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Abstract

We analyze an epidemic model on a network consisting of susceptible-
infected-recovered equations at the nodes coupled by diffusion using a
graph Laplacian. We introduce an epidemic criterion and examine differ-
ent vaccination/containment strategies: we prove that it is most effective
to vaccinate a node of highest degree. The model is also useful to evaluate
deconfinement scenarios and prevent a so-called second wave. The model
has few parameters enabling fitting to the data and the essential ingredi-
ent of importation of infected; these features are particularly important
for the current COVID-19 epidemic.
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1 Introduction

Many models of the propagation of an epidemic such as the current COVID-19
[1] involve a network. This can be a contact network between individuals. Then,
the network is oriented and is used to understand how a given individual can
infect others at the very early stages. The models are typically probabilistic,
see [2] for example. Once the epidemic is established, the geographical network
becomes important. There, nodes represent locations and edges the means of
communication; for COVID-19 these are the airline routes [3]. Such a network
is non oriented and the important nodes are the ones that are most connected.

One of simplest models of a disease is the Kermack-McKendrick system of
equations [4] involving three populations of susceptible, infected and recovered
individuals (S, I,R). Using this model together with a probability transition
matrix [5] for the geographic coupling, Brockman and Helbling [6] performed
a remarkable study of the propagation of well-known epidemics like SARS or
H1N1 due to airline travel. They emphasized that the fluxes between the nodes
govern the propagation of the epidemic.

In this article, we consider (S, I,R) Kermack-McKendrick equations coupled
to a network through a graph Laplacian matrix [7]. The combination of the
simple SIR dynamics with the diffusion yields the essential ingredients to model
and understand an epidemic, such as the COVID-19. In particular,

• there are few parameters so that fitting to data can be successful,

• it contains the essential ingredient of importation of infected subjects from
country to country.

The epidemic front is controlled by the availability of susceptibles. If suscepti-
bles are large enough, the front cannot be stopped. The number of susceptibles
varies from node to node. Reducing this number at a given location can be
done through vaccination. This is expensive and the whole network cannot be
vaccinated. It is therefore important to address the question: what nodes are
more useful to vaccinate to mitigate the epidemic?

Using this model together with the detailed data available [10] [11], we pre-
dicted the onset of the COVID-19 epidemic in Mexico [3]. The present article
is devoted to the detailed analysis of the model. We first prove that it is well-
posed and that solutions remain positive. We introduce an epidemic criterion
that generalizes the well-known R0 of the scalar case. For small diffusion, nodes
are almost decoupled and an outbreak occurs at a node if the local R0 is larger
than one. When the diffusion is moderate, the epidemic criterion depends on
the network and when there is an outbreak, it starts synchronously on the net-
work. Using this criterion, we define a vaccination or isolation policy. We find
that it is most useful to vaccinate the high connectivity nodes and not efficient
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to vaccinate neighbors. For the particular case of the COVID-19 we discuss the
effect of deconfining; the model shows that allowing circulation between heavily
and weakly infected areas will prolong the outbreak in the latter.
The article is organized as follows. In section 2, we introduce the model, dis-
cuss its main features and present the epidemic criterion. Section 3 shows a
simple six node network based on the country of Mexico; there the effect of
vaccination is discussed. The COVID-19 disease is studied in section 4 and we
show the estimation of the time of outbreak in Mexico. The important issue of
deconfinement is studied in section 5. We conclude in section 6.

2 The model and epidemic criterion

One of the main models to describe the time evolution of the outbreak of an
epidemic is the Kermack-McKendrick model [4]

Ṡ = −αSI,
İ = αSI − βI
Ṙ = βI

(1)

where the dynamics of transmission depends of the frequency and intensity of
the interactions between (healthy) susceptible S and infected individuals I and
produce recovered individuals R. The parameters α and β are the infection rate
and the recovery rate. The model conserves N = S+ I +R the total number of
individuals. Note that R is essentially the integral of I and therefore plays no
role in the dynamics. We will omit it below and only discuss S and I.

