
HAL Id: hal-02557823
https://hal.science/hal-02557823v2

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A calculus of expandable stores
Hugo Herbelin, Étienne Miquey

To cite this version:
Hugo Herbelin, Étienne Miquey. A calculus of expandable stores: Continuation-and-environment-
passing style translations. LICS 2020 - 35th ACM/IEEE Symposium on Logic in Computer Science,
Jul 2020, Saarbrücken / Virtual, Germany. pp.564-577, �10.1145/3373718.3394792�. �hal-02557823v2�

https://hal.science/hal-02557823v2
https://hal.archives-ouvertes.fr

A calculus of expandable stores
Continuation-and-environment-passing style translations

Hugo Herbelin
INRIA, IRIF (CNRS)

Université Paris-Diderot
France

hugo.herbelin@inria.fr

Étienne Miquey
CNRS, LSV, INRIA
ÉNS Paris-Saclay

France
emiquey@lsv.fr

Abstract
The call-by-need evaluation strategy for the λ-calculus is
an evaluation strategy that lazily evaluates arguments only
if needed, and if so, shares computations across all places
where it is needed. To implement this evaluation strategy,
abstract machines require some form of global environment.
While abstract machines usually lead to a better understand-
ing of the flow of control during the execution, facilitating in
particular the definition of continuation-passing style trans-
lations, the case of machines with global environments turns
out to be much more subtle.
The main purpose of this paper is to understand how to

type a continuation-and-environment-passing style transla-
tion, that is to say how to soundly translate in continuation-
passing style a calculus with global environment. To this
end, we introduce Fϒ, a generic calculus to define the target
of such translations. In particular, Fϒ features a data type
for typed stores and a mechanism of explicit coercions wit-
nessing store extensions along environment-passing style
translations. On the logical side, this broadly amounts to a
Kripke forcing-like translation mixed with a negative trans-
lation (for the continuation-passing part). Since Fϒ allows
for the definition of such translations for different source cal-
culi (call-by-need, call-by-name, call-by-value) with different
type systems (simple types, system F), we claim that it pre-
cisely captures the computational content of continuation-
and-environment-passing style translations.

Keywords global environment, abstractmachines, CPS trans-
lations, Kripke forcing, lazy evaluation, de Bruijn indices

This paper is an extended version of a conference paper avail-
able at: https://dx.doi.org/10.1145/3373718.3394792. Due to
the original space constraints, most of the proof are given in
appendices.

Introduction
Variable binding is one of these notions that seems really
natural on the surface (especially to humans that have some
habit of working with variables), while being much more
subtle to define formally (computer scientists are well aware
of that fact). In particular, the way programming languages

handle bindings and environments has evolved a lot since
the emergence of computers.
In the realm of the λ-calculus, most of the standard ab-

stract machines evaluate termswithin a local environment by
using closures (e.g. Landin’s SECD machine [20], the Krivine
Abstract Machine [18], etc.). Nonetheless, these machines do
not allow the use of evaluation strategies such as call-by-need
that require the ability to share computations. Instead, lazy
evaluation strategies require abstract machines with a global
environment [3, 33]. Such machines demand in particular to
explicitly handle addresses (as in the Lazy Krivine [21]) or a
renaming process (as in the Milner Abstract Machine [2]).
Continuation-passing style translations, that where first

introduced by Sussman and Steel [35], constitute a great tool
when it comes to studying operational semantics of calculi:
by making explicit the order in which reduction steps are
computed, CPS translations indirectly specify an evaluation
strategy for the translated calculus. On a logical aspect, they
are also very informative insofar as the translation they in-
duce at the level of typesmostly amounts to a syntacticmodel
allowing to transfer logical properties (coherence, normal-
ization) from the target calculus [6]. For instance, standard
CPS translations are known to correspond to embeddings of
classical logic into intuitionistic logic [14, 28].
If there exists a wide literature on (typed) CPS transla-

tions for call-by-name or call-by-value calculi [4, 13, 32], the
situation is quite different for lazily evaluated calculi. Even
though such strategies are used in practice, for instance
in Haskell or Coq, no typed CPS allows to take them into
account. The main difficulty in deriving a CPS translation
for a call-by-need calculus is related to the necessity of a
global environment: since the evaluation of terms is shared,
the CPS translation actually has to be combined with an
environment-passing style transformation. Also, since envi-
ronments can grow during the execution, such a translation
needs to handle this extensibility. Last but not least, the use
of a global environment requires tackling problems related
to the uniqueness of names.

This paper aims at bridging the gap between CPS transla-
tions and calculi with a global environment. Our main result
is the introduction of Fϒ , a highly parametric calculus suitable
as the target of several typed continuation-and-environment-
passing style (CEPS) translations, taking into account source

https://dx.doi.org/10.1145/3373718.3394792

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

calculi with different evaluation strategies or type systems.
It features the architecture to manipulate typed expandable
stores, whose elements are accessed via the careful use of
de Bruijn levels. Store extensions are computationally wit-
nessed by explicit coercions which allow us to update de
Bruijn levels along the execution. In some sense, we make
explicit the rewriting system underlying store management,
in a similar way as explicit substitution calculi, as e.g. in [1],
make explicit the computational structure of substitution.
Our results improve over the state-of-the-art in a previ-

ous paper by Ariola et al., in which they define an untyped
CPS translation for a call-by-need calculus with control [5].
Besides just being able to type this translation, our setting
solves a subtle issue of renaming in their translation. The de
Bruin presentation used in this paper formally addresses this
issue by avoiding names altogether. Most importantly, this
paper shows that a de Bruin version of [5] is even possible.
This fact was not obvious from the previous work, which de-
pends deeply on name-based binding and lookup operations
on an environment. Insofar as name-based environments
are neither very practical nor efficient for most applications,
demonstrating how the system of [5] can be statically com-
piled to numeric offsets into an ordered environment is a
step forward toward a practical implementation strategy for
call-by-need with control effects.

Let us begin this paper with a comprehensive introduction
to abstract machines with global environments. This intro-
duction shall then lead us to analyzing the technicalities that
CEPS translations give rise to (Sec. 2) before introducing Fϒ
more in depth (Sec. 3). and illustrating its features by defin-
ing different typed CEPS (Sec. 4). We shall conclude with
further perspectives arising from this work (Sec. 5).

1 Computing with global environments
In this section, we recall and introduce several calculi and
abstract machines that have in common that they use a form
of global environments to perform substitutions. As such,
what we call global environments somewhat behave like
(lazy) explicit substitutions or particular stores. To draw the
comparison with the usual notions of stores and environ-
ments, two things should be observed. First, the usual notion
of store refers to a structure of list that is fully mutable, in
the sense that its cells can be updated at any time and thus
values might be replaced. In the following examples, cells
might be updated but only to replace an unevaluated term
by its corresponding value. Second, the usual notion of envi-
ronment designates a structure in which variables are bound
to closures made of a term and an environment. In particular,
terms and environments are duplicated, i.e. sharing is not
allowed. Such a structure resembles a tree whose nodes are
decorated by terms, as opposed to a machinery allowing
sharing (like ours), whose underlying structure is broadly a
directed acyclic graph.

1.1 The Milner Abstract Machine
Even though it is far from being the most well-known ab-
stract machine, the Milner Abstract Machine (MAM) is prob-
ably the easiest presentation of an abstract machine for the
(call-by-name) λ-calculus that uses a single global environ-
ment [2, 3]. A state of this machine is made of three compo-
nents:

• a code t for a term t which is not considered up to
α-conversion1,

• a stack π which contains the arguments of the current
code, that is to say a stack of codes,

• a global environment τ , which is a list storing the
(delayed) substitutions generated by the redexes en-
countered so far.

Formally, this corresponds to the following syntax:

Terms
Stacks
Environments

t,u ::= x | tu | λx .t
π ::= ε | t · π
τ ::= ε | τ [x := t]

The machine is given in Figure 1, where we follow the
notations of Accattoli and Barras [3] to denote reduction
rules: we write →β for the β-reduction rule, →s for the
rule which somehow performs a substitution, and →c for
the commutative transition. By considering invariants of
the machine, one can easily prove that the Milner Abstract
Machine soundly implements the call-by-name evaluation
strategy for the λ-calculus [2].

It is worth noting that the soundness of the execution cru-
cially relies on the uniqueness of names in the environment.
Incidentally, this requires the possibility of an on-the-fly α-
renaming process. Executing twice a term binding a variable
x in different contexts (say (λx .t)u and (λx .t)v) could indeed
result in linking two different terms to the same name in the
environment. This is avoided by asking in the→s rule that
if x is linked to some term t in the environment τ , accessing
x results in executing a code tα that is α-equivalent to t and
such that any bound name in tα is fresh with respect to every
other names in the term, in the current stack π and in the
environment τ . In the sequel, we will explicitly use de Bruijn
levels to handle this kind of issues.
On the contrary, most of the abstract machines of the lit-

erature implementing the call-by-name or call-by-value eval-
uation strategies for the λ-calculus use many local environ-
ments (e.g. the Krivine AbstractMachine [18], Landin’s SECD
machine [20], Felleisen and Friedman’s CEK machine [12],
Leroy’s ZINC machine [22]). In these machines, the concept
of closure, that is a term taken with an environment under
which it can be seen as a closed term, plays a central part. As
an example, we give in Figure 1 the definition of the Krivine

1In other words, we assume implicit α -conversion for terms, which stand
for the equivalence class of raw syntactic codes up to α -conversion.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

tu ⋆ π ⋆ τ →c t ⋆u · π ⋆ τ
λx .t ⋆u · π ⋆ τ →β t ⋆ π ⋆ τ [x := u]
x ⋆ π ⋆ τ [x := t]τ ′ →s t

α
⋆ π ⋆ τ [x := t]τ ′

(a) Milner Abstract Machine

tu ⋆ S ⋆ E →c t ⋆ (u, E) · S ⋆ E
λx .t ⋆ (u, E ′) · S ⋆ E →β t ⋆ S ⋆ E[x ::= (u, E ′)]

x ⋆ S ⋆ E[x ::= (t, E ′)]E ′′ →s t ⋆ S ⋆ E ′

(b) Krivine Abstract Machine

Figure 1. MAM vs KAM

Abstract Machine (KAM), whose syntax is given by:

Terms
Stacks
Environments

t,u ::= x | tu | λx .t
S ::= ε | (t, E) · S
E ::= ε | E[x ::= (t, E ′)]

In comparison with the MAM, it is interesting to observe
that the definitions of environments and closures are mu-
tually recursive. Notably, it presents the advantage that the
locality of environments makes the α-renaming process use-
less. While this design with a local environment presents
some benefits over machines with global ones (among other
things in terms of complexity [3]), it has the drawback of
being incompatible with lazy evaluation strategies which
require to share computations and memory bindings.

1.2 The Milner Abstract Machine By-Need
The call-by-need evaluation strategy of the λ-calculus evalu-
ates arguments of functions only when needed, and, when
needed, shares their evaluations across all places where
the argument is required. Therefore, abstract machines im-
plementing the call-by-need evaluation have to allow for
some kind of global environment in order to share com-
putations [8, 33]. The Milner Abstract Machine can easily
be modified to obtain such an abstract machine, called the
Milner Abstract machine by-neeD (MAD) [2]. The main idea
consists in adding a dump, which is used whenever the code
is some variable x within an environment τ1[x := t]τ2: the
machine momentarily focuses on the evaluation of t in τ1
while saving the current stack together with the rest of the
environment τ2 and the variable x on the dump. Then, if this
computation eventually produces a value v in an environ-
ment τ ′1 , the machine goes back to the former computation
within the updated environment τ ′1[x := v]τ2. The machine
is given Figure 2, where environments τ and stacks π are
defined as in the MAM, and where dumps are given by the
following grammar:

D ::= ε | (x, π , τ) :: D

Alternatively, one could also extend the syntax of stacks
in order to add a constructor h(x, τ) ·π that holds the entries

tu ⋆ π ⋆ τ ⋆D →c1 t ⋆u · π ⋆ τ ⋆D
λx .t ⋆u · π ⋆ τ ⋆D →β t ⋆ π ⋆ τ [x := u]⋆D
x ⋆ π ⋆ τ [x := t]τ ′ ⋆D →c2 t ⋆ ε ⋆ τ ⋆ (x, π , τ ′) :: D
v ⋆ ε ⋆ τ ⋆ (x, π , τ ′) :: D →s vα ⋆ π ⋆ τ [x := v]τ ′ ⋆D

Figure 2. The Milner Abstract machine by-neeD

that would otherwise go to the dump. Themodified reduction
rules could then be given by:

x ⋆ π ⋆ τ [x := t]τ ′ →c2 t ⋆ h(x, τ ′) · π ⋆ τ
v ⋆ h(x, τ ′) · π ⋆ τ →s vα ⋆ π ⋆ τ [x := v]τ ′

This is for instance the approach chosen in Sestoft’s ma-
chine for lazy evaluation [33] or in Accattoli, Barenbaum
and Mazza’s Merged MAD [2]. For a more detailed introduc-
tion to the subtleties related to the implementation of lazy
abstract machines or a comparison between the different
approaches (including Crégut’s lazy KAM [8] and Sestoft’s
abstract machine), we refer the reader to Accattoli, Baren-
baum and Mazza’s paper [2].

1.3 The λ̄µµ̃-calculus with global environments
Let us briefly explain how the MAM could be expressed
under the shape of a sequent calculus. We shall dwell on a
by-need variant of this calculus in Section 1.4.

We present here a variant of the call-by-name λ̄µµ̃-calculus
extended with a global environment [9]. The syntax of the
usual λ̄µµ̃-calculus is divided in three categories: terms, which
represent programs; evaluation contexts (or co-terms); com-
mands, which are pairs of a term and a context representing
a system that contains both the program and its environ-
ment. Then, as in the MAM, we extend the syntax with
environments made of delayed substitutions. The notion of
evaluation context is a generalization of the notion of stacks
where µ̃x .c can be read as a context letx = [] in c . As for
terms, the µ operator comes from Parigot’s λµ-calculus [30]:
µα binds a context to a context variable α in the same way
µ̃x binds a proof to some proof variable x . In particular, as we
shall see now, it allows terms to capture evaluation contexts
and as such plays the role of a control operator.
The syntax and reduction rules are given in Figure 3, in

which terms and contexts are implicitly considered up to
α-conversion in order to preserve the uniqueness of names
in the environment. It is easy to see that on its intuitionistic
fragment (that is without the classical control µα), this calcu-
lus behaves exactly as the MAM2. As per [9], we restrict the
2The reader unfamiliar with the λ̄µ µ̃-calculus might be puzzled by the
absence of a syntactic construction for the application of proof terms. Intu-
itively, the usual application tu of the λ-calculus is replaced by the applica-
tion of the proof t to a stack of the shape u · E . The usual application can
be recovered through the following shorthand: tu ≜ µα . ⟨r ||u · α ⟩. It is
then an easy exercise to show that the MAM can be simulated within the
λ̄µ µ̃-calculus with environments, see Appendix A.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Values V ::= λx .t
Terms t,u ::= V | x | µα .c

Co-values E ::= t · E | α
Contexts e ::= E | µ̃x .c

Environments
τ ::= ε | τ [x := t]

| τ [α := E]
Commands c ::= ⟨t || e⟩
Closures l ::= cτ

(Let)
(Catch)
(Lookupx)
(Lookupα)
(Beta)

⟨t || µ̃x .c⟩τ → cτ [x := t]
⟨µα .c || E⟩τ → cτ [α := E]

⟨x || E⟩τ [x := t]τ ′ → ⟨t || E⟩τ [x := t]τ ′

⟨V || α⟩τ [α := E]τ ′ → ⟨V || E⟩τ [α := E]τ ′

⟨λx .t ||u · E⟩τ →
〈
u
���� µ̃x .⟨t || E⟩〉τ

Figure 3. By-name λ̄µµ̃-calculus with global environments

syntax of stacks to t · E for call-by-name evaluation rather
than the more general te . Observe that the reduction rules for
µ is restricted to co-values, which enforces the call-by-name
reduction strategy. Call-by-value is obtained by relaxing
these constraints and by dually constraining the reduction
of µ̃ to values [9]. Note in particular our formulation of the
(Beta) rule: by delegating the process of substitution of the
argument to the µ̃ rule, it captures what is common to call-
by-name β and call-by-value βV , leaving the rôle of choosing
between call-by-name and call-by-value to the rules µ and µ̃.
As for the typing rules, they will be easy to deduce from the
type system we will introduce for the λ[lvτ⋆]-calculus in the
next section, we thus let them as an exercise for the reader.

1.4 The λ[lvτ⋆]-calculus
Although the MAD arguably provides us with the easiest
presentation of a lazy abstract machine, it does not directly
lead to an operational semantics for control operators (or,
equivalently, to the definition of a continuation-passing style
translation). While the addition to the KAM of the call/cc
operator, which allows to capture the current stack into a
continuation, is very natural, it is less obvious to determine
its behavior in theMAD. Especially, it is not clear a priori how
control operators should handle the global environment and
the dump. More generally, the problem of soundly defining
a CPS translation for the call-by-need λ-calculus turns out
to be trickier than the call-by-value and call-by-name cases.
In particular, a first attempt by Okasaki, Lee, Tarditi [29]
was latter shown to be non-normalizing on simply-typed
terms [5].

In the latter, Ariola et al. apply themethodology of Danvy’s
semantics artifacts to mechanically derive a continuation-
passing style translation from a sequent calculus presenta-
tion of classical call-by-need. Starting from a specific eval-
uation strategy for the λ̄µµ̃-calculus, they finally obtain a
small-step sequent calculus, the λ[lvτ⋆]-calculus, from which

they get an untyped CPS translation almost for free3. The
λ[lvτ⋆]-calculus can be understood as a refinement of the
λ̄µµ̃-calculus with explicit environments (see Section 1.3). Be-
fore introducing our variant of this calculus using de Bruijn
levels, let us first stick to names in order to emphasize the
main differences between both calculi, which are:

• a new binder, written µ̃[x].⟨x || F ⟩τ ′, which is used to
implement laziness as we shall explain;

• a subdivision of values (resp. co-values) into two cate-
gories of weak and strong values (resp. catchable and
forcing contexts).

Strong values correspond to values strictly speaking. Weak
values include variables, which force the evaluation of terms
to which they refer into shared strong value. Their evaluation
may require capturing a continuation. Dually, catchable con-
texts are co-values strictly speaking, while forcing contexts
are contexts eagerly asking for a strong value, which may
trigger the evaluation of terms lazily stored. In detail, the
lazy evaluation of terms allows for the following reduction:

⟨µα .c || µ̃x .c ′⟩ → c ′[x := µα .c]

In this case, the term µα .c is left unevaluated (“frozen”) in the
environment, until possibly reaching a command in which
the variable x is needed. When evaluation reaches a com-
mand of the form ⟨ x || F ⟩ τ [x := µα .c]τ ′, the binding
is opened and the term is evaluated in front of the context
written µ̃[x].⟨x || F ⟩τ ′:

⟨x || F ⟩τ [x := µα .c]τ ′ →
〈
µα .c

���� µ̃[x].⟨x || F ⟩τ ′
〉
τ

The reader can think of the previous rule as the “defrosting”
operation of the frozen term µα .c : this term is evaluated in
the prefix of the environment τ which predates it, in front
of the context µ̃[x]. ⟨ x || F ⟩ τ ′ where the µ̃[x] binder
is waiting for a value. This context keeps trace of the part
of the environment τ ′ that was originally located after the
binding [x := ...]. This way, if a value V is indeed furnished
for the binder µ̃[x], the original command ⟨x || F⟩ is evaluated
in the updated full environment:〈

V
���� µ̃[x].⟨x || F ⟩τ ′

〉
τ → ⟨V || F ⟩τ [x := V]τ ′

The brackets in µ̃[x].c are used to express the fact that the
variable x is forced at top-level4. Especially, it allows us to
keep the standard redex at the top of a command and avoids
searching through the meta-context for work to be done. As
such, reduction rules of the λ[lvτ⋆]-calculus are close to the
ones of the MAD5.

3See Appendix B.1 for the original definition of the λ[lvτ⋆]-calculus and
the corresponding untyped CPS.
4Unlike meta-contexts of the shape µ̃x .C[⟨x || F ⟩] in the λlv -calculus,
see [5].
5In fact, it is an easy exercise to simulate the MAD within the λ[lvτ⋆]-
calculus. We outline this construction in Appendix A.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Strong values v ::= k | λxi .t
Weak values V ::= v | xi
Terms t,u ::= V | µαi .c
Stores τ ::= ε | τ [xi := t] | τ [αi := E]
Commands c ::= ⟨t || e⟩
Closures l ::= cτ
Forcing contexts F ::= κ | t · E
Catchable contexts E ::= F | αi | µ̃[xi].⟨xi || F ⟩τ
Evaluation contexts e ::= E | µ̃xi .c

(Let) ⟨t || µ̃xi .c⟩τ →† c[xn/xi]τ [xn := t]
(Catch) ⟨µαi .c || E⟩τ →† c[αn/αi]τ [αn := E]
(Lookupα) ⟨V || αn⟩τ → ⟨V || τ (n)⟩τ
(Lookupx) ⟨xn || F ⟩τ0[xn := t]τ1 →

〈
t
���� µ̃[xn].⟨xn || F ⟩τ1

〉
τ0

(Restore)
〈
V
���� µ̃[xi].⟨xi || F ⟩τ ′〉τ →† ⟨V || F ⟩τ [xn := V]τ ′‡

(Beta) ⟨λxi .t ||u · E⟩τ →†
〈
u
���� µ̃xn .⟨t[xn/xi] || E⟩〉τ

† with |τ | = n ‡ F ≜↑
+(n−i)
i F and τ ′ ≜↑

+(n−i)
i τ ′

Figure 4. The λ[lvτ⋆]-calculus with de Bruijn levels

Last but not least, the different syntactic categories can be
understood as the different levels of alternation in a context-
free abstract machine (see [5]): the priority is first given
to contexts at level e (lazy storage of terms), then to terms
at level t (evaluation of µα into values), then back to con-
texts at level E and so on until level v . These different cate-
gories are directly reflected in the definition of the untyped
continuation-passing style defined in [5] (see Appendix B.1),
and will thus be involved in the definition of our typed trans-
lation as well.

1.5 De Bruijn levels

Ariola et al.’s presentation of the λ[lvτ⋆]-calculus deeply re-
lies on the assumption that names of variable are unique and
thus on the possibility of performing α-conversion on-the-
fly. While this assumption, which is crucial to ensure the
freshness of bindings added to the environment, is straight-
forward in the abstract machine model, it is not possible
in the CPS translation 6. In turn, we will use de Bruijn lev-
els7 for variables (and co-variables) that are bound in the
environment. Just as de Bruijn indices are pointers to the
correct binder, de Bruijn levels are pointers to the correct
cell of the environment. We use the notation xi to denote
a term variable of de Bruijn level i where x is a fixed name
whose sole purpose is to remind that the variable is binding
terms. For binders of evaluation contexts, we similarly use
de Bruijn levels, but with variables of the form αi , where,
again, α is a fixed name whose sole purpose is to remind
that the variable is binding evaluation contexts, and the rele-
vant information is the index i . The corresponding syntax is
given in Figure 4. Note that typing rules for binders include
a possible weakening of the context. In particular, giving a
meaning to de Bruijn levels requires the knowledge of the
length of the current context.

6See Appendix B.2 for more details on problems related to α -conversion
7De Bruijn levels were originally introduced as a reversed notation for de
Bruijn indices [11]. While they are less common in the literature, levels
have the significant benefit that variables referring to the same binder have
the same name.

As the environment can be dynamically extended during
the execution, the location of a term in the environment and
the corresponding pointer are likely to evolve (monotoni-
cally). Therefore, we need to be able to update de Bruijn
levels within terms (contexts, etc.). To this end, we define
the lifted term ↑+ni t as the term t where the free variables
x j (resp. α j) with j ≥ i have been replaced by x j+n (resp.
α j+n)8. The reduction rules are given in Figure 4. Note that
we choose to perform index substitutions as soon as they
come, maintaining the property that xn always refers to the
(n + 1)th element of the environment.
Regarding the type system, we consider nine kinds of

sequents, one for typing each of the nine syntactic categories.
We write them with an annotation on the ⊢ sign, using one
of the letters v , V , t , F , E, e , l , c , τ :

Γ ⊢l l
Γ ⊢c c
Γ ⊢τ τ : Γ′

Γ ⊢t t : T
Γ ⊢V V : T
Γ ⊢v v : T

Γ ⊢e e : T⊥⊥

Γ ⊢E E : T⊥⊥

Γ ⊢F F : T⊥⊥

where types and typing contexts are defined by:

T ,U ::= X | T → U Γ ::= ε | Γ, x : T | Γ,α : T⊥⊥

Sequents typing values and terms are asserting a type, with
the type written on the right; sequents typing contexts are
expecting a typeT with the type writtenT⊥⊥; sequents typing
commands and closures are black boxes neither asserting
nor expecting a type; sequents typing environments are in-
stantiating a typing context.

The typing rules are given on Figure 5 where we adopt the
convention that constants k and co-constants κ come with a
signature S which assigns them a type. The typing rules are
the same as for the named calculus [26], except for the one
where indices should now match the length of the typing
context. As in the named case, this type system enjoys the
property of subject reduction.

Theorem 1.1 (Subject reduction). If Γ ⊢l cτ and cτ → c ′τ ′

then Γ ⊢l c
′τ ′.

8See Appendix B.3 for a formal definition.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

(k : X) ∈ S

Γ ⊢v k : X
Γ, xn : T ⊢t t : U |Γ | = n

Γ, Γ′ ⊢v λxn .t : T → U

(κ : X) ∈ S

Γ ⊢F κ : X⊥⊥

Γ ⊢t t : T Γ ⊢E E : U ⊥⊥

Γ ⊢F t · E : (T → U)⊥⊥
Γ(n) = (xn : T)
Γ ⊢V xn : T

Γ ⊢v v : T
Γ ⊢V v : T

Γ(n) = (αn : T⊥⊥)

Γ ⊢E αn : T⊥⊥

Γ, xi : T , Γ′ ⊢F F : T⊥⊥ Γ, xi : T ⊢τ τ : Γ′ |Γ | = i

Γ, Γ′′ ⊢E µ̃[xi].⟨xi || F ⟩τ : T⊥⊥

Γ ⊢F F : T⊥⊥

Γ ⊢E F : T⊥⊥

Γ ⊢V V : T
Γ ⊢t V : T

Γ,αn : T⊥⊥ ⊢c c |Γ | = n

Γ, Γ′ ⊢t µαn .c : T
Γ ⊢E E : T⊥⊥

Γ ⊢e E : T⊥⊥

Γ, xn : T ⊢c c |Γ | = n

Γ, Γ′ ⊢e µ̃xn .c : T⊥⊥

Γ ⊢t t : T Γ ⊢e e : T⊥⊥

Γ ⊢c ⟨t || e⟩
Γ, Γ′ ⊢c c Γ ⊢τ τ : Γ′

Γ ⊢l cτ

Γ ⊢τ ε : ε
Γ ⊢τ τ : Γ′ Γ, Γ′ ⊢t t : T |Γ, Γ′ | = n

Γ ⊢τ τ [xn := t] : Γ′, xn : T
Γ ⊢τ τ : Γ′ Γ, Γ′ ⊢E E : T⊥⊥ |Γ, Γ′ | = n

Γ ⊢τ τ [αn := E] : Γ′,αn : T⊥⊥

Figure 5. Typing rules for the λ[lvτ⋆]-calculus with de Bruijn levels

Proof. The proof proceeds by induction on typing derivation,
and is almost the same as in the case without de Bruijn
levels [26, Theorem 1]. □

2 Towards typed CEPS translations
We shall now introduce System Fϒ, the calculus that we will
use as the target of several continuation-and-environment-
passing style translations. Our main objective here is to
identify the core ingredients necessary to the definition of
a generic target calculus, independently of the source lan-
guages we will consider afterwards. In particular, our cal-
culus will be suitable to express translation of calculi with
different evaluation strategies or different type systems. As
we shall see, System Fϒis essentially Cardelli’s System F <: [7]
extended with the necessary structure to handle typed (ex-
tensible) stores.
In order to ease the introduction of System Fϒ, we first

focus on the case of the simply typed λ[lvτ⋆]-calculus. We
begin this section by explaining the rationale guiding the
translation of types (which we only outline in this section)
while taking advantage of this overview to highlight the
different elements that such a translation requires.

2.1 Guidelines of the translation
Let us start by introducing step by step the intuitions guid-
ing the definition of the translation. The main idea is that,
due to the sharing of the evaluation of arguments, the en-
vironment associating terms to variables has to be passed
around. Passing the environment amounts to combining the
continuation-passing style translation with an environment-
passing style translation. As we observed in Section 1, the
environment is extensible, therefore, to anticipate extensions
of the environment, Kripke style forcing has to be used too,
in a way comparable to what is done in step-indexing trans-
lations. To facilitate the comprehension of the different steps,

we illustrate each of themwith the translation of the sequent9
a : A,α : A⊥⊥,b : B ⊢e e : C .

Step 1 – Continuation-passing style. In a first approxi-
mation, let us look only at the continuation-passing style
part of the translation of a λ[lvτ⋆] sequent. As emphasized
in [5, 26], there are 6 different levels of control in the λ[lvτ⋆]-
calculus (corresponding to the 6 nested syntactic categories),
leading to 6 mutually defined levels of interpretation. We de-
fine JA → BKv for strong values as JAKt → JBKt , we define
JAKF for forcing contexts as ¬ JAKv , JAKV for weak values
as ¬ JAKF = 2¬ JAKv , and so on until JAKe = 5¬ JAKv (where
we use the notations 1¬ A ≜ A → ⊥ and n+1¬ A ≜ ¬

n¬ A).
As observed in the realizability interpretation [26], hy-

potheses from a context Γ of the form α : A⊥⊥ are to be
translated as JAKE = 3¬ JAKv while hypotheses of the form
x : A are to be translated as JAKt = 4¬ JAKv . Up to this point,
if we denote this translation of Γ by JΓK, in the particular
case of Γ ⊢t A the translation is JΓK ⊢ JAKt and similarly for
other levels.

Example 2.1 (Translation, step 1). Up to now, the transla-
tion taking into account the continuation-passing style of
a : A,α : A⊥⊥,b : B ⊢e e : C is simply:

Ja : A,α : A⊥⊥,b : B ⊢e e : CK
= a : JAKt ,α : JAKE ,b : JBKt ⊢ JeKe : JCKe
= a : 4¬ JAKv ,α : 3¬ JAKv ,b : 4¬ JBKv ⊢ JeKe : 5¬ JCKv

Step 2 – Environment-passing style. The continuation-
passing style part being settled, the environment-passing
style part should be considered. In particular, the translation
of Γ ⊢t A is not anymore a sequent JΓK ⊢ JAKt but instead
a sequent roughly of the form ⊢ JΓK → JAKt , with actually
JΓK being passed around not only at the top-level of JAKt
but also each time a negation is used. We write this sequent
⊢ JΓK ▷t A where · ▷t A is defined by induction on t and A:

JΓK ▷t A = JΓK → (JΓK ▷E A) → ⊥

= JΓK → (JΓK → (JΓK ▷V A) → ⊥) → ⊥ · · ·

9We omit de Bruijn levels for the moment and we write a : A, b : B, ...
instead of x : T , y : U , ... for the sole purpose of easing readability.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Moreover, the translation of each type in Γ should itself be
abstracted over the environment at each use of a negation.

Example 2.2 (Translation, step 2). Up to this point, the
continuation-and-environment-passing style translation of
a : A,α : A⊥⊥,b : B ⊢e e : C is:
Ja : A,α : A⊥⊥,b : B ⊢e e : CK
= ⊢ JeKe : Ja : A,α : A⊥⊥,b : BK ▷e C
= ⊢ JeKe : Ja : A,α : A⊥⊥,b : BK → (Ja : A,α : A⊥⊥,b : BK ▷t C) → ⊥

= ...
where:

Ja : A,α : A⊥⊥,b : BK
= Ja : A,α : A⊥⊥K, b : Ja : A,α : A⊥⊥K ▷t B

Ja : A,α : A⊥⊥K ▷t B
= Ja : A,α : A⊥⊥K → (Ja : A,α : A⊥⊥K ▷E B) → ⊥ = ...

Ja : A,α : A⊥⊥K = Ja : AK, α : Ja : AK ▷E A
= Ja : AK, α : Ja : AK → (Ja : AK → ▷EA) → ⊥ = ...

Ja : AK = a : ε ▷t A = a : 4¬ JAKv

Step 3 – Extension of the environment The environment-
passing style part being settled, it remains to take into ac-
count that the environment is extensible. This is done by
supporting arbitrary insertions of any term at any place
in the environment. The extensibility is obtained by quan-
tifying over all possible extensions of the environment at
each level of the negation. In the realizability interpretation,
this was reflected by the compatibility of realizers with any
environment extension [26].
For this purpose, we use as a type system an adaptation

of System F <: [7] extended with stores, defined as lists of
assignations [x := t]. Store types, denoted by ϒ, are defined
as a list of types of the form (x : A) where x is a name and A
is a (usual) type. Store types admit a subtyping notion ϒ′ <: ϒ
to express that ϒ′ is an extension of ϒ. This corresponds to
the following refinement of the definition of JΓK ▷t A:

JΓK ▷t A = ∀ϒ <: JΓK.ϒ → (ϒ ▷E A) → ⊥

= ∀ϒ <: JΓK.ϒ → (∀ϒ′ <: ϒ.ϒ′ → ϒ′ ▷V A → ⊥) → ⊥

= ...

Such a quantification is reminiscent of Kripke forcing [16]:
thinking of store types ϒ as worlds, the accessible worlds from
ϒ are precisely all the possible ϒ′ <: ϒ. To emphasize this cor-
respondence, we give here the translation of the arrow both
in Kripke models and in our setting, where the forcing trans-
lation is interleaved with the continuation/environment-
passing parts:

ϒ ▷v T → U ≜ ∀Y <: ϒ.Y → (Y ▷t T) → (Y ▷E U) → ⊥

ω ⊩ A ⇒ B ≜ ∀ω ′ ≥ ω . ω ′ ⊩ A ⇒ ω ′ ⊩ B

Example 2.3 (Translation, step 3). The translation, now
taking into account store extensions, of a : A,α : A⊥⊥,b :

B ⊢e e : C becomes:
Ja : A,α : A⊥⊥,b : B ⊢e e : CK
= ⊢ JeKe : Ja : A,α : A⊥⊥,b : BK ▷e C
= ⊢ JeKe : ∀ϒ <: Ja : A,α : A⊥⊥,b : BK.ϒ → (ϒ ▷t C) → ⊥

= ...

where:
Ja : A,α : A⊥⊥,b : BK = Ja : A,α : A⊥⊥K, b : Ja : A,α : A⊥⊥K ▷t B
Ja : A,α : A⊥⊥K▷tB

= ∀ϒ <: Ja : A,α : A⊥⊥K.ϒ → (ϒ ▷E B) → ⊥ = ...

Ja : A,α : A⊥⊥K = Ja : AK, α : Ja : AK ▷E A
= Ja : AK, α : ∀ϒ <: Ja : AK.ϒ → (ϒ ▷V A) → ⊥ = ...

Ja : AK = a : ε ▷t A = a : ∀ϒ.ϒ → (ϒ ▷E A) → ⊥

Step 4 – Explicit coercions The only remaining step is to
take into account de Bruijn levels both inside the source and
target languages. In the target language, stores will then
simply be defined as lists of terms (that is [t,u, ...] rather
than [x := t,y := u, ...]) while store types will simply be
lists of types (i.e. A,A⊥⊥, . . . instead of a : A,α : A⊥⊥, . . .).
Interestingly, this requires giving computational content
to the subtyping relation ϒ′ <: ϒ through explicit coercions
σ : ϒ′ <: ϒmapping each type in ϒ to the corresponding type
in ϒ′. In other words, considering a store τ ′ : ϒ′ extending
a store τ : ϒ, a coercion σ : ϒ′ <: ϒ indicates where each
element of τ can be found in τ ′.

Remark 1. Looking carefully at the first three steps, we ob-
serve that the translation of a type A at level t is defined by
applying a transformation on its translation at level E, which is
itself defined as the same transformation applied to the trans-
lation at level V and so on. Each step precisely consisted in
refining this transformation. Formally, if F is a (meta) func-
tion taking a store type ϒ and returning a type, let us define:

□F ≜ ϒ 7→ ∀ϒ′ <: ϒ.ϒ′ → (Fϒ′) → ⊥

which is also a function mapping store types ϒ to types in the
target of the translation. Then, writing · ▷ι A for the function
associating to any store type ϒ the type t ▷ι A (for ι a level
among e, t, E, ...), the definition of the translation can be simply
expressed by:

· ▷t A = □(· ▷E A) = □(□(· ▷V A)) = ...

Following this observation, the previous steps are successive
refinements of the definition of □F :

• at step 1, □F is ϒ 7→ (F ϒ) → ⊥,
• at step 2, □F is ϒ 7→ ϒ → F ϒ → ⊥,
• at step 3, □F is ϒ 7→ ∀ϒ′ <: ϒ.ϒ′ → (Fϒ′) → ⊥.

3 Fϒ: a calculus of expandable stores
3.1 Core calculus
The elements necessary to properly define a continuation-
and-environment passing style translation being now identi-
fied, we can formally introduce the corresponding calculus,
which we dub System Fϒ. Each of the translations that we

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

λ-calculus (k : A) ∈ S

Γ ⊢ k : A
(c)

(x : A) ∈ Γ

Γ ⊢ x : A (Ax)
Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A → B
(λ) Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B (@)

Stores

Γ ⊢ [] : ∅ ▷τ ∅
(∅)

Γ ⊢ t : ϒ0 ▶ T

Γ ⊢ [t] : ϒ0 ▷τ T
([t])

Γ ⊢ τ : ϒ0 ▷τ ϒ Γ ⊢ τ ′ : (ϒ0; ϒ) ▷τ ϒ′

Γ ⊢ τ ;τ ′ : ϒ0 ▷τ ϒ; ϒ′
(τ ;τ ′)

Γ ⊢ σ : ϒ1 <: ϒ0 Γ ⊢ τ : ϒ0 ▷τ ϒ

Γ ⊢↑σϒ τ : ϒ1 ▷τ ϒ
(↑τ)

Coercions
Γ ⊢ ε : ∅ <: ∅ (ε)

Γ ⊢ σ : ϒ′ <: ϒ Γ ⊢ σ ′ : ϒ′′ <: ϒ′

Γ ⊢ σ ′ ◦ σ : ϒ′′ <: ϒ
(<:◦)

Γ ⊢ σ : ϒ′ <: ϒ
Γ ⊢ σ+ : (ϒ′, F)<: (ϒ, F)

(<:+)

Γ ⊢ σ : ϒ1 <: ϒ0
Γ ⊢ σ+ϒ : (ϒ1; ϒ)<: (ϒ0; ϒ)

(<:ϒ+)
Γ ⊢ σ : ϒ′ <: ϒ

Γ ⊢ ⇑σ : (ϒ′, F)<: ϒ
(<:⇑)

Γ ⊢ σ : ϒ′ <: ϒ
Γ ⊢ ⇑ϒ′′σ : (ϒ′; ϒ′′)<: ϒ

(<:ϒ
⇑
)

Core (δ : ϒ0 ▷τ ϒ) ∈ Γ

Γ ⊢ δ : ϒ0 ▷τ ϒ
(τax)

Γ, δ : ϒ0 ▷τ ϒ ⊢ t : B
Γ ⊢ λδ .t : ϒ0 ▷τ ϒ → B

(τI)
Γ ⊢ t : ϒ0 ▷τ ϒ → B Γ ⊢ τ : ϒ0 ▷τ ϒ

Γ ⊢ t τ : B (τE)
(s : Y <: ϒ) ∈ Γ

Γ ⊢ s : Y <: ϒ (<:s)

Γ ⊢ t : A Y < FV (Γ)

Γ ⊢ λY .t : ∀Y .A
(∀I)

Γ ⊢ t : ∀Y .A
Γ ⊢ t ϒ : A{Y := ϒ}

(∀E)
Γ, s : Y <: ϒ ⊢ t : A

Γ ⊢ λs .t : Y <: ϒ → A
(σI)

Γ ⊢ t : ϒ′ <: ϒ → A Γ ⊢ σ : ϒ′ <: ϒ
Γ ⊢ t σ : A (σE)

Γ ⊢ t : B A ≡ϒ B
Γ ⊢ t : A (≡)

Γ ⊢ τ : ϒ′ Γ ⊢ σ : ϒ′ <: ϒ ϒ = JΓ0K, F , JΓ1K |Γ0 | = n
Γ′ , s0 : Y0 <: JΓ0K , δ0 : Y0 , x : Y0 ▶ F , s1 : (Y0, F ;Y1 <: ϒ) , δ1 : (Y0, F) ▷τ Y1 ⊢ t : A′

Γ ⊢ split τ at n along σ : ϒ′ <: ϒ as (Y0, s0, δ0), x, (Y1, s1, δ1) in t : A
(split)

where Γ′ = Γ[Y0, F ;Y1/ϒ′] and A′ = A[Y0, F ;Y1/ϒ′]

Figure 6. Fϒ: Type system

will introduce afterwards will rely on a target calculus de-
fined as a particular instance of this system. The structure
of these translations can be divided in three blocks:
1. A source calculus and its type system. For the mo-

ment, we will only consider simply-typed λ-calculi10 to ease
notations, we shall explain afterwards in Section 4.3 how
this scales to System F.

2. A syntax for stores and coercions. In this paper, wewill
simply consider lists and list inclusions, but one could also
contemplate the possibility of using trees or different data
structures. The type of a store will always be a list of types
from the source calculus, while the way these types are trans-
lated will be a parameter of the target calculus depending on
the chosen translation. In other words, the interpretation of
a store of type A,A⊥⊥,B will depend on whether we consider
a call-by-need or a call-by-value translation. As for the type
of a coercion, it will simply be expressed as the inclusion
relation for the corresponding lists of types.
3. The target calculus, which will be an instance of Fϒ.

This calculus should be as expressive as the source calculus
(here, this will only mean to have the same constants) and
should contain enough structure to manipulate stores and
express extensions of stores. Our calculus will be parameter-
ized by the base cases for translation of source types together
with the translation of types in the store.

We are now ready to introduce the syntax of Fϒ. As we
explained, we will focus on the case of a simply typed source
10In fact, variants of the λ̄µ µ̃-calculus with explicit stores, but which would
naturally define an Intermediate Representation for the corresponding λ-
calculi in the compilation chain.

calculus, whose types are defined by:

Source types A ::= X | A → B F ::= A | A⊥⊥

As explained above, a store τ is simply given as a list whose
type, written ϒ, is defined as the list of the types of the
elements τ provides. Observe that if we consider the con-
catenation of such two stores τ0;τ1 of type ϒ0; ϒ1, thinking of
them as substitutions, τ1 provides elements for ϒ1 only if it is
given with a prefix providing ϒ0 (see also the Step 2 described
earlier). We denote its type with ϒ0 ▷τ ϒ1, expressing the fact
that it is well-typed only when concatenated with a store
of type ∅ ▷τ ϒ0 (the type of a “self-sufficient” store, which
we will abbreviate by ϒ0). Obviously, such a store should
also be compatible with any extension of ϒ0, which justifies
the introduction of the constructor ↑σϒ1

τ where σ is of type
ϒ′

0 <: ϒ0 and the resulting store is of type ϒ′
0 ▷τ ϒ1.

Coercions are simply defined through the natural structure
witnessing list inclusion:σ+ (resp. ⇑σ) witnesses the fact that
ϒ, F (resp. ϒ) is included in ϒ′, F provided that σ witnesses
that ϒ is included in ϒ′. Having in mind that list inclusion
corresponds to a subtyping relation for stores, we denote11
it by ϒ′ <: ϒ. We denote by σ ′ ◦ σ the composition of two
coercions, and by σ+ϒ (resp. ⇑ϒσ) the twin of the previous
coercions witnessing the addition of a list of type ϒ.

Finally, System Fϒ terms are defined as the usual λ-terms
(with constants, to match the source calculus expressiveness)
extended with abstractions (and the dual applications) over
stores and coercions as well as a split instruction to be able
11This may read “ϒ′ is more precise than ϒ as a list” since it contains all its
elements.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

to split a given store using a coercion. The resulting syntax
is given by the following grammar:
Store type ϒ ::= Y | ∅ | ϒ, F | ϒ; ϒ′

Stores τ ::= δ | [] | [t] | τ ;τ ′ |↑σϒ τ
Coercions σ ::= s | ε | σ+ |⇑σ | σ ◦ σ ′ | σ+ϒ |⇑ϒσ

Contexts Γ ::= · | Γ, s : ϒ′ <: ϒ | Γ, δ : ϒ ▷τ ϒ′ | Γ, x : T
Types T ::= X | T → U | ∀Y .T | ϒ′ <: ϒ → T | ϒ ▷τ ϒ

′ → T
Terms t ::= k | x | λx .t | t u | λs .t | t σ | λδ .t | t τ

| λY .t | t ϒ | split τ at n
along σ : ϒ′ <: ϒ
as (Y0, s0, δ0), x, (Y1, s1, δ1)

in t

As for the typing rules, there are given in Figure 6 where
S is a signature for constants (which will be chosen in
each instance so that constants types match the types ex-
pected from the source calculus), where ≡ϒ is the congruent-
transitive-symmetric-reflexive closure of the reduction→ϒ

(defined in the next section) and where ϒ ▶ F is a parameter
of the translation. Intuitively, its definition will specify how
elements of the global environment are translated (e.g., in
call-by-need the environment contains potentially uneval-
uated terms12, which will be translated as such). Since our
syntax implicitly assume that stores of types ϒ0 ▷τ ϒ can be
lifted to match extensions of ϒ0, for our system to be sound,
we need to assume that terms in the store can be lifted as
well. Formally, we require that ϒ ▶ F is of the shape13:
(Eq▶) ϒ ▶ F ≡ ∀Y <: ϒ.F (Y , F)

for some F , where we write ∀Y <: ϒ.T as an abbreviation for
∀Y .Y <: ϒ → T . All the typing rules are quite intuitive, but
for the (split) rule, which requires special care. For a term:
split τ at n along σ : ϒ′ <: ϒ as (Y0, s0, δ0), x, (Y1, s1, δ1) in t

to be well-typed, we need to ensure that ϒ is of the shape
JΓ0K, F , JΓ1K where we abuse the notation JΓ0K to express that
we require a concrete list of types (i.e. without store variable
Y). Besides, to allow the term t to contain coercions referring
to the resulting split stores, we need to explicitly name their
types, hence14 the Y0 and Y1.

Before we present the operational semantics of the calcu-
lus, observe that we introduced enough structure to define
terms whose type will match the transformation □ evoked
earlier (see Remark 1). Remember that we defined the for-
mula □F ϒ as ∀Y <: ϒ.∅ ▷τ Y → (FY) → ⊥ for any ϒ. We
have:

Lemma 3.1. Assume that for any ϒ, Fϒ is a type. The fol-
lowing rules are admissible:

Γ, s : Y <: ϒ, δ : ∅ ▷τ Y , x : FY ⊢ t : ⊥
Γ ⊢ λsδx .t : □F ϒ

(□I)

Γ ⊢t : □F ϒ Γ ⊢σ : ϒ′ <: ϒ Γ ⊢τ : ∅ ▷τ ϒ′ Γ ⊢u : Fϒ′

Γ ⊢ t σ τ u : ⊥ (□E)

12As opposed to values in call-by-value.
13Where we use the notation ∀Y <: ϒ.T to abbreviate ∀Y .Y <: ϒ → T .
14As the reader will observe in the typing rules, we also need to identify
the current store type (ϒ′) with its cutting (Y0, F ;Y1). See also Remark 2.

As we shall see in the next sections, we will mainly use
these “packed” abstractions and applications to define the
different translations (observe that □Fϒ satisfies (Eq▶)).
This somehow suggests the use of lists for stores and the
corresponding coercions is more a matter of implementation
choices than a crucial point in the definition of Fϒ. Actually,
we could have presented Fϒ directly through these rules, but
we choose to stick to a somewhat more atomic presentation.

3.2 Reduction rules
We shall now define the reduction rules of System Fϒ. If
most of them are straightforward, some special care has
to be given to define the reduction of terms of the shape
split τ at n along σ : ϒ′ <: JΓK as ... in t . To reduce such
a term, we will need to use the coercion σ to split the store
τ correctly. In particular, we need σ (and τ) to be in normal
form, that is that it contains neither variables nor composi-
tions of coercions:
Normal
forms

τn ::= [] | τn[t]
ϒn ::= ∅ | ϒn, F

σn ::= ε | σ+n | ⇑σn

As shown by the next lemma, a coercion in normal forms
always allows us to split a store type and the coercion itself:

Lemma 3.2. If Γ ⊢ σ : ϒ <: JΓ0K,A; JΓ1K where σ is a coercion
in normal form then there exists ϒ0, ϒ1,σ0,σ1 such that:

1. Γ ⊢ σ0 : ϒ0 <: JΓ0K
2. Γ ⊢ σ1 : ϒ1 <: JΓ1K

3. ϒ = ϒ0,A; ϒ1
4. σ = σ+0 ;σ1

where σ0;σ1 is the coercion σ1 where σ0 replaces ε .

Alternatively, a coercion σ : ϒ′ <: ϒ in normal form can
actually be identified with a partial monotone function JσKN
from [0, |ϒ|] to [0, |ϒ′ |] which intuitively maps the index of
every type in ϒ to its corresponding index in ϒ′ (see Appen-
dix D.1).

Example 3.3. As an example, for any types T ,U ,T0,T1, if
we write σ to denote the coercion ⇑ ((⇑ ε)++) which is in
normal form, we have:

• ⊢⇑((⇑ε)++) : T0,T ,U ,T1 <:T ,U

• dom(σ) = 2, codom(σ) = 4

• JσKN :

0 7→ 1
1 7→ 2
2 7→ 4 0

1

2

0

1

2

3

4

T

U T

U

T0

T1σ

Visually, this corresponds to the situation pictured on the
right.

Similarly, it is easy to see that if a store τ is in normal form
and is of type JΓ0K,A; JΓ1K, then we can divide it as expected
into τ = τ0[u];τ1. This justifies the reduction rule for split:

split τ0[u];τ1 at n along σ : ϒ0,A, ϒ1 <: JΓ0K,A, JΓ1K
as (Y0, s0, δ0), x, (Y1, s1, δ1) in t

→

t[ϒ0/Y0][σ0/s0][τ0/δ0][u/x][ϒ1/Y1][τ1/δ1][σ1/s1]

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Parameter Ty:Type.

Inductive hlist:=
| hnil : hlist

| hcons : ∀ A, A → hlist → hlist.

Definition storeT := list Ty.

Inductive <: : storeT → storeT → Type:=
| empty : nil <: nil

| lift : ∀ ϒ' ϒ A, ϒ'<: ϒ → [ϒ',A] <: ϒ
| plus : ∀ ϒ' ϒ A, ϒ'<: ϒ → [ϒ',A] <: [ϒ,A].

Parameter ▶ : storeT→ Ty→ Type.

Context (F: storeT→ Ty→ Type)
(tr_sound:∀ ϒ A, (ϒ ▶ A) = ∀ Z, Z<:ϒ → F Z A).

Definition store := hlist.

Inductive typedStore:store →storeT → storeT→ Type :=
| nilT : ∀ Y, typedStore hnil Y nil

| consT : ∀ (A:Ty) (τ :store) (ϒ0, ϒ1:storeT) (t:ϒ0; ϒ1 ▶ A),
typedStore τ ϒ0 ϒ1→ typedStore τ [t] ϒ0 ϒ1,A.

Coercions Stores and store types

Figure 7. Shallow embedding of Fϒinto Coq

wheren = |Γ0 |, |τ0 | = |ϒ0 | and ϒ0, ϒ1,σ0,σ1 are as in Lemma 3.2
(i.e. |ϒ0 | = JσK(n), σ0 : ϒ0 <: Γ0 , etc.).

The rest of the reduction rules are easier and of four kinds:
a) Reductions that normalize coercions, stores and store types
as much as possible:

σ+1 ◦ ⇑σ0 →σ ⇑(σ1 ◦ σ0)
σ+1 ◦ σ+0 →σ (σ1 ◦ σ0)

+

⇑σ1 ◦ σ0 →σ ⇑(σ1 ◦ σ0)
⇑ϒ,Fσ →σ ⇑⇑ϒσ
σ+ϒ,F →σ (σ+ϒ)+

ε+ϒ ◦ σ →σ σ
σ ◦ ε+ϒ →σ σ

τ ; (τ ′[t]) →τ (τ ;τ ′)[t]
↑σϒ,F τ [t] →τ (↑σϒ τ)[↑σ

+ϒ t]

ϒ; (ϒ′, F) →ϒ (ϒ; ϒ′), F

where ↑σ t ≜ λYs .t Y s ◦ σ .

b) Usual β-reduction steps for the different abstractions:
(λx .t)u → t[u/x] (λs .t)σ → t[σ/s]
(λY .t) ϒ → t[ϒ/x] (λδ .t)τ → t[τ/δ]

c) Contextual rules for store types in stores and coercions:

Uσ [ϒ]
if ϒ→ϒϒ

′

−→σ Uσ [ϒ
′] Uτ [ϒ]

if ϒ→ϒϒ
′

−→τ Uτ [ϒ
′]

whereUσ [] ::= σ+[] |⇑ []σ andUτ [] ::=↑σ
[]
τ]

d) Contextual rules for stores and coercions in split:

C[σ]
if σ→σ σ ′

−→ C[σ ′] D[τ]
if τ→τ τ ′
−→ D[τ ′]

where contexts are defined by:
C[] ::= split [] at n along σ : ϒ′ <: ϒ as ... in t
D[] ::= split τ at n along [] : ϒ′ <: ϒ as ... in t

Theorem 3.4 (Subject reduction). If Γ ⊢ t : T and t → t ′

then Γ ⊢ t ′ : T .

Proof. See Appendix D.2. □

Theorem 3.5 (Normalization). Typed terms normalize.

Proof. The proof is done by means of a realizability interpre-
tation, see Appendix D.3. □

3.3 Expressiveness
Before introducing the different translations for which we
will us Fϒ as target calculus, let us briefly discuss the expres-
siveness of the system. To be more precise, we are interested
in the expressiveness that is required to define Fϒ (indepen-
dently of the source calculus). As the reader would have
observed, not only do we need to manipulate lists of types
and their size, but our definition of coercions involves a form
of dependent types (as in σ+ϒ and ⇑ ϒσ). Even if we could
have thought to different presentations, it seems that there
is a minimal form of dependent types (namely to have access
to the size of lists) that we cannot get rid of. In particular, it
seems very unlikely that our calculus could be embed into
system F or Cardelli’s system F <: .
In turn, it is clear that various dependent type theories

are expressive enough to define Fϒ. As an example, in Fig-
ure 7 we give an overview of how Fϒ can be expressed in
Coq through a shallow embedding. We give more details in
Appendix E15.

4 Implementation for simply typed calculi
We are now equipped to define typed continuation-and-
environment-passing style translations to system Fϒ. These
translations exactly follow the intuitions outlined in Sec-
tion 2.1. We first focus on the case of the (call-by-need)
λ[lvτ⋆]-calculus, and then illustrate the generality of our
method by giving a translation for the call-by-name λ̄µµ̃-
calculus with environments. Theses translations also apply
to the MAD and the MAM through the adequate embeddings
(see Appendix A). A call-by-value translation is also given
in Appendix H.

15The Coq development illustrating these ideas is available at:
https://gitlab.com/emiquey/fupsilon.

https://gitlab.com/emiquey/fupsilon

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

JΓi , Γ′ ⊢ λxi .t : A → BKv ϒ σ τ u E ≜ JtKt (ϒ,A) σΓi ,Γ′ τ [u] ↑
⇑idϒE JkKv ≜ k

Jt · EKF ϒ σ τ v ≜ v ϒ idϒ τ (↑
σJtKt) (↑σJEKE) JκKF ≜ κ

JvKV ϒ σ τ F ≜ F ϒ idϒ τ (↑
σJvKv)

JΓ0, xi : A, Γ1 ⊢ xi : AKV ϒ σ τ F ≜ split τ at i along (σ : ϒ <: JΓ0K,A; JΓ1K) as (Y0, s0, δ0), x, (Y1, s1, δ1) where σ ′ = (s+)+Y1

in x Y0 idY0 δ0 (λYsδV .V (Y ,A;Y1) (⇑⇑Y1 idY) (δ [↑
t V];↑s

+

δ1) (↑
σ ′

F)) and ↑tV = λYsδE.E Y idY δ (↑sV)

Jαi : A⊥⊥KE ϒ σ τ V ≜ split τ at i along σ as (Y0, s0, δ0), x, (Y1, s1, δ1) inx ϒ (⇑⇑Y1 idY0) τ V

JΓi , Γ′′ ⊢ µ̃[xi].⟨xi || F ⟩τ
′ : A⊥⊥KE ϒ σ τ V ≜V (ϒ,A; JΓ′K) σV (τ [↑tV];↑στ Jτ ′Kτ) (↑σ

+JΓ′K
τ JFKF) where †

{
στ = (s◦ ⇑JΓ′′KidJΓK)

+

σV =⇑A;JΓ′Kidϒ

JV Kt ϒ σ τ E ≜ E ϒ idϒ τ (↑
σJV KV) JΓi , Γ′ ⊢ µαi .c : AKt ϒ σ τ E ≜ JcKc (ϒ,A⊥⊥) σΓi ,Γ′ τ [E]

JEKe ϒ σ τ t ≜ t ϒ idϒ τ (↑
σJEKE) JΓi , Γ′ ⊢ µ̃xi .c : A⊥⊥Ke ϒ σ τ t ≜ JcKc (ϒ,A) σΓi ,Γ′ τ [t]

J⟨t || e⟩Kc ϒ σ τ ≜ JeKe ϒ σ τ (↑
σJtKt) Jcτ ′Kl ϒ σ τ ≜ JcKc (ϒ; Γ′) (σ+JΓ′K) (τ ;↑σJτ ′Kτ) where† τ ′ : Γ′

Jτ0[xi := t]Kτ ≜ Jτ0Kτ [JtKt] JεKτ ≜ ε Jτ0[αi := E]Kτ ≜ Jτ0Kτ [JEKE]

†τ ′ : Γ′ in the source of the translationwhere idϒ = ε+ϒ , σΓ,Γ′ ≜ (σ◦ ⇑ JΓ′KidJΓK)
+ and Γi indicates that |Γ | = i

Figure 8. Call-by-need translation of terms

4.1 A typed call-by-need translation for the
λ[lvτ⋆]-calculus

4.1.1 Translation of terms
We can now take advantage of the features of system Fϒ to
typeAriola et al.’s untyped translation for the λ[lvτ⋆]-calculus
(given in Figure 14). This translation was obtained by refin-
ing the reduction system (see Figure 12) into a context-free
abstract machine (that is to say an abstract machine in which
it can be decided which reduction rule to apply by analyzing
only the term or the context independently) [5]. The transla-
tion of terms is nothing more than the untyped translation
of Ariola et al. rephrased to handle de Bruijn levels and coer-
cions. Along the translation, we maintain two invariants on
de Bruijn levels:

1. Stores are always consistent, that is, in a store τ [t];τ ′,
t has its levels coherent with its prefix τ , and ignores
its suffix τ ′. In terms of types, if τ [t] is of type ϒ,A
then t will be of a type ϒ ▷t A.

2. The continuations/terms that are passed with a store
are always consistent with it, that is they do not need
to be lifted and their types always match the type of
the store.

Let us spend a few lines to explain the definitions of two
cases, namely JxiKV and Jµ̃[xi].⟨x || F ⟩τ ′KE. In the untyped
translation (see Appendix B.1), we have:

Jµ̃[x].⟨x || F ⟩τ ′KE τ V ≜ V (τ [x :=↑t V]; Jτ ′Kτ) JFKF
JxKV τ [x := t]τ ′ F ≜ t τ (λδλV .V (δ [x :=↑t V];τ ′) F)

Let us first focus on the Jµ̃[xi]. ⟨x || F ⟩τ ′KE. In the named
version, its translation is a term which waits for a store τ and
a value V , then forms a store looking like τ [x := JV K]τ ′ and
passes it to V with the continuation JFKF. Now, when using
de Bruijn levels, the continuation was expecting a store τ0
of type ϒ0 that τ (the actual store, of type ϒ) is extending,
hence τ comes together with a coercion σ : ϒ <: ϒ0 witness-
ing that ϒ it is an extension of ϒ0. Let us loosely identify the
stores with their types and write σ : τ <:τ0 to simplify our
explanation. The value V has its de Bruijn levels consistent
with τ , but JFKF and Jτ ′Kτ have to be updated. In detail, Jτ ′Kτ
was expecting τ0[↑

tV], we thus update it with σ+ which wit-
nesses τ [↑t V]<:τ0[↑

t V]. On the other hand, F was waiting
for τ0[↑

t V];τ ′, we thus need to update it with σ ′ = (σ+)+Jτ ′K .
Finally, we need to give to V a coercion witnessing the ex-
tension of τ into τ [↑t V]t ; Jτ ′Kτ , that is to say ⇑⇑ Jτ ′Kidτ . In
the end, we obtain the following definition:

Jµ̃[xi].⟨xi || F ⟩τ ′KE ϒ σ τ V ≜
V (ϒ,A; JΓ′K) (⇑⇑ JΓ′Kidϒ) (τ [↑tV]t ;↑σ

+

Jτ ′Kτ) ↑
σ ′

JFKF

where idϒ = ε+ϒ , σ ′ =⇑⇑ JΓ′Kidϒ and τ ′ : Γ′ in the source
calculus.
As for JxiKV, it is a term waiting for a coercion σ and a

store τ , which it will split at JσKN(i) as τ0, t, τ1 to execute the
term t with its prefix τ0 (with which it is already consistent)
and a continuation inlining the translation of µ̃[xi].⟨xi || F⟩τ ′.
The translation of terms is given in Figure 8, where we

assume that for each constant k of type T (resp. co-constant
κ of type T⊥⊥) of the source system, we have a constant of

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

JΓ ⊢e e : T⊥⊥K ≜ ⊢ JeKe : JΓK ▷e T
JΓ ⊢t t : T K ≜ ⊢ JtKt : JΓK ▷t T
JΓ ⊢E E : T⊥⊥K ≜ ⊢ JEKE : JΓK ▷E T
JΓ ⊢V V : T K ≜ ⊢ JV KV : JΓK ▷V T
JΓ ⊢F F : T⊥⊥K ≜ ⊢ JFKF : JΓK ▷F T

JΓ ⊢v v : T K ≜ ⊢ JvKv : JΓK ▷v T
JΓ ⊢c cK ≜ ⊢ JcKc : JΓK ▷c ⊥
JΓ ⊢l lK ≜ ⊢ JlKl : JΓK ▷c ⊥
JΓ ⊢τ τ : Γ′K ≜ ⊢ Jτ Kτ : JΓK ▷τ JΓ′K

JεK ≜ ε

JΓ, xi : T K ≜ JΓK,T
JΓ,αi : T⊥⊥K ≜ JΓK,T⊥⊥

(a) Translation of judgments (b) Translation of contexts

ϒ ▷c T ≜ ∀Y <: ϒ.Y → ⊥

ϒ ▷e T ≜ ∀Y <: ϒ.Y → (Y ▷t T) → ⊥

ϒ ▷t T ≜ ∀Y <: ϒ.Y → (Y ▷E T) → ⊥

ϒ ▷E T ≜ ∀Y <: ϒ.Y → (Y ▷V T) → ⊥

ϒ ▷V T ≜ ∀Y <: ϒ.Y → (Y ▷F T) → ⊥

ϒ ▷F T ≜ ∀Y <: ϒ.Y → (Y ▷v T) → ⊥

ϒ ▷v X ≜ X

ϒ ▷v T → U ≜ ∀Y <: ϒ.Y → (Y ▷t T) → (Y ▷E U) → ⊥

ϒ ▶ T ≜ ϒ ▷t T

ϒ ▶ T⊥⊥ ≜ ϒ ▷E T

(c) Translation of types

Figure 9. Call-by-need translation of judgments and types

type T in the signature of the target language that we also
denote by k (resp. κ of type T → ⊥).

4.1.2 Translation of types
Regarding the translation of types, it follows exactly the
intuition we presented in Section 2.1, so that we mostly said
everything about it already. To summarize the construction,
we start by embedding the types and typing contexts of the
source calculus thanks to the ι function. A typing context
Γ = x1 : T1, . . . xn : Tn is then translated into the store
type JΓK = T1, . . . ,Tn . This allows us to translate a sequent
e.g., Γ ⊢t t : T , into a judgment ⊢ JtKt : JΓK ▷t T . The type
JΓK ▷t T can be understood as the types of terms translated
at level t , which are waiting for any store extending JΓK and
a continuation at the inferior level (i.e. E) for the very same
type T but interpreted with the extended store type Y :

JΓK ▷t T = ∀Y <: JΓK.Y → (Y ▷E T) → ⊥

It is worth noting that the translation − ▷t − is defined inter-
nally in system Fϒ, which allows in particular the recursive
definition Y ▷E T to make sense (since Y is at the moment
an interleaving of types in Γ and second-order variables that
are not the images of types in the source calculus). As we
already explained, the different levels e, t, E,V , F ,v of trans-
lation reflect the dynamics of the (context-free) reduction
system of the λ[lvτ⋆]-calculus, that is to say the different
syntactic categories which are examined successively during
the reduction16.
The resulting translation, which is given in Figure 9, is

sound, i.e. the provability of a sequent in the source calculus
(say Γ ⊢t t : T) entails the provability of its translation
(JΓ ⊢v v : T K) in Fϒ. which is the main result of this section:
Theorem 4.1 (Soundness). The translation is well-typed.

Proof. The proof is done by induction on typing derivations,
and requires a few previous lemmas on the soundness of the
16The context-free reduction rules are given in Appendix C.

constructions ↑+tV and ↑
σ t . The complete proof is given in

Appendix F. □

4.2 A typed call-by-name translation for the
λ[lvτ⋆]-calculus

To emphasize that Fϒ is a generic target calculus for typed
continuation-and-environment-passing style translations,
we give the example of a call-by-name translation for the call-
by-name λ̄µµ̃-calculus with environments (see Figure 3). A
similar translation for the same calculus evaluated in call-by-
value is given in Appendix H. We first rephrase its reduction
rules to use de Bruijn levels:

⟨t || µ̃xi .c⟩τ → c[xn/xi]τ [xn := t] with |τ | = n
⟨µαi .c || E⟩τ → c[αn/αi]τ [αn := E] with |τ | = n
⟨xn || E⟩τ → ⟨τ (n) || E⟩τ
⟨V || αn⟩τ → ⟨V || τ (n)⟩τ

⟨λxi .t ||u · E⟩τ →
〈
u
���� µ̃xi .⟨t || E⟩〉τ

We spare the reader from the redefinition of a type system
using de Bruijn levels, which is fully deducible from the type
system of the λ[lvτ⋆]-calculus when considering only the lev-
els e, t, E,V and typing terms and contexts at the appropriate
level.
Similarly, we do not wish to enter into too many details

about the translation of terms. We follow the same process
as for the λ[lvτ⋆]-calculus, by refining the dynamic of the
calculus into a context-free abstract machine (see Appen-
dix C.2). This machine only has four level of alternation, as
reflected by the syntax, and so does the translation of terms.
The definition of the translation for terms almost comes for
free modulo the careful treatment of de Bruijns levels. Most
of the definitions are identical (or simpler) than in the call-
by-need case. In particular, the definition ensures that the
same invariants about consistency with respect to de Bruijn
levels and store extension are maintained.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

JΓi , Γ′ ⊢ λxi .t : A → BKV ϒ σ τ u E ≜ JtKt (ϒ,A) σΓi ,Γ′ τ [u] ↑
⇑idϒE

Jt · EKE ϒ σ τ v ≜ v ϒ idϒ τ (↑
σJtKt) (↑σJEKE)

JxiKt ϒ σ τ E ≜ splitτ at i alongσ
as (Y0, _, _), x, (Y1, _, _) inx ϒ (⇑⇑Y1 idY0) τ E

JΓi , Γ′ ⊢ µ̃xi .c : A⊥⊥Ke ϒ σ τ t ≜ JcKc (ϒ,A) σΓi ,Γ′ τ [t]

(a) Translation of terms (excerpt)

JΓ ⊢e e : T⊥⊥K ≜ ⊢ JeKe : JΓK ▷e T
JΓ ⊢t t : T K ≜ ⊢ JtKt : JΓK ▷t T
JΓ ⊢E E : T⊥⊥K ≜ ⊢ JEKE : JΓK ▷E T
JΓ ⊢V V : T K ≜ ⊢ JV KV : JΓK ▷V T

ϒ ▷e T ≜ ∀Y <: ϒ.Y → (Y ▷t T) → ⊥

ϒ ▷t T ≜ ∀Y <: ϒ.Y → (Y ▷E T) → ⊥

ϒ ▷E T ≜ ∀Y <: ϒ.Y → (Y ▷V T) → ⊥

ϒ ▷V T → U ≜ ∀Y <: ϒ.Y → (Y ▷t T) → (Y ▷E U) → ⊥

ϒ ▶ T ≜ ϒ ▷t T

ϒ ▶ T⊥⊥ ≜ ϒ ▷E T

(b) Translation of types and judgments (excerpt)

Figure 10. Call-by-name continuation-and-environment-passing style translation (excerpt)

As for the translation of types and judgments, we hope
that it should now look trivial to the reader: it follows the
exact same guidelines than in the call-by-need case, except
that it now only has four levels. It does not come as a surprise
that the two translations are so so close: in both cases, terms
and contexts are stored at the same syntactic levels in the
environments (t and E). The main difference lies in the fact
that in call-by-name, terms remains unevaluated in the store
and thus there is no need for an extra layer of alternation to
handle their (shared) evaluation. Both translations are given
in Figure 10, and again, we have:

Theorem 4.2. The translation is well-typed.

Proof. The proof is similar (and easier) than the proof in the
call-by-need case, by induction on typing derivations. See
Appendix G. □

It is interesting to observe that even though terms are
stored once and for all in call-by-name, the use of a global
environment forces us to quantify over arbitrary extensions
of the store. Indeed, through the translation each (typed)
term t is waiting for a store whose type should match its
former typing context. Yet, many computations may happen
before JtKt is evaluated, corresponding to other branches of
the global typing derivation. As a consequence, the store
may contain arbitrarily more elements at that time (see Ex-
ample G.1).

Example 4.3. Consider a term x : A,y : B ⊢t u : C , through
the translation we will thus have ⊢ JuKt : A,B ▷tC → D. Now,
imagine that we dispose of three valuesV0,V1,V2 respectively
of types A,B,C , we can thus construct three closed terms
t0, t1, t2 such that, given a continuation, ti is going to produce
arbitrary computations (and in particular store arbitrarily
many terms, let us denote the resulting store by τi : ®Ui)
before returningVi to its continuation. These terms can thus
be assigned the types (A → D) → D, (B → D) → D,
(C → D) → D, and the closed term tu ≜ t0(λx .t1(λy.t2u))
can thus be typed by ⊢ tu : D. Now, if tu is evaluated in

an initially empty store, at the moment where uV2 will be
evaluated, the store will be τ0[x := V0]τ1[y := V1]τ2 of type
®U0,A, ®U1,B, ®U2.

4.3 Using System F as source calculus
In addition to being compatible with different evaluation
strategies, Fϒ also allows for different type systems in the
source calculus. Exploring this question in detail is beyond
the scope of this paper, but we just want to illustrate how
we could rather have chosen a source calculus typed with
System F. Since the second-order quantification in System
F is intended to be substituted by any type, through the
translations second-order variables should behave as the
translation of types. In particular, they should have access
to the current store type. The corresponding translations,
that have to be defined at the lowest level, are reminiscent
of forcing translations where types are involved [15, 25]:

ϒ ▷v ∀X .F ≜ ∀(X : ϒ → T).ϒ ▷v F ϒ ▷v X ≜ X ϒ

5 Conclusion
Conclusion Through the definition of Fϒ, we isolated the
key ingredients necessary to the definition of well-typed
continuation-and-environment-passing style translations:

1. terms to represent and manipulate typed stores,
2. explicit coercions to witness store extensions.

The system we propose has the benefits of being highly para-
metric: not only is it suitable for defining CEPS translations
for simply typed source calculi with global environments
evaluated in call-by-need, call-by-name or call-by-value; it
is also compatible with different type systems. In addition,
while we chose to implement stores with lists, we could
as well have chosen to leave their concrete representation
abstract. In particular, one could use the very same archi-
tecture to handle source calculi where environments are
defined through different data structures (tree, records, etc).

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

About environments and forcing On the logical side, the
translation of types amounts to a (Kripke) forcing transla-
tion (for the environment-passing part), interleaved with a
negative translation (for the continuation-passing part). Ac-
tually, the connection between forcing and the environment-
passing style translation does not come as a surprise. It is
folklore that the local state monad (used to give a mean-
ing to memory states in functional programming) can be
categorically interpreted by means of presheaves construc-
tion [24, 31]. Interestingly, presheaves also give a semantics
to Kripke models or Cohen forcing [15, 23, 27]. Last but
not least, the analysis of Cohen forcing in the framework
of Krivine realizability [19, 25] relies on an extension of
Krivine abstract machine with a cell (containing the forcing
condition), which resembles the Krivine realizability inter-
pretation of the λ[lvτ⋆]-calculus in [26]. In short, our typed
environment-passing style translation is just another obser-
vation of the connection between forcing translations and
explicit expandable environments as a side-effect.

Further work This work should open the way to the defi-
nition of well-typed compilation transformations for lazily-
evaluated calculi. For instance, theMetaCoq project managed
to identify a type transformation of programs mapped to the
call-by-value evaluation through the erasure procedure [34],
but defining a similar transformation for the lazy evalua-
tion will necessarily require to define a typed environment-
passing style transformation. On the logical side, as we em-
phasized in Section 3.3, it seems that our system somehow
lies in between Cardelli’s system F <: [7] and dependently
typed calculi (to manipulate sized lists). Yet, the precise logi-
cal strength of Fϒ is unclear and is still to determine.

Last but not least, we would like to invest whether the □
can be considered as a modality, and in particular whether
we could optimize the translation by using a polarized source
calculus, inserting the □ in the translation only when polar-
ity changes.

Acknowledgments
Both authors would like to thank the anonymous reviewers
for their accurate remarks. Moreover, the first author thanks
KeikoNakata, as well as José Carlos Espírito Santo, Luís Pinto,
Zena Ariola, Paul Downen, Alexis Saurin and RossenMikhov
for initial discussions on typing the continuation-passing
style semantics of call-by-need λ-calculus. The second author
was supported by the Paris Ile-de-France Region and would
like to thank Théo Winterhalter and Simon Boulier for their
valuable comments on this work and the companion Coq
development.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. 1990. Explicit substi-

tutions. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, New York,
NY, USA, 31–46. https://doi.org/10.1145/96709.96712

[2] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014.
Distilling Abstract Machines. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’14). ACM,
New York, NY, USA, 363–376. https://doi.org/10.1145/2628136.2628154

[3] Beniamino Accattoli and Bruno Barras. 2017. Environments and the
Complexity of Abstract Machines. In Proceedings of the 19th Interna-
tional Symposium on Principles and Practice of Declarative Programming
(PPDP ’17). Association for Computing Machinery, New York, NY, USA,
4–16. https://doi.org/10.1145/3131851.3131855

[4] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge
University Press, New York, NY, USA.

[5] Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and
Alexis Saurin. 2012. Classical Call-by-Need Sequent Calculi: The Unity
of Semantic Artifacts. In Functional and Logic Programming - 11th
International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012.
Proceedings (Lecture Notes in Computer Science), Tom Schrijvers and
Peter Thiemann (Eds.). Springer, New York, NY, USA, 32–46. https:
//doi.org/10.1007/978-3-642-29822-6

[6] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The
Next 700 Syntactical Models of Type Theory. In Proceedings of CPP
2017. ACM, New York, NY, USA, 182–194. https://doi.org/10.1145/
3018610.3018620

[7] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov.
1991. An extension of system F with subtyping. Springer Berlin
Heidelberg, Berlin, Heidelberg, 750–770. http://dx.doi.org/10.1007/
3-540-54415-1_73

[8] Pierre Crégut. 2007. Strongly reducing variants of the Krivine abstract
machine. Higher-Order and Symbolic Computation 20, 3 (01 Sep 2007),
209–230. https://doi.org/10.1007/s10990-007-9015-z

[9] Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of compu-
tation. In Proceedings of ICFP 2000 (SIGPLAN Notices 35(9)). ACM, New
York, NY, USA, 233–243. https://doi.org/10.1145/351240.351262

[10] Pierre-Évariste Dagand, Lionel Rieg, and Gabriel Scherer.
2019. Dependent Pearl: Normalization by realizability. (2019).
arXiv:cs.PL/1908.09123

[11] Nicolaas G. de Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem. Indagationes Mathematicae (Proceed-
ings) 75, 5 (1972), 381 – 392. https://doi.org/10.1016/1385-7258(72)
90034-0

[12] Matthias Felleisen and Daniel P. Friedman. 1986. Control operators, the
SECD-machine, and the lambda-calculus. In 3rd Working Conference
on the Formal Description of Programming Concepts. North-Holland,
New York, NY, USA, 193–217.

[13] Matthias Felleisen and Amir Sabry. 1999. Continuations in program-
ming practice: Introduction and survey. (1999). https://www.cs.indiana.
edu/~sabry/papers/continuations.ps Manuscript.

[14] Timothy G. Griffin. 1990. A Formulae-as-type Notion of Control. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’90). ACM, New York, NY, USA, 47–
58. https://doi.org/10.1145/96709.96714

[15] Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu
Sozeau, and Nicolas Tabareau. 2016. The Definitional Side of the
Forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS ’16). ACM, New York, NY, USA, 367–
376. https://doi.org/10.1145/2933575.2935320

[16] Saul A. Kripke. 1963. Semantical Considerations on Modal Logic. Acta
Philosophica Fennica 16, 1963 (1963), 83–94.

[17] Jean-Louis Krivine. 1993. Lambda-calculus, types and models. Masson.

https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1007/978-3-642-29822-6
https://doi.org/10.1007/978-3-642-29822-6
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
http://dx.doi.org/10.1007/3-540-54415-1_73
http://dx.doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1145/351240.351262
http://arxiv.org/abs/cs.PL/1908.09123
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.cs.indiana.edu/~sabry/papers/continuations.ps
https://www.cs.indiana.edu/~sabry/papers/continuations.ps
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/2933575.2935320

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

[18] Jean-Louis Krivine. 2007. A call-by-name lambda-calculus machine. In
Higher Order and Symbolic Computation, Vol. 20. Springer, New York,
NY, USA, 199–207. https://doi.org/10.1007/s10990-007-9018-9

[19] Jean-Louis Krivine. 2011. Realizability algebras: a program to well
order R. Logical Methods in Computer Science 7, 3 (2011), 1–47.

[20] Peter J. Landin. 1964. The Mechanical Evaluation of Expressions.
Comput. J. 6, 4 (1964), 308–320. https://doi.org/10.1093/comjnl/6.4.308

[21] Frédéric Lang. 2007. Explaining the lazy Krivine machine using explicit
substitution and addresses. Higher-Order and Symbolic Computation 20,
3 (01 Sep 2007), 257–270. https://doi.org/10.1007/s10990-007-9013-1

[22] Xavier Leroy. 1990. The ZINC experiment: an economical implementa-
tion of the ML language. Technical report 117. INRIA.

[23] Saunders MacLane and Ieke Moerdijk. 1992. Sheaves in Geometry
and Logic. Springer, New York, NY, USA. https://doi.org/10.1007/
978-1-4612-0927-0

[24] Paul-André Melliès. 2014. Local States in String Diagrams. Springer
International Publishing, Cham, 334–348.

[25] Alexandre Miquel. 2011. Forcing as a Program Transformation. In
Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in
Computer Science (LICS ’11). IEEE Computer Society, USA, 197–206.
https://doi.org/10.1109/LICS.2011.47

[26] Étienne Miquey and Hugo Herbelin. 2018. Realizability Interpretation
and Normalization of Typed Call-by-Need λ-calculus with Control. In
Foundations of Software Science and Computation Structures, Christel
Baier and Ugo Dal Lago (Eds.). Springer International Publishing,
Cham, 276–292. https://doi.org/10.1007/978-3-319-89366-2_15

[27] Ieke Moerdijk and Jaap van Oosten. 2007. Topos Theory. (2007).
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf

[28] Chetan Murthy. 1990. Extracting constructive content from classical
proofs. Ph.D. Thesis. Cornell University.

[29] Chris Okasaki, Peter Lee, and David Tarditi. 1994. Call-by-Need and
Continuation-Passing Style. Lisp and Symbolic Computation 7, 1 (1994),
57–82. https://doi.org/10.1007/BF01019945

[30] Michel Parigot. 1997. Proofs of Strong Normalisation for Second Order
Classical Natural Deduction. J. Symb. Log. 62, 4 (1997), 1461–1479.

[31] Gordon Plotkin and John Power. 2002. Notions of Computation Deter-
mine Monads. Springer Berlin Heidelberg, Berlin, Heidelberg, 342–356.

[32] Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-
Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159. https://doi.org/10.
1016/0304-3975(75)90017-1

[33] Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. J.
Funct. Program. 7, 3 (May 1997), 231–264. https://doi.org/10.1017/
S0956796897002712

[34] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau,
and Théo Winterhalter. 2019. Coq Coq Correct! Verification of Type
Checking and Erasure for Coq, in Coq. Proc. ACM Program. Lang. 4,
POPL, Article Article 8 (Dec. 2019), 28 pages. https://doi.org/10.1145/
3371076

[35] Gerald J. Sussman and Guy L. Steele, Jr. 1975. An Interpreter for Ex-
tended Lambda Calculus. Technical Report. Massachusetts Institute of
Technology, Cambridge, MA, USA.

https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1007/s10990-007-9013-1
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1007/978-3-319-89366-2_15
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf
https://doi.org/10.1007/BF01019945
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1017/S0956796897002712
https://doi.org/10.1017/S0956796897002712
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

tu ⋆ π ⋆ τ →c t ⋆u · π ⋆ τ
λx .t ⋆u · π ⋆ τ →β t ⋆ π ⋆ τ [x := u]
x ⋆ π ⋆ τ [x := t]τ ′ →s t

α
⋆ π ⋆ τ [x := t]τ ′

a. Milner Abstract Machine

⟨t || µ̃x .c⟩τ → cτ [x := t]
⟨µα .c || E⟩τ → cτ [α := E]

⟨V || α⟩τ [α := E]τ ′ → ⟨V || E⟩τ [α := E]τ ′

⟨x || E⟩τ [x := t]τ ′ → ⟨t || E⟩τ [x := t]τ ′

⟨λx .t ||u · E⟩τ →
〈
u
���� µ̃x .⟨t || E⟩〉τ

b. The λ̄µµ̃-calculus with global environments

Figure 11. Milner Abstract Machine and λ̄µµ̃-calculus

A Simulations of Milner Abstract Machines with sequent calculi
A.1 The MAM and the call-by-name λ̄µµ̃-calculus with global environments
It is quite obvious that the call-by-name λ̄µµ̃-calculus with global environments allows us to faithfully simulate reductions of
the MAM (which we recall in Fig. 11). We first define the following compilation function from states of the MAM to closures of
the λ̄µµ̃-calculus:

Jt ⋆ π ⋆ τ K ≜ ⟨JtKt || JπKπ ⟩Jτ Kτ

with:
JxKt ≜ x

Jλx .tKt ≜ λx .JtKt
JtuKt ≜ µα .⟨JtKt || JuKt · α⟩

Ju · πKπ ≜ JuKt · JπKπ
JεKπ ≜ κ

Jτ [x := t]Kτ ≜ Jτ Kτ [x := JtKt]
JεKτ ≜ ε

where κ is a fixed co-constant materializing the end of the execution.
It is then quite easy to verify that reductions of the MAM are preserved through the compilation process (modulo the

fact that we consider terms of the λ̄µµ̃-calculus up to α-conversion). Formally, to avoid considering the contexts stored in
the environment, we first define a substitution function for co-variables. We write c{τ } for the closure cτ ′ in which all the
co-variables α bound in τ are recursively substituted by the terms to which they are bound and where τ ′ consists of the
fragment of τ binding only variables:

c{ε} ≜ c c{τ [x := t]} ≜ (c{τ })[x := t] c{τ [α := E]} ≜ (c[E/α]){τ }

We then say that two closures cτ and c ′τ ′ are equal up to co-variables substitutions, which we denote by cτ ≡ c ′τ ′, whenever
c{τ } = c ′{τ ′}.

Proposition A.1 (MAM simulation). If S,S′ are two states of the MAM such that S
1
→ S′, then there exists a closure c ′τ ′ such

that we have JSK
+
→ c ′τ ′ and (c ′τ ′) ≡ JS′K.

Proof. Trivial induction on reduction rules of the MAM. □

In other words, we showed that a variant of the λ̄µµ̃-calculus with global environments where catchable contexts would be
immediately substituted instead of being stored is exactly simulating the MAM through the compilation function.

A.2 The MAD and the λ[lvτ⋆]-calculus

Similarly, we can prove that the λ[lvτ⋆]-calculus allows us to simulate reductions of the MAD. The compilation function from
states of the MAD to closures of the λ[lvτ⋆]-calculus is almost the same, except that we now need to take the dump into
account. As we explain in Section 1.4, the dump is somehow inlined in the λ[lvτ⋆]-calculus through the binder µ̃[x].⟨x || F ⟩τ ′.
Following this intuition, the definition of the translation is almost direct:

Jt ⋆ π ⋆ τ ⋆DK ≜ ⟨JtKt || JπKJDKD
π ⟩Jτ Kτ

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

with:
JxKt ≜ x

Jλx .tKt ≜ λx .JtKt
JtuKt ≜ µα .⟨JtKt || JuKt · α⟩

Ju · πKeπ ≜ JuKt · JπKeπ
JεKeπ ≜ e

Jτ [x := t]Kτ ≜ Jτ Kτ [x := JtKt]
JεKτ ≜ ε

J(x, π , τ) :: DKD ≜ µ̃[x].⟨x || JπKJDKD
π ⟩Jτ Kτ JεKD ≜ κ

Once again, it is straightforward to check that:

Proposition A.2 (MAD simulation). If S,S′ are two states of the MAD such that S
1
→ S′, then there exists a closure c ′τ ′ such

that we have JSK
+
→ c ′τ ′ and (c ′τ ′) ≡ JS′K.

Proof. Trivial induction on reduction rules of the MAD. □

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Strong values v ::= λx .t | k
Weak values V ::= v | x
Terms t,u ::= V | µα .c

Environments τ ::= ε | τ [x := t] | τ [α := E]
Commands c ::= ⟨t || e⟩
Closures l ::= cτ

Forcing contexts F ::= t · E | κ
Catchable contexts E ::= F | α | µ̃[x].⟨x || F ⟩τ
Evaluation contexts e ::= E | µ̃x .c

(Let)
(Catch)
(Lookupα)
(Lookupx)
(Restore)
(Beta)

⟨t || µ̃x .c⟩τ → cτ [x := t]
⟨µα .c || E⟩τ → cτ [α := E]

⟨V || α⟩τ [α := E]τ ′ → ⟨V || E⟩τ [α := E]τ ′

⟨x || F ⟩τ [x := t]τ ′ →
〈
t
���� µ̃[x].⟨x || F ⟩τ ′

〉
τ〈

V
���� µ̃[x].⟨x || F ⟩τ ′

〉
τ → ⟨V || F ⟩τ [x := V]τ ′

⟨λx .t ||u · E⟩τ →
〈
u
���� µ̃x .⟨t || E⟩〉τ

Figure 12. The λ[lvτ⋆]-calculus

B The λ[lvτ⋆]-calculus
B.1 Definitions

(k : X) ∈ S

Γ ⊢v k : X
(k)

Γ, x : A ⊢t t : B
Γ ⊢v λx .t : A → B

(→r)
(x : A) ∈ Γ

Γ ⊢V x : A (x)
Γ ⊢v v : A
Γ ⊢V v : A (↑V)

(κ : A) ∈ S

Γ ⊢F κ : A⊥⊥
(κ)

Γ ⊢t t : A Γ ⊢E E : B⊥⊥

Γ ⊢F t · E : (A → B)⊥⊥
(→l)

(α : A) ∈ Γ

Γ ⊢E α : A⊥⊥
(α)

Γ ⊢F F : A⊥⊥

Γ ⊢E F : A⊥⊥
(↑E)

Γ ⊢V V : A
Γ ⊢t V : A (↑t)

Γ,α : A⊥⊥ ⊢c c
Γ ⊢t µα .c : A (µ)

Γ ⊢E E : A⊥⊥

Γ ⊢e E : A⊥⊥
(↑e)

Γ, x : A ⊢c c

Γ ⊢e µ̃x .c : A⊥⊥
(µ̃)

Γ, x : A, Γ′ ⊢F F : A⊥⊥ Γ ⊢τ τ : Γ′

Γ ⊢E µ̃[x].⟨x || F ⟩τ : A⊥⊥
(µ̃ [])

Γ ⊢t t : A Γ ⊢e e : A⊥⊥

Γ ⊢c ⟨t || e⟩
(c)

Γ, Γ′ ⊢c c Γ ⊢τ τ : Γ′
Γ ⊢l cτ

(l)

Γ ⊢τ ε : ε (∅)
Γ ⊢τ τ : Γ′ Γ, Γ′ ⊢t t : A
Γ ⊢τ τ [x := t] : Γ′, x : A

([t])
Γ ⊢τ τ : Γ′ Γ, Γ′ ⊢E E : A⊥⊥

Γ ⊢τ τ [α := E] : Γ′,α : A⊥⊥
(τE)

Figure 13. Typing rules for the λ[lvτ⋆]-calculus

We recall here the definition of Ariola et al.’s λ[lvτ⋆]-calculus [5]. The syntax and reduction rules are given in Fig. 12, while
the type system, defined in [26], is given in Fig. 13. Finally, Ariola et al.’s original untyped CPS translation is given in Fig. 14.

B.2 The necessity of α-renaming

The original presentation of the λ[lvτ⋆]-calculus deeply relies on the assumption that names of variable are unique and thus
on the possibility of performing α-conversion on-the-fly. Consider for instance a command formed by a term of the shape
t = µα .

〈
u
���� µ̃x .⟨x || α⟩

〉
and a context of the shape e = µ̃x .⟨x || F ⟩. Such a command is perfectly typable (if u and F are) in the

type system introduced in [26], however, reducing this command (without α-conversion) would loop forever because of the

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Jc τ Kl τ0 ≜ JcKc τ0τ
′

J⟨t || e⟩Kc τ ≜ JeKe τ JtKt

JεKτ ≜ ε

Jτ ′[x := t]Kτ ≜ Jτ ′Kτ [x := JtKt]
Jτ ′[α := E]Kτ ≜ Jτ ′Kτ [x := JEKE]

JEKe τ t ≜ t τ JEKE
Jµ̃x .cKe τ t ≜ JcKc τ [x := t]

JV Kt τ E ≜ E τ JV KV
Jµα .cKt τ E ≜ JcKc τ [α := E]

JαKE τ [α := E]τ ′ V ≜ E τ [α := E]τ ′ V

Jµ̃[x].⟨x || F ⟩τ ′KE τ V ≜ V τ [x := λτE.E τ V]Jτ ′Kτ JFKF

JvKV τ F ≜ F τ JvKv
JxKV τ [x := t]τ ′ F ≜ t τ (λτλV .V τ [x := λτE.E τ V]τ ′ F)

JκKF ≜ κ
Jt · EKF τ v ≜ v τ JtKt JEKE

JkKv ≜ k
Jλx .tKv τ u E ≜ JtKt τ [x := u] E

Figure 14. Ariola et al. untyped CPS translation

auto-reference [x := x] in the environment:

〈
µα .

〈
u
���� µ̃x .⟨x || α⟩

〉 ������ µ̃x .⟨x || F ⟩
〉
→ ⟨x || F ⟩[x := µα .

〈
u
���� µ̃x .⟨x || α⟩

〉
]

→

〈
µα .

〈
u
���� µ̃x .⟨x || α⟩

〉 ������ µ̃[x].⟨x || F ⟩
〉

→
〈
u
���� µ̃x .⟨x || α⟩

〉
[α := µ̃[x].⟨x || F ⟩]

→ ⟨x || α⟩[α := µ̃[x].⟨x || F ⟩, x := u]
→

〈
x
���� µ̃[x].⟨x || F ⟩

〉
[α := µ̃[x].⟨x || F ⟩, x := u]

→ ⟨x || F ⟩[α := µ̃[x].⟨x || F ⟩, x := u, x := x] → . . .

While a simple α-conversion of one of the x binding solves the problem, this becomes much more subtle to handle through
a CPS translation without renaming (as the one in Figure 14 originally defined in [5]). Indeed, since “different” variables named
x (that is variables which are bound by different binders) are translated independently (e.g. J⟨t || e⟩K is defined from JeK and
JtK), there is no hope to perform α-conversion on the fly during the translation. Thus, the problem becomes unsolvable after
the translation, and the problem of renaming should be tackled together with the definition of the translation of terms. For

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

instance, through this translation, the same closure is again a program that will loop forever:

JcεK = JeKe ε JtKt = Jµ̃x .⟨x || F ⟩Ke ε JtKt
= J⟨x || F ⟩Kc [x := JtKt]
= JxKx [x := JtKt] JFKF
= Jµα .

〈
u
���� µ̃x .⟨x || α⟩

〉
Kt ε (λτλV .V τ [x := λτE.E τ V] JFKF)

= J
〈
u
���� µ̃x .⟨x || α⟩

〉
Kt [α := λτλV .V τ [x := λτE.E τ V] JFKF]

= Jµ̃x .⟨x || α⟩Ke [α := λτλV .V τ [x := λτE.E τ V] JFKF] JuKt
= J⟨x || α⟩Kc [α := λτλV .V τ [x := λτE.E τ V] JFKF , x := JuKt]
= JαKE [α := λτλV .V τ [x := λτE.E τ V] JFKF , x := JuKt] JxKV
= (λτλV .V τ [x := λτE.E τ V]) [α := λτλV .V τ [x := λτE.E τ V] JFKF , x := JuKt] JxKV
→ JxKV [α := λτλV .V τ [x := λτE.E τ V] JFKF , x := JuKt , x := JxKt]

Observe that as the translation is defined modulo administrative reduction, the first equations indeed are equalities, and that
when the reduction is performed, the two “different” x are not bound anymore. Thus, there is no way to achieve any kind of
α-conversion to prevent the formation of the cyclic reference [x := JxKV]. This is why we need either to be able to perform
α-conversion while executing the translation of a command, assuming that we can find a smooth way to do it, or to explicitly
handle the renaming.
In order to ensure the correctness of our translation, we address the problem at the source in the λ[lvτ⋆], using de Bruijn

levels. As we observed in the previous example, the issue arises when adding a binding [x := ...] in an environment that
already contained a variable x . We thus need to ensure the uniqueness of names within the environment. A simple solution
consists in renaming the variables bound in the environment by the position at which they occur in the environment, which is
obviously unique. Before presenting formally the corresponding system and the adapted translation, let us reduce the same
example using this idea. We use a mixed notation for names, writing x when a variable is bound by a λ or a µ̃, and xi (where i
is the relevant information) when it refers to a position in the environment. The same reduction is now safe if we replace
stored variables by their de Bruijn levels:

〈
µα .

〈
u
���� µ̃x .⟨x || α⟩

〉 ������ µ̃x .⟨x || F ⟩
〉
→ ⟨x0 || F ⟩[

0µα .
〈
u
���� µ̃x .⟨x || α⟩

〉
]

→

〈
µα .

〈
u
���� µ̃x .⟨x || α⟩

〉 ������ µ̃[x].⟨x || F ⟩
〉
→

〈
u
���� µ̃x .⟨x || α0⟩

〉
[0µ̃[x].⟨x || F ⟩]

→ ⟨x1 || α0⟩[
0µ̃[x].⟨x || F ⟩, 1u] →

〈
x1

���� µ̃[x].⟨x || F ⟩
〉
[0µ̃[x].⟨x || F ⟩, 1u]

→ ⟨x1 || F ⟩[
0µ̃[x].⟨x || F ⟩, 1u, 2x1] →

〈
u
���� µ̃[x].⟨x || F ⟩[2x1]

〉
[0µ̃[x].⟨x || F ⟩]

where the exponents 0, 1, ... to number the cells are only there to ease the readability.
Another solution would have consisted in defining the translation using an explicit renaming function. In broad lines,

the translation of terms (resp. contexts, closures, etc.) should be of the form J−Kσt where σ is a substitution used to rename
variables. To compact the notations, we write [xm |αγ |...] for the renaming substitution [x := m,α := γ , ...], where we adopt
the convention that the most recent binding is on written on the right. As a binding [x := n] overwrites any former binding
[x :=m], we write [αγ |xn] instead of [xm |αγ |

x
n]. Using this trick, the translation of the former command would be (wherem and n

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

are fresh names generated during the translation):
JcεKε = JeKεe ε JtKεt = Jµ̃x .⟨x || F ⟩Kεe ε JtKεt

= J⟨x || F ⟩K[
x
m]
c [m := JtKt]

= JxK[
x
m]

t [m := JtKεt] JFK[
x
m]

F

= Jµα .
〈
u
���� µ̃x .⟨x || α⟩

〉
K[

x
m]

t ε (λτλV .V τ [m :=↑t V] JFK[
x
m]

F)

= J
〈
u
���� µ̃x .⟨x || α⟩

〉
K
[xm |αγ]

t [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F]

= Jµ̃x .⟨x || α⟩K
[xm |αγ]

e [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F] JuK
[xm |αγ]

t

= J⟨x || α⟩K[x :=m,α :=γ ,x :=n]
c [γ := λτλV .V τ [m :=↑t V] JFK[

x
m]

F ,n := JuK
[xm |αγ]

t]

= JαK
[xm |αγ |xn]

E [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F ,n := JuK
[xm |αγ]

t]JxK
[xm |αγ |xn]

V

= (λτλV .V τ [m :=↑t V]) [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F ,n := JuK
[xm |αγ]

t] JxK
[αγ |xn]

V

→ JxK
[αγ |xn]

V [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F ,n := JuK
[xm |αγ]

t ,m := JxK
[αγ |xn]

t]

= JxK
[αγ |xn]

V [γ := λτλV .V τ [m :=↑t V] JFK[
x
m]

F ,n := JuK
[xm |αγ]

t ,m := JxK
[αγ |xn]

t]

We observe that in the end, the variablem is bound to the variable n, which is now correct. While this method has the benefit
of avoiding the reformulation of the source calculus with de Bruijn levels, it has the flaw of hiding a part of the computational
content related to the renaming process (that is Kripke forcing).

B.3 De Bruijn levels
We give here the formal definition of the lifted term ↑+ni t , the term t where all the free variables x j with j ≥ i (resp. α j) have
been replaced by x j+n (resp. α j+n). Given i,n two natural numbers, we define:

↑+ni (cτ) ≜ (↑+ni c)(↑+ni τ)

↑+ni (⟨t || e⟩) ≜ ⟨↑+ni t || ↑+ni e⟩

↑+ni (κ) ≜ κ
↑+ni (t · E) ≜ (↑+ni t) · (↑+ni E)

↑+ni (α j) ≜ α j (if j < i)

↑+ni (α j) ≜ α j+n (if j ≥ i)

↑+ni (µ̃[x j].⟨x j || F ⟩τ) ≜ µ̃[↑+ni x j].(↑
+n
i ⟨x j || F ⟩τ)

↑+ni (µ̃x j .c) ≜ µ̃(↑+ni x j).(↑
+n
i c)

↑+ni ε ≜ ε

↑+ni (τ [x j := t]) ≜ ↑+ni (τ)([↑+ni x j :=↑+ni t]

↑+ni (τ [α j := E]) ≜ ↑+ni (τ [↑+ni α j :=↑+ni E]

↑+ni (k) ≜ k
↑+ni (λx j .t) ≜ λ(↑+ni x j).(↑

+n
i t)

↑+ni (x j) ≜ x j (if j < i)

↑+ni (x j) ≜ x j+n (if j ≥ i)

↑+ni (µα j .c) ≜ µ(↑+ni α j).(↑
+n
i c)

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

C Context-free abstract machines
C.1 The named context-free abstract machine for the λ[lvτ⋆]-calculus

⟨t || µ̃x .c⟩eτ → ceτ [x := t]
⟨t || E⟩eτ → ⟨t || E⟩tτ

⟨µα .c || E⟩tτ → ceτ [α := E]
⟨V || E⟩tτ → ⟨V || E⟩E τ

⟨V || α⟩E τ [α := E]τ ′ → ⟨V || E⟩E τ [α := E]τ ′〈
V
���� µ̃[x].⟨x || F ⟩τ ′

〉
E τ → ⟨V || F ⟩V τ [x := V]τ ′

⟨V || F ⟩E τ → ⟨V || F ⟩V τ

⟨x || F ⟩V τ [x := t]τ ′ →
〈
t
���� µ̃[x].⟨x || F ⟩τ ′

〉
tτ

⟨v || E⟩V τ → ⟨v || F ⟩V τ

⟨v ||u · E⟩F τ → ⟨v ||u · E⟩vτ

⟨λx .t ||u · E⟩vτ →
〈
u
���� µ̃x .⟨t || E⟩〉eτ

Figure 15. Context-free abstract machine for the λ[lvτ⋆]-calculus [5]

C.2 Context-free abstract machine for the call-by-name λ̄µµ̃-calculus with environments

⟨t || µ̃xi .c⟩eτ → c[xn/xi]eτ [xn := t] with |τ | = n
⟨t || E⟩eτ → ⟨t || E⟩tτ

⟨µαi .c || E⟩tτ → c[α .n/αi]eτ [αn := E] with |τ | = n
⟨xn || E⟩tτ → ⟨τ (n) || E⟩tτ
⟨V || E⟩tτ → ⟨V || E⟩E τ

⟨V || αn⟩E τ → ⟨V || τ (n)⟩E τ
⟨V ||u · E⟩E τ → ⟨V ||u · E⟩V τ

⟨λx .t ||u · E⟩vτ →
〈
u
���� µ̃x .⟨t || E⟩〉eτ

Figure 16. Context-free abstract machine for the call-by-name λ̄µµ̃-calculus with environments

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

D Properties of System Fϒ
We give here the properties of System Fϒwith their proofs.

D.1 Coercions
Lemma D.1. If σ1 is in normal form, then the following rule is admissible:

Γ ⊢ σ0 : ϒ′
0 <: ϒ0 Γ ⊢ σ1 : ϒ′

1 <: ϒ1

Γ ⊢ σ0;σ1 : ϒ′
0 ; ϒ′

1 <: ϒ0; ϒ1

Remember that we say that a coercion is in normal form if it contains neither variables nor compositions of coercions.
Formally, these coercions are given by the following grammar:

Normal forms σ ::= ε | σ+ | ⇑σ

Interestingly, when two coercions are in normal form, it is possible to compose them to compute another normal form, by
simply following the reduction rules →σ . In other word, we can define the composition function − ⊙ − between coercions in
normal form by:

σ+1 ⊙ σ+0 ≜ (σ1 ⊙ σ0)
+

σ+1 ⊙ ⇑σ0 ≜ ⇑(σ1 ⊙ σ0)

⇑σ1 ⊙ σ0 ≜ ⇑(σ1 ⊙ σ0)

ε ⊙ σ0 = σ+1 ⊙ ε ≜ ε

It is easy to verify that this function is sound with respect to the typing rule for composing coercions:

Lemma D.2 (Composition of normal forms). If σ ,σ ′ are coercions in normal forms such that ⊢ σ : ϒ <: ϒ′ and ⊢ σ ′ : ϒ′ <: ϒ′′,
then ⊢ σ ′ ⊙ σ : ϒ <: ϒ′′.

Proof. Direct by structural induction on σ ′. □

This suggests us that we can actually consider a slightly larger fragment that includes compositions, since we are able to
compute them to get normal form17. We then define computable coercions as being coercions of the shape:

Computable coercions σ ::= ε | σ+ | ⇑σ | σ ′ ◦ σ

We can in fact safely reduce properties of computable coercions to the ones of normal forms:

Proposition D.3 (Computing normal forms). For any computable σ , if Γ ⊢ σ : ϒ′ <: ϒ then there exists σn in normal form such
that Γ ⊢ σn : ϒ′ <: ϒ.

Proof. By induction on typing derivations, using the previous lemma for the (<:◦) -rule. □

It is worth noting that for any σ , ϒ, ϒ′, if ⊢ σ : ϒ′ <: ϒ, then σ is necessarily computable.

Corollary D.4. If ⊢ σ : ϒ′ <: ϒ, then |ϒ| ≤ |ϒ′ |.

Proof. Using the previous proposition, we can reduce this to the case of σ in normal forms. The proof then proceed by easy
structural induction on σ . □

If a computable coercion is typed by ⊢ σ : ϒ′ <: ϒ, we can actually identify it with a partial monotone function from [0, |ϒ|]
to [0, [ϒ′ |] which intuitively maps the index of every type in ϒ to its corresponding index in ϒ′.

Formally, if σ is a coercion in normal form (if it is computable we first reduce it to a computation in normal form), we define
its domain dom(σ) and its codomain codom(σ) by:

dom(ε) ≜ 0 dom(σ+) ≜ dom(σ) + 1 dom(⇑σ) ≜ dom(σ)

codom(ε) ≜ 0 codom(σ+) ≜ codom(σ) + 1 codom(⇑σ) ≜ codom(σ) + 1

We then associate to σ the partial function JσK from [0, dom(σ)] to [0, codom(σ)] defined by:

JεK ≜ {0 7→ 0} Jσ+K ≜ JσK ∪ {dom(σ) 7→ codom(σ)} J⇑σK ≜
{
n < dom(σ) 7→ JσK(n)
n = dom(σ) 7→ JσK(n) + 1

Notice that JσK is always a strictly monotone function.

17We could also include ⇑ϒσn and σ+ϒn where ϒ is in normal form, but for the sake of simplicity, let us just focus on this simpler fragment.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Example D.5. As an example, we let the reader verify that for any types T ,U ,T0,T1, if we denote by σ for the coercion
⇑((⇑ε)++) which is in normal form, we have:

• ⊢⇑((⇑ε)++) : T0,T ,U ,T1 <:T ,U

• dom(σ) = 2, codom(σ) = 4
• JσK :

0 7→ 1
1 7→ 2
2 7→ 4

0

1

2

0

1

2

3

4

T

U T

U

T0

T1σ

Visually, this corresponds to the situation pictured on the right.
The previous definitions are indeed in adequacy with the intuition we gave above:

Proposition D.6 (Associated function). If σ is in normal form and s.t. ⊢ σ : ϒ′ <: ϒ, then:
1. dom(σ) = |ϒ|
2. codom(σ) = |ϒ′ |

3. ∀n < |ϒ|, ϒ′(JσK(n)) = ϒ(n)
4. JσK(|ϒ|) = |ϒ′ |

Proof. The first two items are proved by a straightforward induction on typing derivations. The third and forth items are
then proved together, again by induction on typing derivations: the case (<:ε) is trivial; while for (<:+) and (<:⇑) it suffices to
unfold the definition, using the first items to connect |ϒ| and dom(σ). □

The previous proposition opens the way for proving properties of computable coercions through their associated functions.
For instance, we have (remember that we define idϒ = ε+ϒ):
Proposition D.7 (Partial order). In the empty context, the subtyping relation <: is an order relation on store types.

1. For any ϒ, we have ⊢ idϒ : ϒ <: ϒ
(<:id) is admissible.

2. If ⊢ σ : ϒ <: ϒ′ and ⊢ σ ′ : ϒ′ <: ϒ′′, then ⊢ σ ′ ◦ σ : ϒ <: ϒ′′.
3. If ⊢ σ : ϒ <: ϒ′ and ⊢ σ ′ : ϒ′ <: ϒ, then ϒ = ϒ′.

Proof. Straightforward using the previous lemma to reduce it to the case of coercions in normal forms. The first two items
are straightforward. As for the third one, it is a direct consequence of Proposition D.6, since JσK and Jσ ′K are two strictly
monotone functions from [0, |ϒ|] to itself (by Corollary D.4 we have |ϒ′ | = |ϒ|), they are necessarily the identity. Equivalently,
we could have seen that necessarily σ is of the shape σ+0 (and so is σ ′), so that ϒ′ = ϒ′

0,T and ϒ = ϒ0,T , from which we can
conclude by an easy induction. □

D.2 Subject reduction
First, it is clear that the type system is compatible with a weakening rule:
Lemma D.8 (Weakening). The following rule is admissible:

Γ ⊢ t : A Γ ⊆ Γ′

Γ′ ⊢ t : A
(Γw)

Proof. Easy induction on typing derivations. In the case of second-order quantification, we might need to rename the second-
order variable X if it occurs in Γ′ and not in Γ. □

Before proving subject reduction, we need to show how terms and stores can be lifted using coercions for their types to
remain consistent while extended stores are passed in the translations. First, we show that the bounded quantification can
be composed with a subtyping relation witnessed by a coercion σ , by precomposing terms with σ . Remember that given a
coercion σ of type ϒ′ <: ϒ and a term t whose type is of the shape ∀Y <: ϒ.A, we defined:

(↑
σ
t) ≜ λYs .t Y (s ◦ σ)

Lemma D.9. The following rule is admissible:
Γ ⊢ t : ∀Y <: ϒ.A Γ ⊢ σ : ϒ′ <: ϒ

Γ ⊢ (↑
σt) : ∀Y <: ϒ′.A

(↑σ)

Proof. We assume that Y is fresh with respect to FV (Γ), otherwise it suffices to rename it. Unfolding the definition of ↑σt , we
can derive:

Γ ⊢ t : ∀Y <: ϒ0.A
Γ ⊢ t Y : Y <: ϒ0.A

(∀E)

Γ, s : Y <: ϒ1 ⊢ t Y : Y <: ϒ0 → A
(Γw)

Γ ⊢ σ : ϒ1 <: ϒ0 Γ, s : Y <: ϒ1 ⊢ s : X <: ϒ1
(<:ax)

Γ, s : Y <: ϒ1 ⊢ s ◦ σ : Y <: ϒ0
(<:◦)

Γ, s : Y <: ϒ1 ⊢ t Y (s ◦ σ) : A
(σE)

Y < FV (Γ)

Γ ⊢ λYs .t Y (s ◦ σ) : ∀Y <: ϒ1.A
(∀I)

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

where we use Lemma D.8 to weaken Γ,σ : X <: ϒ1. □

As a Corollary, since we require (Eq▶) that ϒ ▶ F is always of the shape ∀Y <: ϒ.F (Y , F) , we get that

Corollary D.10. The following rule is admissible:
Γ ⊢ t : ϒ0 ▶ F Γ ⊢ σ : ϒ1 <: ϒ0

Γ ⊢ (↑
σt) : ϒ1 ▶ F

Lemma D.11. If σ1 is in normal form, then the following rule is admissible:
Γ ⊢ σ0 : ϒ′

0 <: ϒ0 Γ ⊢ σ1 : ϒ′
1 <: ϒ1

Γ ⊢ σ0;σ1 : ϒ′
0 ; ϒ′

1 <: ϒ0; ϒ1

We can now verify type safety with respect to reductions:

Theorem 3.4 (Subject reduction). For any context Γ, any type T and any terms t, t ′, if Γ ⊢ t : T and t → t ′, then Γ ⊢ t ′ : T .

Proof. The proof is standard and does not bring much information. We start by proving the following statements for safe
substitutions:

1. If Γ, x : A, Γ′ ⊢ t : B and Γ ⊢ u : A, then Γ, Γ′ ⊢ t[u/x] : B.
2. If Γ, δ : ϒ0 ▷τ ϒ1, Γ

′ ⊢ t : B and Γ ⊢ τ : ϒ0 ▷τ ϒ1, then Γ, Γ′ ⊢ t[τ/δ] : B.
3. If Γ, s : Y <: ϒ, Γ′ ⊢ t : B and Γ ⊢ σ : ϒ′ <: ϒ, then Γ, Γ′[ϒ′/Y] ⊢ t[σ/s] : B[ϒ′/Y].
4. If Γ ⊢ t : B then Γ[ϒ/Y] ⊢ t[ϒ/Y] : B[ϒ/Y].

Each of the three statements is proved together with the similar statements for typing judgments for stores and coercions by
mutual induction on typing derivations. The proof of subject reduction is then direct by induction on reduction rules using the
previous statements to conclude. The (almost) only interesting case is the one induced by the following reduction rule:

↑σϒ,F τ [t] →τ (↑σϒ τ)[↑σ
+ϒ

t]

Indeed, if we have :

Γ ⊢ σ : ϒ1 <: ϒ0

Γ ⊢ τ : ϒ0 ▷τ ϒ Γ ⊢ t : ϒ0; ϒ ▶ F

Γ ⊢ τ [t] : ϒ0 ▷τ ϒ, F
([t])

Γ ⊢↑σϒ,F τ [t] : ϒ1 ▷τ ϒ, F
(↑τ)

we can derive (using Corollary D.10):
Γ ⊢ σ : ϒ1 <: ϒ0 Γ ⊢ τ : ϒ0 ▷τ ϒ

Γ ⊢↑σϒ τ : ϒ0 ▷τ ϒ
(↑τ)

Γ ⊢ σ+ϒ : ϒ1; ϒ <: ϒ0; ϒ Γ ⊢ t : ϒ0; ϒ ▶ F

Γ ⊢↑σ
+ϒ t : ϒ1; ϒ ▶ F

Γ ⊢ (↑σϒ τ)[↑σ
+ϒ t] : ϒ1 ▷τ ϒ, F

(↑τ)

□

Remark 2 (About the (split) -rule). We shall attract the reader’s attention on a specificity of the (split) that she may have
observed. Remember that we defined the rule by :

Γ ⊢ τ : ϒ′ Γ ⊢ σ : ϒ′ <: ϒ ϒ = JΓ0K, F , JΓ1K |Γ0 | = n
Γ′, s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▶ F , s1 : (Y0, F ;Y1 <: ϒ), δ1 : (Y0, F) ▷τ Y1 ⊢ t : A′

Γ ⊢ split τ at n along σ : ϒ′ <: ϒ as (Y0, s0, δ0), x, (Y1, s1, δ1) in t : A′
(split)

where Γ′ = Γ[Y0, F ;Y1/ϒ
′] and A′ = A[Y0, F ;Y1/ϒ

′] (which is an abuse of notations to say that Γ′ = Γ0[ϒ
′/•], Γ = Γ0[Y0, F ;Y1/•]

for some Γ0, etc). The latter equalities are necessary for identifying ϒ′ and its cutting in the typing derivation for t , which may
contain at the same time terms build on s0, s1, ... thus refering to Y0,Y1 and terms refering directly to ϒ′. To avoid more syntax, we
chose to take this equality into account directly with a substitution, but we also could have simply considered two extra coercion
variables si : Y0, F ;Y1 <: ϒ′ and sj : ϒ′ <:Y0, F ;Y1 in the premise. In addition to giving access to subterm in t to both representations
of ϒ′, it also enforces the equality between ϒ′ and Y0, F ;Y1 (remember that <: induces an order relation, Proposition D.7). In
particular, the reduction rule for split should then instantiate those two coercions with idϒ′ . This approach would result in the
following typing rule:

Γ ⊢ τ : ϒ′ Γ ⊢ σ : ϒ′ <: ϒ ϒ = JΓ0K, F , JΓ1K |Γ0 | = n
Γ, s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▶ F , s1 : (Y0, F ;Y1 <: ϒ), δ1 : (Y0, F) ▷τ Y1, si : (Y0, F ;Y1)<: ϒ′, sj : ϒ′ <: (Y0, F ;Y1) ⊢ t : A

Γ ⊢ split τ at n along σ : ϒ′ <: ϒ as (Y0, s0, δ0), x, (Y1, s1, δ1), si , sj in t : A′
(split)

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

together with the following reduction rule:

split τ0[u];τ1 at n along σ : ϒ0,A, ϒ1 <: JΓ0K,A, JΓ1K as (Y0, s0, δ0), x, (Y1, s1, δ1), si , sj in t
→

t[ϒ0/Y0][σ0/s0][τ0/δ0][u/x][ϒ1/Y1][τ1/δ1][σ1/s1][idϒ0,A ϒ1/si][idϒ0,A ϒ1/sj]

where n = |Γ0 |, |τ0 | = |ϒ0 | and ϒ0, ϒ1,σ0,σ1 are again as in Lemma 3.2. This reduction is also safe with respect to typing.

D.3 Normalization
The proof of normalization for Fϒ that we present in this section is inspired from techniques of Krivine’s classical realiz-
ability [18], whose notations we borrow. Actually, it is also very close to a proof by reducibility18. In a nutshell, to each
type A is associated a set |A| of terms whose execution is guided by the structure of A. These terms are the ones usually
called realizers in Krivine’s classical realizability. Their definition is in fact indirect, and is done by orthogonality to a set of
“correct” computations, called a pole. The choice of this set is central when studying models induced by classical realizability
for second-order-logic, but in the present case we only pay attention to the particular pole of terminating computations. This
is where lies one of the difference with usual proofs by reducibility, where everything is done with respect to SN , while our
definition are parametric in the pole (which is chosen to be SN in the end). The adequacy lemma, which is the central piece,
consists in proving that typed terms belong to the corresponding sets of realizers, and are thus normalizing.

We try to remain as concise as possible, for a comprehensive introduction to Krivine realizability and normalization proof in
that context, we refer the reader to Dagand, Rieg and Scherer’s [10].

Abstract machine We begin by adapting the Krivine Abstract Machine to our calculus:

Terms t ::= k | x | λY .t | t ϒ | λs .t | t σ | λδ .t | t τ | λx .t | t u
Stacks π ::= • | ϒ · π | σ · π | τ · π | t · π
Processus p ::= t ⋆ π

We then define the reduction rules p ≻ p ′. We first define the usual rules for abstractions/applications (where M ∈

ϒ | σ | τ | u):
t M ⋆ π ≻ t ⋆M · π

λY .t ⋆ ϒ · π ≻ t[ϒ/Y]⋆ π
λs .t ⋆ σ · π ≻ t[σ/Y]⋆ π
λδ .t ⋆ τ · π ≻ t[τ/Y]⋆ π
λx .t ⋆u · π ≻ t[u/Y]⋆ π

to which we add a rule for splitting stores:
split τ0[u]τ1 at n along σ : ϒ0,A, ϒ1 <: JΓ0K,A, JΓ1K as (Y0, s0, δ0), x, (Y1, s1, δ1) in t ⋆ π

≻

t[ϒ0/Y0][σ0/s0][τ0/δ0][u/x][ϒ1/Y1][τ1/δ1][σ1/s1]⋆ π

where n = |Γ0 | and ϒ0, ϒ1,σ0,σ1 are as in Lemma 3.2 (i.e. |ϒ0 | = JσK(n), σ0 : ϒ0 <: Γ0 , etc.), and |τ0 | = |ϒ0 |.
Finally, we add two contextual rules for reducing coercions and stores in split:

split τ at n along ... as ... in t ⋆ π ≻ split τ ′ at n along ... as ... in t ⋆ π
split τn at n along σ : ... as ... in t ⋆ π ≻ split τ at n along σ ′ : as ... in t ⋆ π

(if τ →τ τ ′)
(if σ →σ σ ′)

where τn is in normal form (in other words, we first reduce stores then coercions).

Realizability interpretation We now focus on the definition of the Krivine realizability interpretation, which relies on the
definition truth and falsity values (which are themselves defined with respect to a pole).

Definition D.12 (Pole). A subset ⊥⊥ ⊆ Λ⋆Π is said to be closed under anti-reduction whenever for all closed p,p ′ ∈ Λ⋆Π, if
p ′ ∈ ⊥⊥ and p ≻ p ′ then p ∈ ⊥⊥. A pole is defined as any set of closed processes that is closed under anti-reduction.

Definition D.13 (Valuation). A substitution, written ρ, is a function mapping term variables to closed terms (written ρ, x := t),
coercion variables to closed coercions (written ρ, s := σ), store variables to closed stores (written ρ, δ := τ) and store type
variable to closed store types (written ρ,Y := ϒ).

We write ρ(t) (resp. ρ(A), ρ(ϒ), etc.) the term t where the substitution ρ has been performed.
18See for instance the proof of normalization for system D presented in [17, 3.2].

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Given a fixed pole ⊥⊥, we define the interpretation of closed types as follows:
∥X ∥ = {•}

∥∀Y .T ∥ =
⋃

ϒ∈F∗ {ϒ · π : π ∈ ∥T [ϒ/Y]∥}
∥ϒ′ <: ϒ → T ∥ = {σ · π : σ ⊩ ϒ′ <: ϒ ∧ π ∈ ∥T ∥}
∥ϒ ▷τ ϒ

′ → T ∥ = {τ · π : τ ⊩ ϒ′ ▷τ ϒ ∧ π ∈ ∥T ∥}
∥U → T ∥ = {u · π : u ∈ |U | ∧ π ∈ ∥T ∥}

|T | = ∥T ∥⊥⊥ = {t : ∀π ∈ ∥T ∥, t ⋆ π ∈ ⊥⊥}

where F ∗ is defined as the set of closed store types (i.e. the set of lists of source types corresponding to the subsyntax
ϒ0 = ∅ | ϒ0, F).

We say that (where all terms and types are closed):
1. σ ⊩ ϒ′ <: ϒ if ⊢ σ : ϒ′ <: ϒ
2. τ ⊩ ϒ′ ▷τ ϒ if ∀τ ′, τ ′ ⊩ ϒ′ ⇒ τ ′;τ ⊩ ϒ′; ϒ
3. [] ⊩ ∅

4. τ [t] ⊩ ϒ, F if τ ⊩ ϒ and t ∈ |ϒ ▶ F |

We close these relations by anti-reduction with respect to →σ and→τ , that is:

σ →σ σ ′ ∧ σ ′ ⊩ ϒ′ <: ϒ ⇒ σ ⊩ ϒ′ <: ϒ and τ →σ τ ′ ∧ τ ′ ⊩ ϒ ⇒ τ ⊩ ϒ

Given a closed context Γ, we say that a substitution ρ realizes Γ, which we write ρ ⊩ Γ, if:
1. for any Y ∈ Γ, ρ(Y) is defined
2. for any (s : ϒ′ <: ϒ) ∈ Γ, we have ρ(s) ⊩ ρ(ϒ′)<: ρ(ϒ)
3. for any (δ : ϒ′ ▷τ ϒ) ∈ Γ, we have ρ(δ) ⊩ ρ(ϒ′) ▷τ ρ(ϒ)
4. for any (x : A) ∈ Γ, we have ρ(x) ⊩ ρ(A)

Definition D.14 (Adequacy). We say that a typing judgment Γ ⊢ t : A (resp. Γ ⊢ σ : ϒ′ <: ϒ, Γ ⊢ τ : ϒ′ ▷τ ϒ) is valid with respect
to the interpretation if for any substitution ρ such that ρ ⊩ Γ, then ρ(t) ⊩ ρ(A) (resp. ρ(s) ⊩ ρ(ϒ′)<: ρ(ϒ), ρ(δ) ⊩ ρ(ϒ′)▷τ ρ(ϒ)).

We say that a typing rule
J1 . . . Jn

J is adequate if the validity of the premises J1, . . . , Jn entails the validity of the conclusion
J .

Proposition D.15 (Adequacy). All the typing rules (except the rule (c) for constants) are adequate.

Proof. By case analysis. In each case we assume a substitution ρ ⊩ Γ and to ease readibility, we write tρ (resp. Aρ) for ρ(t)
(resp. ρ(A)).

• Case
(x : A) ∈ Γ

Γ ⊢ x : A (Ax). By definition, since ρ ⊢ Γ and (x : A) ∈ Γ, we have that ρ(x) ⊩ Aρ .

• Case
Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A → B
(λ)
. Let u · π ∈ ∥A → B∥, i.e. u ⊩ A and π ∈ ∥B∥. Then λx .tρ ⋆u · π ≻ tρ [u/x]⋆ π ∈ ⊥⊥ by induction

hypothesis, since tρ [u/x] = tρ[x :=u] and ρ[x := u] ⊩ Γ, x : A. We conclude by anti-reduction.

• Case
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B (@). Let π ∈ ∥B∥, by induction hypothesis we have tρ ⊩ A → B and uρ ⊩ A . Therefore,
tρ uρ ⋆ π ≻ tρ ⋆uρ · π ∈ ⊥⊥ since uρ · π ∈ ∥A → B∥. We conclude by anti-reduction.

• Case Γ ⊢ [] : ∅ ▷τ ∅
(∅)
. Trivial: for all τ ⊩ ∅, we have that τ ; [] = τ and thus τ ; [] ⊩ ∅.

•Case
Γ ⊢ t : ϒ0 ▶ F

Γ ⊢ [t] : ϒ0 ▷τ T
([t])

. Let τ0 ⊩ ϒ0. By induction hypothesis, we have that tρ ⊩ ϒ0 ▶ F . Hence, by definition, τ [tρ] ⊩ ϒ0, F .

• Case
Γ ⊢ τ : ϒ0 ▷τ ϒ Γ ⊢ τ ′ : (ϒ0; ϒ) ▷τ ϒ′

Γ ⊢ ττ ′ : ϒ0 ▷τ ϒ; ϒ′
(τ ;τ ′)

. Let τ0 ⊩ ϒ0. By induction hypothesis, we have that τ0;τρ ⊩ ϒ0; ϒ and thus
(τ0;τρ);τ ′ρ ⊩ ϒ0; ϒ; ϒ′. Since τρ is closed, we have that τ0; (τρ ;τ ′ρ) →τ (τ0;τρ);τ ′ρ (by easy induction the structure of τρ), hence
τρ ;τ ′ρ ⊩ ϒ0 ▷τ ϒ; ϒ′

• Case (<:) rules. By definition, in all cases we have that σρ is closed, hence ⊢ σρ : ϒ′
ρ subst ϒ ρ is well-typed, thus

σρ ⊩ ϒ′
ρ subst ϒ ρ .

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

• Case
(δ : ϒ ▷τ ϒ′) ∈ Γ

Γ ⊢ δ : ϒ ▷τ ϒ′
(τax). By definition, since ρ ⊢ Γ and (δ : ϒ ▷τ ϒ′) ∈ Γ, we have that ρ(δ) ⊩ δ : ϒρ ▷τ ϒ′

ρ .

• Case
Γ, δ : ϒ0 ▷τ ϒ ⊢ t : B

Γ ⊢ λδ .t : ϒ0 ▷τ ϒ → B
(τI). Same proof as for the (λ) case.

• Case
Γ ⊢ t : ϒ0 ▷τ ϒ → B Γ ⊢ τ : ϒ0 ▷τ ϒ

Γ ⊢ t τ : B (τE). Same proof as for the (@) case.

• Case
Γ, <: ϒ ⊢ t : A Y < FV (Γ)

Γ ⊢ λY .t : ∀Y .A
(∀I). Same proof as for the (λ) case.

• Case
Γ ⊢ t : ∀Y .A

Γ ⊢ t ϒ : A{Y := ϒ}
(∀E). Same proof as for the (@) case.

• Case
Γ, s : Y <: ϒ ⊢ t : A

Γ ⊢ λs .t : Y <: ϒ → A
(∀I). Same proof as for the (λ) case.

• Case
Γ ⊢ t : ϒ′ <: ϒ → A Γ ⊢ σ : ϒ′ <: ϒ

Γ ⊢ t σ : A (∀E). Same proof as for the (@) case.

• Case

Γ ⊢ τ : ϒ′ Γ ⊢ σ : ϒ′ <: ϒ ϒ = JΓ0K, F , JΓ1K |Γ0 | = n
Γ, s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▶ F , s1 : (Y0, F ;Y1 <: ϒ), δ1 : (Y0, F) ▷τ Y1 ⊢ t : A

Γ ⊢ split τ at n along σ : ϒ′ <: ϒ as (Y0, s0, δ0), x, (Y1, s1, δ1) in t : A
(split)

. By induction hypothesis, we get
that:

1. τρ ⊩ ϒ′
ρ

2. σρ ⊩ ϒ′
ρ <: ϒρ

3. for any σ0 ⊩ Y0 <: JΓ0K, τ0 ⊩ Y0 , u ⊩ Y0 ▶ F , σ1 ⊩ (Y0, F ;Y1 <: ϒ), τ1 ⊩ (Y0, F) ▷τ Y1, if we define ρ ′ = ρ, s0 := σ0, δ0 :=
τ0, x := u, s1 := σ1, δ1 := τ1 then we have tρ′ ⊩ A

In particular, by definition, we have that ⊢ σρ : ϒ′
ρ <: ϒρ , hence Lemma 3.2 applies and we get that: σρ = σ+0 ;σ1 and ϒ′

ρ = ϒ0, F ; ϒ1
with ⊢ σ0 : ϒ0 <: JΓ0K and Γ ⊢ σ : ϒ1 <: JΓ1K. Besides, since τρ ⊩ ϒ0, F ; ϒ1, necessarily we have that τρ = τ0[u];τ1 with |τ0 | = |ϒ0 |,
τ0 ⊩ ϒ0, τ1 ⊩ ϒ1 and u ⊩ ϒ0 ▶ F (this is a simple induction on the structure of τρ). Therefore, if π ∈ ∥A∥, we have:

split τ0[u]τ1 at n along σ : ϒ0,A, ϒ1 <: JΓ0K,A, JΓ1K as (Y0, s0, δ0), x, (Y1, s1, δ1) in t ⋆ π
≻

tρ [ϒ0/Y0][σ0/s0][τ0/δ0][u/x][ϒ1/Y1][τ1/δ1][σ1/s1]⋆ π

According to the third item above, this process belongs to the pole, and we can thus conclude by anti-reduction.
□

Proposition D.16. The set ⊥⊥⇓ = {p : p normalizes} is a valid pole. Besides, the typing rule (c) is adequate for this pole

Proof. Easy verification: if p ≻ p ′ and p ′ normalizes, then p normalizes too. Besides, for any (k : A) ∈ S, if π ∈ ∥A∥ then k ⋆ π
is blocked hence belongs to ⊥⊥⇓.

□

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

E Shallow embedding in Coq
We give here an overview of our take to define a shallow embedding of Fϒ in Coq. We define store types as list of types of
the source calculus (Ty), stores through heterogeneous lists of terms, while the corresponding typing relation is defined as
an inductive relation. Observe that we do treat the translation ▶ of types in the store as a parameter, emphasizing that the
structure of Fϒ is actually orthogonal to the choice of this translation.

Parameter Ty:Type.

Inductive hlist:=
| hnil : hlist

| hcons : ∀ A, A → hlist → hlist.

Definition storeT := list Ty.

Inductive <: : storeT → storeT → Type:=
| empty : nil <: nil

| lift : ∀ ϒ' ϒ A, ϒ'<: ϒ → [ϒ',A] <: ϒ
| plus : ∀ ϒ' ϒ A, ϒ'<: ϒ → [ϒ',A] <: [ϒ,A].

Parameter ▶ : storeT→ Ty→ Type.

Context (F: storeT→ Ty→ Type)
(tr_sound:∀ ϒ A, (ϒ ▶ A) = ∀ Z, Z<:ϒ → F Z A).

Definition store := hlist.

Inductive typedStore:store →storeT → storeT→ Type :=
| nilT : ∀ Y, typedStore hnil Y nil

| consT : ∀ (A:Ty) (τ :store) (ϒ0, ϒ1:storeT) (t:ϒ0; ϒ1 ▶ A),
typedStore τ ϒ0 ϒ1→ typedStore τ [t] ϒ0 ϒ1,A.

Coercions Stores and store types

Regarding coercions, we define them as the constructors of the inductive type defining the relation <: . In other words,
we only define the coercions in normal form, since through the shallow embedding variables will be Coq variables, while
σ ◦ σ ′, ⇑ϒσ and σ+ϒ are easily definable as Coq functions. Similarly, ↑σϒ τ is also defined through its reduction rules, that is by
induction ϒ. That way, the reductions rules easily matches Coq reductions: for instance, observe that ⇑ϒσ is defined by its
reduction rules. Similarly, the only subtle reduction we have, to reduce split terms, will be precisely be the very definition of
its embedding in Coq.

Fixpoint ⇑ ϒ ϒ0 ϒ1 (σ :ϒ1 <: ϒ0):[ϒ1;ϒ]<:ϒ0 := (* ⇑ϒ σ *)

match ϒ with

| nil ⇒ σ

| [ϒ′,A] ⇒ lift A (⇑ ϒ′ σ)
end.

Lemma liftN_lift {ϒ1 ϒ0 ϒ} A (σ :ϒ1 <: ϒ0):
(⇑ϒ,A σ) = ⇑ (⇑ϒ σ).

Proof.
reflexivity.

Qed.

Definition ◦ : ∀ ϒ2 ϒ1 ϒ0 (σ2:ϒ2 <: ϒ1) (σ1:ϒ1 <: ϒ0), ϒ2 <: ϒ0.
Proof

(* Definition by induction on ϒ2 *)

Defined

Lemma plus_lift {ϒ2 ϒ1 ϒ0} A (σ1:ϒ2<:ϒ1) (σ0:ϒ0<:ϒ0):
(σ+1) ◦ (⇑σ0) = ⇑(σ1 ◦ σ0).

Proof.
reflexivity.

Qed.

Definition precomp_t (F:storeT → Type) ϒ0 ϒ1 (σ :ϒ1<:ϒ0)
(t:∀ ϒ2, ϒ2<:ϒ0 → F ϒ2) : (∀ ϒ2, ϒ2<:ϒ1 → F ϒ2)
:= (fun Z (σ ′:ϒ2<:ϒ1) ⇒ t Z (σ ′ ◦ σ)). (* ↑σ t *)

Definition presig_t ϒ ϒ' T (σ :ϒ'<:ϒ) (t:ϒ ▶ T) : ϒ' ▶ T.
rewrite tr_sound in ∗. apply (precomp_t _ σ). Defined.

Definition presig_τ Z : (* ↑σZ τ *)

∀ τ ϒ0 ϒ1 (σ :ϒ1 <:ϒ0) (H:typedStore τ ϒ0 Z), store.
Proof.
induction Z;intros;inversion H;subst.
− exact hnil.
− exact ([IHZ τ0 ϒ0 ϒ1 σ X,presig_t (plusN Z σ) t]1).
Defined.

Lemma store_presig {A:Ty} (ϒ ϒ0 ϒ1: storeT) (τ : store)
(t :[ϒ0;ϒ] ▶ A) (σ :ϒ1 <: ϒ0) (H:typedStore τ ϒ0 ϒ) :
↑σϒ,A τ [t] = (↑σϒ τ)[↑σ

+ϒ t].
Proof.
intros. reflexivity.
Qed.

The full Coq development illustrating these ideas (and proving most of the properties we stated on Fϒ) is available as
supplementary material.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

F Proof of well-typedness
We give here the complete proof of the correction of the translation of terms with respect to types. We begin by making a few
observations that will be useful in the proof of the main theorem.

First of all, it is easy to check that the rules for forming stores and witnessing extensions are safe through the translation:

Lemma F.1 (Store formation). The following rules are admissible:

Γ ⊢ τ : ϒ0 ▷τ ϒ Γ ⊢ t : ϒ0, ϒ ▷t T

Γ ⊢ τ [t] : ϒ0 ▷τ ϒ,T
(τ [t])

Γ ⊢ s : ϒ <: JΓ0K
Γ ⊢ σ+ : ϒ,T <: JΓ0,T K

The same holds for Γ ⊢ t : ϒ0, ϒ ▷E T and Γ ⊢ τ [t] : ϒ0 ▷τ ϒ,T
⊥⊥.

Proof. Straightforward typing derivations. For the left-hand side we have:

Γ ⊢ τ : ϒ0 ▷τ ϒ

Γ ⊢ t : ϒ0, ϒ ▷t T

Γ ⊢ [t]t : ϒ0, ϒ ▷τ T
([t])

Γ ