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ABSTRACT

Pattern detection is an active field in big data streams analytics with numerous ongoing challenges. Actually,
due to the great velocity and variety of data, new patterns can appear and change over time. Existing state-of-
the-art solutions consist in updating the pattern detection model regularly in order to integrate newly appeared
and validated patterns. However, in several applications, such as security and defense, patterns can represent
anomalies. Therefore, it becomes crucial to detect new patterns (i.e. new anomalies), as early as possible, in order
to react at the right moment. Consequently, emergent pattern detection becomes a very challenging task. To
tackle this challenge, we propose EPDA (Emergent Pattern Detection Algorithm): a new and validated algorithm
for detecting emergent patterns in data streams. The originality of EPDA consists in exploiting frequent pattern
mining techniques by proposing new statistical measures in order to estimate the evolution of emergent patterns
over time. To perform this detection in a real-time, EPDA runs on the well-known Apache STORM distributed
real-time computation system. To better fit our algorithm, we propose a new Apache STORM topology which is
composed of one Spouts level and two Bolts levels. Experiments on a real data stream have shown the relevance
of the proposed measures and the efficiency of our algorithm in a prediction task and in terms of execution time.

Keywords: Emergent pattern detection, early detection, data streams , distributed realtime systems, big data
analytics

1. INTRODUCTION

Our digital universe is rapidly growing. The volumes of automatically generated data in 2012 has been estimated
to surpass 2.8 zetabytes (2.8 trillion gigabytes),1 which can represent data streams. Data stream mining field is
concerned with the effective, real time, capture of useful information from data streams.2,3 This task requires
the adoption of an incremental online mechanism to process the data as it becomes available. In addition, data
stream mining helps often to build predictive models and thus is applied in domains where one can use data
stream information for prediction purposes.

In order to demonstrate the importance and challenges in data stream mining, let us take an example in Web
Blog streams. Every user’s message is associated with an explicit timestamp that represents the exact time it
was generated.4 Such a stream contains rich information and offers significant opportunities for exploration, as
well as challenges. One of the challenges is to automatically detect emerging patterns, e.g. the emergent topics
correlations, that appear in the stream and to do this task in real time. Emergent patterns are typically driven
by emergent events, emergent problems, and breaking news that attract the attention of the Web Blog users.
Emergent pattern detection is thus of high interest, as it allows the responsible (the administrator, the company,
etc.) to react, as soon as possible, in response to emergent patterns.

However, because of the variety and velocity of events in a data stream, new patterns, that have never
appeared before, may emerge over time. Therefore, a predictive model which is learned from a segment of the
stream (i.e., learned on that stream at a given point of time) and used to predict in the future, is limited because
it will not identify and integrate recently emerged patterns in the stream. Designing a predictive model that is
regularly updated, by integrating the recently emergent patterns, is a solution that has been proposed in the
state-of-the-art.3 However, in such models, a new pattern is said to be emergent when it has appeared relatively
“frequently”, and at this moment the pattern can be integrated into the predictive model. But, integrating a new
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pattern only once it is frequent limits its use in prediction. Indeed, waiting until a new pattern is frequent, one
can miss the opportunity of using it in a prediction task. Consequently, we consider that the early detection
of emerging patterns, i.e. predicting, as early as possible, that a new pattern will be frequent before it is
actually frequent, is a solution to integrate this pattern in the predictive model as soon as possible and thus to be
able to quickly benefit from its predictive power. This a a very complex task, and to the best of our knowledge,
it has not been addressed in the literature.

In this paper, we propose EPDA (Emergent Pattern Detection Algorithm): an algorithm for the early detec-
tion of emergent patterns in a data stream. The originality of our algorithm is that it detect, as early as possible,
the emergence of new patterns that have never been frequent before in the history of the stream. The algorithm
runs on Apache STORM framework.

The remainder of this paper is organized as follows: In section 2, we present state-of-the-art works. Our
proposed EPDA algorithm is detailed in the section 3. We proceed to the experimental evaluation of the
algorithm in section 4. Finally, we conclude in section 5.

2. RELATED WORKS

In this section, we briefly describe related state-of-the-art works. We present also definitions of some related
concepts.

