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for Phenotypic Prediction in Plants 

Sebastien Alameda (1), Jean-Pierre Mano (2), 

Carole Bernon (1)1, Sebastien Mella (1) 

(1) IRIT, Université de Toulouse, Toulouse, France

(2) Brennus Analytics, Paris, France

Abstract. One of the means to increase in-field crop yields is the use of 

software tools to predict future yield values using past in-field trials and plant 

genetics. The traditional, statistics-based approaches lack environmental data 

integration and are very sensitive to missing and/or noisy data. In this paper, 

we show that a cooperative, adaptive Multi-Agent System can overcome the 

drawbacks of such algorithms. The system resolves the problem in an 

iterative way by a cooperation between the constraints, modelled as agents. 

Results show that the Agent-Based Model gives results comparable to other 

approaches, without having to preprocess data. 

Keywords: Adaptation, Environmental data, Genomics, Multi-Agent Systems, 

Phenotypic prediction 

1 Introduction 

Today’s agriculture is facing a major challenge of a rapidly changing world. The 

increasing of the Human population, extreme weather conditions, soil retrogression 

and degradation, inputs contamination, irrigation controversy are only a few examples 

of issues the agriculture has to cope with in order to be able to provide enough food 

for the planet [1]. 

For grain breeders, creating new plant varieties with qualities such as strong 

robustness, improved fitness to the climate or less water consuming, is more than ever 

becoming a necessity. The phenotypic plant selection is the traditional way to proceed 

and entails to cross different seeds to produce individuals that are appraised by their 

physical appearance in the field. This way, unfortunately, requires a considerable 

amount of time as several years are needed to create a new variety. Therefore, for the 

past few years the plant breeders have been seeking tools which would rather use 

genetic data to predict, thanks to mathematical models, the phenotypic potential of a 

plant [2]. However, statistical models used in that purpose are still struggling to take 

into account the environmental parameters such as weather conditions and 

pedological data, known to have a definite impact on the plant development [3]. The 

aim of the work presented here is to build a system able to predict a phenotypic value 

of a diploid maize seed by integrating both genetic and environmental data. This 

prediction has to be supported by raw data, gathered by seed companies from in-field 

maize experiments, which are both noisy and sparse. 

1 Corresponding author : carole.bernon@irit.fr 



In the following section, the phenotypic prediction and its context will be 

presented. Section 3.1 will express the problem of specification for which a solution 

will be proposed in section 3.2. The outcomes of tests realized to evaluate our method 

will be presented in section 4. 

2 Application Domain 

In this study, only phenotypic prediction for diploid maize is considered. A maize 

hybrid is obtained by crossing two distinct lines. A line being a homozygous variety 

obtained after 7 generations of self pollination, leading to a degree of homozygosity 

(i.e. similarity between the two chromosomes of a same pair) reaching more than 

99%. A high degree of homozygosity implies a reduced genetic variety and thus, lines 

are often inappropriate for commercial purposes. However, by combining cautiously 

chosen lines, it is possible to produce heterozygous hybrids that exhibit the selected 

characteristics from both parents. 

Because environmental data instil non linear parameters, and because classical 

statistical tools developed so far are different flavours of linear models, using these 

methods in plant breeding selection has some limitations. Our goal is to achieve a 

prediction under constraints, a prediction being the estimated value for a phenotypic 

trait (for example the yield), and the constraints being the values or value ranges 

defined on genomic and/or environmental variables. 

2.1 Genomic Selection 

To pursue varietal improvement, one needs to integrate an ever-growing amount of 

data into more and more accurate models. In plants, causal information comes from 

three different sources: 

• the individual genetics (G effect);

• the environment (E effect);

• the non-linear interaction between the two firsts (G×E effect).

