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Finite time stabilization of continuous inertial dynamics
combining dry friction with Hessian-driven damping

Samir ADLY∗ and Hedy ATTOUCH†

May 5, 2020

This paper is dedicated to Professor Umberto Mosco on the occasion of his 80th birthday.

ABSTRACT. In a Hilbert spaceH, we study the stabilization in finite time of the trajectories generated
by a continuous (in time t) damped inertial dynamic system. The potential function f : H → R to be
minimized is supposed to be differentiable, not necessarily convex. It enters the dynamic via its gradient.
The damping results from the joint action of dry friction, viscous friction, and a geometric damping driven
by the Hessian of f . The dry friction damping function φ : H → R+, which is convex with a sharp
minimum at the origin (typically φ(x) = r‖x‖ with r > 0), enters the dynamic via its subdifferential. It
acts as a soft threshold operator on the velocities, and is at the origin of the stabilization property in finite
time. The Hessian driven damping, which enters the dynamics in the form ∇2f(x(t))ẋ(t), permits to
control and attenuate the oscillations which occur naturally with the inertial effect. We give two different
proofs, in a finite dimensional setting, of the existence of strong solutions of this second-order differential
inclusion. One is based on a fixed point argument and the use of Leray-Schauder theorem, the other one
is based on the Yosida approximation technique and the Mosco convergence. We also give an existence
and uniqueness result in a general Hilbert framework by assuming that the Hessian of the function f
is Lipschitz continuous on the bounded sets of H. Then, we study the convergence properties of the
trajectories as t → +∞, and show their stabilization property in finite time. The convergence results
tolerate the presence of perturbations, errors, under the sole assumption of their asymptotic convergence
to zero. Then, we extend the study to the case of a nonsmooth convex function f .

Mathematics Subject Classifications: 37N40, 34A60, 34G25, 49K24, 70F40.

Key words and phrases: damped inertial dynamics; differential inclusion; dry friction; Hessian-driven
damping; finite time stabilization;

1 Introduction and preliminary results

Throughout the paperH is a real Hilbert space, with the scalar product 〈·, ·〉 and the associated norm ‖ · ‖,
and f : H → R is a C1 function (not necessarily convex) whose gradient is Lipschitz continuous. In
the introduction, when we consider continuous dynamics in which the Hessian intervenes, to simplify the
presentation, we can assume that f is a C2 function.

1.1 Presentation of the dynamic

We will analyze the finite time stabilization of the following second-order differential inclusion

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0, t ∈ [t0,+∞[ (1.1)
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where (IGDH) stands shortly for Inertial Gradient system with Dry friction and Hessian-driven damping.

Let us briefly describe the three types of damping that occur in (IGDH), and which provide stabilization:

• γ > 0 is a positive viscous damping coefficient.

• The dry friction damping function φ : H → R+ is convex with a sharp minimum at the origin,
typically φ(x) = r‖x‖ with r > 0. It is at the origin of the finite time stabilization. It enters the
dynamic via its subdifferential, which is defined by

∂φ(x) = {p ∈ H : 〈p, y − x〉 ≤ φ(y)− φ(x), ∀y ∈ H}.

• The geometrical damping driven by the Hessian of f enters the dynamics in the form∇2f(x(t))ẋ(t).
It allows to attenuate and control the oscillations which naturally occur with inertial systems.
β > 0 is the corresponding damping coefficient.

Let us mention that, from an abstract point of view, the viscous friction γẋ(t) could enter the dynamic
(IGDH) into two ways:

• since γẋ(t)+∂φ(ẋ(t)) = ∂(γ2‖·‖
2+φ)(ẋ(t)), it is possible to introduce a new dry friction function

ψ = γ
2‖ · ‖

2 + φ.

• since γẋ(t)+β∇2f(x(t))ẋ(t) = d
dt

(
∇
(
γ
2‖·‖

2+βf
))

(x(t)), it is possible to combine the viscous
friction with the damping driven by the Hessian.

As we have in mind the optimization algorithms, and in order to place our results in the context of the
literature on the subject, we will keep the three frictions separated in the dynamic (IGDH).

1.1.1 Link with optimization

Our main motivation for studying the continuous dynamic (IGDH) comes from optimization. Its temporal
discretization provides algorithms which share its good convergence properties. As a key property, we
use that ∇2f(x(t))ẋ(t) is the time derivative of ∇f(x(t)). This gives, in discretized form, first-order
algorithms, which we describe below. Given a constant time step h > 0, we consider the following
temporal discretization of (IGDH)

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) 3 0. (1.2)

In (1.2), the terms 1
h2

(xk+1 − 2xk + xk−1) and 1
h(xk+1 − xk) respectively represent the discrete ac-

celeration, and the discrete speed. According to ∇2f(x(t))ẋ(t) = d
dt∇f(x(t)), the correcting term

1
h(∇f(xk) − ∇f(xk−1)) is directly linked to the temporal discretization of the Hessian-driven damp-
ing term. By solving (1.2) with respect to xk+1, we obtain the following first-order algorithm where the
dry friction enters via the proximal operator of φ, and the function to minimize f enters via its gradient:

(IPAHDD)

 zk = 1
h(1+hγ)(xk − xk−1)−

β
1+hγ (∇f(xk)−∇f(xk−1))− h

1+hγ∇f(xk)

xk+1 = xk + hprox h
1+hγ

φ (zk) ,

(IPAHDD) stands shorly for Inertial Proximal-gradient Algorithm with Hessian-Damping and Dry friction.
Note that the temporal discretization (1.2) of (IGDH) is implicit with respect to the nonsmooth function
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φ, and explicit with respect to the smooth function f . In the above formula, proxφ denotes the proximal
mapping associated with the convex function φ. Recall that, for any x ∈ H, for any λ > 0

proxλφ(x) := argminξ∈H

{
λφ(ξ) +

1

2
‖x− ξ‖2

}
.

The proximal mapping can be equivalently formulated as the resolvent of the maximally monotone opera-
tor ∂φ : H → 2H, that is, for any λ > 0

proxλφ = (I + λ∂φ)−1 .

In [3], it is proved the finite convergence of the sequences (xk) generated by the (IPAHDD) algorithm. In-
deed, for continuous optimization algorithms, convergence in a finite number of steps, with the estimation
of this number, is a very favorable property. The limit x∞ of the sequence (xk) satisfies

∇f(x∞) + ∂φ(0) 3 0.

Thus, x∞ is an “approximate” critical point of f . In practice, we choose φ with ∂φ(0) ”small”. By taking
φ(x) = r‖x‖, this means taking a small r > 0. This amounts to solving the optimization problem minH f
with the variational principle of Ekeland, instead of the Fermat rule.
(IPAHDD) is a splitting algorithm in the sense that the two constitutive potential functions f and φ are
treated separately, via the gradient and the proximal mapping respectively. Since the proximal mapping of
φ can be easily calculated in most practical situations, this makes (IPAHDD) a first-order algorithm that
can be used to deal with problems of large size.
The continuous dynamic (IGDH) is the basis of these algorithmic developments. Its mechanical interpreta-
tion naturally suggests Lyapunov functions. This therefore leads us to study (IGDH) in depth, and explore
some of its extensions. This is the main purpose of this article.

1.1.2 Link with mechancis, damped shocks

Another motivation for the study of (IGDH) comes from mechanics, and the modeling of damped shocks.
In [18], Attouch-Maingé-Redont consider the second-order differential system with Hessian-driven damp-
ing

ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) +∇g(x(t)) = 0, (1.3)

where g : H → R is a smooth real-valued function. An interesting property of this system is that, after
introduction of an auxiliary variable y , it can be equivalently written as a first-order system involving only
the time derivatives ẋ(t), ẏ(t) and the gradient terms ∇f(x(t)), ∇g(x(t)). More precisely, the system
(1.3) is equivalent to the following first order differential equation{

ẋ(t) + β∇f(x(t)) + ax(t) + by(t) = 0,
ẏ(t)− β∇g(x(t)) + ax(t) + by(t) = 0,

(1.4)

where a and b are real numbers such that: a + b = γ and βb = 1. Note that (1.4) is different from the
classical Hamiltonian formulation, which would still involve the Hessian of f . In contrast, the formulation
(1.4) uses only first-order information from the function f (no occurence of the Hessian of f ). Replacing
∇f by ∂f in (1.4) allows us to extend the analysis to the case of a convex lower semicontinuous function
f : H → R∪{+∞}, and so to introduce constraints in the model. When f = δK is the indicator function
of a closed convex set K ⊂ H , the subdifferential operator ∂f takes account of the contact forces, while
∇g takes account of the driving forces. In this setting, by playing with the geometrical damping parameter
β, one can describe nonelastic shock laws with restitution coefficient (for more details we refer to [18]
and references therein). Introducing the dry friction into this dynamic would allow to obtain finite type
stabilization of damped oscillating systems with obstacle constraint.



Finite time stabilization of inertial dynamics 4

1.2 Some historical facts

Let us explain the role and the importance of each of the three damping terms which enter into the con-
tinuous dynamics (IGDH). Our main contribution in this article is to show how to combine them to obtain
fast stabilization properties.

