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• We present a unique framework for manipulating both rigid and de-
formable objects.6

• Our framework is model-free and requires a short initialization phase.

• Our framework does not require camera calibration, and works with8

different camera poses.
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Abstract

This paper proposes a unified vision-based manipulation framework using
image contours of deformable/rigid objects. Instead of explicitly defining the
features by geometries or functions, the robot automatically learns the visual
features from processed vision data. Our method simultaneously generates—
from the same data—both visual features and the interaction matrix that
relates them to the robot control inputs. Extraction of the feature vector and
control commands is done online and adaptively, and requires little data for
initialization. Our method allows the robot to manipulate an object without
knowing whether it is rigid or deformable. To validate our approach, we
conduct numerical simulations and experiments with both deformable and
rigid objects.

Keywords: Visual servoing, sensor-based control, deformable object12

manipulation.

1. Introduction14

Humans are capable of manipulating both rigid and deformable objects.
However, robotic researchers tend to consider the manipulation of these two16

classes of objects as separate problems. Unless otherwise mentioned, object
rigidity is an implicit assumption in most manipulation tasks. On the other18

hand, methods designed for deformable object manipulation (Sanchez et al.,
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2018), are never applied on rigid objects. This paper presents our efforts in
formulating a generalized framework for vision-based manipulation of both2

rigid and deformable objects, which does not require prior knowledge of the
object’s mechanical properties.4

In the visual servoing literature (Chaumette and Hutchinson, 2006), vec-
tor s denotes the set of features selected to represent the object in the image.6

These features represent both the object’s pose and its shape. We denote
the process of selecting s as parameterization. The aim of visual servoing is8

to minimize, through robot motion, the feedback error e = s∗ − s between
the target s∗ and the current (i.e., measured) feature s.10

One of the initial works on vision-based manipulation of deformable ob-
jects is presented in (Inoue, 1984) to solve a knotting problem by a topological12

model. Smith et al. developed a relative elasticity model, such that vision can
be utilized without a physical model for the manipulation task (Smith et al.,14

1996). A classical model-free approach in manipulating deformable objects is
developed in (Berenson, 2013). More recent research (Lagneau et al., 2020a)16

and (Lagneau et al., 2020b) proposes a method for online estimation of the
deformation Jacobian, based on weighted least square minimization with a18

sliding window. In (Navarro-Alarcon et al., 2014) and (Navarro-Alarcon and
Liu, 2018), the vision-based deformable objects manipulation is termed as20

shape servoing. An expository paper on the topic is available in (Navarro-
Alarcon et al., 2019). A recent work on vision-based shape servoing of plastic22

material was presented in (Cherubini et al., 2020).
For a detailed survey on shape servoing we refer readers to (Sanchez24

et al., 2018). For shape servoing, commonly selected features are curvatures
(Navarro-Alarcon et al., 2014), points (Wang et al.) and angles (Navarro-26

Alarcon and Liu, 2013). Laranjeira et al. proposed a catenary-based fea-
ture for tethered management on wheeled and underwater robots (Laran-28

jeira et al., 2017, 2020). A more general feature vector is that containing the
Fourier coefficients of the object contour (Navarro-Alarcon and Liu, 2018;30

Zhu et al., 2018). Yet, all these approaches require the user to specify a
model, e.g., the object geometry (Wang et al.; Navarro-Alarcon and Liu,32

2013; Navarro-Alarcon et al., 2014) or a function (Laranjeira et al., 2017;
Navarro-Alarcon and Liu, 2018; Zhu et al., 2018) for selecting the feature. Al-34

ternative data-driven (hence, model-free) approaches rely on machine learn-
ing. Nair et al. combine learning and visual feedback to manipulate ropes in36

(Nair et al., 2017). Li et al. approximate the deformation and camera model
using a neural network (Li et al., 2018). The authors of (Hu et al., 2019) em-38
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ploy deep neural networks to manipulate deformable objects given their 3D
point cloud. All these methods rely on (deep) connectionist models, which2

invariably require training through an extensive data set. The collected data
has to be diverse enough to generalize the model learnt by this type of net-4

works. Instead of relying on algorithmic solutions, (She et al., 2020) utilizes
a vision-based tactile sensor (GelSight) for manipulating cables.6

It is noteworthy that some of the above mentioned methods may apply to
rigid objects. Yet, none of the previous works has investigated the possibility8

of this extension nor reported its experimental validation, as we do in this
paper.10

The trend in visual servoing, when controlling the pose of rigid objects is
to find features which are independent from the object characteristics. Fol-12

lowing this trend, (Chaumette, 2004) proposes the use of image moments.
More recently, researchers have proposed direct visual servoing (DVS) meth-14

ods, which eliminate the need for user-defined features and for the related
image processing procedures. The pioneer DVS works (Collewet et al., 2008;16

Collewet and Marchand, 2011) propose using the whole image luminance to
control the robot, leading to “photometric” visual servoing. Bakthavatcha-18

lam et al. join the two ideas by introducing photometric moments (Baktha-
vatchalam et al., 2013). A subspace method (Marchand, 2019) can further20

enhance the convergence of photometric visual servoing, via Principal Com-
ponent Analysis (PCA). This method was first introduced for visual servoing22

in (Nayar et al., 1996). In that work, using an eye-in-hand setup, the image
was compressed to obtain a low-dimensional vector for controlling the robot24

to a target pose. Similarly, the authors of (Deguchi and Noguchi, 1996)
transformed the image into a lower dimensional hyper surface, to control26

the robot position via in-hand camera feedback. However, DVS generally
considers rigid and static scenes, where the robot controls the motion of the28

camera (eye-in-hand setup) to change only the image viewpoint, and not the
environment. These constraints on the setup avoid breaking the Lambertian30

hypothesis that is needed, since DVS relies on the raw image luminance,
which should not vary with the viewpoint. For this reason, to our knowl-32

edge, DVS was never applied to object manipulation, since changes in the
pose and/or shape of the object would break the Lambertian assumption.34

This is not the case of feature-based methods (such as the one we present
here), as long as the feature is chosen to be reliable even when the viewpoint36

and/or scene change.
Compared with the above-mentioned works, our paper presents the fol-38
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lowing original contributions:

1. We propose to use a feature vector – based on PCA of sampled 2D2

contours – for model-free manipulation of both deformable and rigid
objects.4

2. We exploit the linear properties of PCA and of the local interaction
matrix, to initialize our algorithm with little data – the same data for6

feature vector extraction and for interaction matrix estimation.

3. We report experiments using the same framework to manipulate objects8

with different unknown geometric and mechanical properties.