Recently, the development of sequencing technologies, like DNA microarray for

instance, has given an easier access to the entire genetic code of an individual. This 

access to whole genome information has allowed the emergence of the genomic 

selection concept [4]. At the same time environmental statements integrate more and 

more accurate reports on weather conditions but also crucial information about soil 

quality. Finally, growing maize in both hemispheres makes possible to carry out 

thousands of trials adding every six months structured phenotypic measures. 

From the three above-mentioned sources, it is well established that while animal 

phenotype is more dependent on genetics (G) and less sensitive to the environment, 

the plant phenotype is equally dependent on the environmental effect (E effect = soil 

and weather) and the genetics (G). This makes plants behaviour more dependent on 

their interactions between their genetics and the environment (G×E effect) [3]. The 

importance of the environment through E and G×E effects requires a strong market 

segmentation and compels all seed companies to select varieties for specific 

environments. 

In genomic selection, crossings serve to establish the best possible correlation 

between genomic and phenotypic data giving a genetic index used to identify 



individuals with the highest potential. Only those individuals will be evaluated 

in-field allowing to speed the production of new varieties up. 

2.2 Data Variety 

The dataset contains three kinds of data: genetic, environmental and agronomic data. 

The genetic data come from two different seed companies (Ragt2n and Euralis) 

using the same DNA chip containing more than 55,000 SNP markers evenly spaced 

across the 2.3 megabases long Maize genome. SNPs are small genetic variations, 

usually occurring in conserved regions of the genome within a population. As such, 

they can be used as DNA fingerprints to characterize a given individual. The 

genotyping characterization of an individual can either be done directly on itself or 

can be inferred from its parents using information in its pedigree. 

Environmental data contain two subtypes of data. The first contains weather data 

collected from MeteoFrance covering five numerical parameters measured daily on 

each experimental location (lowest and highest temperatures, rainfall records, hours 

of sunshine and wind velocity). The second subtype of environmental data includes 

pedological data which mainly give information about the soil moisture. 

Agronomic data are made of around twenty numerical parameters (either 

continuous or discrete) which quantify agronomic traits such as plant robustness at 

different developmental stages, latency, percentage of parasite-infected plants, 

parasitic lodging (i.e. when a plant collapses because of a parasite), lodging (i.e. when 

a plant collapses because of its own weight and/or from the wind), seed moisture 

level, yield (quintals per hectare), starch rate. 

Because some developmental stages are more sensitive to stress than others (the 

flowering stage for instance), informations like sowing and harvest dates are used to 

synchronize environmental and agronomic data. 

Experimental and climatic hazards are not explicitly known in the data, although 

they are a major cause for missing information. 

2.3 Models used for Prediction 

Currently, varietal creation programs have a keen interest in association genetics. The 

aim of this approach is to highlight, within a very heterogeneous population, a 

relation between genetic differences and an observable feature. The strong reduction 

of genotyping costs and innovative methods improving the power of statistical tests 

[5] [6] make it possible to consider from now on an analysis at the genome scale. The 
markers thus identified can then be used to select and create by hybridization the 
plants showing the best features [7] [8].

Besides, high-throughput genotyping has also enabled the development of a new 

approach called genomic breeding initially described for animal genetics [9] [4]. 

Unlike association genetics, no statistical tests are carried out to determine genome 

areas which are significantly associated with the phenotypic trait studied. On the 

other hand, genomic breeding enables to calculate a molecular index which expresses 

the genetic value of the plants which are candidates to the breeding. This genomic 

breeding is made up of two successive steps. The first step consists in simultaneously 

analyzing a set of markers covering the genome in a regular way in order to estimate 

their effects for a given feature. This is done within a population of reference, more 

homogeneous than in association genetics, in which plants are genotyped and 

phenotyped. The second step consists in adding up the effects of the markers to 

 



calculate a genetic potential for new plants, genotyped only, for the studied feature. 

The plants with the best potential are selected and then tested in fields.  

