
HAL Id: hal-02558198
https://amu.hal.science/hal-02558198

Preprint submitted on 29 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Communication Stack: Towards Building
Integrated Simulator of Mobile Ad Hoc Network-based

Infrastructure for Disaster Response Scenarios
Aznam Yacoub

To cite this version:
Aznam Yacoub. Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad
Hoc Network-based Infrastructure for Disaster Response Scenarios. 2020. �hal-02558198�

https://amu.hal.science/hal-02558198
https://hal.archives-ouvertes.fr


VIRTUAL COMMUNICATION STACK: TOWARDS BUILDING INTEGRATED
SIMULATOR OF MOBILE AD-HOC NETWORK-BASED INFRASTRUCTURE FOR

DISASTER RESPONSE SCENARIOS

Aznam Yacoub

Polytechnique Montreal, Heterogeneous Embedded System Laboratory, Montreal, QC, Canada
Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

aznam.yacoub@polymtl.ca

<Conference Acronym>, <Month DD-DD>, <Year>, <City, State, Country>;
c⃝<Year> Society for Modeling & Simulation International (SCS)

ABSTRACT

Responses to disastrous events are a challenging problem, because of possible damages on communication
infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different
network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with
the lack of communications. However, all these solutions focus only on the performance of the network
itself, without taking into account the specificities and heterogeneity of the components which use it. This
comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification
and validation of adhoc protocols cannot guarantee that the different systems will work as expected in
operational conditions. However, the DEVS theory provides some mechanisms to allow integration of
models with different natures. This paper proposes an integrated simulation architecture based on DEVS
which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.

Keywords: DEVS, Simulation Tools, Mobile Ad Hoc Networks, Verification and Validation, Disaster Re-
sponse.

1 INTRODUCTION

Mobile Ad Hoc Networks (MANETs) have been proposed in the litterature (Kiess and Mauve 2007, Reina
et al. 2015, Mohammed and Al-Ghrairi 2019) as a communication technology in the case of emergency
and disasters. Indeed, cellular-based infrastructures might become unavailable due to important damages.
While MANETs can be quickly deployed without fixed infrastructure, setup or prior requirements, their
flexibility is attractive when communications between victims and rescue teams are crucial. However, their
implementations face an important challenge: proving that they are enough reliable compared to other
approaches (Kiess and Mauve 2007). While Verification and Validation (V&V) using real experimentations
in emergency conditions is utterly impossible, simulation is an important tool in the MANET research
community.

Simulators are an inexpensive manner to evaluate the performance and the accuracy of algorithms and sys-
tems without the use of the actual hardware. Also, simulators allow checking the capacity of a network in
extreme conditions by varying various parameters in a virtual way and checking different scenarios (Man-
preet and Malhotra 2014). However, although their use and development increased, the credibility of their
results decreased over the time (Kurkowski et al. 2005, Hogie et al. 2006). Among the problems encountered



Yacoub

during the development of MANETs, some are inherent to simulation in general: repeatability, consistency,
and accuracy of the models (Sargent 2001). Particularly, simulators generally focus only on some aspects of
the network structure itself without taking into account the complexity and the heterogeneity of the systems
which rely on this network: autonomous vehicles, unmanned aircraft systems, communication software, etc.

For instance, Figure 1 shows an exemple of real MANET-based ecosystem in an emergency situation. Col-
laborative drones evolving in a complex environment must communicate without a fixed network infrastruc-
ture, send data to different rescue teams with real-time 3D processing software on mobile devices in order to
allow professionals to evaluate the situation. Then, these data should also be saved in a database connected
to internet in order to allow management teams to take important decisions. Decision support can also be
assessed thanks to an Artificial Intelligence-Driven Decision Making Process (Phillips-Wren and Jain 2006).
In other words, the verification and the simulation of the entire ecosystem should take into account all the
different aspects and natures of all the devices and disasters. This is obviously impossible, but abstraction
is admitted as a real problem especially in the case of MANET simulation (Hogie et al. 2006). Moreover,
complex and heterogeneous collaborative systems imply the use of various kinds of models. Therefore,
some of these components can be modelled using discrete-event models, continuous models, automata, etc.

Figure 1: An example of heterogeneous ecosystem communicating using MANET.

Various areas addressed the problem of making heterogenenous simulators coexisting and working together
in order to improve the accuracy of simulations, and to deal with repeatability and consistency. Essentially
techniques like cosimulation (Vaubourg et al. 2015, Gomes et al. 2018) have been proved as good ap-
proaches that allow modelers to take into account specificities of different subsystems. However, problems
related to repeatability, accuracy and scalability must still be resolved in the case of MANET simulators
as stated in the previous cited articles. Especially, the Theory of Modelling and Simulation (TMS), and in
particular the Discrete-Event System Specifications (DEVS) formalism (Zeigler et al. 2000, Zeigler et al.
2019), provides foundations which allow the building of heterogeneous simulators in a hierarchical man-
ner. This kind of simulators allows embedding models with different levels of abstraction, if they respect
the DEVS principles. If all the surveys stated in this article show that MANET simulators generally use
a discrete-event paradigm, there were few attempts to apply the TMS and DEVS in the case of MANET
modelling and simulation.



