
HAL Id: hal-02558086
https://hal.science/hal-02558086

Submitted on 29 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hierarchical approach for discrete-event model
identification incorporating expert knowledge
Ryan P C de Souza, Marcos V Moreira, Jean-Jacques Lesage

To cite this version:
Ryan P C de Souza, Marcos V Moreira, Jean-Jacques Lesage. A hierarchical approach for discrete-
event model identification incorporating expert knowledge. 15th Workshop on Discrete Event Systems,
(WODES’20), Nov 2020, Rio de Janeiro, Brazil. pp. 275-281. �hal-02558086�

https://hal.science/hal-02558086
https://hal.archives-ouvertes.fr

A hierarchical approach for discrete-event model
identification incorporating expert knowledge

Ryan P. C. de Souza ∗ Marcos V. Moreira ∗ Jean-Jacques Lesage ∗∗

∗COPPE-Electrical Engineering Program, Federal University of Rio de
Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21.945-970,

RJ, Brazil (e-mail: {ryanpitanga,moreira.mv}@poli.ufrj.br).
∗∗LURPA, ENS Paris-Saclay, Université Paris-Saclay, 94235 Cachan, France

(e-mail: jean-jacques.lesage@ens-paris-saclay.fr).

Abstract: Recently, a new technique for identification of Discrete-Event Systems (DES) with the aim of
fault detection has been proposed in the literature, where a model is obtained from the observation of the
fault-free system behavior. In some cases, the system may execute different tasks in a sequential order to
perform the complete operation of the system. In these cases, the number of observed paths representing
the complete system operation may grow exponentially with the number of tasks. In addition, by using
black-box identification methods, it is possible that the sequential order that the tasks must be performed
is not represented in the model, reducing the fault detection capability or delaying the fault detection. In
this paper, a two-level hierarchical approach for DES identification is proposed. In the higher level of
the model hierarchy, the system is described by using some basic knowledge of its functioning provided
by an expert, and in the lower level of the hierarchy, the behavior is described by black-box identified
models for the system tasks. The modeling framework proposed in this paper reduces the number of
observed paths needed for system identification and increases the fault detection capability. A practical
example is used to illustrate the results of the paper.

Keywords: Discrete-event systems, System identification, Fault detection, Finite automata, Black-box
identification.

1. INTRODUCTION

For the past decades, an important part of the research on
Discrete-Event Systems (DES) has been devoted to the subject
of fault diagnosis (Sampath et al., 1995; Debouk et al., 2000;
Moreira et al., 2011; Zaytoon and Lafortune, 2013; Cabral and
Moreira, 2020). In these works, many techniques for verifying
diagnosability and for performing fault diagnosis of DES are
presented. These techniques rely on the assumption that the
complete analytical model of the system is available. This
assumption restricts the application of such techniques to small
systems, for which an analytical model of the system behavior
may be derived by hand. For large-scale and complex systems,
it is generally impracticable to build a suitable model for fault
diagnosis, since the fault-free behavior and all possible post-
fault behaviors should be modeled.

In order to circumvent the aforementioned problems, fault
detection techniques based on a model obtained by black-
box identification have been proposed in the literature (Klein
et al., 2005; Roth et al., 2009, 2011; Moreira and Lesage,
2019a,b). The idea behind this modeling approach is to obtain
an automaton that represents the fault-free behavior of the
system. Once the identified model has been obtained, fault
diagnosis can be performed by comparing the system evolution
with the behavior predicted by the model and, if a discrepancy
is observed, a fault is detected. After the detection of a fault,

? This work was partially supported by Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, CNPq and
FAPERJ.

Plant

Actuators Sensors

Controller input signals
output signals

Fig. 1. Closed-loop system showing the signals exchanged
between plant and controller.

methods of fault isolation based on the concept of residuals can
be applied (Roth et al., 2011; Moreira and Lesage, 2019b).

In Moreira and Lesage (2019a), a model for the identifica-
tion of closed-loop DES, called Deterministic Automaton with
Outputs and Conditional Transitions (DAOCT), is proposed.
The construction of this model is based on the acquisition of
binary signals exchanged between the programmable logic con-
troller (PLC) and the plant, during fault-free system operation.
These signals are formed of the inputs (sensor readings) and
the outputs (actuator commands) of the controller, as shown in
Figure 1. The inputs for the identification algorithm proposed
in Moreira and Lesage (2019a) are the observed paths that the
system can execute, where each observed path corresponds to a
complete system execution.

Although it has been shown in Moreira and Lesage (2019a,b)
that an identified DAOCT model can be successfully obtained
for practical systems, in some cases the system may execute
different tasks in a sequential order to perform a complete
system operation. For instance, the same machine may receive

two types of parts, performing different tasks for each part, and
these parts are delivered to the machine always interchangeably.
Thus, the complete operation corresponds to processing one
type of part, and then processing the other type of part. In these
cases, the number of observed paths representing the complete
system operation may grow exponentially with the number of
tasks. In addition, by using black-box identification methods,
it is possible that the sequential order that the tasks must be
performed is not represented in the model, reducing the fault
detection capability or delaying the fault detection.