Vegetal genomic breeding [10] seeks to transpose the methods efficiently used in 

the animal world [11]. However, animals being much less sensitive to their 

environment than plants, vegetal genomic breeding is hampered by the combinatorial 

explosion of the possible interactions between genome and environment [12]. The 

concept of inference of network, suggested by Meyer for deciphering genomic data 

[13], offers a preliminary answer and an interesting perspective by carrying out a 

three-variable basis for analysis. This enables to study not only the correlations but 

especially the distinctions between contingent fluctuations or dependency 

relationships and more especially relations of causality. 

To conclude, association genetics and genomic breeding are two complementary 

approaches in the varietal selection domain. These new tools, coming from 

information sciences, are becoming essential to give meaning to today data. They will 

become even more vital in the near future because of the foretold increase in 

technological capacities (high-throughput DNA microarrays, whole genome 

sequencing). Moreover a political will exists for improving the adequacy between 

selected varieties and environmental constraints which will become dominating 

(parasites, smart management of water, inputs reduction...). However, today, no 

standard method accepted by the scientific community exists for calculating genomic 

valuations based on tens of thousands markers. Using ad hoc statistical models does 

not enable to take into account the increase of the volume of data, their noisy and 

lacunar nature, climate changes and political constraints. The industrial world still 

seeks new methods for processing these data volumes and anticipating their growth. 

Pioneering algorithms are then needed to autonomously process these huge 

amounts of data while taking into account all the inherent complexity and dynamics 

of exogenous and endogenous changes. 

Systems carried out have then to be able to self-adapt [14] thanks to skills called 

self-* [15], among which are found self-organization (the system changes its 

organization while functioning without any explicit external control [16]), 

self-stabilization or homeostasis (the system always finds a stable state [17]), 

self-tuning (the system is able to adapt its parameters [18]). If these properties are 

found in many fields (as can be seen with the SASO conference2), they can be 

considered as inherent to most of the multi-agent systems (MAS) according to their 

structuring [19]. Agents are defined as autonomous entities able to perceive, make 

decisions and act upon their environment [20]. A system of those interconnected 

software agents is able to solve complex problems. The system used in order to solve 

this problem is based on the AMAS (Adaptive Multi-Agent System) theory [21], 

which provides a framework to create self-organizing, adaptive and cooperative 

software. The agents in the system, by modifying their local properties (adaptive) and 

the interactions between them (self-organizing), modify also the global function of 

the system. Therefore, the autonomy and adaptation abilities of the agents composing 

an AMAS, their dynamic interactions and the emergence of a collective behavior 

make such a system an appropriate candidate for solving the problem at hand. These 

self-organization abilities would enable the system to explore only subsets of 

solutions which are a priori relevant, in contrast with the huge combinatorial nature 

of the whole problem. 

2 www.saso-conference.org 



3 Problem Expression and Solving Process 

3.1 Problem Expression 

The goal of the model is to predict the γ yield value of a maize crop given a set xi of n 

constraints on various genetical and environmental traits. It can be assumed that  

γ = g(xi) + e (1) 

with g being a continuous function and e being the error term. 

The assumed continuity property of g allows a local, exploratory search of the 

solution. In other terms, it removes the need of finding a global, search space wide 

definition for g. The means we offer to find a solution is to iteratively fetch relevant 

data on previously measured in-field tests from a database. To be deemed “relevant”, 

a datum must match the constraints expressed by the xi vector.  

As discussed above, the relevant data {Di} are extracted from a database of past 

in-field trials on the basis of the constraints defined by the xi parameters. As the 

database typically holds more than a million of such data and can theoretically 

contain much more, for scalability purposes only a few of them is loaded into the 

memory at each iteration. Each datum Di that constitutes the dataset is itself a set 

encompassing, for an observed phenotype, all phenotypic, environmental and 

genomic data related to this phenotype. In particular, the datum Di holds a γi value for 

the phenotypic trait that is the goal of the prediction. 