Yacoub

In this paper, we propose general guidelines and insights to improve the simulation of MANETs-based in-
frastructure by using DEVS approaches and results. We show that some results in the DEVS area can benefit
to MANET simulation by making easier cosimulations and by making different levels of abstraction coex-
ist inside a unique integrated environment. The first section recalls the existing work concerning MANET
simulators and DEVS architecture. In the second section, we introduce our proposed integrated simulation
architecture which allows switching between Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL)
paradigms (Murray-Smith 2012) by using the DEVS Bus concept (Yong Jae Kim and Tag Gon Kim 1998,
Kim et al. 2003). Implementation details and detailed examples are outside the scope of this paper, and are
developed in another one.

2 RELATED WORKS

Literature about MANET simulation can be splitted in two essentials parts. The first one concerns the com-
mon used architectures in the case of network simulation. The second one concerns the actual techniques
known in the area of Modelling and Simulation (M&S), DEVS and simulation theory.

2.1 MANETs Simulators Architectures

MANETs simulation can be essentially overviewed by looking at the surveys (Manpreet and Malhotra 2014,
Dorathy and Chandrasekaran 2019) which show that simulator architectures have intensively been studied
(Kurkowski et al. 2005, Mallapur and Patil 2012, Chengetanai and O’Reilly 2015) without having really
evolved for decades. Indeed, as stated by Kurkowski et al. (2005), Andel and Yasinsac (2006), this kind
of network represents a challenge for simulation community. The complexity is mainly induced by two
specific aspects (Gunes et al. 2007):

• The first one concerns the frequence of the topological modifications. Topology of the network in
the case of MANET is related to mobility. However, mobility models generally rely on unrealistic
assumptions (randomizations, Manhattan model, etc.). While mobility was understood as having a
non-negligible impact on the accuracy of simulations (Schindelhauer et al. 2003), mobility models
have been specifically studied in separate works (Sichitiu 2009, Khairnar and Pradhan 2011).

• The second one concerns the modelling of physical phenomena. Indeed, MANETs generally rely
on wireless communication, which implies radio propagation modelling. As stated in (Hogie
et al. 2006), study of waves propagation is a complex problem which needs elaborated techniques
(Schmitz and Wenig 2006). These techniques make simulations run slower. Therefore, a lot of
MANET simulators make strong assumptions and provide simplified models for physical interac-
tions (Andel and Yasinsac 2006).

Testbeds (Muchtar et al. 2018) can help researchers to overcome these two problems by making real exper-
iments and consider these two models as controlled parameters. However, testbeds remain not scalable and
cost expensive.

Therefore, these two problems are generally abstracted and the tradeoff between reduced accuracy and
exe-cution speed is considered as acceptable. MANET researchers therefore develop simulation models
which focus on two specific aspects: network performance tests and routing protocols comparison (Andel
and Yasinsac 2006). In the cited article, the authors point that this approach makes wireless models suffer
essentially of a lack of accuracy and inconsistencies with extreme divergences between simulators (Cavin
et al. 2002). If we go further and beyond the existing analysis, we can easily understand the main reasons.



Yacoub

First, Andel and Yasinsac (2006) point out the use of unrealistic application traffic during simulation. Indeed,
whereas Hogie et al. (2006) states that

‘Software layers are relatively easy to re-implement within simulators ’,

most of existing MANET simulators commonly use a three-layers protocol stack model (Figure 2) (Tüncel
et al. 2016) which includes:

• A physical layer combining the physical layer and the data link layer;
• A network layer;
• An application layer combining all the layers above the network layer.

Figure 2: Simulation Stack (left) vs Real Stack (right).

This architecture could be a good abstraction if the cases of study were representative of the complexity
of a software. However, Andel and Yasinsac (2006) stated that in most of studies, a constant-bitrate traffic
generator is used in the layer 3 of the simulated stack while real software generally more depend on several
complex interactions between internal and external components. Especially, traffic generation should take
into account a wide range of parameters which depends on usage profile, application specificities, application
performance, etc. This statement leads to questionning the assumptions made from the simulation using a
simplified stack. If we don’t question the abstraction of the application layer, we can really wonder what
is the impact of this kind of simplification on the accuracy. Especially, in a fully connected environment
with heterogeneous components, misuses of protocols can harmfully reduce the performance and can lead
to question the robustness of a network. By pushing the reasoning further, interactions between stacks are
even more complex in a virtualized environment, in which several stacks can be combined. For instance, in
the case of a virtualized operating system, there are at least two communication stacks in the environment.
These stacks can be in conflict, resulting a drastically change of the speed in the communication. Therefore,
simulating such an environment using one simplified stack could not guarantee the efficiency of the modelled
network.

Second, as we stated before, physical layer is generally modelled as controlled variables or using ideal condi-
tions that are not reflecting the actual implementations. Takai et al. (2001) show the effect of such inaccurate
models on the simulation. The experiment consists on evaluating the impact of physical layer settings on Ad
Hoc On-Demand Distance Vector (AODV) (Perkins and Royer 1999) and Dynamic Source Routing (DSR)
(Johnson et al. 2001) protocols in simulated environments. These factors signficantly affected the results of
the simulation. More important, some settings changed the relative ranking between the protocols. A small
variation on the underlying models changed the results of the qualitative comparison analysis between the
evaluated protocols. If the result is expected and understandable, it raises an important statement: the level



Yacoub

of details is important in the case of MANET simulation (Hogie et al. 2006) and abstraction or refinement
can lead to erroneous outcomes. This opens the way to two fundamental questions: the first one is related to
the interpretation of the simulation results, and the second one is related to the V&V of models.