We propose, in this paper, a two-level hierarchical approach
for identification of a DES with the aim of fault detection. In
the lower level of the model structure, DAOCT models are
implemented representing the tasks that the system can execute.
The DAOCT models are computed using the observed paths as-
sociated with each task. In the higher level, the sequential order
that the tasks are performed by the system is modeled. This
information, provided by an expert, may be given as natural
language statements that can be modeled as a Moore automaton
representing the possible sequence of tasks. Each vertex of the
higher-level automaton is associated with a particular system
task, and its transitions describe when there is a change in the
task executed by the system. The event labeling the transitions
of the higher-level model is associated with the dynamics of
the lower-level models, which send information about the oc-
currence of the event to the higher-level model. The higher-
level model, on the other hand, indicates which task must be
executed, determining the DAOCT in the lower level that must
be run in parallel with the system for fault detection.

It is important to remark that the construction of the hierarchical
model is related to the top-down approach for modeling pur-
poses (Suzuki and Murata, 1983; Zhou et al., 1989). However,
in the modeling approach proposed in this paper, the lower-
level and the higher-level models are synchronized based on
information exchanged between them to keep track of their
evolutions.

This paper is organized as follows. In Section 2, the notation
and some basic concepts used in this work are introduced.
In Section 3, we define the DAOCT model and show how
it can be used for fault detection. In Section 4, we describe
the hierarchical model identification approach proposed in this
work, and, in Section 5, we illustrate the results of the paper
with a practical example. Finally, the conclusions are drawn in
Section 6.

2. PRELIMINARIES

2.1 Notation and definitions

Let G = (X ,Σ, f ,x0) be a deterministic automaton, where X is
the set of states, Σ is the finite set of events, f : X ×Σ? → X
is the transition function, with Σ? denoting the Kleene-closure
of Σ, and x0 is the initial state (Cassandras and Lafortune,
2008). The language generated by G is defined as L(G) :=
{s ∈ Σ? : f (x0,s)!}, where symbol ‘!’ denotes ‘is defined’.

The prefix-closure of a language L⊆ Σ? is defined as L̄ = {s ∈
Σ? : (∃t ∈ Σ?)[st ∈ L]}.
A path p = (x1,σ1,x2,σ2, ...,xl−1,σl−1,xl), where xi+1 =
f (xi,σi), i = {1, ..., l−1}, is a sequence of states and events
that can be executed by G. Let P be a set of paths, and
define function ψ : P → Σ?, that extracts from a path p ∈

P, the sequence of events associated with p. Thus, if p =
(x1,σ1,x2,σ2, . . . ,σl−1,xl), then ψ(p) = σ1σ2 . . .σl−1.
Definition 1. (Moore Automaton). A Moore automaton is the
six-tuple H =(XH ,ΣH , fH ,x0,H ,O,Λ), where (XH ,ΣH , fH ,x0,H)
is a deterministic automaton, O is the set of outputs, and Λ :
XH →O is the output function, which assigns an output of O to
each state x ∈ XH . 2

The length of a sequence s ∈ Σ? is denoted as ‖s‖. The set
of non-negative integers is denoted by N, and the set {0,1} is
denoted by N1. The cardinality of a set A is denoted by |A|.

2.2 Identification of Discrete-Event Systems for fault detection

Let us consider the closed-loop system depicted in Figure 1,
and assume that the controller has mi binary input signals,
ih, for h = 1, . . . ,mi, and mo binary output signals, oh, for
h = 1, . . . ,mo. Let vector

u(t1) = [i1(t1) . . . imi(t1) o1(t1) . . . omo(t1)]
T
,

denote the observation of the controller signals at time instant
t1. Thus, vector u(t1) represents the I/O vector of the system
at a given time instant t1. As the system evolves, the I/O
vector of the system may change due to changes in sensor
readings or actuator commands. Let us consider that there is
a change in at least one of the variables of u. Then, at the time
instant immediately after this change, t2, a new vector u(t2) is
observed. Since, in this paper, we consider only untimed system
models, we may define the instantaneous changes in the values
of the controller signals as the system events, σ , and represent
the I/O vector of the system u(t j), by u j. Thus, the transition
from one vector of controller signals u1 to another vector u2,
is represented by the transition (u1,σ ,u2). If a sequence of l
vectors of controller signals, and the corresponding changes
in these signals, is observed, we have an observed path of the
system p = (u1,σ1,u2,σ2, . . . ,σl−1,ul).

Let us consider that the observed paths of the system are
denoted as pi = (ui,1,σi,1,ui,2,σi,2, . . . , σi,li−1,ui,li), for i =
1, . . . ,r, where r is the number of observed paths, and li is
the number of vertices of each path pi. Let us also assume
that all paths start at the same vertex, i.e., all I/O vectors ui,1,
for i = 1, . . . ,r, are equal, and that the paths can have cyclic
embedded paths. Thus, associated with each path pi there is
a sequence si = ψ(pi) = σi,1σi,2 . . .σi,li−1, where ψ : P→ Σ?

with P = {p1, . . . , pr}. As in Moreira and Lesage (2019b), we
assume in this paper that none of the paths pi has an associated
sequence of events si = ψ(pi) that is a prefix of the sequence of
events of another path p j, s j = ψ(p j), where i 6= j.