We see this problem as a distributed optimization one, where each constraint will 

be individually released or tightened. One of the challenges that the system must 

address is to decide which constraints should be released or tightened, i.e. the 

tolerance to add to each constraint, in order to reach a satisfactory solution. The 

solution satisfaction is defined from the users’ point of view. Based upon an analysis 

of their needs, this satisfaction is expressed with two criteria, the quality of the 

solution and its trustworthiness. Since a solution is defined as a dataset the fq and ft }, 

in the ideal case, all γi would be equal to one another (consistent solution) and the 

data set would contain a large number of data (trustworthy solution). Other criteria, 

such as the specific presence or absence of certain elements could be also taken into 

account, for example demanding a monomodal solution, should the need arise. 

Those criteria can then be formalized as two functions that must be minimized: 

• A function fq that evaluates the quality of the solution as the range taken by the

predicted values {γi}. The lower this range, the lower the value of fq({Di}).

• A function ft that evaluates the trust given to the solution provided. The more data

Di are involved in the solution, the lower the value of ft({Di}).

With this definition, the goal of the prediction system is expressed as providing a

solution {Di} as close as possible to the absolute minimum of both fq and ft. 

Linking back to the equation (1), g(xi) may then be defined as the average value 

of the {γi} and e as a term bounded by the range of {γi}. 

3.2 The Solving System and its Environment 

The Multi-Agent System considered here contains three different kinds of agents: 

 



• n Constraint Agents, in charge of tightening or releasing the constraints defined in

section 3.1. Each agent is responsible for one constraint related to a specific

variable. The goal of each agent is to minimize at the same time its estimation of

the fq and ft functions, calculated on the only basis of this agent’s actions and the

tolerance it applies on the constraint.

• 2 Evaluator Agents in charge of evaluating the solution provided by the Constraint

Agents and giving them a hint on the future actions they have to take in order to

make the solution more satisfactory. At each step, they provide the Constraint

Agents with the current actual value of the fq and ft functions.

• 1 Request Agent, in charge of synthesizing the constraints states at each step and

requesting a database to fetch a {Di} dataset.

3.3  Iterative Process 

The resolution is iterative. Figure 1 illustrates the workflow of one iteration. 

At each step, each Constraint Agent (1) sends a constraint to the Request Agent 

(2). This Request Agent uses the constraints received to fetch a dataset  {Di} from 

the database (database not shown in this figure). Evaluator Agent (3) receives this 

dataset {Di}, evaluates the validity of the solution with the function it is linked to (fq 

or ft), and sends this value to each Constraint Agent (1). 

Each Constraint Agent (1) decides amongst its possible actions (tightening, 

releasing or leaving as is the constraint it is responsible with) as detailed in section 

3.4. 

The current restriction state of the constraints are aggregated by the Request 

Agent (2) and used as a filter to find a new dataset {Di}. This dataset consists of 

previously found data matching the new constraints and newly found data, also 

matching these new constraints, from the database. This way, the system is able to 

ignore the missing data by including in the datasets only the existing, relevant data. 



Figure 1: A view of the system architecture exhibiting the information flow between 

the agents 



3.4 Behaviour of Constraint Agents 

The behaviour of an agent is usually modelled as a cycle with 3 steps: 

• Perception: the agent gathers information about its environment.

• Decision: the agent chooses the action to take for improving its situation.

• Action: the agent performs the action chosen during the Decision stage.

Concerning the system we are building, the Constraint Agents use a slightly

modified version of this cycle to adjust the constraints they are related to, in which 

the Decision is made in two stages, the Planning stage and the actual Decision stage. 

Its cycle is unfolded as follows:  

3.4.1 Perception 

In this step, a Constraint Agent collects any information necessary for the following 

stages: 

• The constraints states linked to other Constraint Agents;

• {Di}, the dataset extracted from the database at the previous iteration;

• fq({Di}), the solution quality observed from the previous iteration;

• ft({Di}), the solution trust from the previous iteration;

• 1−t
Qp , its previous contribution to the solution quality;

• 1−t
Tp , its previous contribution to the solution trust. 

