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Summary 

A theoretical and numerical study of the sound propagation in air-saturated porous media with 

straight pores bearing lateral cavities (dead-ends) is proposed. The straight pores can be 

considered as the main (Biot) pores. The lateral cavities are located at ”nodes” periodically spaced 

along each ”main pore” axis. The effect of periodicity in the distribution of the lateral cavities is 

studied and the low frequency limit valid for the closely spaced dead-ends is considered 

separately. It is shown that the absorption coefficient and transmission loss are influenced by the 

viscothermal losses in the main pores as well as their perforation rate. The presence of long or 

short dead-ends significantly alters the acoustical properties of the material. These depend 

strongly on the geometry (diameter and length) of the dead-ends, on their number per node and on 

the periodicity along the propagation axis. These effects are primarily due to low sound velocity in 

the main pores and on thermal losses occurring in the lateral cavities. The model predictions are 

compared with experimental results and examples of material design featuring periodically 

distributed dead-end pores are proposed.. 
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1. Introduction
1
 

A model accounting for partially opened or dead-

end pores in a material was recently developed [1]. 

Dead-end pores are closed at one end so that fluid 

flow does not take place in all the pores of the 

medium. The characteristic sizes of the pores 

considered range from a few hundred microns to a 

few millimeters so that viscous and thermal effects 

take place at audible frequencies. This model was 

used to successfully describe the acoustical 

properties of low porosity materials such as 

metallic foams and materials with surface dead-

end pores. It was found that the presence of dead-

ends had the effect of increasing the absorption 

coefficient at frequencies controlled by the 

average length of the dead ends.  

The present study aims at incorporating an 

additional feature to the dead-end pores: the fact 

that these dead-end pores can be periodically 

distributed along “main pores”. The main pores 

correspond to straight perforation through a 

material slab while the dead-ends are lateral 

cavities located at “nodes”. This study is 

motivated by the fact that structured materials 

with well-controlled microgeometry including 

dead-end pores can be designed and fabricated by 

making use of recent technologies such as 

precision machining or 3D printing. The designed 

materials slab could contain for example circular 

perforations. Some of the perforations should go 

in-through the thickness of the layer (main pores) 

while others should end inside it in order to create 

dead-end pores. Theoretical and numerical results 

are proposed and compared to first experimental 

results.  

Waves propagating in periodic structures are 

known as “Bloch waves”. Examples of such 

structures are ducts with periodically distributed 

lateral cavities or resonators (see references [2-4] 

for example). The periodicity introduces 

frequency stop bands. Most studies deal with the 

situation where the period is of the order of the 

wavelength in order to observe the stop bands 

(example - sonic crystals). The distances between 

the perforations and dead-ends considered in the 

present study are about 1 cm or less. Therefore, 

the wavelengths of the order of the period 

correspond to frequencies above 10 kHz. 

However, a stop band due to resonances of the 

lateral dead-ends are also predicted at low 

                                                      

 

 

frequencies, typically a few hundred Hz, much 

lower than the frequencies corresponding to the 

period. This constitutes the central originality of 

the present contribution. The dead-end pores 

considered here are simple closed cavities. 

However, the model can account for more 

complex geometries including Helmholtz 

resonators.  

The model presented here provides a simple tool 

for optimizing the material inner structure to 

achieve the desired acoustical properties. 

 

 

2. Analytical and numerical modeling 

A periodic arrangement of lateral cavities 
along a main pore are shown in Figure 1. Only 
the straight perforations going through the 
thickness of the material layer are visible on 
the surface. 
When the dead-ends are distributed periodically 

along the length of the main pores, two distinctive 

cases can be identified in the material behaviour. 

If the wavelength of sound travelling through the 

main pores is comparable to the distance between 

the dead-ends, stop and pass bands may appear. 

However, in the small pores of the order of the 

viscous and thermal boundary layers thicknesses, 

these effects will be severely affected by the 

strong viscous and thermal losses. In the case 

where the separation distance between the dead-

ends is much less than the wavelength, the 

effective properties of the porous material (i.e. its 

effective density and compressibility) are 

modified by their presence. The validity of the 

plane wave approximation is assumed throughout 

the paper i.e. the radii of all pores are assumed 

small compared to the wavelength of sound. 

 

 

 

 

 

 

 

Figure 1. Main pore (cross sectional area Amp) with 

periodically arranged dead-end pores, N=2 identical 

dead-end pores with cross section area Ade and length d 

per period h. The dead-ends are located at “nodes”. 
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2.1. Pseudo periodic dispersion equation 

Following Bradley [2], a pore with cross sectional 

area Amp (the subscript “mp” stands for “main 

pore”) with periodically distributed identical side 

branches with cross sectional area Ade (the 

subscript “de” stands for “dead-end”) and length d 

is considered. There are N dead-ends per period h. 