The following definition of the language observed by the sys-
tem can be stated:

LObs :=
r⋃

i=1

{si}. (1)

The objective of system identification is to find a model that
simulates the observed fault-free behavior described by LObs.
Thus, the language generated by the identified model, LIden,
must satisfy LObs ⊆ LIden. After obtaining the identified model
that simulates the fault-free behavior, it can be used for fault
detection by comparing the observed events generated by the
closed-loop system with the behavior of the identified model. If
the observed behavior is different from the predicted behavior,
the fault is detected. In the next section, the model proposed in
Moreira and Lesage (2019a) for the identification of DES, and

the method proposed in Moreira and Lesage (2019b) for using
this model for fault detection, are presented.

3. FAULT DETECTION BASED ON A DETERMINISTIC
AUTOMATON WITH OUTPUTS AND CONDITIONAL

TRANSITIONS

In Moreira and Lesage (2019a), an automaton model suitable
for fault detection, called Deterministic Automaton with Out-
puts and Conditional Transitions (DAOCT), is proposed. The
DAOCT is obtained from the observed paths pi, i = 1, . . . ,r,
and a free parameter k. In order to do so, it is first computed
modified paths pk

i from paths pi such that the vertices of pk
i are

sequences of I/O vectors of length at most equal to k as follows:
pk

i = (yi,1,σi,1,yi,2,σi,2, . . . ,σi,li−1 ,yi,li), (2)
where

yi, j =

{
(ui, j−k+1, . . . ,ui, j), if k ≤ j ≤ li
(ui,1, . . . ,ui, j), if j < k . (3)

Note that the sequence of events of pk
i is equal to the sequence

of events of path pi. Thus, the unique difference between pi and
pk

i is that each vertex of pk
i is now associated with a sequence

of vectors instead of a single I/O vector. The formal definition
of a DAOCT is stated in the sequel.
Definition 2. A Deterministic Automaton with Outputs and
Conditional Transitions (DAOCT) is the eight-tuple:

DAOCT = (X ,Σ,Ω, f ,λ ,R,θ ,x0),

where X is the set of states, Σ is the set of events, Ω ⊂ Nmi+mo
1

is the set of I/O vectors, f : X × Σ? → X is the deterministic
transition function, λ : X → Ω, is the state output function,
R = {1,2, . . . ,r} is the set of path indices, θ : X ×Σ→ 2R is
the path estimation function, and x0 is the initial state. 2

The labeling function λ̃ : X → Ωk, where Ωk is formed of all
sequences of symbols of Ω of length smaller than or equal to k,
is used in Moreira and Lesage (2019a) to associate to each state
x ∈ X , a vertex of one of the paths pk

i . By increasing the value
of k, the language of the identified model, LIden, is reduced,
and the size of the model is increased. Thus, there is a trade-off
between size and accuracy of the identified model depending on
the choice of the free parameter k. The output λ (x) is defined
for each state x ∈ X as the last I/O vector of λ̃ (x).

Each transition x′ = f (x,σ) of automaton DAOCT has a corre-
sponding set θ(x,σ) of indices that is associated with the paths
pi that contain transition (x,σ ,x′). Function θ is used in the
DAOCT evolution rule to provide a path estimator, such that
if the paths associated with a transition are not coherent with
the paths of the observed sequence of events, then the transition
is not enabled. This fact is clearly presented in the definition
of the language generated by the DAOCT. In order to present
the language generated by the DAOCT, it is first necessary to
extend the domain of function θ to consider the execution of
sequences of events, obtaining the extended path estimation
function θs : X×Σ?→ 2R, defined recursively as:
θs(x,ε) = R,

θs(x,sσ) =

{
θs(x,s)∩θ(x′,σ), where x′ = f (x,s), if f (x,sσ)!
undefined, otherwise.

The language generated by the DAOCT is given by
L(DAOCT) := {s ∈ Σ

? : f (x0,s)!∧θs(x0,s) 6= /0}. (4)
Note that a sequence of events s ∈ Σ? is only feasible in the
DAOCT, if f (x0,s) is defined, and there is at least one path

in the path estimate after the occurrence of s, represented by
condition θs(x0,s) 6= /0.