Data streams represent a complex data type, for which research is particularly active. A data stream is an
infinite sequence of events generated continuously at a rapid rate.5 The term “rapid” means that the speed of
arrival of the events is high compared to the processing and storage capacities.6 It is important to notice that
the nature of an event in a stream may vary. For example, an event can consist of one or more items/objects
(which constitutes an item/object stream),7 one or more graphs (which constitutes a graph stream),8 a plain
text (which constitutes a text stream),9 and so on. Let us present the formal definition of a data stream:

Definition 2.1. Let I be a set of events (items, graphs, texts, etc.) which can be infinite. A data stream
is a sequence of timestamped events, as follows: S =< (t1, It1), (t2, It2), ..., (tn, Itn) > (with t1 < t2 < ... <
tn ∧ n ' ∞). The data stream has an infinite length and its velocity can be deduced according to the occurrence
timestamps ti of its events.

The generalization of data from the Web is the main reasons for the appearance of a large number of data
streams.10 The real-time social content can also be seen as a sensor that captures what is happening in the
world: this can be exploited in order to detect emergent patterns. Let us mention some examples: streams of
user messages in a blog, streams of Web pages (which form graphs because of hyperlinks), streams of scientific
articles published with cross references, etc.

Pattern mining in data streams is subject to several constraints such as the impossibility of retaining all
the data, the need to carry out the search in a single pass on the data and in an imperatively short time.
Consequently, pattern mining in data streams is a very complex task11,12 and traditional algorithms, designed
for sequence processing for example, are not able to handle these constraints. This makes it mandatory to
propose algorithms dedicated to data stream mining. Follows, we formalize the definition of a pattern:

Definition 2.2. A pattern P =< p1, p2, . . . , pk >, is a ordered list of events pi (pi ⊆ I, for i = 1, . . . , k). The
support of the pattern P, denoted supp(P ), represents the frequency of P which is the number of occurrences of
P in the data stream. P is said to be frequent when supp(P ) ≥ minsupp, where minsupp is a minimal support
threshold.

In addition, as a stream is infinite, one cannot search it in its entirety. Consequently, it is required to define
dedicated approaches for processing data in the stream. The literature on data stream mining has shown that
window-based approaches are the most efficient in terms of time and memory consumption.6,13 A window in a
data stream is defined as follows:

Definition 2.3. A window Win(S, ts, w) in a stream S is a sub-segment of length w that starts at timestamp
ts, and ends at timestamp ts + w.

A window-based approach divides the mining task into several sub-tasks, each sub-task being interested in
mining one part of the stream, called a window,13 A sliding window is the type that is often used in such



approaches.6 In a sliding window-based approach, the size of the window is fixed, with the start time shifting
once a new event occurs. In this case, the processing of the stream is always performed on the last position of the
sliding window. For this reason, such approach is more efficient in terms of prediction accuracy because all the
information is processed without any loss. Moreover, it is important to mention that events can be represented
in a window in several manners. When only the order of the events is considered, this represents a logical window
(for example, when a window covers the last fifteen events) .14 However, when several events occur at the same
time, the window’s timestamps can represent seconds, minutes, days, etc. (for example, when a window covers
the last three days). This is called a physical window.

Facing the infinite size of data streams, several data mining algorithms propose to memorize “summaries” of
the stream in order to make possible the analysis of the entire stream.6 A summary is a data structure listing
the most important and essential information of the stream, and is frequently updated.15In the state-of-the-art,
pattern mining algorithms have been proposed based on a summary.15 However, a summary does not guarantee
to capture all occurrences of the pattern, which leads to approximate support values of patterns3,16 and thus to
incompleteness of the final result. Consequently, these algorithms are not suitable for our task of detecting early
emergent patterns in a data stream. Indeed, the detection of early emergence of patterns, requires to consider
each occurrence of the pattern in the stream. Actually, each occurrence of the pattern is crucial as it can be the
one that allows to decide whether the the pattern is emergent or not.12

In the state-of-the-art, several pattern mining algorithm based on the sliding windows have been proposed.
Closed pattern mining has been introduced17 (a pattern is closed if none of its super-patterns has the same support
as its own) in a data stream based on sliding windows and using a tree model to maintain information on all
candidate patterns. However, in this algorithm, the information stored about the non-closed candidate patterns
is useless, which increases time and memory consumption. More efficient algorithms have been proposed18

that store only closed patterns (whatever they are frequent or not), which decreases the resources consumed.
Algorithms for matrix-based frequent pattern mining have been proposed19 in which the support of candidate
patterns is updated over time. However, such algorithms have time and memory limitations when using a low
support threshold.

In the literature, an pattern is said to be emergent when its support increases significantly over time.20 In
this case, it is possible to predict that the support of this pattern will increase further over time. Follows the
formal definition of an emergent pattern:

Definition 2.4. Let P =< p1, p2, . . . , pk > be a pattern that appears in a data stream S. Let suppt′(P ) and
suppt′′(P ) be the supports of P till the timestamps t′ and t′′ respectively. P is said to be an emergent event
at timestamp t′′, if: suppt′′(P )� suppt′(P ).