Indeed, studies show that this last problem is especially important in the case of MANET simulations.
Kurkowski et al. (2005) demonstrate that generally researchers and developers use MANET simulators
without prior checking that the used models were validated. Furthermore, when simulation results don’t
seem to be reliable, they modify the models without new validation steps. As a result, Andel and Yasinsac
(2006) remind that routing protocols don’t properly work in real world in many cases, while they produced
good results in simulation. The same observation can also be stated when it comes to verification, at least
for Pseudo Random Number Generator (PRNG). If models must be validated against user specifications,
algorithm implementations should be also verified against requirements (Sargent 2011).

Another question is the lack of definition of the good level of abstraction when a model is developed, what
Hogie et al. (2006) names the granularity, but also from the fact that is utterly impossible to develop enough
meaningful scenarios in real-world. Consequently, modellers have no good comparison basis in the case
of MANET development, especially in the case of disaster response. Indeed, most of testbed experiments
involves less than 50 nodes (Hogie et al. 2006), whereas real situations imply hundred or thousand of nodes.
Moreover, test and simulation scenarios mainly depend on experts, and imply the question of the coverage,
which is out of the scope of this article. V&V of Simulation Models (Sargent 2001) are also related to
the paradigms and the natures of the different models. Indeed, simulations are often carried from model
with different natures, sometimes using discrete-event models, discrete-time models, continuous models,
without clearly using a specified formalism. Especially, discrete-event paradigm is well-used for modelling
the computational aspects but accurate physical models need continuous approaches. Using the wrong
paradigm without motivating it by a serious analysis can lead to increase an undesirable and not necessary
heterogeneity of the models. While existing simulators have all a their own purposes (Mallapur and Patil
2012, Manpreet and Malhotra 2014) and whereas integrating simulators is a hard challenge, researchers
generally focus on one simulator and try to implement models in the paradigm of this simulator (Hogie
et al. 2006). The outcome of such a practice is the blur of the choice of the good level of abstraction.
By extension, it also brings problems while the heterogeneity exists also at the level of implementation,
because all of these simulators have their own programming language. In other words, practices in MANET
simulation lead to increase the heterogeneity of models over the heterogeneity of the modelled systems, and
by extension the number of erroneous outcomes.

Then, the main problems encountered by MANET simulation studies can be splitted in four categories:

• The lack of proper studies when developing the MANET simulators, which leads to inconsistencies;
this is more related to methodologies which tend to stick to a simulator instead of trying to develop
accurate models for a proper purpose;

• The lack of verification and validation in the simulation development process;
• The difficult of choosing the right level of abstraction, which leads to oversimplification or overde-

tailed implementations;
• The unrealistic cases of application.

MANET simulation community is fully aware of these four problems. If the last one cannot be entirely
resolved by a proper development methodology, especially in the case of emergency response, there are
clues and insight to resolve the three others. First, Hogie et al. (2006) explicitely show the attempts to
develop simulators at the application level: the first one is DIANEmu (Klein 2003) which provides an
environment for simulating applications communicating through a network. However, DIANEmu doesn’t
simulate the four first layers of the network stack. JANE (Frey et al. 2004) tries to combine the advantages



Yacoub

of simulators, emulators and testbeds by providing a software which is able to work in hybrid mode thanks
to a simulation environment and an execution platform. Then, an application can easily swap between the
simulated network and the real devices while the communication interface is the same from the point of
view of the software. However, the simulation models are themselves defined at a high level of abstraction.
Consequently, JANE is not well-suited for a complex heterogeneous environment. However, the results show
that the weaknesses of simulation environment introduced in the previous paragraphs can be overcome by
introducing emulation aspects. The existence of emulators like JEMu (Flynn et al. 2001) and MANE (Ivanic
et al. 2009) shows also the importance of the real tests in the evaluation of MANETs.

A close look at the simulation paradigm used by the well-used MANET simulators (Dorathy and Chan-
drasekaran 2019) shows that almost of them implement a discrete approach, in order to reduce the intrinsic
complexity of the MANET analytic models. More precisely, some of them like OMNET++ (Varga and
Hornig 2008) and NS3 (Riley and Henderson 2010) use a discrete-event-based architecture without ex-
plicitely or fully following the DEVS formalism (Zeigler 1976). This is particularly interesting because,
as we show in the next section, the TMS (Zeigler et al. 2019) provides some recommendations which can
help to resolve the problems stated previously. Therefore, the next section answers a crucial question: can
the DEVS methodology help in more accurate modelling and simulation of MANET and can we provide a
methodology to integrate existing MANET simulators into a DEVS-compliant environment ?

2.2 DEVS Methodology for Modelling, Simulation, Verification and Validation

TMS (Zeigler et al. 2000, Zeigler et al. 2019) gives guidelines for formalizing, modelling and simulating
systems in a hierarchical, uniform and universal way. Indeed, the methodology advocates to see any systems
as a composition of small black-boxes which take input called observable events, and react according to
them. Moreover, each subsystem can also autonomously changes its own state at a specific time t, and
output a corresponding event. In addition to that, TMS provides a clear separation between conceptual
models and computerized (called also simulation) models. More formally, the theory provides a well-defined
mathematical specification formalism for structure and behaviour of dynamic systems. DEVS conceptual
models are therefore expressed using a clear algebraic structure. Basically, a DEVS model is composed by:

• a DEVS Atomic model which is a the most basic unit block. It is a state-machine which describe
the behaviour of the component according to received or emitted events;

• a DEVS Coupled model which is a composition of DEVS models. Intuitively, it describes the
relations and interactions between components.