In Moreira and Lesage (2019b), a procedure for fault detection
using the DAOCT model is proposed. The procedure is based
on four conditions that the observed path must satisfy to be
viable in the model. The first condition is associated with the
feasibility of the observed event, and the second condition is
associated with the existence of a path in the path estimate.
The other two conditions can be easily checked by counting the
number of observed events. In the third condition, the minimum
number ni of event observations to distinguish the observed
path pi from the other paths p j, j ∈ R and i 6= j, is used. It
is important to remark that, since it is assumed that each trace
si = ψ(pi) cannot be a prefix of another trace s j = ψ(p j),
where i 6= j and i, j ∈ R, then there always exists a number
0 < ni < li associated with each path pi. Thus, if path pi is
wrongly estimated as the only possible path before ni event
occurrences, then the fault is detected. In the fourth condition, if
the final vertex yi,li of the estimated path pi is not reached after
li−1 event occurrences, then the path estimate is wrong and the
fault has occurred. The four conditions are formally presented
in the following definition (Moreira and Lesage, 2019b).
Definition 3. Let s ∈ Σ? be a model run such that x = f (x0,s).
Then, an event σ ∈ Σ is said to be viable in state x ∈ X of the
DAOCT model, if it satisfies the following four conditions:

C1. f (x,σ)!;
C2. θs(x0,sσ) 6= /0;
C3. If ‖θs(x0,s)‖> 1 and θs(x0,sσ) = {i}, then ‖sσ‖ ≥ ni;
C4. If ‖sσ‖ = li − 1, for i ∈ θs(x0,sσ), then λ̃ (x′) = yi,li ,

where x′ = f (x,σ), or there exists j ∈ θs(x0,sσ) such that
‖sσ‖< l j−1. 2

Conditions C1 and C2 guarantee that sσ ∈ L(DAOCT). If
Condition C3 is not true, then path pi is identified before the
minimum number ni of events that must be observed in order
to estimate it. Thus, a fault has occurred. Finally, if Condition
C4 is not true, then the length of the observed trace sσ is equal
to the maximum length among all sequences of the estimated
paths in θs(x0,sσ), without reaching the final vertex of any of
these paths, which implies that a fault has occurred.

Another important characteristic that the DAOCT model must
satisfy to be used in the fault detection scheme is its reinitializ-
ability defined as follows (Moreira and Lesage, 2019b).
Definition 4. Let s = ψ(pk

i), for i ∈ {1,2,r}. Then, the
DAOCT model is said to be reinitializable if there does not exist
s′ ∈ {s} of length ‖s′‖= l j−1, where j ∈ θs(x0,s′) and l j < li,
such that x′ = f (x0,s′), and λ̃ (x′) = y j,l j . 2

If the DAOCT model is reinitializable, then if s = ψ(pk
i) is

observed, path pk
i is uniquely determined, which implies that

the DAOCT model can be used for fault detection.

The basic idea of the fault detection scheme is to compare the
viable events of the identified fault-free model with the ob-
served events. If the observed event does not satisfy conditions
C1-C4 to be viable, then the fault is detected.

4. HIERARCHICAL MODEL IDENTIFICATION

In the black-box identification approach, the model is computed
from the observed paths of the system. Thus, in order to obtain
an accurate model, it is necessary to observe all paths that the

A

S1 S2

Fig. 2. Scheme for the system described in Example 1.

system can execute. However, the unique way of guaranteeing
that all possible behaviors have been observed is to observe
the system for an infinite time. Thus, in practice, we observe
the system for a sufficiently long time until we do not observe
any new path. Although this strategy works for several practical
systems, in some cases, different tasks might need to be carried
out sequentially by the system in order to perform the complete
system operation, increasing the number of observed paths
needed for identification. For instance, let us suppose that two
types of parts are delivered to a system, and that each type
of part describes a different task tq, q = 1,2, executed by the
system. Let us assume that the system always starts executing
task t1. Suppose also that we know that the parts are delivered
to the system interchangeably, such that if a part is delivered
in a different order, a fault has occurred. In this case, a path of
the complete system operation must describe the correct order
that the parts are delivered to the system, i.e., the path of the
complete operation must be formed of a possible observed path
of task 1 concatenated with a possible path associated with task
2. If we consider that each task tq has rq possible paths, then
the number of possible paths of the complete system operation
would be the product r1× r2. This shows that the number of
paths needed to obtain the DAOCT model grows exponentially
with the number of tasks that the system executes.

Another problem related to the direct construction of a black-
box model for the complete system is the reduction of fault
detection capability, or the increase in the delay for diagnosis.
This problem is illustrated in the following example.
Example 1. Consider the system presented in Figure 2 com-
posed of a conveyor belt and two sensors S1 and S2. The con-
veyor belt is always turned on, and a parcel is always placed at
point A of Figure 2. Consider also that at most one parcel can
be placed on the conveyor belt, and that a new parcel can be
placed on the conveyor only after the removal of the previous
one. Assuming that the parcel is moved to the right, then the
correct order that the sensors must be activated is S1 and then
S2. In this case, the fault-free observed path of the system is:

p =

([0
0
1

]
,σ1,

[1
0
1

]
,σ2,

[0
0
1

]
,σ3,

[0
1
1

]
,σ4,

[0
0
1

])
,

where the first entry of the I/O vector is associated with S1, the
second entry with S2, and the third entry with the command to
turn on the conveyor. In this example σ1 and σ2 are the rising
and falling edges of S1, respectively, and σ3 and σ4 are the
rising and falling edges of S2, respectively.