A configuration with N=2 is shown in Figure 1. It 

is assumed that the main and dead-end pore radii 

are sufficiently smaller than the wavenumbers so 

that the waves inside the pores are plane. The 

period h can be comparable to the wavelength. In 

this case, the wavenumber q of Bloch waves is 

defined by the following dispersion equation [2]: cos��ℎ� = cos	
��ℎ
 + �� sin	
��ℎ
, (1)

where 
�� is the wavenumber in the main pore

and � = − �� ������
�����, (2) 

in which �� ! is the normalised surface

impedance of the dead-end  �� ! = � ������ cotan�
 !$�, (3) 

where 
 ! is the wavenumber in the dead-ends,��� and � ! are the characteristic impedances of

the main pore and the dead-end, respectively. A 

time dependence in the form exp(-iωt) has been 

assumed. Contrary to Ref. [2], the difference 

between the characteristic impedance of air in the 

main pore and in the dead-end pore is accounted 

for in Eqs. (3). This difference may arise due to 

the difference in shape or in cross sectional area of 

these pores if viscous and thermal losses are 

present. It is easy to generalize equation (2) for the 

case of N non-identical dead-end pores per period: � = − �� ������ ∑ ����&�
����&��'(� tan )
 !�'�$�'�*. (4) 

In this case, the characteristics of the individual 

dead-ends are denoted by the superscript (k). 

2.2. Transfer Matrix Method (TMM) 

If we define , = exp	�
��ℎ
, (5)

then, forward and backward propagating Bloch 

waves on the right and on the left from the period 

of size h along the thickness are related by the 

following matrix:  

12 = 3�1 + ��, �−� ��56�7 8. (6) 

If n periods are considered, then forward and 

backward propagating Bloch waves on the right 

and on the left from this arrangement are related 

by the matrix: 

9 = �12�: = ;<�� <��<�� <��= (7) 

The expressions for the pressure reflection rn and 

transmission tn coefficients can be determined in 

terms of the elements of the matrix 9 for a main

pore bearing n unit periods. The boundary 

condition at the exit of the last period can be 

anechoic (open ended) termination or hard back. 

The former case provides )>?0 * = 9 ; 1A?=, (8) 

which gives (open ended) A? = − BCDBCC and  >? = �BCC (9 a,b) 

while for the latter case (hard back), the reflection 

coefficient is A′? = BDD5BCDBCC5BDC. (10) 

To model a material with several adjacent parallel 

main pores, the perforation rate F is used:F = ���� . (11) 

A being the unit cross section incorporating one 

main pore. In the hard back case, the absorption 

coefficient of a hard backed slab is calculated by  G = 1 − |I?J |� (12) 

with I?J = BJDD5BJCDBJCC5BJDC, (13) 

where <′KL are the elements of a matrix given by

9J = 9 × 1  with  1 = N �OPJ�P − �5PJ�P− �5PJ�PJ �OPJ�PJ
Q. (14)

In the matrix 1, the perforation rate F and the

coefficient FJ = FRS/��� are used, RS being the

characteristic acoustic impedance of air. 

2.3. Finite Element Modeling (FEM) 

Comparisons between the present analytical 

model, transfer matrix approach (TMM) and 

virtual measurements obtained with a 3D 

acoustical FEM simulations using COMSOL 

software is performed. A main pore with lateral 

cavities as in Figure 1 is supposed to be inserted in 

an impedance tube of cross section A (surface area 

A of Eq. 11). A virtual FEM measurement is then 

performed on this virtual sample. The three 

microphones method of ref. [5] is chosen. 

Parabolic tetrahedral elements are used to mesh 

the different domains of the tube and an effective 

fluid of density and bulk modulus given by a 

model accounting for the shape of the pores.  

The full TMM model, the FEM or the low 

frequency asymptotic development in the case of 

long dead-ends described in the next section can 

be used to interpret the Bloch dispersion curves 

featuring stop and pass bands. 
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3. Low frequency asymptotic expansions 

In this section, we consider the case where the 

period h of the periodic arrangement of the dead-

ends is much shorter than the wavelengths. In this 

case, terms in the pseudo periodic dispersion 

equation (1) can be expanded to obtained an 

explicit expression for the Bloch wavenumber q 

and for the characteristic impedance z of the 

effective fluid. 

