt = 0 . (20)

Now, let us introduce the functions defined by

w1(t) =

∫ t

a

w2(s) ds and w(t) =

∫ t

a

w1(s) ds =

∫ t

a

(t− s)w2(s) ds .

According to (20), we have w1(a) = w1(b) = w(a) = w(b) = 0. Integrating twice by parts, it
comes ∫ b

a

w2(t)v(t) dt =

∫ b

a

w(t)v′′(t) dt.

This last integral must be nonpositive (according to (19)) for every function v concave, i.e., for
every smooth function v such that v′′ ≤ 0. This guarantees that w ≥ 0. At last a and b are
triple roots of w because w′′(a) = w2(a) = 0 by continuity of the gradient. This finishes the
proof of the Lemma. �

Let us come back to the proof of Theorem 3.3. We have already seen that u2
τ −σ2u2 = Hσu2

on the strictly convex parts of ∂Ω∗. Now, let us consider a segment Σ. On such a segment
X.n is constant (equal to the distance, say δ, of the origin to the line supporting the segment).
Therefore, according to (16), we have∫

Σ

[u2
τ − σ2u2]X.ndt = δ

∫ b

a

w′′(t)dt = w′(b)− w′(a) = 0 = σ

∫
Σ

Hσu2X.nds.

Therefore, the relation ∫
∂Ω∗

u2
τ − σ2u2X.nds = σ

∫
∂Ω∗

Hu2X.n ds

holds true on the whole boundary and we can conclude as in the case without convexity con-
straint. �
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Remark 3.5. The numerical simulations of the next section suggest that the optimal domain is
not exactly C3 regular. It seems that its boundary has two singular points where the diameter
is achieved. Nevertheless, it is straightforward to check that Theorem 3.3 remains true if we
replace the C3 regularity assumption by the following weaker assumptions that could be true
for our optimal domains:

• the boundary of the optimal domain is C3 except at a finite number of points;
• the curvature H is bounded;
• the eigenfunction u belongs to C1(Ω).

4. Numerical simulations

In Section 3, we showed among other things that the disk is never a local maximizer of σk(Ω)
under a diameter constraint. This leads us to provide some numerical computations in order
to find some approximations of these maximizers in the plane. We point out that the diameter
constraint is difficult to handle in a numerical point of view: this comes from the fact that on
regions where this constraint is saturated not all arbitrarily small perturbations are admissible.

A good tool for investigating the diameter constraint in the convex setting is the support
function. This is why, in a first stage we consider the maximization problem in the class of
convex sets. The support function of a set Ω ⊂ R2 is defined for each θ ∈ [0, 2π] by

p(θ) = max
x∈Ω

x · (cos θ, sin θ),

where the dot · denotes as usual the Euclidean scalar product. An intuitive interpretation of p(θ)
is the distance from the origin to the tangent orthogonal to θ (see Figure 1 for an illustration).
With this geometric meaning of the support function in mind, it is obvious that the diameter or
the width of Ω in the direction θ is given by p(θ) + p(θ + π).

p(θ1)

p(θ2)

p(θ3)

Figure 1. Geometric interpretation of the support function.

The support function has been successfully used in the approximation of optimal shapes
under convexity constraint (see, e.g., [3, 6, 1]). In the paper [3], the authors investigate various
functionals related to the volume and perimeter. The work [6] is devoted to the case of Dirichlet-
Laplace eigenvalues and in [1] the method is extended to the dimension three and multiple case
tests are provided. If p is the support function of a strictly convex domain Ω then, as recalled
in these works, a parametrization of ∂Ω is given by{

x(θ) = p(θ) cos θ − p′(θ) sin θ,

y(θ) = p(θ) sin θ + p′(θ) cos θ.
(21)

This shows immediately that the radius of curvature is ρ = p+p′′ and the convexity of Ω implies
p + p′′ ≥ 0. Conversely, a classical fact recalled in all these cited works is the fact that a C1

and 2π periodic real function p which satisfies (in the sense of distributions) p + p′′ ≥ 0 is the
support function of a unique convex shape Ω ⊂ R2.