Aside of the algebraic structure of the conceptual model, TMS defines the DEVS Abstract Simulation
Model. This model offers the operational interpretation of the DEVS mechanisms. To each DEVS atomic
model correspond a DEVS simulator, and to each DEVS coupled model correspond a DEVS coordinator.
The DEVS simulator is organized in a tree way, in which the top root coordinator corresponds to the entire
model of the system, and each internal node corresponds to a coordinator of a subcomponent. Leafs are the
automata simulators which describe the behaviours of the system and subsystems. This architecture allows
hierarchical description of models which makes easier the analysis. Furthermore, this clear separation be-
tween conceptual and computerized models has many advantages: it allows designers to describe correctly
the system under study using the System Modelling Theory and using the good level of abstraction. Indeed,
multiple DEVS formalism extensions and subclasses have been developped (Giambiasi and Carmona 2006,
Giambiasi 2009, Hwang 2011, Hwang 2014) in a hierarchical way. Each extension(resp. subclass) encap-
sulates(resp. is encapsulated in) another formalism. Consequently, the modelling power of DEVS, meaning
the level of abstraction, increases or decreases depending on the chosen formalism (Figure 3).



Yacoub

Figure 3: An example of DEVS formalisms hierarchy (Giambiasi 2009).

Moreover, the hierarchical construction of these formalisms means that any model expressed in one formal-
ism can be translated to a DEVS model, and each combination of DEVS model is a DEVS model thanks
to the closure under coupling property (Zeigler 1976). This property enables the interoperability between
DEVS-compliant simulators. While it is proved that continuous model can also be encapsulated in DEVS
model, it allows also the possibility to mix different paradigms in an heterogeneous simulator.

Some attempts to use the DEVS formalism in the case of MANET simulation have been done. Especially,
Kim et al. (2007), Tüncel et al. (2016) proposed fundations for using the DEVS formalism as a basis of
MANET simulation. These work show that it is possible to take benefits from the advantages of the DEVS
methodology, and that is possible to model scalable, adaptive, reusable, costless and powerful mobile net-
work applications. In the first article, the authors propose to use existing MANET simulators like NS2 for
modelling low-level network protocols and components, while a DEVS simulator is used as a controller for
high-level behaviours and as a handler of interactions between actors and components. However, this ar-
chitecture always suffer from the lack of precision of the high-level layer and continue to focus on protocol
evaluation. Nevertheless, a main idea raises from these experimentations: it is possible to create an interop-
erability between a MANET simulator and a DEVS simulator. In the second one, the proposed architecture
shows that a full-DEVS simulator can easily simulate MANET protocol as accurate as a network-specific
simulator, even using a topology generator.

2.3 Towards Integrating Non-DEVS Simulator in DEVS-based Architecture

This last statement is reinforced by the development of a standardized methodology for creating DEVS-
based heterogenenous simulation framework (Yong Jae Kim and Tag Gon Kim 1998, Kim et al. 2003).
Heterogeneous simulation concerns the use of a collection of simulators developed in different simulation
languages and environments, and paradigms, and which work in an interoperable way to achieve a global
simulation. A such interoperation needs data exchange and time synchronization between the simulators.
While data exchange can be easily resolved through a standard messaging protocol between the simulators,
time synchronization is hard because of the possible different natures of the internal models: untimed,
continuous, discrete-time or discrete-event. Errors can also come from implementation language which
can strongly affects time representation. Parallel and distributed simulations on heterogeneous hardware
architecture can also bring errors of approximations.

Considering the universality of the DEVS methodology, Yong Jae Kim and Tag Gon Kim (1998) developed
a DEVS-Bus with the idea that it will provide an unified simulation protocol based on DEVS (Figure 4).
Each simulator is associated to a protocol converter which transforms this simulator into a DEVS-compliant
simulator (Definition 1).

Definition 1. A DEVS-compliant simulator is a model whose the conceptual model can be defined using
a DEVS algebraic formalism, and whose the computerized model follows the DEVS abstract simulator
algorithm.



Yacoub

Figure 4: The DEVS Bus developed by Yong Jae Kim and Tag Gon Kim (1998).

Therefore, the set of a non-DEVS simulator and its protocol converter implements a DEVS model, which
can be coupled with another DEVS model. The entire coupling becomes a DEVS model. Any kind of
simulator can then potentially interoperate with any other kind of simulator with a small overhead, if the
protocol converter is well-defined and well-implemented. The challenge is then to define a good converter
for each simulation integrated protocol. In the case of MANET discrete-event simulator, the task of protocol
definition is easy while both DEVS and MANET simulators use the same simulation paradigm. Therefore,
the discrete-event structure of the MANET simulator can be coupled to another DEVS simulator, which can
be an heterogeneous simulator which uses the DEVS Bus concept. However, the existing approach lacks of
proof of correctness and creates a shift between the network topology and the simulation topology. Indeed,
the topology of the network communication doesn’t necessarily correspond to the structure of the simulation
(i.e. the structure of the coupling), since the coupling corresponds to the communication structure between
simulators. This can lead to an important overhead while it becomes impossible to evaluate the performance
of applications based on the MANET topology under study.

Taking into account these statements, and the fact that advanced and well-known simulators use a Discrete-
Event Architecture, we propose in the next section to integrate them into a DEVS-compliant simulator.
We show this approach can be extended to any other MANET simulators while they respect the DEVS
principles. Our approach fulfills the following goals adressed by the literature in order to fit to the needs of
emergency response simulation:

• Using existing MANET models to achieve MANET-based simulation without recreating specific
models for our implementation;

• Taking into account the specificities of each component of the infrastructure by achieving heteroge-
neous simulation;

• Improving the accuracy of the simulation by executing real software during the simulation and final
scenarios, and validating both our simulation model and infrastructure using test cases and use cases;

• Allowing swap between Simulation, Emulation, and Execution without redesigning and redevelop-
ing software thanks to a common interface;

• Allowing the choice of the good level of abstraction while developing the simulator;
• Bringing strong basis for V&V of MANET simulation models and for V&V of the resulted infras-

tructure.



Yacoub

3 INTEGRATED ARCHITECTURE FOR VERIFICATION AND VALIDATION OF MANET-
BASED INFRASTRUCTURE

Our approach will be based especially on the following statements: a DEVS-compliant simulator can
be mixed with any DEVS-compliant simulator, and almost everything can be approximated by a DEVS-
compliant simulator. First, we define exactly what is a concrete MANET in our case and how it is realized.
Then, we show how it can be encapsulated in a DEVS-Bus, and how simulation is finally performed using
MANET simulation for the physical part, and the software implementation for the logical part, in order to
fulfill our objective to provide an environment which makes possible the verification and the validation of
devices and software when they communicate through a MANET.

3.1 MANET Middleware and Heterogeneous Network Stack

Basically, the role of a MANET Middleware is similar to the role of a VPN Middleware:

• Handle and maintain connections between nodes;
• Compute routes between nodes;
• Establish and handle communication steps between nodes.

Therefore, a MANET middleware can be implemented in multiple ways: virtual stack above the OS stack,
bridge between layers of the OS stack, etc. However, in an heterogeneous embedded network, there is as
many implementations of the OSI stack as there are devices. We would need as many models of the OS
stack as there are operating systems. Consequently, our proposed architecture relies on a Virtual Communi-
cation Stack (VCS) (Figure 5) which acts as a proxy and hides specific implementation. The VCS hold the
following properties:

1. the traffic can goes through the entire stack or can be directly routed to the corresponding OS layer.
For the end-user application, data transmission is entirely transparent;

2. the VCS follows a discrete-event architecture;
3. the VCS can be embedded in one or several services which are installed on each device which wants

to access the network;
4. each service can be distributed over all the devices (meaning that the implementation of the network

can differ according to the platform and the nature of the device);
5. communication is carried over virtual sockets which acts as normal sockets.

Once the VCS runs on a device, communication are done through the OS stack and through the VCS. Indeed,
on the one hand, when a message is received by the OS, it is routed to the VCS which dispatch the message
to the corresponding application. On the other hand, when an application sends a message, the message
goes through the VCS in order to compute the receiver, before going in the OS stack to be sent through
the network. Therefore, our simulation environment has to integrate at least two network stack: one to
simulate the OS stack, and one to simulate the virtual stack. Considering all the possible configurations, all
the possible implementations on different hardware, and all possible physical phenomena, modelling these
two stacks represents a great challenge. Instead of modelling the middleware, we take advantage of the
DEVS-Bus architecture.

Proposition 1. Given the automata of a middleware application, we can define a DEVS atomic model which
is exactly this automata.



Yacoub

Figure 5: The VCS is between the End-User Application and the OS Stack. The VCS acts as a proxy
depending on the execution/simulation mode.

Intuitively, at a high level of abstraction, we can define a conceptual model of a communication middleware
as an automata with synchronization mechanisms. The VCS is a discrete-event model by nature (Property
2), with three kind of events: sending, receiving and updating the routing table. At the lowest level of
abstraction (the code level), it is a program, i.e. a finite state machine in which each instruction are executed
sequentially. Between two executions, the application remains stable. Date of events are decided by the OS
scheduler or the CPU clock. In other words, at the lowest level, a middleware is already at least a discrete-
time model of our application, and therefore can be see as a discrete-event model. We can also demonstrate
this structure is really a system by proving the legitimacy property (Zeigler et al. 2000). However, we can
also understand it intuitively with the hierarchy of formalisms. As a consequence, it is not necessary to
transform our middleware into another DEVS model, while writing a DEVS proxy is only needed.

Proposition 2. Given the automata of the OS, we can define a DEVS atomic model whis is exactly this
automata.

The explanation is the same as previously. As a consequence, while the virtual stack calls the OS stack, we
can see both of them as a monolithic DEVS model.

A first interesting result appears: while the both stack are already a DEVS model, we can see the whole as
a virtual DEVS machine. More precisely, if we can redirect the traffic using a TAP/TUN bridge, therefore it
is possible to analyze precisely the communication using the real software instead of a model of the client
application. This is close to the TAPBridge functionnality proposed by ns3. Otherwise, we can also make
abstraction of the OS layer by modelling it and replacing it by a DEVS model. The choice of the level of
abstraction can be done transparently according to the desired configuration.



Yacoub

3.2 Integration of MANET Simulator and Interoperability

The second part of our architecture concerns the integration of existing MANET simulator in order to sim-
ulate the physical layer or the OS Stack. For that, we implement two DEVS-Bus (Figure 6):

1. The first one translates and synchronizes event from the VCS. In simulation mode, output are filtered
according to time. In emulation mode, output are not modified (they are the result of the execution
of the algorithm).

2. The second one translate and synchronizes the input and output of the integrated MANET simulator,
in order to make it communicate with the VCS. In emulation mode, this bus send datas directly to
the physical media. In simulation, data are sent to the corresponding simulaor.

Figure 6: VCS Simulation Environment.

With this modification, communication are modified according to the environment. Therefore, modellers can
choose to test their application in execution, emulation or simulation mode. In the first one, the simulators
are disabled. The application runs as in operational conditions. In simulation mode, the DEVS-Bus updates
the VCS and consequently the end-user application according to the event of the underlying simulator.

3.3 Integrated Software-in-the-Loop and Hardware-in-the-Loop Paradigms

This aspect of our proposed architecture is the use of software-in-the-loop (SIL) and hardware-in-the-loop
(HIL) tests. SIL is basically the use of a software instead of a piece of hardware in the test. It is a basic
simulation as presented until now or a complete emulation. In contrast, HIL consists on using real piece
of hardware in a closed simulation environment. In both of cases, some parts of the architecture can work
in executed time while others work in simulated time. This mainly leads to a synchronization problem: the
date of the next event (for instance, d = 10ms) is long after the time needed to compute it (t = 3ms). To
overcome this problem, we implement a controller in the Testing Environment (SIL/HIL). This controller
slows down and bufferize the events and transmit them at the correct date to the hardware. In this way, our
simulation environment can embbed real piece of software or real hardware, and work in a mixed mode.
This allows us to compare model of our physical part (software or devices) with their real implementation
without reimplementing all the architecture.

From the point the of view of a end-user application, the communication is entirely transparent. Normal
application can then be used to test all the protocols of the network, and then compared with the result ob-
tained in real conditions in order to perform triple validation: validation of the simulation model, validation
of the MANET-based infrastructure, and validation of the application.



Yacoub

3.4 Verification and Validation of MANET-based Infrastructure using Integrated Simulation

Another advantage of such an architecture is that we can decide at any steps of the simulation development
if we want to use the final software, or a model of this software. If the software is developed using a
verifiable and simulable formalism, we can easily ensure its accuracy in the good context. For instance, it is
possible to take advantages of the features of combined V&V processes. Indeed, DEVS modelling procedure
involves classical V&V processes as defined in (Sargent 2001, Institute 2004) both for conceptual and
simulation model. Moreover, if it was proved a general DEVS model cannot be formally verified (Dacharry
and Giambiasi 2005, Dacharry and Giambiasi 2007), some subclasses of DEVS models can be translated
into formal models (Hwang and Zeigler 2006, Hwang and Zeigler 2009) on which model-checking can be
applied. On the another hand, Yacoub et al. (2016) shows that formal models can be combined with DEVS
models to take advantages of formal methods and simulation. In this case, a formal model can be translated
and augmented with a simulation model. The new obtained model can be then verified and validated using
formal verification and formal validation for static properties, and using simulation for checking dynamic
behaviours. Integrated in a new software development life cycle, this statement increases the accuracy
of the model and of the final software. Indeed, if a final software is built from a verified and validated
conceptual and simulation model, it will work as expected designed and tested. Moreover, the capability
of using formal methods increases the degree of confidence while the entire statespace can be explored, at
least for time-independant properties and invariants. Simulation scenarios can also be easily defined through
another External Co-simulation Environment, and integrates more aspects than only the protocol or network
parameters.

4 CONCLUSION

Disastrous events generally lead to the deployment of reliable network which will be used by heterogeneous
systems and software in order to achieve together critical missions. Simulation of MANETs is used to make
these networks reliable but actual research focus only on the accuracy of physical and network models,
without taking into account the complexity of application, devices and systems. As a result, they lead to
erroneous outcomes and the designed network becomes inoperative in real conditions. We propose some
insights to build a new simulation architecture based on the DEVS theory in which MANETs simulation
can be used jointly with external simulators, SIL and HIL paradigms in order to answer four main problems
adressed in the litterature:

• the granularity, meaning the choice of the right level of details, through the VCS;
• the accuracy implied by the abstraction of the physical model, through the SIL/HIL Testing Envi-

ronment;
• the V&V of the simulation model during the development process, through the properties of DEVS

models;
• the use of realistic cases of application when developing MANET-based infrastructure, through the

fact that real application can be used in simulation.

In our approach, models and real systems can be swapped in a trasparent co-simulation environment and
adapted at each step of the development of the simulator. The MANETs simulator acts as an oracle which
regulates the communication between the different systems. Therefore, at the first stage of simulation de-
velopment, simplified model can be used to tune different parameters and ensure the network model works
properly. Then, real software and hardware can be integrated in the simulator to check their real behaviour,
reducing the bias introduced by the software and hardware models. However, if this approach allows modu-
larity, constraints induced by the DEVS theory can lead to major overload. Indeed, our proposed architecture



Yacoub

implies that the network topology corresponds to the coupling topology. However, Classic DEVS doesn’t al-
low removing or adding node during the simulation. Some workaround can be found, but complex mobility
with a lot of topological changes is a problem which must be adressed in a future work.

ACKNOWLEDGMENTS

I thank Alexy Torres, and Julien Carayol (Polytechnique Montreal) for their feedbacks that improve the
manuscript.

REFERENCES

Andel, T. R., and A. Yasinsac. 2006, July. “On the credibility of manet simulations”. Computer vol. 39 (7),
pp. 48–54.

Cavin, D., Y. Sasson, and A. Schiper. 2002. “On the Accuracy of MANET Simulators”. In Proceedings of
the Second ACM International Workshop on Principles of Mobile Computing, POMC ’02, pp. 38–43.
New York, NY, USA, ACM.