1.2.1 Viscous friction

The use of inertial dynamics to accelerate the gradient method in optimization was first considered by B.
Polyak in [35]. Based on the inertial system with a fixed viscous damping coefficient γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

he introduced the Heavy Ball with Friction method. This system was further developed by Attouch-
Goudou-Redont [17] as a tool to explore the local minima of f . For a strongly convex function f , and γ
judiciously chosen, (HBF) provides convergence at exponential rate of f(x(t)) to minH f . For a general
convex function f , the asymptotic convergence rate of (HBF) is O(1t ) (in the worst case). This is however
not better than the steepest descent. A decisive step to obtain a faster asymptotic convergence was taken by
Su-Boyd-Candès [39] with the introduction of an Asymptotic Vanishing Damping coefficient γ(t) = α

t ,
that is

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

As a specific feature, the viscous damping coefficient αt vanishes (tends to zero) as time t goes to infinity,
hence the terminology. For a general convex function f , it provides a continuous version of the accelerated
gradient method of Nesterov. For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic conver-
gence rate of the values f(x(t)) − infH f = O

(
1/t2

)
as t → +∞. The convergence properties of the

dynamic (AVD)α have been the subject of many recent studies, see [7, 10, 11, 12, 14, 16, 19, 22, 23, 32, 39].
The case α = 3, which corresponds to Nesterov’s historical algorithm, is critical. In the case α = 3, the
question of the convergence of the trajectories remains an open problem (except in one dimension where
convergence holds [16]). For α > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont [14] that
each trajectory converges weakly to a minimizer. The corresponding algorithmic result has been obtained
by Chambolle-Dossal [30]. For α > 3, it is shown in [19] and [32] that the asymptotic convergence rate
of the values is actually o(1/t2). The subcritical case α ≤ 3 has been examined by Apidopoulos-Aujol-
Dossal [7] and Attouch-Chbani-Riahi [16], with the convergence rate of the objective values O

(
t−

2α
3

)
.

These rates are optimal, that is, they can be reached, or approached arbitrarily close.

1.2.2 Dry friction

Some first results concerning the finite convergence property under the action of dry friction have been
obtained by Adly-Attouch-Cabot [4] for the continuous dynamics

ẍ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 0, t ∈ [t0,+∞[. (1.5)

Assuming that the potential friction function φ has a sharp minimum at the origin (dry friction), they
showed that, generically with respect to the initial data, the solution trajectories converge in finite time to
equilibria. Similar results for the corresponding proximal-based algorithms have been obtained by Baji-
Cabot [24] and Adly-Attouch [3].
Let’s make precise the tools that will be useful for the mathematical analysis of the set-valued term
∂φ(ẋ(t)) in (1.5) which models dry friction. We say that the friction potential function φ has the Dry
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Friction property (denoted by (DF)) if it satisfies the following properties

(DF)


φ : H → R is convex continuous;
min
ξ∈H

φ(ξ) = φ(0) = 0;

0 ∈ int(∂φ(0)).

The particular case φ = r‖·‖, with r > 0, models dry friction (also called Coulomb friction) in mechanics.
The key assumption 0 ∈ int(∂φ(0)) expresses that φ has a sharp minimum at the origin. This is specified
in the following elementary lemma, see [1, Lemma 4.1 page 83], where, in item (iv), φ∗ is the Fenchel
conjugate of φ.

Lemma 1.1 Let φ : H → R be a convex continuous function such that minξ∈H φ(ξ) = φ(0) = 0. Then,
the following formulations of the dry friction are equivalent:

(i) 0 ∈ int(∂φ(0));

(ii) there exists some r > 0 such that B(0, r) ⊂ ∂φ(0);

(iii) there exists some r > 0 such that, for all ξ ∈ H, φ(ξ) ≥ r‖ξ‖.

(iv) there exists some r > 0 such that, ‖g‖ ≤ r =⇒ ∂φ∗(g) 3 0.

The positive parameter r will play a crucial role in our analysis. To enlighten its role, we will say that the
friction potential function φ satisfies the property (DF)r if φ satisfies the Dry Friction property (DF) with
B(0, r) ⊂ ∂φ(0). The property (iv) above expresses that, when the force g exerted on the system is less
than a threshold r > 0, then the system stabilizes, i.e. the velocity v = 0 ∈ ∂φ∗(g). This contrasts with
the viscous damping that can asymptotically produce many small oscillations.

1.2.3 Hessian-driven damping

The inertial system

(DIN)γ,β ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [6]. In the same spirit as (HBF), the dynamic (DIN)γ,β contains a fixed positive friction
coefficient γ > 0. The introduction of the Hessian-driven damping allows to damp the transversal oscil-
lations that might arise with (HBF), as observed in [6] in the case of the Rosenbrook function. The need
to take a geometric damping adapted to f had already been observed by Alvarez [5] who considered the
inertial system

ẍ(t) + Γẋ(t) +∇f(x(t)) = 0,

where Γ : H → H is a linear positive anisotropic operator. But still this damping operator is fixed. For a
general convex function, the Hessian-driven damping in (DIN)γ,β performs a similar operation in a closed-
loop adaptive way. The terminology (DIN) stands shortly for Dynamical Inertial Newton. It refers to the
natural link between this dynamic and the continuous Newton method, see Attouch-Svaiter [21]. Recent
studies have been devoted to the study of the inertial dynamic

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

which combines asymptotic vanishing damping with Hessian-driven damping. The corresponding algo-
rithms involve a correcting term in the Nesterov accelerated gradient method which reduces the oscillatory
aspects, see Attouch-Peypouquet-Redont [20], Attouch-Chbani-Fadili-Riahi [13], Shi-Du-Jordan-Su [38].



Finite time stabilization of inertial dynamics 6

1.3 Mosco convergence and Attouch theorem

In 1969, U. Mosco [33] introduced a fundamental concept of convergence for sequence of closed convex
sets in reflexive Banach spaces, that can be transposed to functions via their epigraphs. This concept, called
the Mosco convergence, is widely applicable in convex optimization, stability of variational inequalities
and optimal control. Precisely, a sequence (ϕn) ∈ Γ0(H) of convex proper and lower semicontinuous
functions, is declared to be Mosco-convergent to ϕ ∈ Γ0(H) provided, (i) and (ii) are satisfied:

(i) for all x ∈ domϕ, there exists a sequence (xn) strongly convergent to x s.t. lim
n→+∞

ϕn(xn) = ϕ(x)

(ii) whenever (xn) converges weakly to x, we have lim inf
n→+∞

ϕn(xn) ≥ ϕ(x).

An other important result was given by U. Mosco in [34] where the bicontinuity of the Fenchel conjugate
is established: for any sequence of convex functions (ϕn) we have the equivalence:

ϕn is Mosco-convergent to ϕ⇐⇒ (ϕ∗n) is Mosco-convergent to ϕ∗.

This notion was used in 1977 by H. Attouch (see Theorem 3.66 in [8] page 373) to establish that a sequence
(ϕn) ⊂ Γ0(H) converges in the sense of Mosco to ϕ ∈ Γ0(H) if and only if ∂ϕn converges in the sense
of Painlevé-Kuratowski to ∂ϕ, provided some normalization condition is satisfied. Here the notation ∂ϕ
denotes the convex subdifferential of ϕ ∈ Γ0(H), and the operators are identified with their graphs.

1.4 Contents

The paper is organized as follows. In Sections 2 and 3, we give two different proofs of the existence
of solutions to (IGDH): they are based respectively on the Leray-Schauder fixed point theorem, and the
Yosida approximation. Section 4 is devoted to an existence and uniqueness result for the Cauchy problem
associated with (IGDH) in an infinite dimensional Hilbert space. In Section 5, we present our main results,
which concern the convergence in finite time of the trajectories generated by the inertial dynamic (IGDH).
In Section 6, we examine the effect of the introduction of perturbations, errors in the dynamic (IGDH). In
Section 7, based on the variational properties of Moreau’s envelope, we extend these results to the case
where f : H → R∪ {+∞} is a convex lower semicontinuous and proper function such that inf f > −∞.
Finally, Section 8 concludes and gives some perspectives about future work.

2 Existence and Uniqueness for the Cauchy problem

2.1 The notion of strong solution of (IGDH)

Unless specified, we make the following assumptions on the potential functions f and φ:

• f : H → R is a differentiable function whose gradient is Lipschitz continuous;

• φ : H → R is a convex continuous function which satisfies (DF) as well as the following property:
there exists a constant c > 0 such that for all x ∈ H

‖∂φ(x)‖ ≤ c(1 + ‖x‖).

where the above formula means: for any ξ ∈ ∂φ(x), we have ‖ξ‖ ≤ c(1 + ‖x‖).
We call t0 ∈ R the origin of time. Since (IGDH) is an autonomous system, we can take an arbitrary

real number for t0.
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Definition 2.1 We say that x : [t0,+∞[→ H is a strong global solution of (IGDH) if the following
properties 1 and 2 are satisfied:

1. For all T > t0, x ∈ H2(t0, T ;H). Equivalently, x ∈ L2(t0, T ;H), ẋ ∈ L2(t0, T ;H) and
ẍ ∈ L2(t0, T ;H).

2. The following inclusion is satisfied: for almost all t ≥ t0

ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β
d

dt

(
∇f(x(t))

)
+∇f(x(t)) 3 0. (2.1)

Let us comment the above definition. First note that, since ∇f is Lipschitz continuous (say with
constant L), we have for all s, t ≥ t0

‖∇f(x(t))−∇f(x(s))‖ ≤ L‖x(t)− x(s)‖.