The cases of long or short dead-ends with respect 

to the wavelength can be distinguished. Yet for 

both cases, IU�
��ℎ� ≪ 1 and the configuration 

with dead-end pores can be replaced by the main 

pore filled with a fluid described by the effective 

wavenumber q and the effective impedance z. To 

derive the expressions for q and z, a simple self-

consistent model similar to a coherent potential 

approximation (CPA) [Ref. 6] is used. In this 

method, the configuration shown in Figure 1 is 

replaced by a pore filled with a fluid with still 

unknown effective properties. Then the following 

"gedankenexperiment" is performed: if a unit cell 

of an original periodic arrangement is inserted into 

this pore, it will not disturb the properties of an 

effective fluid representing exactly the same 

periodically arranged unit cells as the inserted one. 

This implies that if a wave travels through the 

pore filled with effective fluid, its reflection 

coefficient from the inserted cell will be 0 and the 

transmission coefficient will be equal to exp(iqh). 

In addition, the implicit assumption that the 

sample is of infinite length or, at least sufficiently 

long to include many wavelengths is made. 

3.1. Long dead-ends 

If IU�
��ℎ� ≪ 1, the following expressions for 

the characteristic acoustic impedance and 

wavenumber of the effective medium are obtained 

by developing the sine and cosine functions to the 

first order in the right hand side of Eq. (1). Then it 

is possible to obtain expressions for the effective 

density W! = R�/X and for the effective 

compressibility Y! = �/�RX� of the fluid in the 

pore with dead-ends: W! = W��, (15) Y! = Y�� + Y ! �������
 Z )[\] �'�� �'�� *, (16) 

where W�� = ���
��/X and Y�� =
��/�X����  are the effective density and 

compressibility of the fluid in the main pore and Y ! = 
 !/�X� !�  is the compressibility of the 

fluid in the dead-end pores.  

It follows that the presence of the dead-end pores 

does not affect the effective density of the fluid in 

the main pore. However, it could significantly 

modify its effective compressibility.  

3.2. Short dead-ends 

For short dead-ends, in addition to IU�
��ℎ� ≪1, the assumption IU�
$U$� ≪ 1 is used and the 

term tan �
 !$� can be further developed at low 

frequencies (tan �
 !$� ≈ 
 !$) in the 

expressions for the fluid density and 

compressibility to obtain simple expressions:  W! = W��, (17) Y! = Y�� + Y ! `��
�̀�, (18) 

where a ! = bc !$ and a�� = c��ℎ are the 

volumes of the dead-ends and the main pore 

portion per period h of the structure.  

 

 

4. Model implementation 

The densities W�� dA W ! and compressibilities Y�� or  Y ! of the fluid in the main pores or in the 

dead-ends are needed to model the properties of 

the Bloch waves. These parameters appear 

implicitely or explicitely in the full TMM model, 

in the FEM modeling or in the low frequency 

asymptotic developments and can be evaluated 

with the help of a model of equivalent fluid 

accounting for the complexity of the pore 

microstructure.  

Sound propagation in cylindrical pores with 

circular cross section with losses in the viscous 

and thermal boundary layers is known and 

involves parameters of the cylinders. In this study, 

it is proposed to use a model of the wave 

propagation in porous media as these will be able 

to accommodate for more complex geometries in 

future works. The Johnson-Champoux-Allard-

Lafarge model [7-9] involving 6 parameters has 

been selected. Other models such as the model by 

Attenborough [10] could also be used. The 6 

parameters involved are the porosity F (related to 

the perforation rate), the tortuosity G∞, the flow 

resistivity e, the viscous f  and thermal f′ 
characteristic length and the thermal permeability g′ and are given for cylindrical pores in Table I.   

The following expressions are used for the 

effective density and compressibility of fluid in 

the main and dead-end pores (subscripts “de” and 

“mp” are omitted in the following two equations): W = WSGh ;1 + i5Kjklmn o1 + 5Kjjp = (19) 

Y = �mnqC Nr − s5�
�O tuvwxynzxo�Ouvwxwxp

Q (20) 
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with XJ = X{b�|, X} = e�Λ� �4⁄ Gh�WS�� and X′} = Λ′� �4g′�⁄ WS� where b�| is the Prandtl 

number, WS the air density and � the dynamic 

viscosity 

 

Table I. Parameters of Johnson-Champoux-Allard-

Lafarge model for straight cylindrical pores 

(subscript “mp”) and dead-ends (subscript “de”). e��, ! g′��, ! G∞��, ! f��, ! f′��, ! 8����, !� 
���, !�8  1 ���, ! ���, ! 

 

 

5. Experimental results and comparison 
with theoretical predictions 

In order to validate the theoretical models, a 

comparison (not displayed here) between the full 

TMM, FEM and asymptotic developments was 

carried out first. This simulation has confirmed the 

consistency of the different approaches. 

Experimental results on 3D printed materials with 

dead-end pores (MP50) studied by Dupont et al. 