In all the works cited above, the support function is discretized with the help of a truncated
spectral decomposition (namely, Fourier series in dimension two and spherical harmonics de-
composition in dimension three). This makes easier the treatment of some constraints, like the
constant width constraint, but forces the support function to be smooth. On the other hand, as
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already seen in [19], when dealing with spectral functionals under convexity constraints, mini-
mizers often tend to contain segments in their boundary. In such cases, the support function is
not smooth anymore and then its parametrization through spectral decomposition is no longer
appropriate. This is why in the following we choose a different approach which can handle
discontinuities in the derivative of the support function.

Consider N a positive integer and θi = 2πi/N , i = 0, ..., N − 1 angles in [0, 2π]. Then, the
support function will be discretized by considering its values pi = p(θi), i = 0, ..., N − 1 at
the angles chosen before. The first and second derivatives of p are approximated using finite
differences in the following way:

p′(θi) =
pi+1 − pi−1

2h
and p′′(θi) =

pi+1 + pi−1 − 2pi
h2

, (22)

for i = 0, ..., N − 1 (indices considered modulo N) and h = 2π/N .
The computation of the Steklov eigenvalues is done using the software FreeFEM ([15]) while

the constrained optimization is done with the algorithm IPOPT ([24]). In the FreeFEM software
the domain is meshed and finite elements are used in the computations. The main components
of the optimization algorithm are shown below.

Convexity and Diameter constraints. The convexity constraint is imposed pointwise for
each θi, that is,

p(θi) + p′′(θi) ≥ 0 i = 0, ..., N − 1.

Taking into account the second equality of (22) then yields

pi +
1

h2
(pi+1 + pi−1 − 2pi) ≥ 0, i = 0, ..., N − 1,

which can be translated into a set of N linear inequality constraints on the variables pi, i =
0, ..., N − 1.

We have seen before that diameter constraints can be imposed by controlling the quantity
p(θ) + p(θ+π). In practice, we consider N even, so that θi +π = θi+N/2 with indices considered
modulo N . The fact that the shape has diameter at most d is expressed by

pi + pi+N/2 ≤ d, i = 0, ..., N/2− 1.

In order to have diameter exactly equal to d, we impose the reverse inequality for one pair of
opposite points:

p0 + pN/2 ≥ d.
At last, we obtain a set of N/2 + 1 linear inequality constraints.

Construction of the mesh. The inputs of the objective function are values of p0, ..., pN−1.
Starting from these values and using (21) we can find points Qi(x(θi), y(θi)) by approximating
the derivatives p′(θi) using centered finite differences as shown above (see (22)). The points Qi
form a polygonal line whose interior is meshed in FreeFEM.

Note that the meshing algorithm in FreeFEM will give an error if the polygonal line con-
tains self-intersections. In case such an error appears we reject the current computation. The
algorithm IPOPT which deals with the optimization will eventually produce admissible vectors
when imposing the convexity constraints shown above.

The discretization points may be close on the boundary of ∂Ω, especially close to eventual
angular points. On the other hand, on parts which are almost flat, the discretization points will
be rather sparse. In order to have a good finite element approximation the quality of the resulting
mesh is improved using the command adaptmesh with parameters hmax=0.05*D, nbvx=50000,
iso=1 refering to the maximal size of triangles, maximal number of vertices and the quality of
the mesh. For more details, one should consult the FreeFEM documentation.