Since x ∈ H1(t0, T ;H), x is absolutely continuous. According to the above inequality, this implies that
t 7→ ∇f(x(t)) is also absolutely continuous. Therefore, t 7→ ∇f(x(t)) is almost everywhere differen-
tiable. Using again the above inequality, this gives

‖ d
dt

(
∇f(x(t))

)
‖ ≤ L‖ẋ(t)‖.

According to ẋ ∈ L2(t0, T ;H) this gives

d

dt

(
∇f(x(·))

)
∈ L2(t0, T ;H)

where d
dt

(
∇f(x(t))

)
can be taken indifferently in the distribution or pointwise sense (the two notions

coincide for an absolutely continuous function). Without ambiguity, we will write shortly

d

dt

(
∇f(x(t))

)
= ∇2f(x(t))ẋ(t)

which is justified when f is twice differentiable.
In addition, we have

‖∂φ(ẋ(t))‖ ≤ c(1 + ‖ẋ(t)‖),

where we briefly write ∂φ(ẋ(t)) to designate a measurable selection ξ(t) with ξ(t) ∈ ∂φ(ẋ(t)) for almost
every t ≥ t0. According to x ∈ H1(t0, T ;H) this gives

∂φ(x(·)) ∈ L2(t0, T ;H).

Therefore, for all T > t0, all the constitutive elements of (IGDH) belong to L2(t0, T ;H). Finally note that
since for all T > t0, x ∈ H2(t0, T ;H), we have that x and ẋ are continuous functions of t, which will
allow to give a sense to the Cauchy data.

2.2 The case without the Hessian driven damping term, and with right handside

As a preliminary result, we consider (IGDH) in the case β = 0, i.e. without the Hessian driven damping
term, but with a second member e(·). This is a preliminary step to study (IGDH) in the general case, using
a fixed point argument. More precisely, we have the following equivalence, which is immediate to obtain,
and which is just the Hamiltonian formulation of (IGDH).
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Proposition 2.1 The following are equivalent: (i)⇐⇒ (ii)

(i) ẍ(t) + γ(t)ẋ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 e(t).

(ii)

{
ẋ(t) = u(t);

u̇(t) ∈ −∇f(x(t))− γ(t)u(t) + e(t)− ∂φ(u(t))

Proof. (i) =⇒ (ii). Set u(t) := ẋ(t). We have u̇(t) = ẍ(t), which, by the constitutive equation, gives

u̇(t) + γ(t)ẋ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 e(t). (2.2)

This gives the first-order system (ii).

(ii) =⇒ (i). By differentiating the first equation of (ii) we obtain ẍ(t) = u̇(t). According to the
second equation of (ii) we obtain (i).

We can now state the following existence and uniqueness result.

Theorem 2.1 Let f : H → R be a differentiable function whose gradient is Lipschitz continuous, and let
φ : H → R ∪ {+∞} be a convex lower semicontinuous proper function. Suppose that, for any T > t0,
the function γ : [t0,+∞[→ R+ belongs to L1(t0, T ;R), and e : [t0,+∞[→ H belongs to L2(t0, T ;H).
Then, for any Cauchy data (x0, ẋ0) ∈ H ×H, there exists a unique strong global solution of

ẍ(t) + γ(t)ẋ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 e(t) (2.3)

satisfying x(t0) = x0, and ẋ(t0) = ẋ0.

Proof. According to Proposition 2.1, it is equivalent to solve the first-order system (ii) with the Cauchy
data x(t0) = x0, u(t0) = ẋ0. Set

Z(t) = (x(t), u(t)) ∈ H ×H.

The system (ii) can be written equivalently as

Ż(t) + F (t, Z(t)) 3 0, Z(t0) = (x0, ẋ0),

where F : [t0,+∞[×H×H⇒ H×H, (t, x, u) 7→ F (t, x, u) is defined by

F (t, x, u) =
(

0, ∂φ(u)
)

+
(
− u,∇f(x) + γ(t)u− e(t)

)
.

Hence F splits as follows
F (t, x, u) = F1(x, u) + F2(t, x, u)

where
F1(x, u) = ∂Φ(x, u)

is the subdifferential of the convex lower semicontinuous function (which depends only on u)

Φ(x, u) = φ(u)

and
F2(t, x, u) =

(
− u,∇f(x) + γ(t)u− e(t)

)
.

Therefore, the second-order dynamic (2.3) is equivalent to the following first-order differential inclusion

Ż(t) + ∂Φ(Z(t)) + F2(t, Z(t)) 3 0, Z(t0) = (x0, ẋ0), (2.4)

Since ∇f is Lipschitz continuous, so is F2 with respect to Z = (x, u). According to [28, Proposition
3.12] which considers the evolution equation governed by the Lipschitz perturbation (which can be time
dependent as here) of a convex subdifferential, we deduce the existence and uniqueness of the solution to
the Cauchy problem formulated as (ii), which gives the claim.
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2.3 The general case of (IGDH)

In this section, we assume thatH is a finite dimensional Hilbert space.

Theorem 2.2 Let f : H → R be a differentiable function whose gradient is L- Lipschitz continuous.
Suppose that the dry potential friction φ : H → R is a convex continuous function that satisfies (DF)r,
and ‖∂φ(x)‖ ≤ c(1 + ‖x‖). Suppose that the damping parameters satisfy

γ > βL.

Then, for any Cauchy data (x0, ẋ0) ∈ H ×H, there exists a strong global solution x : [t0,+∞[→ H of

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0 (2.5)

satisfying the Cauchy data x(t0) = x0 and ẋ(t0) = ẋ0.

Proof. Since no geometrical assumption is made on the function f (it is not assumed to be convex),
we will treat the Hessian driven damping term as a perturbation. According to the growth assumptions
made on this term, we will apply a fixed point argument. To this end, let us write the equation (IGDH) in
the following form

ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 −β∇2f(x(t))ẋ(t). (2.6)

Then, to solve it, we will apply the Leray-Schauder fixed point theorem in the space H1(t0, T ;H), with
T ≥ t0. Recall the definition of the Sobolev space

H1(t0, T ;H) =
{
x ∈ L2(t0, T ;H) such that ẋ ∈ L2(t0, T ;H)

}
where ẋ is taken in the distribution sense. H1(t0, T ;H) is equipped with the norm

‖x‖H1(t0,T ;H) =
(
‖x‖2L2(t0,T ;H) + ‖ẋ‖2L2(t0,T ;H)

) 1
2
,

which makes it a Hilbert space, see [28, Appendix] for a detailed presentation of these spaces.
We can formulate equation (2.6) as

T (x) = x

where T : H1(t0, T ;H)→ H1(t0, T ;H) is the mapping which associates to x ∈ H1(t0, T ;H) the unique
solution z = T x of the evolution equation

z̈(t) + γż(t) + ∂φ(ż(t)) +∇f(z(t)) 3 −β∇2f(x(t))ẋ(t), (2.7)

which satisfies the Cauchy data z(t0) = x0, and ż(t0) = ẋ0. Let us first verify that this equation is well
posed. For x ∈ H1(t0, T ;H) and according to the L-Lipschitz continuity of∇f , we have

‖∇2f(x(t))ẋ(t)‖ ≤ L‖ẋ(t)‖

which belongs to L2(t0, T ;H). So, we can apply Theorem 2.1 which gives the existence and uniqueness
of the solution of the solution z of (2.7) with the given Cauchy data.
Let us show that T : H1(t0, T ;H) → H1(t0, T ;H) is a compact operator. Suppose that ‖x‖H1(t0,T ;H) ≤
C, where C is a positive number. Equivalently ‖x‖L2(t0,T ;H) ≤ C and ‖ẋ‖L2(t0,T ;H) ≤ C. By definition
of z = T (x), we have that (2.7) is verified. Take the scalar product of (2.7) with ż(t). We obtain

〈z̈(t), ż(t)〉+ γ‖ż(t)‖2 + 〈∂φ(ż(t)), ż(t)〉+ 〈∇f(z(t)), ż(t)〉 =
〈
−β∇2f(x(t))ẋ(t), ż(t)

〉
. (2.8)
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Since φ : H → R is a convex continuous function that satisfies (DF)r, we obtain

1

2

d

dt
‖ż(t)‖2 + γ‖ż(t)‖2 + r‖ż(t)‖+

d

dt
f(z(t) ≤

〈
−β∇2f(x(t))ẋ(t), ż(t)

〉
.

According to the L-Lipschitz continuity of∇f , and the Cauchy-Schwarz inequality, we have

|
〈
∇2f(x(t))ẋ(t), ż(t)

〉
| ≤ L‖ẋ(t)‖‖ż(t)‖ ≤ L

2
(‖ẋ(t)‖2 + ‖ż(t)‖2).