The DAOCT obtained for k = 1 is presented in Figure 3, where
λ (x0) = [0 0 1]

T , λ (x1) = [1 0 1]
T , and λ (x2) = [0 1 1]

T .
Note that, since there is only one possible path, the path
estimator will always indicate estimate {1}, as represented in
the transitions of the DAOCT. In this case, it can be seen that
if sensor S1 stops working, then none of the conditions C1-C4
of Definition 3 will be violated, and the fault detector will not
be capable of identifying the fault occurrence. An alternative to

x0x1 x2

↑S1,{1}

↓S1,{1}

↑S2,{1}

↓S2,{1}

Fig. 3. DAOCT model obtained for the system in Example 1.

circumvent this problem would be to use a larger value for k
in order to model the correct sequence of observations of the
sensor signals. However, this leads to an increase in the size of
the DAOCT model. 2

In this paper, we present an hierarchical method to model the
DES, incorporating some basic knowledge about the system
behavior provided by an expert.

4.1 Hierarchical structure

In this paper, we assume that the complete system operation
consists of the execution of tasks in a sequential order, and that
there is only one sequence of tasks. Let T denote the set of
tasks tq, q = 1, . . . ,η , where η denotes the number of tasks.
Then, the sequence of tasks that the system executes is given by
w = w1w2 . . .wν , where wz ∈ T , for z = 1, . . . ,ν . It is important
to remark that the same task can be performed several times in
w, and that w can be executed cyclically, i.e., after the execution
of task wν , the system returns to task w1 and executes w again.
We assume in this paper that the sequence of tasks w is provided
by an expert.

A path pi ∈ P of the complete system operation is formed of a
sequence of subpaths, where each subpath corresponds to a task
tq executed by the system. Let π

q
ξ
= (uq

ξ ,1,σ
q
ξ ,1,u

q
ξ ,2,σ

q
ξ ,2, . . . ,

uq
ξ ,lq

ξ

), where uq
ξ , j ∈ Ω, for j = 1, . . . , lq

ξ
, and σ

q
ξ , j ∈ Σ, for

j = 1, . . . , lq
ξ
− 1 , be a subpath associated with task tq, and let

Pq be the set of subpaths π
q
ξ

for ξ = 1, . . . ,rq, where rq is the
number of observed paths of Pq. Let µq denote the number of
times that tq occurs in w. Then, the number of possible paths
pi ∈ P is given by Π

η

q=1rµq
q , which shows that the number of

paths of P grows exponentially with the number of tasks in w.

Since a path representing the complete system operation is
formed of subpaths, then, if task tq+1 succeeds task tq, for every
ξ ∈ {1, ...,rq} and ξ ′ ∈ {1, ...,rq+1} we have that uq

ξ ,lq
ξ

= uq+1
ξ ′,1 .

In this paper, we propose a two-level hierarchical structure,
where, in the higher level, the sequence of tasks w that the
system must execute to complete its operation is described
by a Moore automaton, and, in the lower level, each task tq
is modeled as a DAOCT identified by using the subpaths of
Pq, for q = 1, . . . ,η . The higher-level model indicates which
task should be executed according to the fault-free system
behavior, determining which DAOCT model of the lower-level
part must be run in order to carry out fault detection. After the
execution of a complete subpath in the DAOCT model in the
lower level, the information about the conclusion of the task is
communicated to the higher-level model. Then, a transition in
the higher-level model is transposed, indicating the next task
of w that will be executed. The flow of information between the
higher-level and the lower-level models is presented in Figure 4.

DAOCT models

Moore automaton HIGHER LEVEL

LOWER LEVEL

launching of task end of task

Fig. 4. Scheme showing both levels of the complete model and
the flow of information.

xH,1

Λ(xH,1) = t1

xH,2

Λ(xH,2) = t2e

e

Fig. 5. Moore Automaton describing the sequence of tasks for
Example 1.

4.2 Higher-level model

In the higher-level model, the sequence of tasks w provided
by the expert is modeled as the Moore Automaton H =
(XH ,ΣH , fH ,x0,H ,O,Λ), where each task wz of w is associated
with a state xH,z ∈ XH , for z = 1, . . . ,ν . The set of events ΣH
is a singleton ΣH = {e}, where e denotes the event end of
task, whose occurrence is associated with the completion of a
subpath in a DAOCT model in the lower level. The transition
function is defined as fH(xH,z,e) = xH,z+1, for z = 1, . . . ,ν−1,
and fH(xH,ν ,e) = xH,1, if w is cyclical, or fH(xH,ν ,e) is unde-
fined, otherwise. The initial state of H is defined as x0,H = xH,1,
and the output of each state xH,z is the task associated with wz.
Thus, O = T , and Λ(xH,z) = wz, for z = 1, . . . ,ν .