Several approaches have been proposed to detect emerging patterns, such as approaches based on the “growth
rate” measure, which is represented by the ratio of the support of the pattern at two different timestamps.20,21

If this rate exceeds a predefined threshold, the pattern is considered as emergent, as follows:

Definition 2.5. The growth rate of P between timestamps t′ and t′′ is denoted: growthRatet′,t′′(P ) =
suppt′′(P ) / suppt′(P ). P is considered as an emergent pattern when: growthRateti,tj (I) >= mingrowth, where
mingrowth is a predefined minimal growth threshold.

It is important to mention that the minimal growth threshold and the two timestamps considered to detect
emergence are application-related parameters. Despite the use of such thresholds, the emergence detection is still
performed too late, which is unsuitable for several sensitive context applications. To the best of our knowledge,
the early detection of emergent patterns has not been proposed in the literature.

In the state-of-the-art, a classical approach for detecting emergent pattern22 is to mine all frequent patterns
from an off-line data sequence, then monitor these pattern in an online data stream in order to detect their
emergence. Notice that such approach monitors the already mined patterns and thus does not allow to detect
the emergence of new patterns that have not been learned before, and thus does not allow to anticipate the
occurrence of certain patterns (those that have not been mined from the off-line sequence). This represents one
of the tackled challenges in this paper.



3. EPDR: EMERGENT PATTERN DETECTION ALGORITHM

In this section, we present our proposed algorithm EPDR (Emergent Pattern Detection Algorithm) for early
detection of emergent patterns in a data stream.

3.1 Principle of the Apache STORM framework

In order to perform a real-time data processing, we run our algorithm on Apache STORM ∗: a distributed real-
time stream computation framework based on a “topology” architecture. A topology is represented by a set
of calculation units: spouts and bolts (see figure 1). Spouts represent “taps” that connect to the data stream,
manage retrieving data and perform a first treatment. Bolts represent “valve locks” that handle the main
treatment on some data or results sent from a spout. The user has to implement the necessary treatment to be
performed in spouts and bolts, and can design several levels of parallelism.

Figure 1: The architecture of an Apache STORM topology.23

3.2 Principle of the algorithm EPDA
Our algorithm EPDA has two originalities: (i) unlike traditional algorithms, it does not monitor already
known frequent pattern, it instead mines patterns directly from the data stream and predicts their emergence,
i.e. predicts that they will be frequent in the future. (ii) EPDA detects the emergence as early as possible, i.e.
it considers only a few occurrences of a pattern in order to perform detection. However, one can criticize that
relying on a few occurrences is not sufficient to reliably predict that the pattern will emerge (will be frequent) in
the future. Thus, we need to exploit additional information in order to make this detection more reliable. For
this reason, we make the following hypothesis:

Hypothesis: New patterns that emerge are not totally new, they are linked and influenced by other already
known patterns (i.e., through patterns mutation over time). Thus, we consider as emergent, each new pattern
that tend to appear and is similar to already known patterns.

Choice of similarity measure: In order to calculate the similarity between patterns, we choose the “Edit
distance” measure:24 a non semantic similarity measure25 that allows us to detect new patterns that represent
new trends and behaviours in the data stream. Edit distance measures the degree of dissimilarity between two
patterns. It takes values from 0 to 1. Notice that it equals 0 when the two patterns are identical.

We design steps of EPDA to be run on an Apache STORM topology composed of one spouts level and two
bolts levels. The steps of EPDA are resumed below, detailed in the following sections, and presented in figure 2.

• Initialization: a set of already frequent patterns, which we call “reference patterns”, is obtained.

• Pattern mining: new patterns are mined from the data stream. This step is performed in the spouts level
of the proposed Apache STORM topology.

• Updating patterns information: Only new patterns similar to the reference patterns are considered, and
their supports and occurrences timestamps are updated. This step is performed in the first level of bolts.

• Early detection of emergent patterns: a new growth rate measure is proposed and applied in order to detect
emergent patterns as early as possible. This step in performed in the second level of bolts

∗Apache STORM: http://storm.apache.org

http://storm.apache.org


3.3 Initialization step
A set of frequent patterns that we call reference patterns must be available before the execution of the EPDA
algorithm. These patterns will be used to calculate the similarity with the new patterns mined from the data
stream. We formalize the definition of a reference pattern as follows:

Definition 3.1. A reference pattern, denoted as Pref , is a frequent pattern previously learned (extracted by
a pattern mining algorithm from a dedicated dataset). The set of reference patterns is denoted as SetPref .