[11] were compared with the model. This sample 

was built using 3D printing technology. The 

sample shown in Figure 2 has 4 types of pores. 

The pore characteristics are listed in Table II. The 

overall perforation rate of the sample is ϕ=23.4 %. 

For this sample, the full TMM model has been 

modified to account for the 3 types of dead-end 

pores and for pores without dead ends. Equation 

(13) has been used to calculate pressure reflection 

coefficient in the channel associated with each 

main pore. A uniform distribution of pores at the 

material surface was assumed. Due to this, the 

overall perforation rate of the sample was used to 

calculate the surface area A of the channels. After 

that the pressure was averaged across the surface 

of the sample. The comparison between the 

measurements and the model predictions for the 

absorption coefficient is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 2. A porous sample with dead-ends (after 

sealing the circumference) used in the measurements. 

The sample diameter is 44.4 mm, and its thickness is 

L=30 mm. 

Table I. Pore characteristics of the 4 types of pores 

of the sample presented in Figure 2. 

 
Pore 

type 1 

Pore 

type 2 

Pore 

type 3 

Pore 

type 4 
Nb of 

main pores 
1 4 8 32 

Porosity % 0.52 2.08 4.16 16.62 ���  (mm) 1.6 1.6 1.6 1.6  

h (mm) 2.3 2.3 2.3 - 

N 4 1 1 - � !   (mm) 0.65 0.65 0.65 - 

d (mm) 20.4 15.4 11.4 - 

 

The experimental curve was obtained by 

averaging 3 sets of results obtained from 

measurements at different times on 3 identically 

designed samples in repeatability experiments. 

The simulation accounts for the end correction of 

the main pores, which corresponds to a tortuosity 

correction since the stream lines at the entry face 

and exit face of the sample are not straight, 

especially for low perforation rates [12]. The 

predicted absorption peak is due to the presence of 

dead-ends. The predicted resonance is broader 

than the observed one. It is thought that this is due 

to the fact that the dead-ends in the fabricated 

sample are slightly thinner than expected in the 

material design due to the fabrication process. 

Measuring with precision the actual diameter of 

the dead-end pores on the fabricated 3D sample is 

currently a difficult task. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental results on the absorption 

coefficient for the sample of Figure 2. 

Experimental results (plain), TMM predictions 

(dashed) and model predictions for the material 

without dead-ends (dashed-dot). 

 

However, a simulation using a smaller diameter 

for the dead-end pores shows that the absorption 

peak (not displayed here) is narrowed as expected. 

This provides an indirect confirmation that the 

pores are thinner than expected. However, the low 

frequency match is fairly good.  
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6. Possible future designs

Future material designs involving periodically 

spaced dead-ends in the thickness are proposed. 

The underlying idea is to increase the 

compressibility at low frequency Y! of the

equivalent fluid which can be rewritten  

Y! = Y�� + Y ! ; ������=� � Z , (21) 

At constant pore radii, the compressibility can be 

increased by increasing the number of dead-ends 

per node N and by reducing the period h. This last 

condition is compatible with small thickness 

requirements in the material design. Y! can be

increased by increasing the dead-end pore length 

d. An example of possible designs is proposed

(Figure 4) with eight dead-ends per node. The 

perforation rate can be adjusted with the help of 

additional perforations without dead-ends.  

Figure 4. Example of possible design for the front 

face of a perforated material with lateral dead-

ends and b) simulated results. In this example, b = 8, ��� = 2 ��, � ! = 1.5 ��, $ = 1 ��,ℎ = 3.5 ��, slab thickness � = 3.5 ��,

perforation rate: F = 5.39 %. Plain curve: low

frequency approximation, dashed line: full model, 

dash-dot line: main pores without dead-ends.. 

In addition to the sizes of the main pores and of 

the dead-ends, the criteria for the design are that 

the material should contain as many dead-ends per 

nodes as possible while the perforation rate 

corresponding to the main pores should be chosen 

optimal. The number of nodes is also important 

and this parameter indirectly dictates the possible 

material thickness. Despite the low perforation 

rate, both materials are efficient absorbers of low 

frequency sound. 

Future more refined optimisation work could 

include � ! and ��� i. e. the pore radii as

additional design parameters. 

7. Conclusions

A theoretical and experimental study of the 

acoustical properties of porous materials 

containing periodically distributed dead-ends was 

proposed. This work has shown the great potential 

of the dead-ends in low frequency applications for 

materials of only a few cm thicknesses. 

With the help of the models developed in this 

work, it is now possible to design structures giving 

larger shifts of the absorption coefficient peak 

towards low frequencies if the Main/DE pores 

parameters are properly chosen. This opens up 

new experimental possibilities for future work. 
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