We present in the sequel an example to illustrate the computa-
tion of H.
Example 2. Consider the system presented in Example 1,
whose scheme is depicted in Figure 2. In this case, an expert
could define two tasks for the system, where task t1 is associated
with the detection of the parcel by sensor S1, and task t2 the
detection of the parcel by sensor S2. Since it is assumed that
the conveyor can only have one parcel at a time, and a parcel
is always placed at point A on the conveyor, then the cyclical
sequence of tasks w = t1t2 would be provided by the expert.
Thus, the higher-level automaton H, describing the sequence of
tasks w, is obtained as presented in Figure 5. 2

4.3 Lower-level model

In the lower level, a DAOCT model, called in this paper
DAOCTq = (Xq,Σq,Ω, fq,λq,Rq,θq,x0,q), is identified for each
task tq, q = 1, . . . ,η , of the system, where Σq ⊆ Σ is the set of
events observed in tq and Rq = {1,2, . . . ,rq}. In order to do so,
the subpaths π

q
ξ
∈ Pq, for ξ = 1, . . . ,rq, are used as the inputs

of the algorithm presented in Moreira and Lesage (2019a) for
the computation of the identified DAOCT. Thus, it is assumed
that the sets Pq, q = 1, . . . ,η , are given, i.e., all subpaths
are correctly obtained and classified for identification. The
lower-level model is, therefore, formed of η identified models
DAOCTq. Note that the vertices of the subpaths π

q
ξ

, for q =

1, . . . ,η , are formed of all entries of the I/O controller vector,
even if in task tq not all sensors or actuators are activated. Note
also that each DAOCTq can be obtained using a different free

x0 x1

↑S1,{1}

↓S1,{1}

(a) DAOCT1.

x0 x2

↑S2,{1}

↓S2,{1}

(b) DAOCT2.

Fig. 6. DAOCT model for each task in Example 1.

parameter k to model task tq, and that it must be reinitializable
according to Definition 4.

In the sequel we present an example to illustrate the lower-level
DAOCT models.
Example 3. In Figure 6 we present the identified models
DAOCT1 and DAOCT2 obtained for k = 1 from the subpaths:

π
1
1 =

([0
0
1

]
,σ1,

[1
0
1

]
,σ2,

[0
0
1

])
,

π
2
1 =

([0
0
1

]
,σ3,

[0
1
1

]
,σ4,

[0
0
1

])
,

where π1
1 is the subpath associated with task t1, and π2

1 is the
subpath associated with task t2. 2

4.4 Fault detection using the hierarchical model

The fault detection is carried out using the higher- and lower-
level models. In the initial state x0,H of the higher-level model,
H outputs the first task to be performed by the system w1,
and the DAOCTq associated with w1 is used in the lower-level
model to detect faults. Then, for each observed event σ ∈ Σ,
the four conditions presented in Definition 3 are used to verify
if σ is viable in the corresponding DAOCT model. If any of
the four conditions is violated, then a fault is detected. On the
other hand, if all conditions are verified, and the final vertex
of the estimated path π

q
ξ

is reached after lq
ξ
− 1 events, then

the task has been completed, and event e representing the end
of task, is generated. The higher-level model H observes the
occurrence of e and makes a transition to the next state xH,2,
that outputs task w2, defining the new task model to be run in
the lower-level. The process is repeated until a fault is detected.
This procedure is described in Algorithm 1.

Algorithm 1. Fault detection algorithm

Input: Automaton H, and DAOCTq, for q = 1, . . . ,η .

Output: Fault detection

1: c← 0
2: Define the current state of H as xcurr← xH,c+1
3: Run the fault detection algorithm proposed in Moreira

and Lesage (2019b) having as input the DAOCTq model
associated with task Λ(xcurr)

4: if the fault is detected then stop the algorithm
5: if a path of task Λ(xcurr) is completed then

5.1: Communicate the occurrence of event e to H
5.2: if fH(xcurr,e)! then

5.2.1: c← (c+1)mod|XH |
5.2.2: Go to Step 2

5.3: No fault has been detected

Fig. 7. Sorting unit system of the practical example.

Let LHM denote the language formed of all sequences of the
hierarchical model corresponding to a complete system opera-
tion. Define language Ltq formed of all sequences of DAOCTq
corresponding to the completeness of task tq. Then, LHM =
Lw1Lw2 . . .Lwν

. The following theorem shows that the hierachi-
cal model simulates the observed system language.
Theorem 1. LObs ⊆ LHM .

Proof. Let us denote by LObs,tq the observed language formed
of the sequences of the subpaths associated with task tq, i.e.,
LObs,tq :=

⋃rq
ξ=1 {ψq(π

q
ξ
)}, where function ψq : Pq→ Σ?

q returns
the sequence of observed events of a subpath π

q
ξ
∈ Pq. Let

L′Obs ⊂ LObs be the set formed of all sequences s ∈ LObs corre-
sponding to a complete system operation. Then, any observed
event sequence s′ ∈ L′Obs can be written as s′ = s1s2 . . .sν , with
sz ∈ LObs,wz , z = 1, . . . ,ν . According to Moreira and Lesage
(2019a), LObs,tq ⊂ L(DAOCTq), q = 1, . . . ,η , which implies
that sz ∈ Lwz , z = 1, . . . ,ν . It follows that s′ = s1s2 . . .sν ∈
Lw1Lw2 . . .Lwν

= LHM , and thus L′Obs ⊆ LHM . Since, according
to Equation (1), LObs = L′Obs, then LObs ⊆ LHM . �

5. PRACTICAL EXAMPLE

The identification method proposed in this paper is illustrated
using part of a system that assembles two half cubes to form a
cube. The part of the system used in this example is the sorting
unit system presented in Figure 7. Three different types of half
cubes are sorted in the system: white plastic half cubes (WP),
black plastic half cubes (BP), and metallic half cubes (M). Each
type of part is pushed to one of the three slides shown on the
bottom of Figure 7, such that half cubes of type WP are pushed
to the right slide, half cubes of type M are pushed to the slide
in the middle, and half cubes of type BP are pushed to the left
slide.

On the right of Figure 7, there is a stack magazine where the
half cubes are stored in the following order: M, BP, M and WP.
This order corresponds to assembling two cubes, where the first
one is formed with a metallic half and a black plastic half, and

xH,1

M

xH,2

BP

xH,3

M

xH,4

WP
e e e

e

Fig. 8. Higher-level automaton H for the practical example.

the second one is formed with a metallic half and a white plastic
half. If this order is changed, then a fault has occurred. In the
sorting process, the parts at the bottom of the stack magazine
are placed onto the conveyor belt by a pneumatic pusher. Then,
the conveyor belt is turned on, and the part is moved in the
direction of two sensors in order to determine its type. An
inductive sensor detects metallic parts (type M), and an optical
sensor detects metallic (type M) and white plastic parts (type
WP). If a black plastic part (type BP) is on the conveyor, then
none of the sensors is capable of detecting it. The optical sensor
is located close to the inductive sensor, such that metallic parts
are detected by both sensors almost at the same time.

It is also important to remark that there is a photoelectric sensor
next to each sorting pusher on the conveyor. When a part is
detected by the photoelectric sensor next to the pusher that
should remove it from the conveyor, the conveyor is stopped
and the pusher is extended. Then, the pusher is retracted and a
new part can be placed on the conveyor by the pusher of the
stack magazine.

5.1 Higher-level part of the model

We assume that the processing of a different type of part can
be seen as a task executed by the system. Therefore, there are
3 tasks given by: t1 = M, t2 = BP, and t3 = WP. The sequence
of tasks given by the expert is w = t1t2t1t3 to capture the order
in which parts of different types must arrive in the system. It
is also informed by the expert that this sequence is cyclical.
The higher-level automaton, modeling the order of execution
of tasks, is shown in Figure 8.

5.2 Lower-level part of the model

The sorting unit system has 13 sensors and 6 actuator signals.
Thus, the controller has 19 input and output signals. The initial
state of all observed paths of the three tasks is defined as the
I/O vector corresponding to the case where the conveyor belt is
turned off, and all pushers are retracted.

In the identification procedure, nine subpaths associated with
task t1 (M) were observed, one subpath was observed for task
t2 (BP), and one subpath was observed for task t3 (WP), which
sums up to 11 observed subpaths. Thus, r1 = 9, r2 = 1 and r3 =
1. The reason for which there are multiple subpaths associated
with task t1 is that, since the inductive and optical sensors are
very close to each other, the order of sensor readings (rising
and falling edges) may change for different sorting cycles of
metallic parts, increasing the number of subpaths associated
with task t1.

The DAOCT models for each task were computed using the
algorithm proposed in Moreira and Lesage (2019a), where the
inputs for building automaton DAOCTq are the subpaths in Pq,
for q = 1,2,3, and the free parameter k = 1. Concerning the
number of states and transitions, we have that DAOCT1 has

0

1 2 3 4

5 6 7

8

9
14

10111213

↑17

↓2 ↑1 ↓17 ↑18 ↓1

↑2 ↓18

↑19

↑12 ↑15 ↓19

↓6

↓12↑5 ↓15↓5

↑6

↑13

↓13

↑10,{1,6,7}

↓10,{1,3,5}

↑9,{1,6,7}

↓9,{1,3,5}

↑9 ↑10,{5,8,9}
↓9 ↓10,{2,7,8}

↑9,{2,3,4}

↓9,{4,6,9}

↓10,
{4,6,9}

↑10,{2,3,4}

Fig. 9. DAOCT1.

15 states and 24 transitions, DAOCT2 has 13 states and 16
transitions, and DAOCT3 has 12 states and 14 transitions. Due
to lack of space, only DAOCT1 is shown in Figure 9, where
the rising and the falling edge of the j-th element of vector
u is denoted by ↑ j and ↓ j, respectively. For simplicity, when
θq(x,σ) = Rq, the transition is not labeled with set Rq.