The paper is organized as follows. Sect. 2 presents the problem. Sect.10

3 outlines the framework. Sect. 4 elaborates on the methods. In Sect. 5,
we analyze and verify the methods by numerical simulations. Then, Sect. 612

presents the robotic experiments and we conclude in Sect. 7.

2. Problem statement14

In this work, we aim at solving object manipulation tasks with visual
feedback. We rely on the following hypotheses:16

• The shape and pose of the object are represented by its 2-D contour
on the image as seen from a camera fixed in the robot workspace (eye-18

to-hand setup). We denote this contour as

c = [p1 · · · pK ]T ∈ R2K , (1)

where pj = [uj vj] ∈ I denotes the jth pixel of the contour in the image20

I.

• The contour is always entirely visible in the scene and there are no22

occlusions.

• One of the robot’s end-effectors holds one point of the object (we con-24

sider the grasping problem to be already solved). At each control iter-
ation i, its pose is ri ∈ SE (3), and it can execute motion commands26

δri ∈ SE (3) that drive the robot so that ri+1 = ri + δri.

• The target constant shape (i.e., contour) of the object, c∗, is physically28

reachable with shaping motions of the grasping point r. To ensure this
hypothesis, one can first command the robot to verify that it can move30

the shape to c∗.
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Rigid object initial shape

camera

(a) Rigid objects

target shape

initial shape
camera camera

(b) Deformable objects

Figure 1: Vision-based manipulation of rigid and deformable objects. For rigid objects
(left): control pose (translation and rotation). For deformable objects (right): control the
pose, and also shape.

Problem Statement. Given a target shape of the object, represented by
a constant contour vector c∗, we aim at designing a vision-based controller2

that generates a sequence of robot motions δri to drive the initial contour to
the target one.4

The controller should work without any knowledge of the object physi-
cal characteristics, i.e., for both rigid and deformable objects. In the latter6

case, we assume that the deformation is homogeneous. Since rigid and de-
formable objects behave differently during manipulation, we set the following8

manipulation goals:

• Rigid objects: move them to a target pose (see Fig. 1a).10

• Deformable objects: move them to a target pose with a target shape
(see Fig. 1b).12

The formulation of the problem is general, but due to challenges in percep-
tion (discussed in Sect. 7), we carried out the cases of study with movements14

in SE (2).

3. Preliminary16

In this section, we present an overview of the proposed approach, moti-
vated by the problem analysis. Throughout the paper, we use c to indicate18

the object contour and s as the feature vector obtained from the contour.
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The subscript i indicates the instance of the variable at iteration i (e.g., ci
is the contour at iteration i).2

We can work directly on the object shape space by selecting the con-
tour as the feature vector s ≡ c ∈ R2K . With image and data processing,4

we can extract a fixed number of ordered (i.e., identified) contour points to
represent the shape/pose of the object. However, this will result in an un-6

necessarily large dimension of the feature vector (e.g., if K = 50, s has 100
components). The high dimensional feature vector increases the computa-8

tion demand and complicates the control due to the high under-actuation of
the system. Therefore, instead of working on this feature vector, we work10

on one with smaller dimensions. To this end, we split the problem into two
sub-problems: parameterization and control, see Fig. 2.12

Object shape space
(contour data)

Robot motion space
(task space)

Feature vector space

Initial

Target

Object characteristics
 + camera model

Parameterization

Control

Intermediate

Figure 2: Graphic representation of the vision-based manipulation problem, with its two
sub-problems, parameterization and control.

Parameterization consists in representing the contour via a compact fea-
ture vector s ∈ Rk, such that k << 2K. We denote this representation as14

s = g(c). We introduce the method for parameterization in Sect. 4.1.
Control consists in computing robot motions δr1, δr2, . . . , so that the16

object’s representation s converges to the target s∗. Control can be broken
down to solving the optimization problem:18

r∗ = arg min
r

(f(r)− s∗) (2)

where s = f(r) denotes the mapping between robot pose and feature vector,
which is assumed to be smooth and generally nonlinear. The smoothness20

assumption requires that the objects’ contour is at least twice differentiable
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with respect to the robot motion. If we know the analytic solution to f(r), we
can solve (2) and obtain the target shape in a single iteration by commanding2

r∗.
A solution to this problem is to approximate the full mapping f(r) from4

sensor observations. Classic deep learning-based approaches typically require
a long training phase to collect vast and diverse data for approximating f(r).6

In some cases (for instance, robotics surgery), it is not possible to collect
such data beforehand. Moreover, if the object changes, new data has to be8

collected to retrain the model, leading to a cumbersome process. In this
paper instead, we aim at doing the data collection online, with minimum10

initialization.
Thus, instead of estimating the full nonlinear mapping f(r), we divide it12

into piece-wise linear models (Sang and Tao, 2012) at successive equilibrium
points. The locality assumption refers to both the time and spatial dimen-14

sions. These models are considered time invariant in the neighbourhood of
the equilibrium points. We then compute the control law for each linear16

model and apply it to the robot end-effector. We will dedicate Sections 4.2
and 4.3 to the local models and Sections 4.4 and 4.5 to derive the control18

inputs and to analyze (local) stability.

4. Methodology20

Given a target shape c∗, we define an intermediate local target c∗i at
each i = 1, 2, . . . (see Fig. 2). At the ith iteration, the robot autonomously22

generates a local mapping gi to produce the feature vector si = gi(ci). The
robot then finds the local mapping si = fi(ri) online.24

Consider at the current time instant i, the shape ci, the intermediate
target c∗i and the local parameterization gi. We can transform shape data26

into a feature vector by:

si = gi(ci), s
∗
i = gi(c

∗
i ). (3)

The linearized version of s = f(r) centered at (si, ri) is then:28

δsi = Liδri, (4)
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with

Li =
∂fi
∂r
|r=ri ,

δsi = si+1 − si,
δri = ri+1 − ri.

(5)

The matrix Li represents a local mapping, referred to as the interaction
matrix in the visual servoing literature (Chaumette and Hutchinson, 2006).2

If Li can be estimated online at each iteration i, then, we can design one-step
control laws to drive si towards s∗i .4

After the robot has executed the motion command δri, we update the
next target to be s∗i+1, and so on, until it reaches the final target s∗. Although6

the validity region of this local mapping is smaller than that of the original
nonlinear mapping, it enables to use an online training approach that requires8

less data and reduced computational demand.
Figure 3 shows the building blocks of the overall framework. In this10

section, we focus on the red dashed part of the diagram. We will elaborate
on each red block in the subsequent subsections. The blue block represents12

the image processing pipeline that will be discussed in Sect. 6.1.

Feature vector
extraction

current contour
data

Interaction 
matrix 
estimation

Local target
generation

Control law
(Robot action)
computation

Shape 
data 
extraction current feature 

vector

current local 
target

Target contour 
data

Control laws

Est. interaction
matrix

Robot

camera

Figure 3: The block diagram that represents the overall framework.

4.1. Feature vector extraction14

There are many ways to parameterize c in order to reduce its dimension.
One of the prominent dimension reduction methods is Principal Component16

Analysis (PCA). PCA finds a new orthogonal basis for high-dimensional data.
This enables projection of the data to lower dimension with the minimal sum18

of squared residuals. It was used in image processing (Zhang et al., 2010)
and classification (Zeng et al., 2016). In visual servoing, the method was first20

introduced in (Nayar et al., 1996). PCA is proven to be an effective, yet easy
to implement, algorithm for dimension reduction. By projecting to the new22

8



orthogonal space, each feature component is linearly independent. Besides,
by checking the explained variance of a feature, we can intuitively measure2

if it represents the original shape.
We apply PCA to reduce c ∈ R2K to s ∈ Rk. To find the projection, we4

collect M images with different shapes of the object and construct the data
matrix Γ = [c1 c2 · · · cM ] ∈ R2K×M . Then, we shift the columns of Γ by6

the mean contour c̄ =
∑M

i=1 ci/M :

Γ̄ = [c1 − c̄ c2 − c̄ · · · cM − c̄] ∈ R2K×M . (6)

We then compute the covariance matrix C = Γ̄Γ̄T , and apply Singular Value8

Decomposition (SVD) to it:

C = UΣV T . (7)

Once we have obtained the eigenvector matrix U ∈ R2K×2K , we can move10

on to select the first k columns1 of U denoted by U(k) ∈ R2K×k. Then,
the 2K-dimensional contour c can be projected into a smaller k-dimensional12

feature vector s as:
s = UT (k)(c− c̄) ∈ Rk. (8)

To assess the quality of this projection, we can compute the explained14

variance using the eigenvalue matrix Σ ∈ R2K×2K in (7). By denoting the
diagonal entries of Σ as σ1, · · · , σ2K , the explained variance of the first k16

components is:

Υ(k) =

∑k
j=1 σj∑2K
j=1 σj

. (9)

where Υ is a scalar between 0 and 1 (since σj > 0, ∀j), indicating to what18

extent the k components represent the original data (a larger Υ suggests a
better representation).20

Since PCA calculate features that lie on an orthonormal basis, these
features are linearly independent. For controlling n DoF, at least the same22

number of independent visual features should be used. Therefore, we set
k = n features.24

1In the SVD algorithm, the first k columns correspond to the k largest eigenvalues of
matrix Σ.
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4.2. Local target generation

Let us now explain how we generate a local target contour c∗i given a2

current contour ci and final target contour c∗. We also show this in Algorithm
1. The overall shape error is given by:4

ce = c∗ − ci. (10)

We define the intermediate target contour as:

c∗i = ci +
1

η
ce, (11)

with η = 1, 2, . . . an integer that ensures that c∗i is a “good” local target6

for ci (i.e., the two are similar). Therefore, if we project the intermediate
local data using the eigenvector matrix at the current iteration, Ui ∈ R2K×2K

8

(note that we are using the full projection matrix and not just the first k
columns), the projection spi = Ui(c

∗
i − c̄) ∈ R2K should fulfil:10

Ψ (k) =

∑k
j=1

∣∣spi,j∣∣∑2K
j=1

∣∣spi,j∣∣ ≥ ε, (12)

with ε ∈ [0; 1] a threshold and spi,j the j-th component of the projection.

Then, we select the first k components in spi to be the local target s∗i ∈ Rk.12

Algorithm 1 outlines the steps for computing the local intermediate tar-
gets, so that:14

• they are near the final target,

• the corresponding feature vector can be extracted with the current16

learned projection matrix.

Remark 1. The reachability of a local target can only be verified with a18

global deformation model which we want to avoid identifying in our methods.
We will further discuss this issue in the Conclusion (Sect. 7).20

4.3. Interaction matrix estimation

Let us consider the current contour ci and the local target c∗i . In this
section, we show how we can implement the PCA and model estimation

10



Algorithm 1 Local target generation

localTargetFound = false
Ψ0 = 0
η = 1
while not localTargetFound do
c∗i = ci + 1

η
(c∗ − ci)

spi = Uic
∗
i

Ψη =
∑k

j=1

∣∣spi,j∣∣/∑2K
j=1

∣∣spi,j∣∣
if Ψη ≥ ε or Ψη < Ψη−1 then

localTargetFound = true
s∗i = [I 0]spi

end if
η = η + 1

end while

together and online. We denote the robot motions and corresponding object
contours over the last M iterations (prior to iteration i, with i ≥M) as:

∆Ri =
[
δri−M+1 δri−M+2 · · · δri

]
∈ Rn×M

Γi =
[
ci−M ci−M+1 ci−M+2 · · · ci

]
∈ R2K×(M+1),

(13)

with M the number of data samples collected during initialization, i.e., the
size of the sliding window used for model adaptation (see Sect. 4.5).2

By selecting k = n (note that n is also the number of DoFs of the robot
manipulator we considered in the task execution), we compute the projection
matrix Ui(n) ∈ R2K×n, from Γi and c̄i via (6) and (7). Then, using Ui(n),
we project current contour ci, target contour c∗i and shape matrix Γi:

si = Ui(n)T (ci − c̄i) ∈ Rn,

s∗i = Ui(n)T (c∗i − c̄i) ∈ Rn,

Si = Ui(n)T Γ̄i =
[
si−M si−M+1 · · · si

]
∈ Rn×(M+1).

(14)

In (14), Γ̄i is normalized by c̄i as in (6). We can then compute ∆Si from
(5) and (14), by subtracting consecutive columns of Si:4

∆Si =
[
δsi−M+1 δsi−M+2 · · · δsi

]
∈ Rn×M . (15)

Using ∆Si ∈ Rn×M and ∆Ri ∈ Rn×M we can now estimate the local inter-
action matrix Li ∈ Rn×n at iteration i. We assume that near this iteration,6
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the system remains linear and time invariant: Li is constant. Using the local
linear model (4), we can write the following:2

∆Si = Li∆Ri. (16)

Our goal then is to solve for Li, given ∆Si and ∆Ri. Note that this is an
overdetermined linear system (with n×M equations for n2 unknowns). Let us4

consider ∆Ri ∈ Rn×M has full row rank. Note this sufficiently implies M ≥
n. With this prerequisite, rank(∆Ri) = n. Therefore, rank(∆Ri∆R

T
i ) = n,6

and its inverse exists. We post multiply (16) by ∆RT
i :

∆SiR
T
i = Li∆Ri∆R

T
i . (17)

Then, since ∆Ri∆R
T
i is invertible, the Li that best fulfills (16) is:8

L̂i = ∆Si∆R
T
i (∆Ri∆R

T
i )−1. (18)

If, in practice, the full row rank condition of ∆Ri is not satisfied, rank(∆Ri∆R
T
i ) <

n and ∆Ri∆R
T
i becomes singular. Then, instead of (18), we can use10

Tikhonov regularization:

L̂i = ∆Si∆R
T
i (∆Ri∆R

T
i + λI)−1, (19)

with λ an arbitrary (generally small) scalar.12

Practically, this implies that one or more inputs motions do not appear
in ∆Ri. Therefore, we cannot infer the relationship between these motions14

and the resulting feature vector changes. In this case it is better to increase
M and obtain more data, so that ∆Ri has full row rank.16

Instead of computing the interaction matrix, it is also possible to directly
compute its inverse, since this guarantees better control properties (Lapresté18

et al., 2004). With the same data, one can re-write (16) as:

L⊕i ∆Si = ∆Ri. (20)

We can also solve (20) with Tikhonov regularization:20

L̂⊕i = ∆Ri∆S
T
i (∆Si∆S

T
i + λI)−1. (21)

12



4.4. Control law and stability analysis

We can now control the robot, with either of the following strategies:2

δri = −αL̂†i (si − s∗i ), (22)

if one estimates the interaction matrix with (19), where † denotes the pseudo-
inverse, or:4

δri = −αL̂⊕i (si − s∗i ) (23)

if one estimates the inverse of the interaction matrix with (21). In both
equations, α > 0 is an arbitrary control gain.6

Proposition 1. Consider that locally, the model (4) closely approximates
the interaction matrix Li = L̂i. For M number of linearly independent8

displacement vectors δr such that the interaction matrix L̂i is invertible, the
update rule (22) asymptotically minimizes the error ei = s∗i −si, where s∗i is10

the local target.

Proof. With δsi = si+1 − si, we can write (4) in discretized form as12

si+1 = si +Liδri. (24)

From the definition of ei we have (Note here the target s∗i is not updated
with i since we want to prove local convergence to a constant target):

ei = s∗i − si
ei+1 = s∗i − si+1

(25)

Taking (24) into (25):

ei+1 = s∗i − si+1

= s∗i − si −Liδri
= ei −Liδri.

(26)

We replace δri in (26) with the control (22), the error dynamic is then:

ei+1 = ei − αLiL−1i (s∗i − si)
= ei − αei = (1− α)ei.

(27)

is asymptotically stable for α ∈ [0; 1]. This can be proved by considering the
Lyapunov function14

V(e) = eTe. (28)

13



Using the error dynamic (27), one can derive:

∆V = V(ei+1)− V(ei)

= eTi ((1− α)2 − 1)ei < 0.
(29)

This proves the local asymptotic stability of the error e using our inputs. �

4.5. Model adaptation2

Since both the projection matrix UT (n) and the interaction matrix are
local approximations of the full nonlinear mapping, they need to be updated4

constantly. We choose a receding window approach with window size M .
At current iteration i, we estimate the projection matrix UT

i and local6

interaction matrix Li with M samples of the most recent data. Using the
interaction matrix and the local target c∗i , we can derive the one-step com-8

mand δri by (22). Once we execute the motion δri, a new contour data ci+1

is obtained. We move to the next iteration i + 1. A new pair of input and10

shape data [δri, ci+1] is obtained. We shift the window by deleting the oldest
data in the window and add in the new data pair. Then, using the shifted12

window, we compute one step control at iteration i+ 1.
The receding window approach ensures that, at each iteration, we are us-14

ing the latest data to estimate the interaction matrix. The overall algorithm
is initialized with small random motions around the initial configuration.16

First, M samples of shape data and the corresponding robot motions are
collected. With this initialization, we can simultaneously solve for the pro-18

jection matrix and estimate the initial interaction matrix using the methods
described in Sect. 4.1 and 4.3. Using the projection matrix and the ini-20

tial/target shapes, we can then find an intermediate target (see Sect. 4.2).
We consider quasi-static deformation. Hence, at each iteration the sys-22

tem is in equilibrium and can be linearized according to (4). The data that
best captures the current system are the most recent ones. The choice of M24

is a trade-off between locality and richness. For fast varying deformations2,
we would expect to reduce M since a larger M will hinder the locality as-26

sumption. Yet, if M is too small, it affects the estimation of L̂i (refer to the
detailed discussion in Sect. 4.3).28

2The notion of fast or slow varying depends on both the speed of manipulation, and
on the objects deformation characteristics (which affect the rate of change in shapes) with
regard to the image processing time.
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5. Simulation results

In this section, we present the numerical simulations that we ran to vali-2

date our method.

5.1. Simulating the objects4

We ran simulations on MATLAB (R2018b) with two types of objects: a
rigid box and a deformable cable, both constrained to move on a plane. The6

rigid object is represented by a uniformly sampled rectangular contour. The
controllable inputs are its position and orientation. For the cable, we devel-8

oped a simulator, which is publicly available at https://github.com/Jihong-
Zhu/cableModelling2D. The simulator relies on the differential geometry ca-10

ble model introduced in (Wakamatsu and Hirai, 2004), with the shape defined
by solving a constrained optimization problem. The underlying principle is12

that the object’s potential energy is minimal for the object’s static shape
(Wakamatsu et al., 1995). Position and orientation constraints (imposed at14

the cable ends) are input to the simulator. The output is the sampled ca-
ble. Figures 4 – 6, 9, 10 show simulated shapes of cables and rigid boxes.16

We choose K = 50 samples for both rigid objects and cables. The camera
perspective projection is simulated, with optical axis perpendicular to the18

plane.

Figure 4: Six trials conducted to test various choices of feature dimension k for a cable.
In each sub-figure, the solid red lines are the initial shapes and the dashed black are the
shapes resulting from 10 random motions of the right tip (translations limited to ±5% of
the length, rotations limited to ±5◦).
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5.2. Selecting the feature dimension k

To check whether choosing k = n can represent the shape accurately, we2

simulate 6 trials with distinct initial shapes of a cable. The dimension of
the robot motion vector δr is n = 3 (two translations and one rotation of4

the right tip), and the motions are limited: each translation to ±5% of the
cable length and the rotation to ±5◦. This range of motion gives a rule of6

thumb, which we have used for generating random movements throughout
our experiments. For each trial, we command M = 10 random motions8

around the initial shape using our simulator. Figure 4 shows the 6 initial
cable shapes (solid red) and the resulting shapes from 10 random movements10

(dashed black).
For each trial, we apply PCA to map the cable contour c ∈ R2K to feature12

vector s ∈ Rk, as explained in Sect. 4.1. We do this for k = 1, 2 and 3 and for
each of these 18 experiments, we calculate the explained variance Υ(k) with14

(9). Table 1 shows these explained variances. In all 6 trials, k = n = 3 yields
explained variances very close to 1. This result confirms that choosing k = n16

as the dimension of the feature vector gives an excellent representation of the
shape data. It is also possible to select k = 2, since the first two components18

can represent more than 99% of the variance. Nevertheless, the simulation
is noise-free. Therefore, although Υ(k) increases little from k = 2 to k = 3,20

this increase is not related to noise but to an actual gain in data information.

Table 1: Explained variance Υ(k) for the 6 trials with small motion.

trial 1 trial 2 trial 3 trial 4 trial 5 trial 6
k = 1 0.727 0.795 0.871 0.847 0.847 0.705
k = 2 0.992 0.995 0.996 0.997 0.997 0.994
k = 3 0.999 0.999 0.999 0.999 0.999 0.999

22

At this stage, it is legitimate to ask: how does this scale to larger move-
ments? Figure 5 illustrates 10 cable shapes generated by large movements24

(angle variation: [−π
2
, π
2
], maximum translation: 106%). Again, we apply

PCA (M = 10); Table 2 shows the Υ(k) resulting from various values of k.26

Table 2: Explained variance Υ(k) computed with large motion.

k 0 1 2 3 4 5
Υ(k) 0 0.5444 0.7218 0.8927 0.9919 0.9990

16



Figure 5: Ten distinctive cable shapes generated by large motion: angle variation: [−π2 ,
π
2 ],

maximum translation: 106% of the cable length.

Comparing Tables 1 and 2, it is noteworthy that Υ(4) with large motion
is smaller than Υ(2) with small motion. There are two possible explanation2

here. One is that when shapes stays local, the local linear mapping L in
(4) remains constant and we need less features to characterize it; the more4

the shape varies, the more features we need. Another possible explanation is
that for larger motions, M = 10 shapes may be insufficient for PCA. Likely,6

the larger the changes, the larger the number of shapes M needed.

5.3. Manipulation of deformable objects8

With our cable simulator, we can now test the controller to modify the
shape from an initial to a target one. Again, the left tip of the cable is fixed,10

and we control the right tip with n = 3 degrees of freedom (two translations
and one rotation). Using the methods described in Sect. 4, we choose window12

size M = 5, the Tikhonov factor λ = 0.01, the local target threshold ε = 0.8,
the control gain α = 0.01. To quantify the effectiveness of our algorithms in14

driving the contour to c∗, we define a scalar measure: the Average Sample
Error (ASE). At iteration i, with current contour ci it is:16

ASE =
‖ci − c∗‖2

2K
. (30)

A small ASE indicates that the current contour is near the target one. In
Sect. 4.4, we have proved that our controller asymptotically stabilizes the18

feature vector, s to s∗. Hence, since we have also shown that s is a “very
good” representation” of c, we also expect our controller to drive c to c∗,20

thus ASE to 0. This measure is also used in the real experiments.
Using the cable simulator, we compare the convergence of two control laws22

proposed in our paper (22) and (23) against a baseline algorithm in (Zhu
et al., 2018) which uses Fourier parameters as feature. To make methods24
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compatible, we choose first order Fourier approximation. Note that this
results in a feature vector of dimension of 6 (see (Zhu et al., 2018)) which is2

still twice the number k used in our method. We also normalize the computed
control action and then multiply by the same gain factor 0.01.4

We also introduced artificial noise to the contour data, to test the robust-
ness of our method. For a unit length cable, we add Gaussian noise of zero6

mean and 0.01 standard deviation to the contour sample points. Fig. 6b
shows that our algorithm converges in these conditions as well. It is worth8

mentioning that in robotic experiments, as shape data is obtained and sam-
pled from the images, signal noise is inevitable. Yet, our framework is robust10

enough to still converge to the target shape/pose (see Sect. 6 for detailed
real robot experiments).12

Figure 6 shows two other simulation results: on the left, a reachable target
and on the right an unreachable one. In Fig. 6a, the cable shape successfully14

evolves towards the target thanks to our controller (23). Figure 6c shows the
starting shape (blue), unreachable target (dash black) and final shape (solid16

black) obtained using (23). Note that the controller gets stuck in a local
minimum.18

Figure 7 compares the evolution of ASE with our methods against the
Fourier-based method for the reachable target; in the same figure, we also plot20

the evolution of ASE using (23) for the unreachable target. We can observe
that our method provides faster convergence using half the features than22

(Zhu et al., 2018). Also, directly computing the inverse (23) provides faster
convergence than (22). It is noteworthy to point out that the Fourier-based24

method requires a different parameterization for closed and open contours
(see (Navarro-Alarcon and Liu, 2018) and (Zhu et al., 2018)), whereas in our26

framework, the parameterization can be kept the same. Last but not least,
our approach is the only one among the three, which has been validated on28

both rigid and deformable objects.

5.4. Comparison with the Broyden update law30

The Broyden update law (Broyden, 1965), has been used to update
the interaction matrix in classic visual servoing (Hosoda and Asada, 1994;32

Jagersand et al., 1997; Chaumette and Hutchinson, 2007) and shape servo-
ing (Navarro-Alarcon et al., 2013).34

In this section, we compare it with our method for updating the interac-
tion matrix (19), which relies on a receding horizon. We will hereby show36

why the Broyden update law is not applicable in our framework.

18



(a) (b) (c)

Figure 6: Cable manipulation with a single end-effector, moving the right tip. (a): a reach-
able target, the blue and black lines are the initial and intermediate shapes, respectively,
and the dashed black line is the target shape. The red frame indicates the end-effector
position and orientation generated by our controller. (b): Adding Gaussian noise with
zero mean and 0.01 standard deviation to the shape data with a reachable target. (c): An
unreachable target and the final shape obtained with our controller.

Reachable Target

Unreachable Target

Figure 7: The evolution of the ASE of the simulated cable manipulation using our method
against the Fourier-based method as baseline and the ASE of the unreachable target with
(23).
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The Broyden update is an iterative method for estimating Li at iteration
i. Its standard discrete-time formulation is:2

L̂i = L̂i−1 + β
δsi−1 − L̂iδri−1
δrTi−1δri−1

δrTi−1, ∀ri−1 6= 0 (31)

with β ∈ [0; 1] an adjustable gain. Using our simulator, we estimate the
interaction matrix using both Broyden update (with three different values4

of β) and our receding horizon method (19). We then compare (with L̂
estimated with either method) the one-step prediction of the resulting feature6

vector:
ŝi+1 = L̂iri + si, (32)

with the ground truth si+1 from the simulator. The results (plotted in Fig. 8)8

show that receding horizon outperforms all three Broyden trials. One possible
reason is that the components of s fluctuate since (at each iteration) a new10

matrix U is used. These variations cause the Broyden method to accumulate
the result from old interaction matrices, and therefore perform badly on a12

long term. This result contrasts with that of (Navarro-Alarcon et al., 2013),
where the Broyden method performs well since there is a fixed mapping from14

contour data to feature vector. Another advantage of the receding horizon
approach is that it does not require any gain tuning.16

5.5. Manipulation of rigid objects

The same framework can also be applied to rigid object manipulation.18

Consider the problem of moving a rigid object to a certain position and
orientation via visual feedback. This time, the shape of the object does not20

change, but its pose will (it can translate and rotate). We use the same M ,
λ, ε and α as for cable manipulation. We compare the convergence of two22

control laws proposed in our paper (22) and (23) against a baseline using
image moments (Chaumette, 2004). The translation and orientation can be24

represented with image moments and the analytic interaction matrix can be
computed as explained in (Chaumette, 2004)). To make methods compatible,26

we normalize the computed control and then multiply it by the same factor
0.01.28

Figure 9 shows two simulations where our controller successfully moves
a rigid object from an initial (blue) to a target (dashed black) pose using30

control law (23). Figure 11 compares convergence of our methods against
the image moments method. We can observe that our method provides a32

20



(a) Receding horizon s1 (b) Broyden update s1

(c) Receding horizon s2 (d) Broyden update s2

(e) Receding horizon s3 (f) Broyden update s3

Figure 8: Comparison – for estimating s – of the receding horizon approach (RH, left) and
of the Broyden update (right, with three values of β). The topmost, middle and bottom
plots show the one step prediction of s1, s2 and s3, respectively. In all plots, the dashed
red curve is the ground truth from the simulator. The plots clearly show that the receding
horizon approach outperforms all three Broyden trials.

slightly slower convergence. Directly computing the inverse (23) provides a
convergence similar to (22). Later, we will show why our method is slower.2

Yet, the fact that it can be applied on both deformable and rigid objects
makes it stand out over the other techniques.4

5.6. Feature analysis for rigid objects

In this section, we analyze locally what each component of the feature6

vector represents, in the case of rigid object manipulation. To this end, we
apply M = 10 random movements (rotation range [−0.11, 0.09], maximum8

translation 15% of the width) to multiple rigid rectangular objects (see Fig.
10). We compute the projection matrix as explained in Sect. 4.1, and trans-10

form the contour samples to feature vectors. Then, we seek the relationship –
at each iteration – between the object pose x, y, θ and the components of the12

feature vector s generated by PCA. To this end, we use bivariate correlation
(Feller, 2008) defined by:14

ρ =
E[(ξ − ξ̄)(ζ − ζ̄)]

σξσζ
, (33)
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Figure 9: Manipulation of a rigid object with a single end-effector (red frame). The initial,
intermediate and target contours are respectively blue, solid black and dashed black. Note
that in both cases, our controller moves the object to the target pose.

Figure 10: From an initial (red) pose, we generate 10 (dashed blue) random motions of a
rigid object. This figure shows multiple examples of different rectangular rigid objects.

where ξ and ζ are two variables with expected values ξ̄ and ζ̄ and standard
deviations σξ and σζ . An absolute correlation |ρ| close to 1 indicates that2

the variables are highly correlated. All the simulations in Fig. 10 exhibit
similar correlation between the computed feature vector and the object pose.4

In Table 3, we show one instance (Left first simulation in Fig. 10) of the
correlation between variables, with high absolute correlations marked in red.6

It is clear from the table that each component in the feature vector relates
strongly to one pose parameter. We further demonstrate the correlation in8

Fig. 12, where we plot the evolution of object poses and feature components.
Note that s2 and θ are negatively correlated. The slower convergence could10

be a result of the fact that, in contrast with image moments, here the ex-
tracted features and object pose are not completely decoupled. Yet, the main12

contribution of our method is that it can be directly used for both rigid and

Figure 11: Evolution of ASE of the simulated rigid object manipulation using our method
against image moments. Left: simulation in Fig. 9, Right: simulation in Fig. 9.
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deformable objects. Therefore, it can be expected to be slower than methods
specifically designed for rigid objects (such as image moments).2

Table 3: Correlation ρ between s1, s2, s3 and x, y, θ.

x y θ
s1 -0.2819 -0.3343 0.9887
s2 0.2607 -0.8547 -0.0465
s3 0.9230 0.3629 -0.1426

Figure 12: Progression of the auto-generated feature components (row 1, 3, 5: s1, s2, s3)
vs. object pose (row 2, 4, 6: x, y, θ). We have purposely arranged the variables with high
correlation with the same color.

6. Experiments

Figure 13 outlines our experimental setup. We use a KUKA LWR IV4

arm. We constrain it to planar (n = 3) motions δr, defined in its base frame
(red in the figure): two translations δx and δy and one counterclockwise6

rotation δθ around z. A Microsoft Kinect V2 observes the object3. A Linux-
based 64-bit PC processes the image at 30 fps. In the following sections, we8

first introduce the image processing for contour extraction, then present the
experiments.10

6.1. Image processing

This section explains how we extract and sample the object contours12

from an image. We have developed two pipelines, according to the kind of
contours (See Fig. 14): open (e.g., representing a cable) and closed. We14

hereby describe the two.

3We only use the RGB image – not the depth – from the sensor.
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Kinect 2

Figure 13: Overview of the experimental setup.

Figure 14: Open (left) and closed (right) contours can be both represented by a sequence
of sample pixels in the image.

6.1.1. Open contours

The overall pipeline for extracting an open contour is illustrated in Fig. 152

and Algorithm 2. On the initial image, the user manually selects a Region
of Interest (ROI, see Fig. 15a) containing the object. In this ROI, we apply4

thresholding, followed by a morphological opening, to obtain a binary image
as in Fig. 15b. This image is dilated to generate a mask (Fig. 15c) used6

to compute the new ROI for the following image. Figure 15e is the object
after a small manipulation motion and 15f shows the mask (in grey color)8

which contains the cable. The OpenCV findContour function is applied to
binary image, then two contours are extracted based on the two known ends10

of the cable, both are re-sampled (with same value of K) using Algorithm 2
and finally merged (by interpolation, for each sample, between the two con-12

tours’ corresponding point) into the uniformly sampled open contour c (see
Fig. 15d, where the green box indicates the end-effector).14

6.1.2. Closed contours

The procedure is shown in Fig. 16. For an object with uniform color16

(in the experiment blue), we apply HSV segmentation, followed by Gaussian
blur of size 3, and finally the OpenCV findContour function, to get the object18
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(a) ROI (b) After thresholding (c) Mask

(d) Sampled data (e) Next image (f) Cable in the mask

Figure 15: Image processing steps needed to obtained the sampled open contour of an
object (here, a cable).

contour. The contour is then re-sampled using Algorithm 2. The starting
point and the order of the samples is determined by tracking the grasping2

point (red dot in Fig. 16d) and the centroid of the object (blue dot). We
obtain the vector connecting the grasping point to the centroid. Then, the4

starting sample is the one closest to this vector, and we proceed along the
contour clockwise. Therefore, the extracted contour is ordered clockwise and6

always starting from the same point. This solves the contour ambiguity for
symmetrical objects.8

(a) (b) (c) (d)

Figure 16: Image processing for getting a sampled closed contour: (a) original image, (b)
image after thresholding and Gaussian blur, (c) extracted contour, (d) finding the starting
sample and the order of the samples.
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Algorithm 2 Generate fixed number of points with uniform spacing
Input PI = [pI(1), · · · ,pI(N)]: original ordered sampled data
Input K = target number of data samples
Input ε = infinitesimal threshold for equality of distances
Output PO = [pO(1), · · · ,pO(K)]: re-sampled data with uniform spacing.

1: compute the full length L of PI .
2: compute desired distance per sample: µ = L/K
3: l = 1, dist = 0
4: pcurr = pO(l) = pI(l)
5: h = l = l + 1
6: while l ≤ N do
7: pnext = pI(l)
8: d = ||pnext − pcurr||2
9: if d+ dist ≤ µ then

10: dist = dist+ d
11: pcurr = pnext
12: l = l + 1
13: else
14: pcurr = pO(h) = pcurr + (pnext − pcurr)µ−distd

15: h = h+ 1
16: dist = 0
17: end if
18: end while
19: if |µ− dist| < ε then
20: pO(h) = pcurr
21: end if
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6.2. Vision-based manipulation

In this section, we present the experiments that we ran to validate our2

algorithms, also visible at https://youtu.be/gYfO2ZxZ5KQ. To demonstrate
the generality of our framework, we tested it with:4

• Rigid objects represented by closed contours,

• Deformable objects represented by open contours (cables),6

• Deformable objects represented by closed contours (sponges).

We carried out different experiments with a variety of initial and target con-8

tours and camera-to-object relative poses. The variety of both geometric and
physical properties demonstrates the robustness of our framework. The va-10

riety of camera-to-object relative poses shows that—as usual in image-based
visual servoing (Chaumette and Hutchinson, 2006)—camera calibration is12

unnecessary. The algorithm and parameters are the same in all experiments;
the only differences are in the image processing, depending on the type of14

contour (closed or open, see Sect. 6.1).
We obtain the target contours by commanding the robot with predefined16

motions. Once the target contour is acquired, the robot goes back to the
initial position, and then should autonomously reproduce the target contour.18

Again, we set the number of features k = n = 3, and use K = 50 samples to
represent the contour c. We set the window size M = 5, both for obtaining20

the feature vector s and the interaction matrix L. We choose the control gain
to be 0.01. A larger control gain may result in faster convergence, but could22

also lead to oscillation. The local target threshold ε is set to 0.8. A higher
threshold will result in closer local target and vice versa. The Tikhonov factor24

used to ensure numerical stability for matrix inversion, is set to λ = 0.01.
At the beginning of each experiment, the robot executes 5 steps of small426

random motions to obtain the initial features and interaction matrix.
For all the experiments, we set the same termination condition at iteration28

i+ 1 using ASE defined in (30) such that:

1. ASEi < 1 pixel and30

2. ASEi+1 ≥ ASEi.

4The notion of small is relative, and usually dependent on the size of the object the
robot is manipulating. Refer to Sect. 5.2 (especially Fig. 4) for a discussion on this.

27

https://youtu.be/gYfO2ZxZ5KQ


In the graphs that follow, we show the evolution of ASE in blue before
the termination condition, and in red after the condition (until manual stop2

by the operator).
Figure 17 presents 8 experiments, one per column. Columns 1 – 3, 4 – 64

and 7 – 8 show respectively manipulation of: cable, rigid object and sponge.
The first row presents the full RGB image obtained from Kinect V2. The6

second and third rows zoom in on the manipulation at the initial and final
iterations. We track the end-effector in the image with a green marker for8

contour sampling. The target and current contours are drawn in red and
blue, respectively.10

Figure 17: Eight experiments with the robot manipulating different objects. From left to
right: a cable (columns 1 – 3), a rigid object (columns 4 – 6) and a sponge (columns 7 and
8). The first row shows the full Kinect V2 view, and the second and the third columns
zoom in to show the manipulation process at the first and last iterations. The red contour
is the target one, whereas the blue contour is the current one. The green square indicates
the end-effector.

(a) cable – column 1 (b) cable – column 2 (c) cable – column 3 (d) rigid object – col-
umn 4

(e) rigid object – col-
umn 5

(f) cable – column 6 (g) sponge – column 7(h) sponge – column 8

Figure 18: Evolution of ei at each iteration i, for the 8 experiments of Fig. 17. The black
dashed lines indicate the threshold ASE = 1 pixel. The blue curves show ei until the
termination condition, whereas the red curves show the error until manual termination by
the human operator.
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Figure 18 shows the decreasing trend of error ASE for each experiment.
The initial increase of ASE in the experiments can be due to the random2

motion at the beginning of the experiments. In general, we found that ASE
is more noisy for the closed than for the open contour. This discontinuity4

is visible in Figures 18c and 18d (zigzag evolution). Such noise is likely in-
troduced by the way we sampled the contour. Also, the noise in the contour6

extraction is more visible on Fig. 18g and 18h. The two plots show that
our framework can converge to the target in the presence of noisy image pro-8

cessing. When we have false contour data, the value of ASE may encounter
a sudden discontinuity. Figure 19 shows examples of these false samples,10

output by the image processing pipeline. Despite these errors, thanks to
the “forgetting nature” of the receding horizon and to the relatively small12

window size (M = 5), the corrupted data will soon be forgotten, and it will
not hinder the overall manipulation task. Yet, the overall framework would14

benefit from a more robust sensing strategy, as in (Chi and Berenson).

Figure 19: False contour data from the image can cause noise in ASE.

Finally, since our framework can deal with both rigid and deformable16

objects, we tested it in two experiments where the same object (a sponge)
can be both rigid (in the free space), and deformed (when in contact with18

the environment). These experiments require the robot to: 1) move the
object, establish contact, 2) give the object the target shape, by relying on20

the contact. Figure 20 presents these two original “move and shape” servoing
experiments with the corresponding errors ASE plotted in Fig. 21. We use22

a second fixed robot arm to generate the deforming contact. As the figures
and curves show, both experiments were successful.24

The success of the “move and shape” task is largely dependent on the
contact establishment. However, even when the initial contact has some26

misalignment (see Fig. 20c and 20g), our framework can still reduce the
ASE to give a reasonable final configuration (see Fig. 20h and Fig. 21b).28
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20: Two “move and shape” experiments grouped into two rows. The target contour
(red dotted) is far from the initial one. This requires the robot to 1) move the object,
establish contact with the right – fixed – robot arm, 2) give the object the target shape,
by relying on the contact. The first column shows the starting configuration, the second
column presents the contact establishment, and the third column zooms in to show the
alignment. The last column shows the final results.

(a) move and shape – row 1 (b) move and shape – row 2

Figure 21: The evolution of ei for the experiments of Fig. 20. The black dashed line
indicates the threshold ASE = 1. The blue curves show ei until the termination condition,
whereas the red curves show the error until manual termination by the human operator.
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7. Conclusion

In this paper, we propose algorithms to automatically and concurrently2

generate object representations (feature vectors) and models of interaction
(interaction matrices) from the same data. We use these algorithms to gen-4

erate the control inputs enabling a robot to move and shape the said object,
be it rigid or deformable. The scheme is validated with comprehensive exper-6

iments, including a target contour that requires both moving and shaping.
We believe it is unprecedented in previous research. Our framework adopts8

a model-free approach. The system characteristics are computed online with
visual and manipulation data. We do not require camera calibration, nor a10

priori knowledge of the camera pose, object size or shape.
The proposed approach has two major limitations: 1. The challenge of12

extending it to 6 DoF motion, 2. Global convergence cannot be guaranteed.
Below, we discuss each limitation and present possible solutions.14

An open question remains the management of 6 DOF motion of the robot.
Indeed, while the proposed controller can be easily generalized to 6 DOF16

motions, it relies on a sufficiently accurate extraction of feature vectors from
vision sensors. A very challenging task is to generate complete and reliable18

3D feature vectors of objects from a limited sensor set, due to partial views
of the object and to occlusions. To extend it, the framework should benefit20

from robust deformation sensing. In addition, since the approach relies on
local linear models, we expect that with higher DOF, the algorithm will more22

likely get stuck in local minima.
The second drawback is that the representation and model of interaction24

are local. Thus, they cannot guarantee global convergence. In addition, our
framework cannot infer whether a shape is reachable or not. This draw-26

back is solvable by using a global deformation model for control. But as we
mentioned earlier, a global model usually requires an offline identification28

phase which we want to avoid. In fact, for different objects, we will need
to re-identify the model. There is a dilemma in using a global deformation30

model.
Maybe one of the possible solutions to this dilemma is to have both our32

method and deep learning based methods run in parallel. While our scheme
enables fast online computation and direct manipulation, the extracted data34

can be used by a deep neural network to obtain a global interaction mapping.
Once a global mapping is learned, it can later be used for direct manipulation36

and to infer feasibility of the goal shape.

31



Acknowledgement

This work is supported in part by the EU H2020 research and innovation2

programme as part of the project VERSATILE under grant agreement No
731330, by the Research Grants Council (RGC) of Hong Kong under grant4

number 14203917, and by the PROCORE-France/Hong Kong RGC Joint
Research Scheme under grant F-PolyU503/18.6

References

Bakthavatchalam, M., Chaumette, F., Marchand, E., 2013. Photometric8

moments: New promising candidates for visual servoing, in: 2013 IEEE
Int. Conf. on Robotics and Automation, IEEE. pp. 5241–5246.10

Berenson, D., 2013. Manipulation of deformable objects without modeling
and simulating deformation, in: 2013 IEEE/RSJ Int. Conf. on Intelligent12

Robots and Systems, IEEE. pp. 4525–4532.

Broyden, C.G., 1965. A class of methods for solving nonlinear simultaneous14

equations. Mathematics of computation 19(92), 577–593.

Chaumette, F., 2004. Image moments: a general and useful set of features16

for visual servoing. IEEE Trans. on Robotics 20(4), 713–723.

Chaumette, F., Hutchinson, S., 2006. Visual servo control, part I: Basic18

approaches. IEEE Robotics and Automation Magazine 13, 82–90.

Chaumette, F., Hutchinson, S., 2007. Visual servo control, part II: Advanced20

approaches. IEEE Robotics and Automation Magazine 14, 109–118.

Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., Corke, P., 2020. Model-free22

vision-based shaping of deformable plastic materials. The Int. Journal of
Robotics Research 39, 1739–1759.24

Chi, C., Berenson, D., . Occlusion-robust deformable object tracking without
physics simulation, in: 2019 IEEE/RSJ Int. Conf. on Intelligent Robots26

and Systems.

Collewet, C., Marchand, E., 2011. Photometric visual servoing. IEEE Trans.28

on Robotics 27, 828–834.

32



Collewet, C., Marchand, E., Chaumette, F., 2008. Visual servoing set free
from image processing, in: 2008 IEEE Int. Conf. on Robotics and Automa-2

tion, IEEE. pp. 81–86.

Deguchi, K., Noguchi, T., 1996. Visual servoing using eigenspace method4

and dynamic calculation of interaction matrices, in: Proc. of 13th IEEE
Int. Conf. on Pattern Recognition.6

Feller, W., 2008. An introduction to probability theory and its applications.
volume 2. John Wiley & Sons.8

Hosoda, K., Asada, M., 1994. Versatile visual servoing without knowledge of
true jacobian, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.10

Hu, Z., Han, T., Sun, P., Pan, J., Manocha, D., 2019. 3-d deformable object
manipulation using deep neural networks. IEEE Robotics and Automation12

Letters 4, 4255–4261.

Inoue, H., 1984. Hand-eye coordination in rope handling, in: Proc. of Int.14

Symposium on Robotics Research, MIT PRESS. pp. 163–174.

Jagersand, M., Fuentes, O., Nelson, R., 1997. Experimental evaluation of16

uncalibrated visual servoing for precision manipulation, in: Int. Conf. on
Robotics and Automation.18

Lagneau, R., Krupa, A., Marchal, M., 2020a. Active deformation through
visual servoing of soft objects, in: IEEE Int. Conf. on Robotics and Au-20

tomation.

Lagneau, R., Krupa, A., Marchal, M., 2020b. Automatic shape control of22

deformable wires based on model-free visual servoing. IEEE Robotics and
Automation Letters 5, 5252–5259.24
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