Eigenvalue problem and gradient of the objective function. Once the mesh is con-
structed, FreeFEM allows us to solve the eigenvalue problem starting from the variational for-
mulation using finite elements. It is possible to recover the approximate eigenvalue and the
associated eigenfunction. Concerning the finite element setup, P2 finite elements are used for
solving the eigenvalue problem and P1 elements are used for evaluating the shape derivative
(which contains derivatives of P2 functions). In the discrete setting, the eigenvalue σk(Ω) is a
function of the parameters pi, i = 0, ..., N − 1:

σk(Ω) ≈ Fk(p0, ..., pN−1).
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In order to use a gradient based optimization algorithm, it is necessary to compute the gradient
of Fk with respect to each one of the parameters. The classical method to handle this is to use
the shape derivative formula given in Theorem 2.4. Then, for each one of the parameters pi, we
look at the boundary perturbation Vi obtained when considering perturbations pi+δt as δt→ 0.
It suffices to put the perturbation Vi in the shape derivative formula to obtain the gradient with
respect to the variable pi. A straightforward computation shows that a perturbation of the form
pi + δt induces a vector field Vi such that Vi.n is equal to 1 at Qi and is 0 for every other point
in the discrete boundary. Define χi to be a function which is piecewise affine on the segments
QiQi+1 and which is 1 at Qi and 0 at Qj for j 6= i. Then the gradient of Fk with respect to pi
is approximated by

∂Fk
∂pi

=

∫
∂Ω

(
|∇uk|2 − (∂nuk)2 −Hσku2

k

)
χidσ

where, as usual, σk, uk denote the k-th eigenvalue and associated eigenfunction and H denotes
the curvature. The FreeFEM command curvature is used to approximate the discrete curvature
of the polygonal line.

Optimization algorithm. As already mentioned before, the optimization is done in FreeFEM
using the algorithm IPOPT. The inputs are the function Fk and its gradient, as well as the matri-
ces involving the linear discrete constraints associated to the convexity and diameter constraints.
In addition to the linear constraints, pointwise positivity constraints are imposed on pi, since we
can assume that the origin is strictly inside our shape. The discretization uses N = 200 angles
in [0, 2π] and the diameter is fixed to D = 2.

Results and remarks. The algorithm is run for 1 ≤ N ≤ 7 and the resulting numerical
optimal shapes are represented in Figure 2. The numerical results give rise to the following
remarks:

• As predicted by the theoretical results, in each case the optimal eigenvalue is multiple:
σk(Ω∗k) = σk+1(Ω∗k)

• In all the numerical results obtained the convexity constraint is saturated in some region,
giving rise to segments in the boundary. Note that the direct discretization of the support
function proposed here manages to properly capture this phenomenon, which was not
the case for the Fourier decomposition used in [1].

• The diameter constraint seems to be saturated only at the two antipodal points included
in the constraints. Moreover, angular points seem to be present at these antipodal points.

• The sequence of maximizers seems to become more and more flat as the index grows.
We discuss that point below.

σ1(Ω∗1)D(Ω∗1) = 2.13536 σ2(Ω∗2)D(Ω∗2) = 4.73269 σ3(Ω∗3)D(Ω∗3) = 7.33378

σ4(Ω∗4)D(Ω∗4) = 9.96641 σ5(Ω∗5)D(Ω∗5) = 12.5721

σ6(Ω∗6)D(Ω∗6) = 15.1812 σ7(Ω∗7)D(Ω∗7) = 17.8068

Figure 2. Results of the optimization algorithm: maximization of σk(Ω)D(Ω)
under convexity constraint.
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Remark 4.1. The numerical results above suggest that the sequence of optimal domains con-
verges to a segment. This would be really interesting since it would differ with the case of
Dirichlet eigenvalues where it is shown in [11] (perimeter constraint) and in [6] (diameter con-
straint) that the sequence of optimal domains converges to a disk (or even a ball in any dimension
in the second case). A possible strategy to prove that fact can be by contradiction:

(1) Assume that the sequence of optimal domains (Ω∗k)k converges for the Hausdorff metric
to a convex open set Ω∞ with diameter d0. Then, provide a uniform control of the
difference of eigenvalues of the kind 0 ≤ σk(Ω∗k) − σk(Ω∞) ≤ ε(k) with ε(k)/k → 0 as
k →∞.