An epidemic occurs if αS − β > 0 [4]. At t = 0, S = 1 so that an infection
occurs if the infection factor defined as

R0 ≡
α

β
, (2)

is greater than one. An important moment in the time evolution of S and I is
when the number of infected is maximum. The corresponding values (S∗, I∗) can
be calculated easily; we give the derivation in the Appendix. The expressions
are

S∗ =
1

R0
, (3)

I∗ = I0 + S0 −
1

R0
(1 + log(R0S0)) (4)

Note that I∗ and S∗ depend strongly on R0. Take for example β = 0.625 and
different values of α.
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α R0 S∗ I∗

2.5 4 0.25 0.403
1.5 2.4 0.417 0.218
1.1 1.76 0.568 0.111

The value of I∗ depends also on the initial number of susceptibles S0 which is
smaller than the total number N . Generally, a large N gives a large S0 and I∗.

2.1 SIR on a network

We consider a geographic network of cities connected by roads or communica-
tions and obtain the model and introduce a geographical component so that
(S, I) become vectors and we drop R. This is similar to Murray’s model where
he introduces spatial dispersion using a continuous Laplacian term [9]. The
evolution at a node j in a network of n nodes reads

Ṡj = −α Sj
Nj

Ij + ε
∑
k∼j

(Sk − Sj), (5)

İj = α
Sj
Nj

Ij − βIj + ε
∑
k∼j

(Ik − Ij), (6)

where Nj is the population at node j, the
∑
k∼j is the exchange with the

neighboring nodes k of j and where ε is a constant. The main difference with
the model of [6] is that we assume symmetry in the exchanges.

These equations can be written concisely as{
Ṡ = ε∆S − αS I,

İ = ε∆I + αSI − βI. (7)

where S = (S1, S2, . . . , Sn)T , I = (I1, I2, . . . , In)T , α ≡ (α/N1, α/N2, . . . , α/Nn)T ,
∆ is the graph Laplacian matrix [7] and we denote by SI the vector
(S1I1, S2I2, . . . , SnIn)T . The infection rate α can vary from one geographical
site to another while the recovery rate β depends only on the disease. The dif-
fusion ε should be small so that the populations involved in that process remain
much smaller than the node populations Nj . Another point is that the diffusion
could act only on the infected population. We chose to put the diffusion on
both S and I for symmetry reasons.

The graph Laplacian ∆ is the real symmetric negative semi-definite matrix,
defined as

∆kl = 1 if kl connected, 0 otherwise; ∆kk = −
∑
l 6=k

wkl. (8)
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The graph Laplacian has important properties, see ref. [7], in particular it is a
finite difference approximation of the continuous Laplacian [8]. The eigenvalues
of ∆ are the n non positive real numbers ordered and denoted as follows:

0 = −ω2
1 ≥ −ω2

2 ≥ · · · ≥ −ω2
n. (9)

The eigenvectors {v1, . . . , vn} satisfy

∆vj = −ω2
j v
j . (10)

and can be chosen to be orthonormal with respect to the scalar product in Rn,
i.e. vi · vj = δi,j where δi,j is the Kronecker symbol.

2.2 Well posedness and positivity

The model (7) is well posed in the sense that the solution remains bounded. We
show this in the Appendix using standard techniques.

The biological domain of the system is

Ω = {(S, I) : S ≥ 0; I ≥ 0}.

Let us show that Ω is an invariant set for (7) so that the model makes sense
in biology. Consider the different axes Sj = 0 and Ij = 0, j = 1, . . . n. First
assume Ij = 0, j = 1, . . . n, then equation (7) reduces to

Ṡ = ε∆S

which conserves the positivity of S. Similarly when S = 0, we get

İ = ε∆I − βI

and again the positivity of I is preserved.

2.3 Epidemic criterion

Here we extend the 1D epidemic criterion of Kermack-McKendrick [4] to our
graph model. Initially, the vector I will follow the second equation of (7)

İ = (ε∆− β)I + αSI. (11)

Equation (11) describes the onset of the epidemic on the network. It can be
written

İ = AI
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where A is the symmetric matrix

A = ε∆− βIdn + diag(α1S1, α2S2, . . . , αnSn). (12)

The eigenvalues of A σ1, . . . , σn are real. If one of them is positive, then the
solution I(t) increases exponentially and the epidemic occurs. We can then
write
Epidemic criterion : there is an onset of the epidemic if one eigenvalue σi
of A is positive.

Two situations occur, depending whether the diffusion is small or moderate.
For small diffusion, the contribution of ∆ to A can be neglected. Then each
node will develop independently from the others. We will have outbreaks in
some and not in others.

When the diffusion is moderate, the Laplacian contributes to A. Since A
is symmetric the eigenvalues of A remain in the same order as the ones of ∆.
This is the interlacing property [7]. Then σ1 will tend to 0 for β, α → 0. Note
also that since ‖ S ‖ decreases with time, the estimate given by the eigenvalues
of A indicates the size of the epidemic i.e. max ‖ I ‖. Then, the eigenvector
of A for the eigenvalue σ1 will be almost constant and the epidemic will start
synchronously on the network.

The analysis of the moderate diffusion case can be extended when α is con-
stant. Expanding I on an orthonormal basis of eigenvectors (vk) of ∆

I =

n∑
k=1

γkv
k, (13)

we get
γ̇k = (−ω2

k − β)γk+ < αSI|vk > . (14)

Assume that the susceptible population is constant on the network. Then
diag(S1, S2, . . . , Sn) = SIdn so that equation (16) reduces to

γ̇k = (−ω2
k − β + αS)γk. (15)

The epidemic starts if −β + αS > 0 which is a simple generalization of the
criterion in the scalar case.
When the population of susceptibles is inhomogeneous and α is homogeneous,
equation (14) becomes

γ̇k = (−ω2
k − β)γk + α

n∑
l=1

γl

 n∑
j=1

Sjv
l
jv
k
j

 . (16)

Then the eigenvectors and the geometry of the network play a role.
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3 A simple example

We illustrate the results given above on a 6 node network inspired from the
geographical map of Mexico, see Fig. 1. A node represents a city and an edge is
a road link between two cities. For simplicity here we assume that the weights
on all the branches are equal to 1.

1

2 3
4

5 6

 

  

 

Figure 1: Graph of the six main cities in Mexico numbered from 1 to 6: Guadala-
jara, Zacatecas, Queretaro, Pachuca, Mexico City, Puebla. The links represent
the main roads connecting these cities.

The graph Laplacian is

∆ =


−3 1 1 0 1 0
1 −2 1 0 0 0
1 1 −4 1 1 0
0 0 1 −2 1 0
1 0 1 1 −4 1
0 0 0 0 1 −1

 .

The eigenvalues of this graph laplacian are

0 -0.885 -1.70 -3.25 -4.86 -5.31

The corresponding eigenvectors are

-0.4082 -0.2410 -0.2307 -0.6432 0.5275 0.1735
-0.4082 -0.4011 -0.5313 0.5802 0.0502 -0.2261
-0.4082 -0.2061 0.0699 -0.0844 -0.6711 0.5731
-0.4082 -0.0975 0.7620 0.3323 0.3607 0.0525
-0.4082 0.0975 0.1609 -0.3323 -0.3607 -0.7466
-0.4082 0.8483 -0.2307 0.1474 0.0934 0.1735
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3.1 Influence of the diffusion

The variable ε measures the intensity of the diffusion of S and I on the network.
When ε << 1 the diffusion is very weak and the evolution at each node can be
decoupled from the one of its neighbors. For larger ε, the diffusion and reaction
occur on similar time periods and need to be analyzed together. To see the
influence of the diffusion, we plot in Fig. 2 the evolution of Ik(t), k = 1, . . . , 6
for ε = 0.1 (left panel) and ε = 10−7 (right panel).

0

0.1

0.2

0.3

 0  5  10  15  20

I 1
,.
.I

6

days

0

0.1

0.2

0.3

 0  10  20  30  40  50  60  70

6

5 1-4 3 2

days

Figure 2: Time evolution Ik(t), k = 1, . . . , 6 for an outbreak at node 6 for
ε = 0.1 (left panel) and 10−7 (right panel). The other parameters are α = 1.5
and β = 0.625.

Note the times of arrival of the infection, first in node 5 the neighbor of node
6, then nodes 1 and 4 and finally nodes 3 and 2. For the large diffusion (left
panel of Fig. 2) the peaks are very close and there is a strong influence between
the nodes. On the other hand for a small diffusion, the peaks are well separated
and the nodes are decoupled. The maximum of Ik is given by the estimate (4).

Infecting node 2 changes the time of arrival of the outbreak as shown in Fig.
3. It reaches first nodes 1 and 3, then nodes 4 and 5 and finally node 6.
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Figure 3: Time evolution Ik(t), k = 1, . . . , 6 for an outbreak at node 2. The
parameters are as in Fig. 2 (right panel).

3.2 Vaccination or isolation policies for large diffusion

We first consider that the diffusion and the nonlinear terms have similar orders
of magnitude. We will address the case of weak diffusion in the next section.

When the diffusion is large, one should consider the epidemic on the network
as a whole and use the topology of the network to reduce the strength of the
outbreak. From the amplitude equations (16), one can devise a strategy of
vaccination. By this we mean choosing Sj = 0 at some well chosen indices j
so that the maximal eigenvalue of A from the epidemic criterion is minimum.
Another public policy is isolation which consists in reducing αj so that again
the maximal eigenvalue of A is minimum. Vaccination is usually implemented
a priori, see for example the case of flu shots. Isolation, on the other hand is
a measure implemented when the epidemic is present. Both vaccination and
isolation act similarly on the matrix A, we will therefore refer to vaccination
only.

We choose ε = 0.1. Table 1 shows the eigenvalues σ1, . . . , σn of A from (12)
when vaccinating a node of the network, i.e. setting Sj = 0 at a specific node j
and keeping the other nodes the same. We chose S = 0.29× (1, 1, 1, 1, 1, 1)T .
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j degree σ3 σ2 σ1
6 1 −2.17 10−1 −6.38 10−2 8.56 10−2

2 2 −1.42 10−1 −1.29 10−2 7.63 10−2

4 2 −1.92 10−1 1.02 10−2 7.33 10−2

1 3 −8.38 10−2 −5.96 10−3 6.62 10−2

3 3 −7.18 10−2 −1.02 10−2 5.86 10−2

5 3 −7.81 10−2 6.77 10−3 5.43 10−2

Table 1: Vaccinated node I and associated eigenvalues of A

The table shows that it is most effective to vaccinate nodes 1,3 and 5. These
nodes have the highest degree of the network.

We now vaccinate two cities in the network. The results are presented in
table 3. We chose S = 0.28(1, 1, 1, 1, 1, 1)T .

i j degrees neighbors? σ3 σ2 σ1
1 2 3 2 yes −3.01 10−1 −4.99 10−2 3.33 10−2

4 6 2 1 no −3.47 10−1 −1.96 10−1 3.09 10−2

5 6 3 1 yes −2.73 10−1 −1.02 10−1 2.65 10−2

2 3 2 3 yes −1.77 10−1 −7.19 10−2 2.64 10−2

2 4 2 2 no −3.52 10−1 −8.05 10−2 2.43 10−2

2 6 2 1 no −3.87 10−1 −1.66 10−1 2.08 10−2

3 4 3 2 yes −2.30 10−1 −3.86 10−2 2.00 10−2

1 3 3 3 yes −1.10 10−1 −7.27 10−2 1.97 10−2

1 4 3 2 no −2.44 10−1 −5.43 10−2 1.64 10−2

1 6 3 1 no −3.13 10−1 −1.05 10−1 1.19 10−2

4 5 2 3 yes −2.65 10−1 −1.84 10−2 1.18 10−2

3 6 3 1 no −2.42 10−1 −8.92 10−2 −2.75 10−3

2 5 2 3 no −1.70 10−1 −4.50 10−2 −6.25 10−3

1 5 3 3 yes −1.15 10−1 −3.19 10−2 −6.28 10−3

3 5 3 3 no −1.09 10−1 −3.67 10−2 −9.78 10−3

Table 2: Vaccinated nodes i, j and associated eigenvalues of A.

Again the high degree nodes 1,3 and 5 are the ones that reduce σ1 the most
and are therefore the most effective when applying vaccination. It is also not
effective to vaccinate neighboring nodes.

The results shown in tables 1 and 3 can be explained from the properties
of the matrix A and the graph Laplacian ∆. The maximal eigenvalue σ1 of A
verifies [7]

σ1 = sup
‖X‖=1

< X|AX > . (17)
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We can find inequalities for σ1 by choosing

X = (1, 0 . . . 0)T , X = (0, 1, 0 . . . 0)T , . . .

Denoting di the degree of node i, we get

σ1 ≥ −d1 + αs− β, (18)

σ1 ≥ −d2 + αs− β, (19)

. . . (20)

σ1 ≥ −dn + αs− β, (21)

so that
σ1 ≥ −minkdk + αs− β. (22)

This relation shows that vaccinating a node that has not smallest degree does
not change the estimate. Conversely, if there is a unique node of minimal degree
and we vaccinate it, then the bound changes.
Using similar arguments, it can be shown that vaccinating two neighboring
nodes, say 1 and 2 will be less effective than vaccinating two non neighboring
nodes.

Now we look at what happens if we cut a link, which corresponds to con-
demning a road for example. Let ∆′ be the Laplacian of the new graph obtained
by deleting a link. Without loss of generality we can assume this link to be be-
tween vertices 1 and 2. Then ∆′ = ∆−M where

M =

−1 1 0 . . . 0
1 −1 0 . . . 0
0 . . . . . . 0


M has all eigenvalues equal to 0 except one which has value −2. Applying the
Courant-Weyl inequalities, see for example [7], we get the following result for
the maximum eigenvalue of ∆′

σ′1 ≤ σ1.
Note that equality is possible: when S is homogeneous, the maximum eigenvalue
of A will always be −β + αS. In such a case, cutting a link is ineffective.

3.3 Small diffusion and vaccination policies

When diffusion is low, the nodes evolve almost independently so that the simple
dynamics of the scalar SIR model apply. Then some nodes can be vaccinated
and the epidemic is not seen there. Fig. 4 shows such a situation. We choose

α = 1.98, β = 0.5, ε = 10−3

and the initial conditions are given in the table below. The local R0 is also
computed and one sees that an outbreak will occur at nodes 1,3 and 5 and not
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at nodes 2,4 and 6. Fig. 4 shows the peaks for I3 and I5 and the maxima of I3
and I5 are close to the ones predicted by the SIR formulas (4).

node j 1 2 3 4 5 6
Sj(t = 0) 0.26 0.14 0.55 0.16 0.5 0.18
Ij(t = 0) 0 0 0.01 0 0 0

R0 = α
Sj0

β 1.0296 0.5544 2.1780 0.6336 1.9800 0.7128

I∗ 0.0001 0.0364 0.1109 0.0227 0.0750 0.0130

Table 3: Initial conditions and local R0 for the plots of Fig. 4.
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0.05
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I 1
,..
.,I
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Figure 4: Time evolution of the infected for different initial susceptibles at the
nodes.

4 Propagation of Corona virus COVID-19

We consider the propagation of the Corona virus COVID-19 on a network con-
sisting of a complete graph of 7 nodes with an additional link to an 8th node,
see top left panel of Fig. 5.
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Figure 5: Graph of the 7 nodes forming a complete graph (top left) and the
time evolution of the infected per node (top right). In the bottom panel, node
1 has been isolated from all nodes except 2 (bottom left). The corresponding
time evolution of the infected is shown in the bottom right.

The 7 nodes correspond to the following cities or regions, Hubei, Beijing,
Shanghai, Japan, western Europe, eastern USA and western USA and the 8th
node is Mexico. We assume a complete graph because the airline routes connect
any two of these regions.

The parameters chosen are α = 0.5, β = 0.2 and ε = 10−6days−2. These
were suggested by very early estimations of the outbreak in Wuhan. Using
the data from the John Hopkins website [10] and our model, we estimated the
starting time of the outbreak in Mexico to be from March 20 to March 30 2020
[3]. These results were shared with the Ministry of health of Mexico at the end
of February 2020 so that preparations could be made.

The top right panel of Fig. 5 shows the time evolution in days of the infected
in the different nodes. The simulation is started at node 1 (Hubei in red in Fig.
5) with I1 = 0.1 and the other nodes are set at 0. The susceptibles are set to 1
everywhere. As expected the maximum I∗1 = 0.32 and the subsequent maxima
I∗j = 0.21, j = 2, . . . 8. Notice how the nodes 2-7 start simultaneously while
node 8 is delayed. Communications with the province of Hubei were restricted
at the end of December 2019. To model this, we now consider that node 1 is
only connected to node 2 which forms a complete graph with nodes 3-7, see
bottom left panel of Fig. 5. The infected are shown in the bottom right panel;
as expected the epidemic first arrives in node 2 then synchronously in nodes 3-7
and then in node 8.

To test the effect of having different α s at each node we increased α3,
reduced α4 and kept the other α s the same. Then the epidemic arrives sooner
at node 3 and later at node 4. As expected from the formulas (4) I∗3 > I∗j > I∗4
for j = 5, 6, 7, see [3].
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5 Confinement and deconfinement

Since there is no vaccine for COVID-19 disease and the mortality is relatively
high, many countries put in place a confinement or measures to reduce the
movement of the population. China confined the Hubei region around January
22, Italy confined its population on March 9, France on March 17, . . . In the
middle of the epidemic, Spain and France reached a situation like the one shown
in Fig. 6 (data obtained from the website [12]) where some regions are highly
infected while others have fewer cases.

Figure 6: Map of the number of hospital admissions due to COVID-19 in France
per region on April 5 2020.

The graph to be studied now is a graph containing the main cities like the
one for Mexico 1. The confinement can be modeled by
(i) reducing the capacity Nj of each node j and therefore αj
(ii) reducing the diffusion ε, ie the travel between nodes

An important issue when deconfining the population once the peak of the
epidemic has passed is to avoid a so-called second wave. This happens in partic-
ular when the epidemic affected a small fraction of the total number N . Then,
relaxing α or equivalently increasing N causes a number of new susceptibles to
enter the reaction and therefore produce a second peak of infection. This is
what happens in Fig. 7. Only one node is involved. The computation is started
at t = 0 with S0 = 1, I0 = 0.01 the parameters are α = 0.33, β = 0.13. At
t = 30, we continue the evolution with a new α = 0.5. One can see the new
peak in I.
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Figure 7: Deconfinement by increasing α at a single node.

Another issue with deconfining is the increase of the diffusion which can
bring infected from large centers to small centers. In the example shown in Fig.
6, this corresponds to allowing travel from Paris to Rouen in Normandy. To
understand this effect, consider a very simple two node graph where N1 = 20
millions and N2 = 1 million. Fig. 8 shows two scenarios corresponding to an
increase of diffusion at t = 15 before the peak (left panel) and t = 22 after the
peak (right panel). We see that in both cases, the number of infected in the
smaller node I2 increases significantly.
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Figure 8: Time evolution of the infected when ε is increased from 10−6 to 10−2, at
t = 15 before the epidemic peak (left panel) and at t = 22 (right panel) after the
epidemic peak .
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6 Conclusion

We analyzed a model of an epidemic on a network where susceptible-infected
equations at the nodes are coupled by a geographic diffusion term. It also
contains the essential ingredient of importation of infected subjects from country
to country. We have kept the number of parameters to a minimum so so that
fitting to the data can be successful. This is particularly important for the
present epidemic of COVID-19.

We generalize the well-known epidemic criterion of Kermack-McKendrick.
For small diffusion, outbreaks occur at different times as the disease advances
through the network. A larger diffusion will cause the outbreak to occur syn-
chronously on the network. Using this criterion, we designed a vaccination or
isolation policy: we find it best to vaccinate high degree nodes and not efficient
to vaccinate neighbors.

Finally we discuss the important aspect of deconfining a region after the
outbreak. Circulation between highly infected regions and less impacted areas
should be reduced to prevent the spread of infected to the latter.
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A Analysis of SIR model

From It = 0 we obtain

S∗ =
β

α
=

1

R0
. (23)

Dividing the second equation of (1) by the first, we get

dI

dS
= −1 +

β

αS
,

which can be integrated to yield

I = I0 + S0 − S +
β

α
log

S

S0
, (24)

where we assumed S(t = 0) = S0 and I(t = 0) = I0. Then one can compute I∗

I∗ = I0 + S0 − S∗ +
β

α
log

S∗

S0
. (25)
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Assuming S0 = 1, equations (23,25) can written in terms of R0 as

S∗ =
1

R0
, (26)

I∗ = I0 + S0 −
1

R0
(1 + log(R0S0)) (27)

The time t∗ corresponding to S∗, I∗ can be calculated in the following way.
From the second equation of (1) one can write

dt

dS
= − 1

α

1

SI
= − 1

α

1

S(1 + I0 − S + 1
R0

logS)

Integrating this expression from S∗ to 1 yields the value t∗

t∗ =
1

α

∫ 1

S∗

dS

S(1 + I0 − S + 1
R0

logS)
. (28)

This integral diverges as expected when I0 → 0. It corresponds to a homoclinic
orbit [13].

B Well-posedness of the model

To prove the well-posedness, we rewrite the system (7) as the following abstract
differential equation: {

x
′
(t) = Ax(t) + f(x(t))

x(0) = x0 ∈ Rn
(29)

where x :=

(
s
i

)
, A is the matrix given by

A :=

(
∆ 0
0 ∆

)
and f : Rn ×Rn −→ R2n defined by

f(x) :=

(
−αsi

αsi− βi

)

and x0 :=

(
S0

I0

)
.

It is clear that, the function f is Lf -lipschitzian with Lf depends only on
α and β. Now, we formulate the well-posedness theorem, which is the main
theorem of this section:
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Theorem B.1 Given x0 ∈ Rn. Then, the equation (29) has a unique solution
satisfying the following formula:

x(t) = etAx0 +

∫ t

0

e(t−s)Af(x(s))ds, t ≥ 0. (30)

proof

Let x0 ∈ Rn and T > 0. Consider the mapping Γ : C −→ C given by

Γu(t) = etAx0 +

∫ t

0

e(t−s)Af(u(s))ds

where C := C([0, T ], Rn). Let us prove that Γ is a contraction. Indeed, let
u, v ∈ C, then

‖Γ(u(t))− Γ(v(t))‖ ≤
∫ t

0

e(t−s)‖A‖‖f(u(s))− f(v(s))‖ds

≤ Lf

∫ t

0

e(t−s)‖A‖‖u(s)− v(s)‖ds

≤ Lfe
T‖A‖

∫ t

0

‖u(s)− v(s)‖ds

≤ Lfe
T‖A‖t‖u− v‖∞.

On the other hand

‖Γ2(u(t))− Γ2(v(t))‖ = ‖Γ(Γu(t))− Γ(Γv(t))‖

≤ Lfe
T‖A‖

∫ t

0

s‖Γ(u(s))− Γ(v(s))‖ds

≤ (Lfe
T‖A‖t)2

2
‖u− v‖∞.

Hence, by iterating for n ≥ 1, we conclude that

‖Γn(u(t))− Γn(v(t))‖ ≤ (Lfe
T‖A‖T )n

n!
‖u− v‖∞.

Now, for n large enough,
(Lfe

T‖A‖T )n

n!
< 1.

The mapping Γn is a contraction. Therefore, by using the iterating fixed point
theorem Γ is also a contraction. Consequently, the system (13) has a unique
solution which is given by (14). end proof
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