5.3 Fault detection using the complete hierarchical model

The advantages of using a fault detector based on the hierarchi-
cal model proposed in this paper can be illustrated as follows.
Assume that, during system operation, the current state estimate
in the higher-level model is xH,2, and that the system is currently
executing task t2 = BP with no fault occurrences. Thus, a black
part is being processed in the sorting unit system. As soon as
this part is pushed to the left slide, event e is communicated
to the higher-level model to inform the end of the subpath that
was being executed. Then, the current state estimate becomes
xH,3, meaning that a subpath associated with a metallic part is
expected to be executed. However, suppose that a fault occurs
in the inductive sensor and it stops working. Then, if a metallic
part is pushed by the stack magazine, the observed subpath will
be equivalent to a subpath of a white plastic part. In this case,
the subpath executed by the system will be associated with task
t3 instead of task t1, which is the task that is supposed to be
performed by the system. Since the lower-level model which
is being run to keep track with the system evolution during
this subpath is DAOCT1, the fault will be detected by applying
Algorithm 1. Note that all subpaths associated with task t1,
which are all simulated by DAOCT1, must contain the event
corresponding to the activation of the inductive sensor.

Note that if a unique DAOCT were used to model the behavior
of the system instead of the hierarchical model proposed in this
paper, paths corresponding to the complete system operation
would have to be considered. These paths would be composed
of the concatenation of all subpaths associated with each task,
following the sequence of tasks provided by the expert. The
number of times tasks t1, t2 and t3 appear in sequence w
are, respectively, µ1 = 2, µ2 = 1, and µ3 = 1. Thus, the total
number of paths associated with the complete system operation
is given by rµ1

1 × rµ2
2 × rµ3

3 = 81. We can see, in this example,
the reduction in the number of paths needed for identification.
While using a unique DAOCT it is necessary to observe 81

paths, using the hierarchical model proposed in this paper it
is necessary to observe only 11 subpaths. It is also important
to remark that, in this example, the fault in the inductive sensor
would be detected using a unique DAOCT model with k = 1,
but with a much larger delay for its detection.

6. CONCLUSIONS

In this paper, we propose a two-level hierarchical model for
the identification of Discrete-Event Systems, by using expert
knowledge about the sequence of tasks that must be executed
by the system in order to complete its operation. The new model
reduces the number of observed paths needed for identification,
and also increases the fault detection capability of the system.
We are currently investigating the modeling of concurrent tasks
in the higher-level model, and also the case that there are
several distinct sequential tasks that the system can perform to
complete an operation.

REFERENCES
Cabral, F.G. and Moreira, M.V. (2020). Synchronous diagnosis

of discrete event systems. IEEE Transactions on Automation
Science and Engineering, 17(2), 921–932.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer Publishing Company, Inc.,
New York, NY, USA, 2nd edition.

Debouk, R., Lafortune, S., and Teneketzis, D. (2000). Coordi-
nated decentralized protocols for failure diagnosis of discrete
event systems. Discrete Event Dynamic Systems, 10, 33–86.

Klein, S., Litz, L., and Lesage, J.J. (2005). Fault detection of
Discrete Event Systems using an identification approach. In
16th IFAC World Congress. Praha, Czech Republic.

Moreira, M.V., Jesus, T.C., and Basilio, J.C. (2011). Poly-
nomial time verification of decentralized diagnosability of
discrete event systems. IEEE Transactions on Automatic
Control, 56(7), 1679–1684.

Moreira, M.V. and Lesage, J.J. (2019a). Discrete event system
identification with the aim of fault detection. Discrete Event
Dynamic Systems, 29(2), 1–19.

Moreira, M.V. and Lesage, J.J. (2019b). Fault diagnosis based
on identified discrete-event models. Control Engineering
Practice, 91, 104101.

Roth, M., Lesage, J.J., and Litz, L. (2009). An FDI method for
manufacturing systems based on an identified model. IFAC
Proceedings Volumes, 42(4), 1406 – 1411. 13th IFAC Sym-
posium on Information Control Problems in Manufacturing.

Roth, M., Lesage, J.J., and Litz, L. (2011). The concept
of residuals for fault localization in discrete event systems.
Control Engineering Practice, 19(9), 978–988.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
and Teneketzis, D. (1995). Diagnosability of discrete event
systems. IEEE Transactions on Automatic Control, 40(9),
1555 – 1575.

Suzuki, I. and Murata, T. (1983). A method for stepwise
refinement and abstraction of Petri nets. Journal of Computer
and System Sciences, 27(1), 51 – 76.

Zaytoon, J. and Lafortune, S. (2013). Overview of fault diag-
nosis methods for discrete event systems. Annual Reviews in
Control, 37(2), 308 – 320.

Zhou, M., DiCesare, F., and Desrochers, A.A. (1989). A top-
down approach to systematic synthesis of Petri net models
for manufacturing systems. In Proceedings, 1989 Interna-
tional Conference on Robotics and Automation, volume 1,
534 – 539.