Chengetanai, G., and G. B. O’Reilly. 2015, March. “Survey on simulation tools for wireless mobile ad
hoc networks”. In 2015 IEEE International Conference on Electrical, Computer and Communication
Technologies (ICECCT), pp. 1–7.

Dacharry, H., and N. Giambiasi. 2005. “Formal Verification with Timed Automata and DEVS Models: a
case study”. In Proceedings of Argentine Symposium on Software Engineering, pp. 251–265.

Dacharry, H. P., and N. Giambiasi. 2007. “A Formal Verification Approach for DEVS”. In Proceedings of
the 2007 Summer Computer Simulation Conference, SCSC ’07, pp. 312–319, Society for Computer
Simulation International.

Dorathy, I., and M. Chandrasekaran. 2019, 06. “Simulation tools for mobile ad hoc networks: a survey”.
Journal of Applied Research and Technology vol. 16, pp. 437–445.

Flynn, J., H. Tewari, and D. O’Mahony. 2001. “JEmu: A real time emulation system for mobile ad hoc
networks”. In Proceedings of the first joint IEI/IEE symposium on telecommunications systems research,
pp. 262–267.

Frey, H., D. Görgen, J. K. Lehnert, and P. Sturm. 2004. “A Java-Based Uniform Workbench for Simulating
and Executing Distributed Mobile Applications”. In Scientific Engineering of Distributed Java Appli-
cations, edited by N. Guelfi, E. Astesiano, and G. Reggio, pp. 116–127. Berlin, Heidelberg, Springer
Berlin Heidelberg.

Giambiasi, N. 2009. “From Sequential Machines to DEVS Formalism”. In Proceedings of the 2009 Summer
Computer Simulation Conference, SCSC ’09, pp. 216–222. Vista, CA, Society for Modeling; Simulation
International.

Giambiasi, N., and J.-C. Carmona. 2006. “Generalized discrete event abstraction of continuous systems:
{GDEVS} formalism”. Simulation Modelling Practice and Theory vol. 14 (1), pp. 47 – 70.

Gomes, C., C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. 2018, May. “Co-Simulation: A Survey”.
ACM Comput. Surv. vol. 51 (3), pp. 49:1–49:33.

Gunes, M., M. Wenig, and A. Zimmermann. 2007, July. “Improving MANET Simulation Results - De-
ploying Realistic Mobility and Radio Wave Propagation Models”. In 2007 12th IEEE Symposium on
Computers and Communications, pp. 39–44.

Hogie, L., P. Bouvry, and F. Guinand. 2006. “An Overview of MANETs Simulation”. Electron. Notes Theor.
Comput. Sci. vol. 150 (1), pp. 81–101.



Yacoub

Hwang, M. H. 2011. “Taxonomy of DEVS Subclasses for Standardization”. In Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS
’11, pp. 152–159, Society for Computer Simulation International.

Hwang, M. H. 2014. “Taxonomy of DEVS Variants”. In Proceedings of the Symposium on Theory of Mod-
eling & Simulation - DEVS Integrative, DEVS ’14, pp. 22:1–22:6, Society for Computer Simulation
International.

Hwang, M. H., and B. P. Zeigler. 2006. “A reachable graph of finite and deterministic DEVS networks”.
SIMULATION SERIES vol. 38 (1), pp. 48.

Hwang, M. H., and B. P. Zeigler. 2009. “Reachability Graph of Finite and Deterministic DEVS Networks”.
IEEE Transactions on Automation Science and Engineering vol. 6 (3), pp. 468–478.

Institute, P. M. 2004. A Guide To The Project Management Body Of Knowledge (PMBOK Guides). Project
Management Institute.

Ivanic, N., B. Rivera, and B. Adamson. 2009, Oct. “Mobile Ad Hoc Network emulation environment”. In
MILCOM 2009 - 2009 IEEE Military Communications Conference, pp. 1–6.

Johnson, D. B., D. A. Maltz, and J. Broch. 2001. “Ad Hoc Networking”. Chapter DSR: The Dynamic
Source Routing Protocol for Multihop Wireless Ad Hoc Networks, pp. pp. 139–172. Boston, MA, USA,
Addison-Wesley Longman Publishing Co., Inc.

Khairnar, V. D., and S. N. Pradhan. 2011, March. “Mobility models for Vehicular Ad-hoc Network simula-
tion”. In 2011 IEEE Symposium on Computers Informatics, pp. 460–465.

Kiess, W., and M. Mauve. 2007. “A survey on real-world implementations of mobile ad-hoc networks”. Ad
Hoc Networks vol. 5 (3), pp. 324 – 339.

Kim, T., M. H. Hwang, D. Kim, and B. P. Zeigler. 2007. “DEVS/NS-2 Environment: Integrated Tool for Ef-
ficient Networks Modeling and Simulation”. In Proceedings of the 2007 Spring Simulation Multiconfer-
ence - Volume 2, SpringSim ’07, pp. 219–226. San Diego, CA, USA, Society for Computer Simulation
International.

Kim, Y. J., J. H. Kim, and T. G. Kim. 2003. “Heterogeneous Simulation Framework Using DEVS BUS”.
SIMULATION vol. 79 (1), pp. 3–18.

Klein, Michael 2003. “Dianemu: A java based generic simulation environment for distributed protocols”.

Kurkowski, S., T. Camp, and M. Colagrosso. 2005, October. “MANET Simulation Studies: The Incredi-
bles”. SIGMOBILE Mob. Comput. Commun. Rev. vol. 9 (4), pp. 50–61.

Mallapur, S. V., and S. R. Patil. 2012. “Survey on simulation tools for mobile ad-hoc networks”. Interna-
tional Journal of Computer Networks and Wireless Communications (IJCNWC) vol. 2 (2).

Manpreet, and J. Malhotra. 2014, Nov. “A survey on MANET simulation tools”. In 2014 Innovative Appli-
cations of Computational Intelligence on Power, Energy and Controls with their impact on Humanity
(CIPECH), pp. 495–498.

Mohammed, A., and A. Al-Ghrairi. 2019, 08. “DIFFERENCES BETWEEN AD HOC NETWORKS AND
MOBILE AD HOC NETWORKS: A SURVEY”. Xinan Jiaotong Daxue Xuebao/Journal of Southwest
Jiaotong University vol. 54, pp. 12.

Muchtar, F., A. H. Abdullah, M. S. A. Latiff, S. Hassan, M. H. A. Wahab, and G. Abdul-Salaam. 2018. “A
technical review of MANET testbed using mobile robot technology”. In Journal of Physics: Conference
Series, Volume 1049, pp. 012001. IOP Publishing.

Murray-Smith, D. 2012. Modelling and Simulation of Integrated Systems in Engineering: Issues of Method-
ology, Quality, Testing and Application. Woodhead Publishing, Limited.



Yacoub

Perkins, C. E., and E. M. Royer. 1999, Feb. “Ad-hoc on-demand distance vector routing”. In Proceedings
WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100.

Phillips-Wren, G., and L. Jain. 2006. “Artificial Intelligence for Decision Making”. In Knowledge-Based
Intelligent Information and Engineering Systems, edited by B. Gabrys, R. J. Howlett, and L. C. Jain, pp.
531–536. Berlin, Heidelberg, Springer Berlin Heidelberg.

Reina, D. G., M. Askalani, S. L. Toral, F. Barrero, E. Asimakopoulou, and N. Bessis. 2015. “A Survey
on Multihop Ad Hoc Networks for Disaster Response Scenarios”. International Journal of Distributed
Sensor Networks vol. 11 (10), pp. 647037.

Riley, G. F., and T. R. Henderson. 2010. The ns-3 Network Simulator, pp. 15–34. Berlin, Heidelberg,
Springer Berlin Heidelberg.

Sargent, R. G. 2001. “Some approaches and paradigms for verifying and validating simulation models”. In
Simulation Conference, 2001. Proceedings of the Winter, Volume 1, pp. 106–114.

Sargent, R. G. 2011. “Verification and Validation of Simulation Models”. In Proceedings of the Winter
Simulation Conference, WSC ’11, pp. 183–198, Winter Simulation Conference.

Schindelhauer, C., T. Lukovszki, S. Rührup, and K. Volbert. 2003. “Worst Case Mobility in Ad Hoc Net-
works”. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA ’03, pp. 230–239. New York, NY, USA, ACM.

Schmitz, A., and M. Wenig. 2006. “The Effect of the Radio Wave Propagation Model in Mobile Ad Hoc Net-
works”. In Proceedings of the 9th ACM International Symposium on Modeling Analysis and Simulation
of Wireless and Mobile Systems, MSWiM ’06, pp. 61–67. New York, NY, USA, ACM.

Sichitiu, M. L. 2009. Mobility Models for Ad Hoc Networks, pp. 237–254. London, Springer London.

Takai, M., J. Martin, and R. Bagrodia. 2001. “Effects of Wireless Physical Layer Modeling in Mobile Ad
Hoc Networks”. In Proceedings of the 2Nd ACM International Symposium on Mobile Ad Hoc Network-
ing &Amp; Computing, MobiHoc ’01, pp. 87–94. New York, NY, USA, ACM.

Tüncel, S., H. Ekiz, and A. Zengin. 2016. “Design and implementation of a new MANET simulator model
for AODV simulation”. Volume 24.

Varga, A., and R. Hornig. 2008. “An Overview of the OMNeT++ Simulation Environment”. In Proceedings
of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks
and Systems & Workshops, Simutools ’08, pp. 60:1–60:10. ICST, Brussels, Belgium, Belgium, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

Vaubourg, J., V. Chevrier, and L. Ciarletta. 2015, March. “Intégration de simulateurs existants à une plate-
forme de co-simulation basée sur DEVS”. Research report, Loria & Inria Grand Est ; CNRS ; Université
de Lorraine.

Yacoub, A., M. e.-a. Hamri, and C. Frydman. 2016. “Using DEv-PROMELA for Modelling and Verification
of Software”. In Proceedings of the 2016 Annual ACM Conference on SIGSIM Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’16, pp. 245–253, ACM.

Yong Jae Kim, and Tag Gon Kim. 1998, Dec. “A heterogeneous simulation framework based on the
DEVS BUS and the high level architecture”. In 1998 Winter Simulation Conference. Proceedings (Cat.
No.98CH36274), Volume 1, pp. 421–428 vol.1.

Zeigler, B. P. 1976. Theory of Modeling and Simulation. John Wiley.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory of Modeling and Simulation. 2nd ed. Orlando, FL,
USA, Academic Press, Inc.

Zeigler, B. P., A. Muzy, and E. Kofman. 2019. Theory of Modeling and Simulation. 3rd ed. Academic Press.