(2) Now fix a smooth convex set ω (like an elongated ellipse) of diameter d0 and with a
perimeter such that P (ω) < P (Ω∞). Optimality of Ω∗k then yields

σk(Ω∞) + ε(k) ≥ σk(Ω∗k) ≥ σk(ω).

(3) Finally apply Weyl’s law for Steklov eigenvalues that writes (see [16])

σk(Ω) ∼ 2πk

P (Ω)
as k →∞ (23)

to get P (Ω∞) ≤ P (ω), which is a contradiction.

The flaw of this strategy is that Weyl’s law (23) is only known for smooth open sets, see the
discussion in [16]. Now, we have no guarantee that the limit convex domain Ω∞ would be
smooth!

Alternative approach and the non-convex case. The method described above imposed
rigorously the convexity and diameter constraints. As can be seen in Figure 2 the numerical
maximizers seem to saturate the diameter constraint at exactly two points. This suggests a
posteriori that a simpler parametrization should work. Moreover, it seems to be enough to only
impose the diameter condition for exactly two points.

One may consider the segment [−D/2, D/2] × {0} in R2 and the family of shapes defined
as regions contained between the graphs of two functions f1, f2 : [−D/2, D/2] → R, f1 ≤ f2.
From a discrete point of view f1 and f2 are discretized at an equidistant family of points in
[−D/2, D/2] with values p1, ..., pN and q1, ..., qN . The convexity of f1 and the concavity of f2

translate to the discrete inequalities

fi−1 + fi+1

2
≥ fi,

qi−1 + qi+1

2
≤ qi, i = 1, ..., N

with the convention p0 = pN+1 = q0 = qN+1 = 0. Given values pi ≤ qi, i = 1, ..., N , the discrete
domain is meshed in FreeFEM and the Steklov eigenvalue problem is solved using finite elements
as before. The computation of the gradient with respect to the variables pi, qi is similar to what
was done with the support function. One only needs to keep in mind that a perturbation in
these variables amounts to a perturbation in the y direction of the normal to the boundary of
Ω.

The resulting numerical algorithm gives exactly the same results as those shown in Figure
2. Moreover, even if the diameter constraint is not imposed during the optimization at other
points than the endpoints of the segment [−D/2, D/2], the numerical shapes obtained verify the
diameter constraint everywhere.

This alternative method has the advantage that it can also handle the non-convex case.
Indeed, if we do not impose that f1 is convex and f2 is concave during the optimization process
we obtain the non-degenerate shapes shown in Figure 3. Note that for the first eigenvalue,
the result is a slight loss of convexity near the two corners observed in the domain. However,
the corresponding maximal eigenvalue is only a bit larger than the one obtained imposing the
convexity constraint. For k ∈ {2, 3} we observe obvious departs from the convexity near the parts
where the results in Figure 2 contained segments in the boundary. One may note similarities
between the maximizer of σ2(Ω)D(Ω) and the maximizer of σ2(Ω) under area constraint shown
in [5], but the case k = 3 is completely different.

The same remarks as in the convex case hold: the k-th eigenvalue is multiple at the optimum,
the diameter constraint is saturated at exactly two points and the minimizers become flatter as
k grows. The fact that the numerical algorithm does find non-degenerate shapes suggests that
the existence of a maximizer should hold even without the convexity assumption.
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σ1(ω∗1)D(ω∗1) = 2.13623 σ1(ω∗2)D(ω∗2) = 4.92925 σ1(ω∗3)D(ω∗3) = 7.76108

Figure 3. Numerical results obtained using the alternative method for k ∈
{1, 2, 3}: maximization of σk(Ω)D(Ω) without the convexity constraint.
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nan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, email: florent.nacry@univ-perp.fr


	1. Introduction
	2. Existence, optimality conditions
	2.1. Existence
	2.2. Derivative of Steklov eigenvalues
	2.3. Shape derivatives of the diameter

	3. Qualitative properties
	3.1. Case of the ball
	3.2. Multiplicity

	4. Numerical simulations
	References