. . . . . 
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Figure 2: Scheme of the algorithm EPDA.

3.4 Pattern mining step
The pattern mining step is performed in a spouts level. Each spout is responsible for monitoring the data stream
and receiving a package of events. Each package represents a sliding window necessary to extract patterns (see
figure 2). A traditional pattern mining algorithm is applied on this window (see blue components in figure 2) in
order to mine patterns. Notice that only a single occurrence can be found for a pattern in each window. Notice
that once a spout completes this task, it distributes the set of mined patterns SetP to several available bolts.
The spout is released from this task, it now becomes available and ready to process a new window.

3.5 Updating patterns information step
Updating patterns information is performed in a first bolts level, that we refer to as Bolti (see yellow components
in figure 2). Each Bolti receives (from a spout) one or more patterns. Each pattern represents is a candidate,
Pcandidate, that may emerge in the future, for which the following information is calculated and updated: (i)
the events that compose Pcandidate, (ii) a boolean value to indicate whether Pcandidate is similar to at least one
reference pattern, (iii) the updated support of Pcandidate, (iv) the set of the start timestamps of the occurrences
of Pcandidate. Consequently, a candidate pattern Pcandidate is thus represented as follows: (P, isSimilar, support,
prefixTimestamps). The set of candidate patterns is referred to as SetPcandidates.

Using the similarity measure: During this step, the similarity between a candidate pattern and the reference
patterns is calculated by applying the Edit distance (see section 3.2). We thus use maxdistance: a maximum
threshold of the Edit distance measure. We propose that, if the candidate pattern is identical to at least one



reference pattern, the information associated with this pattern regarding similarity: isSimilar takes the value
false. Indeed, we want to detect new trends represented by new pattern never learned before, that is to say,
they are not identical to any reference pattern.

3.6 Early detection of emergent patterns step
The step of early detection of emergent patterns in performed in a second level of bolts (see the red component
in figure 2), as follows:

Detection of preliminary emergence: In this step, we focus only on the candidate patterns Pcandidate

similar to the reference patterns: isSimilar = true. Then, we select patterns having a first signal of emergence
and we call them “preliminary emergent patterns”, formally defined as follows:
Definition 3.2. A preliminary emergent pattern, denoted as PemergPre, is a candidate pattern for which
the support exceeds a predefined support threshold minsuppemergPre. The timestamp at which the pattern becomes
a preliminary emergent pattern differs from one pattern to another, and will be denoted as temergPre. The support
of the pattern at this time is denoted as suppemergPre(P ) (to distinguish it from supp(P ) used in the general
case, and is much more bigger).
We consider that, at this stage, it is not reliable to predict whether the preliminary emergent pattern will really
be frequent in the future. We thus propose to monitor a little more this pattern via an additional step of analysis:
detection of the final emergence.

Detection of final emergence: For each preliminary emergent pattern PemergPre, we start, at temergPre, a
monitoring phase during a very short period of time. We choose to control the growth rate (see definition 2.5)
of the support of each PemergPre at several “checkpoints”. The number of these checkpoints, denoted as n, (see
figure 3 where n = 3), is determined according to the degree of importance, for the application, to perform
the detection as soon as possible. We propose to calculate the growth rate between consecutive checkpoints
(that are shifted by k timestamps). Therefore, we get growthRate1, growthRate2, ..., growthRaten. In figure 3,
we present an example of checkpoints at which growth rates should be calculated. For k = 5, checkpoints are
checkpoint1 = t10, checkpoint2 = t15 and checkpoint3 = t20.

t
P      B                 K     L             A     E                     C            M    F            
A      C        A      C     D    Z      E      F              Z    B      A     C    D     Z      F      E      C    K           F  

temergPre checkpoint1 checkpoint2 checkpoint3
 0         1          2       3       4       5       6       7       8        9      10     11      12    13     14     15     16      17     18    19    20  

checkpoint0
Figure 3: An example of checkpoints to calculate the growth rate, k = 5 .

We now propose to predict the emergence of the pattern PemergPre at checkpointn by taking into account all
growth rates calculated at previous checkpoints. We propose a new measure that we call final growth rate that
calculates the average of these growth rates, which allows to have an overall view of the growth of the support
of the candidate pattern since the first checkpoint, as follows: (equation 1:)

growthRatefinal(P ) = mean(growthRate1(P ), ..., growthRaten(P )) (1)

Let mingrowth be a minimal threshold of the final growth rate. When growthRatefinal(P ) exceeds this threshold,
we make the prediction that the pattern P is an emerging pattern.

4. EXPERIMENTATIONS
In this section, we present the experimental studies that we conducted to validate the EPDA algorithm. To do
so, we will first present the data stream on which the algorithm runs. In a second step, we perform an analysis
of the performance of the algorithm according to different parameters. It is important to mention that, to the
best of our knowledge, no work in the literature has been dedicated to the detection of new emerging patterns
as early as possible in a data stream. Therefore, the EPDA algorithm is not directly comparable to any other
state-of-the-art algorithm.
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4.1 Data stream and initialization phase
In this experiments, we use a data stream of user messages from a Web Blog. Each message is pre-analyzed and
represented by a set of events (keywords). For the initialization phase, the first 10, 000 messages are used to
extract reference patterns (see definition 3.1), then 17, 612 messages are uesd as a data stream. In order to mine
reference patterns, we apply PrefixSpan traditional algorithm26 with the following parameters: minsupp = 20,
w = 100. We obtain 15, 982 reference patterns with a mean support value of 21.

4.2 Performance of EPDA in a detection task
Recall that the main originality in EPDA lies in the hypothesis that the new patterns are necessarily linked to
the reference patterns and therefore similar to them. The question that arises is: when taking into account only
similar patterns, is the algorithm more efficient in detecting the emergence of new patterns?
In order to answer this question, we are interested in reproducing the performance evaluation (represented by
precision and recall metrics), but this time we also keep the dissimilar patterns.
After several iterations, we choose to fix maxsimilarity = 0, 6, minsuppemergPre(P ) = 5 n = 5, k = 20 which
allows to calculate 5 partial growth rates. At the end of the studied part of the stream, we get 22, 398 patterns
with a support bigger than 20. Our objective is to detect the emergence of these pattern as soon as possible.
In figure 4, we present the precision and recall according to mingrowth in two cases: (i) when taking into account
the similarity between the new patterns and the reference patterns, (ii) without taking into account similarity.
We first notice that precision and recall curves for both cases have the same behaviour.
For mingrowth = 1.20 and when similarity is taken into account, 20% of patterns detected as emergent, actually
emerge (precision), and 21% of patterns that actually emerge are detected by the algorithm (recall). We consider
this result quite satisfactory given the difficulty of the context of emergence detection: we do not just perform
an emergence detection, but also a detection as soon as possible with a very few information. Moreover, this
detection concerns only new patterns: we detect only those that satisfy the hypothesis of similarity to reference
patterns, which makes this task more complex. In addition, we notice that precision and recall are better when
similarity is taken into account. For mingrowth = 1.20, the precision is 4 times higher when similarity is taken
into account than when it is not . The recall is 1.75 times higher when similarity is taken into account than
when this measure is not taken into account .
We can conclude that there is indeed a relation between the new patterns and the reference patterns in the
studied data stream, which validated our hypothesis.

4.3 Execution time
It is important to mention that the Apache STORM platform, on which the EPDA algorithm runs handles the
parallelization of treatments in an optimal way. For this reason, the execution time of EPDA algorithm is very low:
850 seconds to process the data stream (17, 612 timestamps). We have also noticed that the variation of different
thresholds and parameters necessary for the execution of the algorithm does not significantly impact the execution
time. However, further analysis has shown that the similarity calculation performed in the algorithm represents



60% of its execution time. It is known in the literature that similarity computation is very time consuming.
Despite the impact of this measure on the execution time, the performance of the algorithm (represented by
precision and recall) in detecting emergent patterns remains the most important.
Following these experiments, we can conclude that EPDA succeeds in detecting the emergence of new patterns
as early as possible.

5. CONCLUSION AND PERSPECTIVES
In this paper, we proposed EPDA (Emergent Pattern Detection Algorithm): an algorithm for early detection of
new emergent patterns in a data stream, based on the proposition of a new growth rate measure. EPDA is based
on the hypothesis that new patterns that tend to appear and that are similar to known patterns, will emerge in
the future. EPDA runs on the Apache STORM distributed processing platform. We have proposed a topology
for Apache STORM composed of one level of spouts and two levels of bolts. EPDA algorithm is evaluated on a
real data stream. This experiment validate the performance of the algorithm. The validation of this algorithm
on another data stream is one of the main perspectives of this work. Moreover, in several applications, the
emergence detection is considered as a way to anticipate and to react in order to prevent the propagation or the
dominance of the emergence event. As a future work, we are interested in studying how to impact future events.
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