Collecting the above results, we obtain

d

dt

(
1

2
‖ż(t)‖2 + f(z(t))

)
+

(
γ − βL

2

)
‖ż(t)‖2 + r‖ż(t)‖ ≤ βL

2
‖ẋ(t)‖2. (2.9)

After integration, we obtain(
γ − βL

2

)∫ T

t0

‖ż(t)‖2dt ≤ 1

2
‖ẋ0‖2 + f(x0)− inf

H
f +

βL

2

∫ T

t0

‖ẋ(t)‖2dt.

According to the hypothesis γ > βL, and since ‖ẋ‖L2(t0,T ;H) ≤ C, we deduce that

sup
{
‖T (x)‖H1(t0,T ;H) : ‖ẋ‖L2(t0,T ;H) ≤ C

}
< +∞. (2.10)

Returning to equation (2.7), and according to the growth condition on ∂φ we deduce that

sup
{
‖T (x)‖H2(t0,T ;H) : ‖ẋ‖L2(t0,T ;H) ≤ C

}
< +∞. (2.11)

Since H is a finite dimensional space, we use the compact embedding of H2(t0, T ;H) into H1(t0, T ;H),
and so conclude that T is a compact mapping from H1(t0, T ;H) into itself. To conclude to the existence of
a fixed point to T we will use the Schaefer theorem (see [37]), which, besides the fact that T is a compact
mapping, requires the following property: the set

K :=
{
x ∈ H1(t0, T ;H) : ∃λ ∈]0, 1[: x = λT (x)

}
is bounded.

So suppose that x = λT (x) for some λ ∈]0, 1[. This is equivalent to T (x) = 1
λx, that is

1

λ
ẍ(t) +

1

λ
γẋ(t) + ∂φ(

1

λ
ẋ(t)) +∇f(

1

λ
x(t)) + β∇2f(x(t))ẋ(t) 3 0. (2.12)

After multiplication by λ, we get

ẍ(t) + γẋ(t) + λ∂φ(
1

λ
ẋ(t)) + λ∇f(

1

λ
x(t)) + βλ∇2f(x(t))ẋ(t) 3 0. (2.13)

Take the scalar product of (2.13) with ẋ(t). A similar computation as above gives

d

dt

(
1

2
‖ẋ(t)‖2 + λ2f(

1

λ
x(t))

)
+ (γ − βL) ‖ẋ(t)‖2 + r‖ẋ(t)‖ ≤ 0. (2.14)

After integration on [t0, T ] we get

(γ − βL)

∫ T

t0

‖ẋ(t)‖2dt ≤ 1

2
‖ẋ0‖2 + λ2f(

1

λ
x0)− inf

H
f.

Since∇f is L-Lipschitz continuous, the classical gradient descent lemma gives

f(x) ≤ f(0) + 〈∇f(0), x〉+
L

2
‖x‖2.

Hence,

sup
λ∈]0,1[

λ2f

(
1

λ
x0

)
≤ sup

λ∈]0,1[

(
λ2f(0) + λ 〈∇f(0), x0〉+

L

2
‖x0‖2

)
< +∞.

Therefore the set K is bounded in H1(t0, T ;H), which completes the proof of the existence of a fixed
point to T , thanks to the Schaefer theorem.
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3 Another approach to existence using Mosco convergence

The major difficulty in (IGDH) is the presence of the term ∂φ(ẋ(t)), which is attached to dry friction,
and which involves the nonsmooth operator ∂φ. A natural idea is to regularize this operator, and thus
obtain a classical evolution equation. To this end, we assume that H is a finite dimensional Hilbert space,
and we will use the Moreau-Yosida regularization (this technique was used in [4] but without the Hessian
term). Let us recall some basic facts concerning this regularization procedure. For any λ > 0, the Moreau
envelope of φ of index λ is the function φλ : H → R defined by: for all x ∈ H,

φλ(x) = min
ξ∈H

{
φ(ξ) +

1

2λ
‖x− ξ‖2

}
.

The function φλ is convex, of class C1,1, and satisfies infH φλ = infH φ, argminH φλ = argminH φ. One
can consult [9, section 17.2.1], [25], [28] for an in-depth study of the properties of the Moreau envelope
in a Hilbert framework. In our context, since φ : H → R is a convex function that satisfies (DF)r, we will
have that φλ is convex with φλ(0) = infH φλ = 0. This implies that, for all x ∈ H

〈∇φλ(x), x〉 ≥ 0. (3.1)

This inequality will be very useful later. So, for each λ > 0, we consider the regularized evolution equation

(IGDH)λ ẍ(t) + γẋ(t) +∇φλ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, t ∈ [t0,+∞[ (3.2)

As a key property, this equation can be written in an equivalent way as a first-order system in time and
space. The following writing is different from the Hamiltonian formulation used in the previous section.
More precisely, in our context, we have the following equivalence, which follows from elementary differ-
ential calculus.

Proposition 3.1 The following are equivalent: (i)⇐⇒ (ii)

(i) ẍ(t) + γẋ(t) +∇φλ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0.

(ii)

 ẋ(t) = u(t)− β∇f(x(t));

u̇(t) = −(γI +∇φλ)
(
u(t)− β∇f(x(t))

)
−∇f(x(t)).

Proof. (i) =⇒ (ii). Set
u(t) := ẋ(t) + β∇f(x(t)). (3.3)

According to the classical derivation chain rule, we have

u̇(t) = ẍ(t) + β∇2f(x(t))ẋ(t).

By using (i), we obtain
u̇(t) + γẋ(t) +∇φλ(ẋ(t)) +∇f(x(t)) = 0. (3.4)

Putting together (3.3) and (3.4) we obtain the first-order system in time and space, as given in (ii).

(ii) =⇒ (i). Suppose that∇f is differentiable (that is f is twice differentiable). By differentiating the
first equation of (ii) we obtain

ẍ(t) = u̇(t)− β∇2f(x(t))ẋ(t).

According to the second equation of (ii), we deduce that

ẍ(t) = −(γI +∇φλ)(u(t)− β∇f(x(t)))−∇f(x(t))− β∇2f(x(t))ẋ(t)

= −(γI +∇φλ)(ẋ(t))−∇f(x(t))− β∇2f(x(t))ẋ(t)
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which gives (i).

This approach leads to a slightly more general existence statement than in Theorem 2.2.

Theorem 3.1 Let f : H → R be a C1 function whose gradient is L- Lipschitz continuous, and let φ :
H → R be a convex continuous function that satisfies (DF)r and the following growth condition

‖ (∂φ)o (x)‖ ≤ c(1 + ‖x‖),

where (∂φ)o (x) denotes the element of minimal norm of the set ∂φ(x) and c > 0. Suppose that

γ > βL.

Then, for any Cauchy data (x0, ẋ0) ∈ H ×H, there exists a strong global solution of

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0. (3.5)

satisfying x(t0) = x0 and ẋ(t0) = ẋ0.

Proof. For each λ > 0, (IGDH)λ is relevant of the classical Cauchy-Lipschitz theorem. Indeed,
according to Proposition 3.1, we can formulate it equivalently as follows. Set

Z(t) = (x(t), u(t)) ∈ H ×H.

The system (ii) of Proposition 3.1 can be written equivalently as

Ż(t) + Fλ(Z(t)) = 0, Z(t0) = (x0, ẋ0)

where

Fλ(x, u) =
(
β∇f(x)− u, (γI +∇φλ)

(
u− β∇f(x)

)
+∇f(x)

)
.

The Lipschitz continuity property is stable by sum and composition. Since ∇f and ∇φλ are Lipschitz
continuous, the components of Fλ are Lipschitz continuous with respect to (x, u), as well as Fλ. Therefore,
according to the Cauchy-Lipschitz theorem, there exists a unique global classical solution (xλ, uλ) of the
above system, which gives that xλ is solution of

(IGDH)λ ẍλ(t)+γẋλ(t)+∇φλ(ẋλ(t))+β∇2f(xλ(t))ẋλ(t)+∇f(xλ(t)) = 0, t ∈ [t0,+∞[ (3.6)

Let us first establish energy estimates on the sequence (xλ). By taking the scalar product of (IGDH)λ
with ẋλ(t), we obtain

〈ẍλ(t), ẋλ(t)〉+γ‖ẋλ(t)‖2+〈∇φλ(ẋλ(t)), ẋλ(t)〉+β
〈
∇2f(xλ(t))ẋλ(t), ẋλ(t)

〉
+〈∇f(xλ(t)), ẋλ(t)〉 = 0.

According to the classical derivation chain rule and inequality (3.1), we obtain

1

2

d

dt
‖ẋλ(t)‖2 + γ‖ẋλ(t)‖2 + β

〈
∇2f(xλ(t))ẋλ(t), ẋλ(t)

〉
+
d

dt
(f(xλ(t)) = 0.

According to the L-Lipschitz continuity of∇f , and the Cauchy-Schwarz inequality, we have

|
〈
∇2f(xλ(t))ẋλ(t), ẋλ(t)

〉
| ≤ L‖ẋλ(t)‖2.

Therefore
d

dt

(
1

2
‖ẋλ(t)‖2 + f(xλ(t))

)
+ (γ − βL)‖ẋλ(t)‖2 ≤ 0. (3.7)
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According to the hypothesis γ > βL, we deduce that the global energy

Eλ(t) =
1

2
‖ẋλ(t)‖2 + f(xλ(t))

is non increasing. From this, and by using that f is minorized we deduce that

sup
t≥t0, λ>0

‖ẋλ(t)‖ < +∞. (3.8)

According to the mean value theorem, and xλ(t0) = x0 fixed, we deduce that, for each T ≥ t0

sup
t∈[t0,T ], λ>0

‖xλ(t)‖ < +∞. (3.9)

Since∇f is Lipschitz continuous, this immediately implies that, for each T ≥ t0

sup
t∈[t0,T ],λ>0

‖∇f(xλ(t))‖ < +∞. (3.10)

In addition, by integrating (3.7), we deduce that

sup
λ>0

∫ t

t0

‖ẋλ(t)‖2dt < +∞. (3.11)

As a classical property of the Yosida approximation of a maximally monotone operator A, we have

‖Aλx‖ ≤ ‖Ao(x)‖

where Ao(x) is the element of minimal norm of A(x), see Brézis [28, Proposition 2.6]. According to the
assumption ‖ (∂φ)o (x)‖ ≤ c(1 + ‖x‖), we obtain

‖∇φλ(x)‖ ≤ c(1 + ‖x‖).

Therefore, and according to (3.8), for each T ≥ t0

sup
t∈[t0,T ], λ>0

‖∇φλ(ẋλ(t))‖ < +∞. (3.12)

Finally, for each T ≥ t0

sup
t∈[t0,T ], λ>0

‖∇2f(xλ(t))ẋλ(t)‖ ≤ L, sup
t∈[t0,T ], λ>0

‖ẋλ(t)‖ < +∞. (3.13)

Let us now return to (IGDH)λ that we write as follows:

ẍλ(t) = −γẋλ(t)−∇φλ(ẋλ(t))− β∇2f(xλ(t))ẋλ(t)−∇f(xλ(t)). (3.14)

Using the above estimates, we deduce that, for each T ≥ t0

sup
λ>0

∫ T

t0

‖ẍλ(t)‖2dt < +∞. (3.15)

Therefore, for each T ≥ t0, the sequence (xλ) is bounded in H2(t0, T ;H). Since H has been sup-
posed to be a finite dimensional Hilbert space, this implies that the sequence (xλ) is relatively compact
in H1(t0, T ;H) for all T ≥ t0. After extraction of a subsequence, still denoted (xλ), we will have the
existence of x such that



Finite time stabilization of inertial dynamics 14

1. x ∈ H2(t0, T ;H) for all T ≥ t0.

2. xλ → x uniformly on [t0, T ] for all T ≥ t0.

3. ∇f(xλ)→ ∇f(x) uniformly on [t0, T ] for all T ≥ t0.

4. ẋλ → ẋ uniformly on [t0, T ] for all T ≥ t0.

5. ẍλ → ẍ weakly in L2(t0, T ;H) for all T ≥ t0.

6. ∇2f(xλ)ẋλ → ∇2f(x)ẋ weakly in L2(t0, T ;H) for all T ≥ t0.

This last property comes from

∇2f(xλ)ẋλ =
d

dt
∇f(xλ)

and the continuity of the derivation in the distribution sense.
To pass on the limit on (IGDH)λ, we write is as follows

∇φλ(ẋλ(t)) = ξλ(t) (3.16)

where
ξλ(t) = −ẍλ(t)− γẋλ(t)− β∇2f(xλ(t))ẋλ(t)−∇f(xλ(t)).

We now rely on the variational convergence properties of the Yosida approximation. Since φλ converges
increasingly to φ, the sequence of integral functionals

Φλ(ξ) :=

∫ T

t0

φλ(ξ(t))dt

converges increasingly to

Φ(ξ) =

∫ T

t0

φ(ξ(t))dt.

Therefore it converges in the Mosco sense in L2(t0, T ;H), see Mosco [33]. According to the theorem
which makes the link between the Mosco convergence of a sequence of convex lower semicontinuous
functions and the graph convergence of their subdifferentials, see Attouch [8, Theorem 3.66], we have that

∂Φλ → ∂Φ

with respect to the topology strong − L2(t0, T ;H)× weak− L2(t0, T ;H). We have

ξλ = ∇Φλ(ẋλ).

Since
ẋλ → ẋ strongly inL2(t0, T ;H)

and ξλ converges weakly in L2(t0, T ;H) to ξ given by

ξ(t) = −ẍ(t)− γẋ(t)− β∇2f(x(t))ẋ(t)−∇f(x(t)), (3.17)

we deduce that ξ ∈ ∂Φ(ẋ), that is
ξ(t) ∈ ∂φ(ẋ(t)).

According to the formulation (3.17) of ξ, we finally obtain that x is a solution of (IGDH).
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4 Existence and uniqueness results in infinite dimensional setting

We are going to prove existence and uniqueness results for (IGDH) in a general Hilbert framework. For
this, we will need to make further regularity properties on the potential function f . We assume that

x 7→ ∇2f(x) is Lipschitz continuous on the bounded sets.

Theorem 4.1 Let f : H → R be a C2 function which satisfies:

(i) ∇f is L-Lipschitz continuous onH;

(i) ∇2f is Lipschitz continuous on the bounded sets.

Let φ : H → R be a convex continuous function that satisfies (DF) and the following growth condition:
there exists somme c > 0 such that for all x ∈ H

‖ (∂φ)o (x)‖ ≤ c(1 + ‖x‖).

Suppose that
γ ≥ βL.

Then, for any Cauchy data (x0, ẋ0) ∈ H×H, there exists a unique strong global solution x : [t0,+∞[→ H
of

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0, (4.1)

satisfying x(t0) = x0, and ẋ(t0) = ẋ0.

Proof. According to Proposition 2.1, and the Hamiltonian formulation of (IGDH), it is equivalent to
solve the following first-order system{

ẋ(t)− u(t) = 0;

u̇(t) + ∂φ(u(t)) + γu(t) +∇f(x(t)) + β∇2f(x(t))u(t) 3 0,

with the Cauchy data x(t0) = x0, u(t0) = ẋ0. Set

Z(t) = (x(t), u(t)) ∈ H ×H.

The above system can be rewritten equivalently as

Ż(t) + F (Z(t)) 3 0, Z(t0) = (x0, ẋ0),

where F : H×H⇒ H×H, (x, u) 7→ F (x, u) is defined by

F (x, u) =
(

0, ∂φ(u)
)

+
(
− u, γu+∇f(x) + β∇2f(x)u

)
.

Hence F splits as follows
F (x, u) = ∂Φ(x, u) +G(x, u),

where
Φ(x, u) = φ(u)

and
G(x, u) =

(
− u, γu+∇f(x) + β∇2f(x)u

)
.
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Therefore, it is equivalent to solve the following first-order differential inclusion with Cauchy data

Ż(t) + ∂Φ(Z(t)) +G(Z(t)) 3 0, Z(t0) = (x0, ẋ0). (4.2)

We cannot apply [28, Proposition 3.12] which considers the evolution equation governed by the a Lipschitz
perturbation of a convex subdifferential, since the mapping (x, u) 7→ ∇2f(x)u is not Lipschitz continuous.
In fact, we are going to prove that the mapping (x, u) 7→ G(x, u) is locally Lipschitz continuous. Indeed,
this property, combined with a priori estimates, will allow us to conclude.

1. Local Lipschitz continuity of G. In our framework, local Lipschitz continuity is taken in the sense of
Lipschitz continuity on the bounded sets.
For any (x, u) ∈ H ×H, set K(x, u) := γu+∇f(x) + β∇2f(x)u, so that G(x, u) = (−u,K(x, u)).
For any (xi, ui) ∈ H ×H, i = 1, 2 we have

K(x2, u2)−K(x1, u1) = γ(u2 − u1) + (∇f(x2)−∇f(x1)) + β(∇2f(x2)u2 −∇2f(x1)u1).

According to the triangle inequality, and the L-Lipschitz continuity assumption of∇f

‖K(x2, u2)−K(x1, u1)‖ ≤ γ‖u2 − u1‖+ ‖∇f(x2)−∇f(x1)‖
+ β‖∇2f(x2)u2 −∇2f(x1)u2‖+ β‖∇2f(x1)u2 −∇2f(x1)u1‖
≤ γ‖u2 − u1‖+ L‖x2 − x1‖
+ β‖∇2f(x2)−∇2f(x1)‖‖u2‖+ βL‖u2 − u1‖.

Therefore,

‖G(x2, u2)−G(x1, u1)‖ ≤ (γ + 1)‖u2 − u1‖+ L‖x2 − x1‖
+ β‖∇2f(x2)−∇2f(x1)‖‖u2‖+ βL‖u2 − u1‖. (4.3)

Using the fact that x 7→ ∇2f(x) is Lipschitz continuous on bounded sets of H, it is easy to deduce from
(4.3) that the mapping (x, u) 7→ G(x, u) is locally Lipschitz continuous onH×H.

2. A priori estimates.
Let x be a strong global solution of (IGDH). Taking the dot product of (IGDH) with ẋ(t) gives

d

dt

(
1

2
‖ẋ(t)‖2 + f(x(t))

)
+ (γ − βL)‖ẋ‖2 ≤ 0. (4.4)

According to γ − βL ≥ 0, we deduce that

‖ẋ(t)‖2 ≤ ‖ẋ0‖2 + 2(f(x0)− inf
H
f), (4.5)

which gives
‖ẋ(t)‖ ≤ ‖ẋ0‖+

√
2(f(x0)− inf

H
f). (4.6)

After integration we obtain that, for all t0 ≤ t ≤ T

‖x(t)‖ ≤ ‖x0‖+ T

(
‖ẋ0‖+

√
2(f(x0)− inf

H
f)

)
. (4.7)

Therefore (recall that Z(t) = (x(t), ẋ(t))

‖Z(t)‖ ≤ CT := ‖x0‖+ (1 + T )‖ẋ0‖+ T
√

2(f(x0)− inf
H
f). (4.8)
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Note that, for given T ≥ t0, CT only depends on the Cauchy data and the infimum of f .

3. Uniqueness
Let x1 and x2 be two solutions of (IGDH) satisfying the given Cauchy data. Set Z1(t) = (x1(t), u1(t))
and Z2(t) = (x2(t), u2(t)), which satisfy

Ż1(t) + ∂Φ(Z1(t)) +G(Z1(t)) 3 0, Z1(t0) = (x0, ẋ0) (4.9)

Ż2(t) + ∂Φ(Z2(t)) +G(Z2(t)) 3 0, Z2(t0) = (x0, ẋ0). (4.10)

According to the local Lipschitz behavior of G, see (4.3), we have

‖G(Z1(t))−G(Z2(t))‖ ≤ (γ + 1)‖u2(t)− u1(t)‖+ L‖x2(t)− x1(t)‖
+ β‖∇2f(x2(t))−∇2f(x1(t))‖‖u2(t)‖+ βL‖u2(t)− u1(t)‖.

According to the apriori estimates (4.8), we have ‖xi(t)‖ ≤ CT , and ‖ui(t)‖ = ‖ẋi(t)‖ ≤ CT for i = 1, 2
and all t0 ≤ t ≤ T . Let L2 be the Lipschitz constant of ∇2f on the ball centered at the origin and of
radius CT . We deduce from the above inequality that

‖G(Z1(t))−G(Z2(t))‖ ≤ (γ + 1)‖u2(t)− u1(t)‖+ L‖x2(t)− x1(t)‖
+ βL2CT ‖x2(t)− x1(t)‖+ βL‖u2(t)− u1(t)‖.

Therefore, there exists a positive constant MT such that, for all t0 ≤ t ≤ T

‖G(Z1(t))−G(Z2(t))‖ ≤MT ‖Z1(t)− Z2(t)‖.

Precisely, we can take
MT =

√
2 max{γ + 1 + βL; L+ βL2CT }.

Then, the uniqueness follows from a standard monotonicity argument. Make the difference of the two
equations (4.9) and (4.10), and take the scalar product with Z1(t)−Z2(t). According to the monotonicity
property of ∂Φ and the Lipschitz continuity of G we infer

1

2

d

dt
‖Z1(t)− Z2(t)‖2 ≤MT ‖Z1(t)− Z2(t)‖2.

After integration , we get

‖Z1(t)− Z2(t)‖2 ≤ ‖Z1(t0)− Z2(t0)‖2 + 2MT

∫ t

t0

‖Z1(τ)− Z2(τ)‖2dτ.

According to the classical Gronwall lemma (see Lemma A.4 [28]), we infer

‖Z1(t)− Z2(t)‖ ≤ ‖Z1(t0)− Z2(t0)‖eMT (t−t0).

Since Z1(t0) = Z2(t0), this immediately implies that Z1(t) = Z2(t) for all t ∈ [t0, T ].

4. Existence. We now examine the question of existence. We follow a parallel approach to that used for
the uniqueness result, but now we are working with the approximate dynamics

(IGDH)λ ẍλ(t)+γẋλ(t)+∇φλ(ẋλ(t))+β∇2f(xλ(t))ẋλ(t)+∇f(xλ(t)) = 0, t ∈ [t0,+∞[ (4.11)

considered in Section 3, and which uses the Moreau-Yosida approximates (φλ) of φ. We will prove that the
filtered sequence (xλ) converges uniformly as λ → 0 over the bounded time intervals towards a solution
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of (IGDH). According to Proposition 2.1, and the Hamiltonian formulation of (IGDH)λ, it is equivalent
to consider the first-order (in time) system{

ẋλ(t)− uλ(t) = 0;

u̇λ(t) +∇φλ(uλ(t)) + γuλ(t) +∇f(xλ(t)) + β∇2f(xλ(t))uλ(t) = 0,

with the Cauchy data xλ(t0) = x0, uλ(t0) = ẋ0. Set

Zλ(t) = (xλ(t), uλ(t)) ∈ H ×H.

The above system can be written equivalently as

Żλ(t) + Fλ(Zλ(t)) 3 0, Zλ(t0) = (x0, ẋ0),

where Fλ : H×H → H×H, (x, u) 7→ Fλ(x, u) is defined by

Fλ(x, u) =
(

0,∇φλ(u)
)

+
(
− u, γu+∇f(x) + β∇2f(x)u

)
.

Hence Fλ splits as follows
F (x, u) = ∇Φλ(x, u) +G(x, u)

where
Φ(x, u) = φ(u), Φλ(x, u) = φλ(u)

and
G(x, u) =

(
− u, γu+∇f(x) + β∇2f(x)u

)
.

Therefore, it is equivalent to consider the following first-order differential inclusion with Cauchy data

Żλ(t) +∇Φλ(Zλ(t)) +G(Zλ(t)) = 0, Zλ(t0) = (x0, ẋ0). (4.12)

To prove the uniform convergence of the filtered sequence (Zλ) on the bounded time intervals we proceed
in a similar way as in the proof of Brezis [28, Theorem 3.1]. Take T > t0, and λ, µ > 0. Consider the
corresponding solutions on [t0, T ]

Żλ(t) +∇Φλ(Zλ(t)) +G(Zλ(t)) = 0, Zλ(t0) = (x0, ẋ0)

Żµ(t) +∇Φµ(Zµ(t)) +G(Zµ(t)) = 0, Zµ(t0) = (x0, ẋ0).

Let’s make the difference between the two equations, and take the scalar product by Zλ(t) − Zµ(t). We
obtain

1

2

d

dt
‖Zλ(t)− Zµ(t)‖2 + 〈∇Φλ(Zλ(t))−∇Φµ(Zµ(t)), Zλ(t)− Zµ(t)〉

+ 〈G(Zλ(t))−G(Zµ(t)), Zλ(t)− Zµ(t)〉 = 0. (4.13)

We now use the following basic ingredients:

a) According to the general properties of the Yosida approximation (see [28, Theorem 3.1]) , we have

〈∇Φλ(Zλ(t))−∇Φµ(Zµ(t)), Zλ(t)− Zµ(t)〉 ≥ −λ
4
‖∇Φµ(Zµ(t))‖2 − µ

4
‖∇Φλ(Zλ(t))‖2.

According to the proof of Theorem 3.1, the sequence (Zλ) is uniformly bounded on [t0, T ], let

‖Zλ(t)‖ ≤ CT .
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From these properties we immediately infer

‖∇Φλ(Zλ(t))‖ ≤ sup
‖ξ‖≤CT

‖(∂φ)0(ξ)‖ = MT < +∞

because our assumption on φ gives that ∂φ is bounded on the bounded sets. Therefore

〈∇Φλ(Zλ(t))−∇Φµ(Zµ(t)), Zλ(t)− Zµ(t)〉 ≥ −1

4
MT (λ+ µ).

b) According to the assumptions on ∇f and ∇2f , the mapping G : H × H → H × H is Lipschitz
continuous on the bounded sets (see the proof of the uniqueness). Using again that the sequence (Zλ) is
uniformly bounded on [t0, T ], we deduce that there exists a constant L2 such that

‖G(Zλ(t))−G(Zµ(t))‖ ≤ L2‖Zλ(t)− Zµ(t)‖.

Combining the above results, and using Cauchy-Schwarz inequality, we deduce from (4.13) that

1

2

d

dt
‖Zλ(t)− Zµ(t)‖2 ≤ 1

4
MT (λ+ µ) + L2‖Zλ(t)− Zµ(t)‖2.

We now proceed with the integration of this differential inequality. According to the fact that Zλ(t0) −
Zµ(t0) = 0, elementary calculus gives

‖Zλ(t)− Zµ(t)‖2 ≤ MT

4L2
(λ+ µ)

(
e2L2(t−t0 − 1

)
.

Therefore, the filtered sequence (Zλ) is a Cauchy sequence for the uniform convergence on [t0, T ], and
hence it converges uniformly. This means the uniform convergence of xλ and ẋλ to x and ẋ respectively.
Proving that x is solution of (IGDH) is obtained in a similar way as in Theorem 3.1.

We have the following stability property with respect to the initial condition of the system (IGDH).

Corollary 4.1 Let x1 and x2 be two solutions of the system. Then, all t0 ≤ t ≤ T

‖(x1(t), ẋ1(t))− (x2(t), ẋ2(t))‖ ≤ ‖(x1(t0), ẋ1(t0))− (x2(t0), ẋ2(t0))‖eMT (t−t0),

where
MT =

√
2 max{γ + 1 + βL; L+ βL2CT },

and L2 is the Lipschitz constant of∇2f on the ball centered at the origin and of radius CT = ‖x0‖+ (1 +
T )‖ẋ0‖+ T

√
2(f(x0)− infH f).

5 Finite time convergence of the trajectories

Let’s analyze the asymptotic behavior as t → +∞, and the finite convergence property, of the solution
trajectories of the second-order differential inclusion

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0, t ∈ [t0,+∞[.

Theorem 5.1 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous, and let φ :
H → R be a convex continuous function that satisfies (DF)r and which is bounded on the bounded sets.
Suppose that

γ > βL.
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Then, for any solution trajectory x(·) of (IGDH) we have:

(i) ‖ẋ‖ ∈ L1(t0,+∞;R), and therefore the strong limit x∞ := limt→+∞ x(t) exists.

(ii) The limit point x∞ is an equilibrium point of (IGDH), i.e. −∇f(x∞) ∈ ∂φ(0).

(iii) If −∇f(x∞) 6∈ boundary(∂φ(0)), then there exists t1 ≥ 0 such that x(t) = x∞ for every t ≥ t1.

Proof. (i) Take the scalar product of (IGDH) with ẋ(t). We obtain

〈ẍ(t), ẋ(t)〉+ γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+ β
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+ 〈∇f(x(t)), ẋ(t)〉 = 0, (5.1)

which gives

1

2

d

dt
‖ẋ(t)‖2 + γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+ β

〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+
d

dt
(f(x(t)− inf

H
f) = 0.

According to the L-Lipschitz continuity of∇f , and the Cauchy-Schwarz inequality, we have

|
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
| ≤ L‖ẋ(t)‖2.

According to the assumption (DF)r on φ and Lemma 1.1,

〈∂φ(ẋ(t)), ẋ(t)〉 ≥ φ (ẋ(t)) ≥ r‖ẋ(t)‖.

Collecting the above results, we obtain

d

dt

(
1

2
‖ẋ(t)‖2 + f(x(t))− inf

H
f

)
+ (γ − βL)‖ẋ(t)‖2 + r‖ẋ(t)‖ ≤ 0. (5.2)

According to the hypothesis γ > βL, we deduce that the global energy

E(t) =
1

2
‖ẋ(t)‖2 + f(x(t)− inf

H
f

is non increasing. Moreover, by integrating (5.2) we obtain∫ ∞
t0

‖ẋ(t)‖2dt < +∞ and
∫ ∞
t0

‖ẋ(t)‖dt < +∞. (5.3)

This last property expresses that the trajectory has a finite length, and hence limt→+∞ x(t) := x∞ exists.

(ii) Since E(·) is non increasing, we have that the velocity ẋ(t) remains bounded. Since φ is bounded
on the bounded sets, so is ∂φ. Therefore, from equation (IGDH) we deduce that the acceleration ẍ(t)
remains bounded. This combined with

∫∞
t0
‖ẋ(t)‖dt < +∞ implies that the velocity ẋ(t) converges

strongly to zero, as t → +∞. Let us now pass to the limit on (IGDH). Set u(t) = ẋ(t). Let us write
(IGDH) equivalently as

u̇(t) + (γI + ∂φ)(u(t)) = h(t)

with h(t) := −β∇2f(x(t))ẋ(t) − ∇f(x(t)). The operator A = γI + ∂φ is strongly monotone because
γ > 0. According to the above results, we have that h(t) converges strongly to −∇f(x∞). We now
apply the Theorem 3.9 of Brezis [28], which tells us that the strong limit of u(t), that’s zero, satisfies
A(0) 3 −∇f(x∞). Equivalently

∂φ(0) 3 −∇f(x∞).

(iii) The assumption −∇f(x∞) ∈ int(∂φ(0)) implies the existence of ε > 0 such that

−∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).



Finite time stabilization of inertial dynamics 21

On the other hand, since limt→+∞∇f(x(t)) = ∇f(x∞), there exists t1 ≥ t0 such that for all t ≥ t1

∇f(x(t)) ∈ ∇f(x∞) + B(0, ε).

Hence,
−∇f(x(t)) + B(0, ε) ⊂ −∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

Equivalently, for every t ≥ t1 and for every u ∈ B(0, 1), we have:

−∇f(x(t))) + ε u ∈ ∂φ(0).

Let’s write the corresponding subdifferential inequality at the origin (recall that φ(0) = 0)). For every
t ≥ t1

∀u ∈ B(0, 1), φ(ẋ(t)) ≥ 〈−∇f(x(t)) + ε u, ẋ(t)〉.

Taking the supremum over u ∈ B(0, 1), we obtain that, for every t ≥ t1,

φ(ẋ(t)) + 〈∇f(x(t)), ẋ(t)〉 ≥ ε ‖ẋ(t)‖. (5.4)

Let’s return to (5.1). According to the above results, we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 + ε‖ẋ(t)‖ ≤ 0. (5.5)

a) Neglecting the nonnegative term ε‖ẋ(t)‖ we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 ≤ 0, (5.6)

whose integration gives
‖ẋ(t)‖ ≤ ‖ẋ(t0)‖e−(γ−βL)t.

b) Neglecting the nonnegative term (γ − βL)‖ẋ(t)‖2 we obtain

d

dt
‖ẋ(t)‖2 + 2ε‖ẋ(t)‖ ≤ 0, (5.7)

Set v(t) = ‖ẋ(t)‖2. We have v̇(t) + 2ε
√
v(t) ≤ 0. As long as v(t) > 0 we will have d

dt

√
v(t) ≤ −ε.

This forces v(t) to be equal to zero after some finite time.

Remark 5.1 With the condition−∇f(x∞) 6∈ boundary(∂φ(0)), the finite time convergence of the trajec-
tory to a stationary point of the dynamic (IGDH) is ensured, i.e. there exists t1 ≥ 0 such that x(t) = x∞
for every t ≥ t1. In addition, an estimate of the final time can be given. Thanks to a detailed analysis of
the end of the previous demonstration, we can show that

t1 ≤ τ0 +
2‖ẋ(τ0)‖

dist
(
−∇f(x∞), boundary(∂φ(0)

) ,
where τ0 is the first time instant such that

∇f(x(t)) ∈ ∇f(x∞) +B(0, ε), for all t ≥ t0, with ε = 1
2dist

(
−∇f(x∞),boundary(∂φ(0)

)
.
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Soft thresholding of the velocities As a model situation for dry friction, take φ : H → R given by
φ(x) = r‖x‖, with r > 0 . We have

∂φ(x) =

 r x
‖x‖ if x 6= 0;

B(0, r) if x = 0.
(5.8)

A direct application of Theorem 5.1 gives the following result:

Corollary 5.1 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous. Assume that
the potential friction function φ is given by φ(x) = r‖x‖. Suppose that

γ > βL.

Then, for any solution trajectory x(·) of (IGDH) we have:

(i) ‖ẋ‖ ∈ L1(t0,+∞;R), and therefore the strong limit x∞ := limt→+∞ x(t) exists.

(ii) The limit point x∞ satisfies
‖∇f(x∞)‖ ≤ r.

(iii) If ‖∇f(x∞)‖ < r, then there exists t1 ≥ 0 such that x(t) = x∞ for every t ≥ t1.

Clearly, taking r small is the interesting situation for optimization.

6 Errors, perturbations

Let’s analyze the asymptotic behavior as t → +∞, and the finite convergence property, of the solution
trajectories of the second-order differential inclusion

(IGDH)-pert ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 e(t)

which comes from the introduction of a second member e : [t0,+∞[→ H in (IGDH). Depending on the
context, e can be interpreted as an external action, a control term, or coming from perturbations, errors.

Theorem 6.1 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous, and let φ :
H → R be a convex continuous function that satisfies (DF)r and which is bounded on the bounded sets.
Suppose that

γ > βL.

Suppose that the external action e : [t0,+∞[→ H satisfies

lim
t→+∞

‖e(t)‖ = 0.

Then, for any solution trajectory x(·) of (IGDH)-pert we have:

(i) ‖ẋ‖ ∈ L1(t0,+∞;R), and therefore the strong limit x∞ := limt→+∞ x(t) exists.

(ii) The limit point x∞ satisfies: −∇f(x∞) ∈ ∂φ(0).

(iii) If −∇f(x∞) 6∈ boundary(∂φ(0)), then there exists t1 ≥ 0 such that x(t) = x∞ for every t ≥ t1.
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Proof. (i) Take the scalar product of (IGDH)-pert with ẋ(t). We obtain

〈ẍ(t), ẋ(t)〉+ γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+β
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+ 〈∇f(x(t)), ẋ(t)〉 = 〈e(t), ẋ(t)〉

(6.1)
which gives

1

2

d

dt
‖ẋ(t)‖2 + γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+ β

〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+
d

dt
(f(x(t)) = 〈e(t), ẋ(t)〉 .

According to the L-Lipschitz continuity of∇f , and the Cauchy-Schwarz inequality, we have

|
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
| ≤ L‖ẋ(t)‖2.

According to the assumption (DF)r on φ and Lemma 1.1,

〈∂φ(ẋ(t)), ẋ(t)〉 ≥ φ (ẋ(t)) ≥ r‖ẋ(t)‖.

By Cauchy-Schwarz inequality
| 〈e(t), ẋ(t)〉 | ≤ ‖e(t)‖‖ẋ(t)‖.

Collecting the above results, we obtain

d

dt

(
1

2
‖ẋ(t)‖2 + f(x(t))− inf

H
f

)
+ (γ − βL)‖ẋ(t)‖2 + (r − ‖e(t)‖)‖ẋ(t)‖ ≤ 0. (6.2)

According to the hypothesis γ > βL, and limt→+∞ ‖e(t)‖ = 0, we deduce that there exists t1 ≥ t0 such
that, for t ≥ t1, the global energy

E(t) =
1

2
‖ẋ(t)‖2 + f(x(t)− inf

H
f

is non increasing. Moreover, by integrating (6.2) we obtain∫ ∞
t0

‖ẋ(t)‖2dt < +∞ and
∫ ∞
t0

‖ẋ(t)‖dt < +∞. (6.3)

This last property expresses that the trajectory has a finite length, and hence limt→+∞ x(t) := x∞ exists.

(ii) Since E(·) is non increasing, we have that the velocity ẋ(t) remains bounded. Since φ is bounded
on the bounded sets, so is ∂φ. Therefore, from equation (IGDH)-pert we deduce that the acceleration
ẍ(t) remains bounded. This combined with

∫∞
t0
‖ẋ(t)‖dt < +∞ implies that the velocity ẋ(t) converges

strongly to zero, as t→ +∞. Let us now pass to the limit on (IGDH)-pert . Set u(t) = ẋ(t). Let us write
(IGDH)-pert equivalently as

u̇(t) + (γI + ∂φ)(u(t)) = h(t)

with h(t) := −β∇2f(x(t))ẋ(t) − ∇f(x(t)) + e(t). The operator A = γI + ∂φ is strongly monotone
because γ > 0. According to the above results, we have that h(t) converges strongly to −∇f(x∞). We
now apply the Theorem 3.9 of Brezis [28], which tells us that the strong limit of u(t), that’s zero, satisfies
A(0) 3 −∇f(x∞). Equivalently

∂φ(0) 3 −∇f(x∞).

(iii) The assumption −∇f(x∞) ∈ int(∂φ(0)) implies the existence of ε > 0 such that

−∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).
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On the other hand, since limt→+∞∇f(x(t)) = ∇f(x∞), there exists t1 ≥ t0 such that for all t ≥ t1

∇f(x(t)) ∈ ∇f(x∞) + B(0, ε).

Hence,
−∇f(x(t)) + B(0, ε) ⊂ −∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

Equivalently, for every t ≥ t1 and for every u ∈ B(0, 1), we have:

−∇f(x(t))) + ε u ∈ ∂φ(0).

Let’s write the corresponding subdifferential inequality at the origin (recall that φ(0) = 0)). For every
t ≥ t1

∀u ∈ B(0, 1), φ(ẋ(t)) ≥ 〈−∇f(x(t)) + ε u, ẋ(t)〉.

Taking the supremum over u ∈ B(0, 1), we obtain that, for every t ≥ t1,

φ(ẋ(t)) + 〈∇f(x(t)), ẋ(t)〉 ≥ ε ‖ẋ(t)‖. (6.4)

Let’s return to 6.1. According to the above results, we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 + (ε− ‖e(t)‖)‖ẋ(t)‖ ≤ 0. (6.5)

a) Neglecting the nonnegative term (ε− ‖e(t)‖)‖ẋ(t)‖ (recall that ε > 0 and ‖e(t)‖ → 0) we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 ≤ 0, (6.6)

whose integration gives
‖ẋ(t)‖ ≤ ‖ẋ(t0)‖e−(γ−βL)t.

b) Neglecting the nonnegative term (γ − βL)‖ẋ(t)‖2 we obtain that for t large enough

d

dt
‖ẋ(t)‖2 + ε‖ẋ(t)‖ ≤ 0, (6.7)

Set v(t) = ‖ẋ(t)‖2. We have v̇(t) + ε
√
v(t) ≤ 0. As long as v(t) > 0 we will have d

dt

√
v(t) ≤ − ε

2 . This
forces v(t) to be equal to zero after some finite time.

7 Nonsmooth case

In this section, we assume that f : H → R∪{+∞} is a convex lower semicontinuous and proper function
such that inf f > −∞. The preceding sections deal with a differentiable function f , without convexity
assumption on f . Now, when considering nonsmooth functions, we assume the convexity of f . This
allows us to use the regularity properties of the Moreau envelope in the convex case. Indeed, to reduce to
the previous situation, where f : H → R is a C1 function whose gradient is Lipschitz continuous, the idea
is to replace f by its Moreau envelope fλ : H → R which is defined by: for all x ∈ H,

fλ(x) = min
ξ∈H

{
f(ξ) +

1

2λ
‖x− ξ‖2

}
.

The properties of Moreau envelopes useful for our study were recalled in the section 3. Since the infimal
value and the set of minimizers are preserved by taking the Moreau envelope, the idea is to replace f by
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fλ in the previous study, and take advantage of the fact that fλ is continuously differentiable. The dynamic
(IGDH) becomes formally

(IGDH)-regularized ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2fλ(x(t))ẋ(t) +∇fλ(x(t)) 3 0, t ∈ [t0,+∞[

In fact fλ is only a C1,1 function. The term ∇2fλ(x(t))ẋ(t) has to be understood as the derivative in
the distribution sense of the Lipschitz continuous function t 7→ ∇fλ(x(t)). Based on the properties
of the Moreau envelope, a direct adaptation of Theorem 2.2 gives the following existence result for the
regularized dynamic (IGDH)-regularized .

Theorem 7.1 Let f : H → R ∪ {+∞} be a convex lower semicontinuous and proper function such that
infH f > −∞. Let φ : H → R be a convex continuous function that satisfies (DF)r and ‖ (∂φ)o (x)‖ ≤
c(1 + ‖x‖). Take λ > 0 and consider the corresponding differential equation (IGDH)-regularized .
Suppose that

γλ > β.

Then, for any Cauchy data (x0, ẋ0) ∈ H × H, there exists a strong global solution of the differential
equation (IGDH)-regularized satisfying x(t0) = x0, and ẋ(t0) = ẋ0.

Proof. We have that ∇fλ is L-Lipschitz continuous with L = 1
λ . So, the condition γ > βL of

Theorems 2.2 and 3.1 becomes γλ > β. Then, just apply the conclusion of these theorems.

In the following we denote by xλ a solution of (IGDH)-regularized . Note that λ is fixed, it is not
intended to go to zero.

Theorem 7.2 Under the assumptions of Theorem 7.1, let xλ be a solution of (IGDH)-regularized . Then,
the following properties are satisfied:

(i) ‖ẋλ‖ ∈ L1(t0,+∞;R), and therefore the strong limit xλ,∞ := limt→+∞ xλ(t) exists.

(ii) The limit point xλ,∞ is an equilibrium point of (IGDH)-regularized , i.e. −∇fλ(xλ,∞) ∈ ∂φ(0).

(iii) If −∇fλ(xλ,∞) 6∈ boundary(∂φ(0)), then there exists t1 ≥ 0 such that xλ(t) = xλ,∞ ∀t ≥ t1.

(iv) Set p(t) := proxλf (xλ(t)). We have that p(·) has also a finite length, and p(t) converges strongly
to p∞ := proxλf (xλ,∞). In addition

∂f(p∞) + ∂φ(0) 3 0.

In addition, when xλ is finitely convergent, so is p.

Proof. The proof consists in replacing f by fλ in Theorem 5.1, and in using that ∇fλ is 1
λ -Lipschitz

continuous. Since the proximal mapping is nonexpansive, we immediately deduce that for any s, t ≥ t0

‖p(t)− p(s)‖ ≤ ‖xλ(t)− xλ(s)‖. (7.1)

This implies that p is Lipschitz continuous, hence almost everywhere differentiable and, for a.e. t ≥ t0

‖ṗ(t)‖ ≤ ‖ẋλ(t))‖.

Since ‖ẋλ‖ ∈ L1(t0,+∞;R), we also have ‖ṗ‖ ∈ L1(t0,+∞;R). Therefore, the trajectory p(·) has a
finite length. It converges strongly towards p∞ = proxλf xλ,∞. Using the relation

∇fλ(xλ,∞) ∈ ∂f(proxλf xλ,∞) = ∂f(p∞),

we obtain the approximate optimality property:

∂f(p∞) + ∂φ(0) 3 0.

According to (7.1), when xλ is finitely convergent, so is p.
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8 Perspectives

As a major property, the inertial system (IGDH) provides strong global solutions which converge in finite
time. It would be interesting to consider whether these results can be extended to PDE’s, nonlinear wave
equations, and the modeling of damped shocks. From the optimization point of view, the main challenge
is to obtain an accurate estimate of the finite time stabilization. This is based on the study of the condition
−∇f(x∞) 6∈ boundary(∂φ(0)), which is a non-trivial subject. Thus, this paper opens the door to several
interesting problems arising in various domains.
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