The Constraint Agent then updates its contribution values (1a on Fig. 1). It tries to 

anticipate a constraint tightening or releasing for the constraint it is responsible for, 

all other constraints remaining the same, until this changes its estimation of fq or ft. 

These anticipations enable the Constraint Agent to evaluate its contributions, at time 

t, to the solution quality and trust: 
1−t

Qp  and 
1−t

Tp . These contributions are defined 

as a weighed sum of its contribution 
1−t

Qp (respectively 
1−t

Tp ) at the time t−1 and its 

current perceptions:  

1−t
Qp = α. 1−t

Qp + (1 - α).Δfq (2) 

and 

1−t
Tp = α. 1−t

Tp + (1 - α).Δft (3) 

where Δfq and Δft are the highest differences respectively of the values fq({Di}) and 
ft({Di}), between their observation at the time t−1 and their estimation upon the 

various actions the agent is able to take. α is an arbitrary smoothing parameter 
between 0 and 1 which is fixed for the whole resolution. 

Finally, the Constraint Agent compares the actual values of fq({Di}) and ft({Di}). 

As the goal is to find a point as close as possible to the absolute minima of fq and ft, 

the highest value between those two defines the function to be minimized in this step 

(1b). 

 



3.4.2 Planning 

The Constraint Agents send their contribution values to one another (1c). This defines 

an order in which the Constraint Agents will be allowed to decide and act. The 

Constraint Agent with the highest contribution, in regard to the Evaluator to help, 

decides first, and communicates its decision to the other Constraint Agents. The 

second agent with the highest contribution acts, taking into account the new state of 

the first agent, then communicates its decision to the other Constraint Agents, and so 

on until the last agent takes its decision (1d). This process is the Synchronization 

mentioned in Fig. 1. 

3.4.3 Decision 

A Constraint Agent decides whether it has to tighten, release or leave as is the 

constraint it is responsible for. In order to do so, it has at its disposal, at a resolution 

step t: 

• all the information observed at the Perception stage;

• the updated constraint states sent by the agents with higher contribution values.

The agent chooses the action that minimizes the function chosen at the Perception

stage, without worsening the other one. For example, if the Quality Evaluator is the 

chosen Evaluator Agent and Trust Evaluator is the other one, it chooses the action 

that is expected to minimize fq({Di}) while ensuring that ft({Di}) remains less than or 

equal to the actual current value of fq({Di}) (1e and 1f). If no action qualifies, the 

agent leaves the constraint as it is. 

3.4.4 Action 

The Constraint Agent redefines the new constraint as it was chosen during the 

decision stage (1g). It then sends its new constraint to the Request Agent, which 

synthesizes the constraints and sends a request to the database to obtain a new dataset. 

This dataset, along with the data that still match the new states of the constraints, 

constitute the new {Di} set. This new set is sent to the Evaluator Agents, and this 

begins a new iteration. 

3.5 Datasets 

At each step, each datum Di in the database can be in one of these three states: 

• Active: the datum is loaded into memory and, at each resolution step, gives a

predicted value γi.

• Inactive: The datum was loaded into memory once but does not provide predicted

values, as it does not match one of the current constraints.

• Existing: The datum exists in the database but has not currently been loaded into

memory.

This model allows an iterative enrichment of the data pool. As the constraints

become more precise regarding the problem to be solved, the Inactive + Active pool 

size tends to remain constant due to the fact that every datum matching the constraints 

has already been loaded into memory and no more data are loaded from the Existing 

data pool. 



3.6 Convergence Measurement 

The resolution ends when the dataset {Di} provided at the end of each resolution step 

is definitely stable. To guarantee this stability, two conditions must be met:  

• Every Constraint Agent estimates that the optimal (from its own point of view)

action to take is to not modify its value.

• The Active + Inactive dataset size is stable, i.e. no more data are recruited from

the database.

In those conditions, the system has reached a fixed point and the convergence process 

is complete. At this point, the data matching the constraints constitute the solution 

provided to the user. 

4 Experiments and Results 

As seen above, the convergence is characterized by the stability of the constraints and 

the stability of the Inactive + Active dataset size. The goals of the test campaign 

carried out are to show:  

• those two convergence conditions;

• that the convergence speed and the quantity of data used make this AMAS

solution suitable for real-life use;

• that the solutions provided by this prototype are sufficiently promising to validate

the AMAS approach to solve the phenotypic prediction problem.

The experimental protocol set up is the random choice of several leave-one-out

test cases. The data used are real-world in-field maize data, provided by seed 

companies.  

4.1 Data Characterization 

Since the data are provided by seed companies and protected by non-disclosure 

agreements, only raw estimations can be given for the size of the datasets. These data 

include about: 

• 300,000 maize individuals with their pedigree and/or genomic data;

• 30,000,000 yield and other phenotypical data of in-field trials in the past years for

these individuals;

• 150,000 environmental (meteorological and pedological) data for these trials;

• 55,000 genomic data for the individuals whose genome is known.

Those data make up more than 1,000,000 datasets. They are essentially sparse

with respect to the various dependent variables in this problem. Indeed, the 

phenotypical measurements result from the interaction of a given maize individual, 

identified by its genomic data, and a specific environment, which can be uniquely 

determined by a given location and year, in which interfere the various environmental 

data specified above. If one considers for instance that these data measurements are 

arranged in a rectangular matrix, with individuals per rows and environments per 

columns, then the resulting matrix will be extremely sparse, i.e. with a high ratio of 

 



zero entries corresponding to unobserved data. This sparsity aspect is intrinsic to the 

problem, simply because it is infeasible to grow every year in every location all the 

existing maize individuals. With respect to the database considered here, in the case 

of the yield values (which is one of the most frequently collected data), the ratio of 

the number of measured values to the total number of entries in this matrix is less 

than 0.7 percent. [22] recalls either techniques that try to input the missing data in 

some way, or methods that are designed to work without those missing input values, 

the first ones being sensitive to the ratio of observed to missing data, and the latter 

presenting some risk of overfitting. The AMAS method we consider here belongs to 

the second class of methods, and presents the additional advantage that it does not 

suffer from overfitting issues, since the method itself aims at selecting a much denser 

subset of values that are relevant for a given problem. 

Seed-breeders are usually interested in a sample of a few variables amongst the 

available ones when making a request to get a prediction. They gave us a test scenario 

consisting of 10 of those variables to be used as constraints in the following 

experiments. 

4.2 Convergence Results 

In the following figures, a sample of the most representative results are shown. 

Figure 2 shows the convergence speed of the tolerance of a single constraint, 

abritrarily chosen amongst one of these 10 constraints, upon several experiments. It 

exhibits that a limited number of steps is needed to reach a fixed point, according to 

the constraints strength. The tolerance converges to different values due to the fact 

that this particular constraint may be of more or less importance depending on the 

problem. It can be seen that the tolerance evolves by stages. This pattern can be 

explained by the fact that a Constraint Agent tightens its constraint only if the number 

of Inactive+Active data still matching the constraint with the new tolerance is 

sufficient. As this number steadily increases over time, the constraint can be tightened 

only when a certain threshold is reached. For example, for Experiment 2, the 

tolerance remains constant from step 105, which means that from this step on, the 

Constraint Agent related to this constraint decides at each iteration to leave the 

tolerance as is. However, the other constraints –not shown in this figure– are still able 

to adjust their tolerance. 

Figure 3 shows the total number of data used against the simulation time, in 

iteration steps. This figure completes Fig. 2 and allows to see when the fixed point is 

actually reached. For example, for experiment 2, the fixed point is reached at 108 

steps. The other constraints account for the 3 steps difference in reaching the fixed 

point between Fig. 2 and Fig. 3. Those results exhibit that less than 1% of the 

database is needed for the system to reach its fixed point and return a prediction to the 

user in less than 200 steps. 

 



Figure 2: Convergence of a single constraint upon several experiments. Each colored 

line represents one experiment 

Figure 3: Convergence of the Inactive+Active dataset size upon several experiments 

4.3 Prediction Results 

In order to evaluate the AMAS algorithm performance to predict maize hybrid yield 

under environmental constraints, predicted yield values were compared to in-base 

recorded values. For each test, the set of constraints is automatically extracted from 

the database and is specific for each hybrid/trial couple. 

Because our approach builds a new predictive model at each test, it is innately 

more related to adaptive data mining than model learning. Thus a classical cross 

 



validation on a subset of data generally used to evaluate the latter model was 

considered as irrelevant. Instead, a thousand leave-one-out tests were carried out to 

produce a posteriori yield predictions. 

Here is the modus operandi: At first, 200 individuals were randomly chosen, then, 

each individual underwent 5 randomly selected trials (a trial being selected only if 

containing the phenotype of the tested individual ), giving a thousand test cases. The 

significance of the samples was assessed by comparing the distribution of the yields 

from the samples and the entire database. 992 predictions out of 1000 data target have 

been tagged useful by the AMAS algorithm, meaning that the algorithm has 

converged on a yield prediction based on a dataset of a size greater than 9. The 

accuracy of the predictions has been evaluated with a special distinction on 

predictions considered as highly relevant by the AMAS algorithm: For each yield 

prediction an index of reliability is provided. This index is given by the ratio of the 

predicted yield standard deviation (SD) to the values of the predicted yields within 

the set of non-target data. A SD less than 10% of predicted value is considered highly 

relevant. 

Pearson correlation is acknowledged to be the best way to evaluate the prediction 

accuracy [23] [24] [25]. In our tests, Pearson correlation between predicted and real 

yield/data is 0.67. Pearson correlation on the ranks of the target data gives Spearman 

correlation which, regarding the goal of the project to select the more valuable 

hybrids, is very interesting to calculate. In our tests, Spearman correlation between 

predicted and real yield/data is 0.65. 

When carried on the 452 most reliable AMAS predictions (according to their SD), 

the Pearson and Spearman correlations are 0.79 and 0.78, respectively. Although 

based on a few target data, these first results have been considered very promising by 

the seed-breeders partnering the project as they are in the expected range according to 

state-of-the-art models. Due to confidentiality of agronomic data, we only present in 

Fig. 4 the non-parametric performance of AMAS prediction based on the 452 high 

confidence results, i.e. distribution of predicted yields regarding in-base recorded 

yields. 

 



Figure 4: Distribution of predicted yields against recorded actual yields 

5 Conclusion 

This paper has presented an approach to overcome the lacks of the traditional 

statistical approaches for phenotypic prediction. This approach is based on a 

Multi-Agent System which aims at predicting the value of a phenotypic trait of a 

given hybrid in given environmental conditions. Choices made when modeling these 

data (gathered from domain experts, i.e. breeders and meteorologists) enable to 

consider them as equally important and to associate an agent with each one of them. 

A prediction is seen as seeking a solution able to satisfy the constraints imposed on 

the different variables defining the hybrid and environment targeted, and therefore 

imposed on the agents representing these variables.  

By self-adjusting a tolerance on its constraint, each agent participates in the 

collective search of the solution, until trust and quality levels are found globally 

acceptable. 

The contribution of this work is twofold: first, the choices made when modeling 

the problem enable to consider noisy or missing data, the self-adaptive algorithm 

produced by the AMAS functions like a heuristic to efficiently explore the solution 

space; and, secondly, it is one of the rare algorithms able to predict the G×E potential 

of a plant by considering both genetic and environmental data which are not already 

present in the subset of data used for calibrating the model [26]. 

Therefore our model appears to provide tangible solutions to those main issues, 

giving hope to improve genomic selection.  
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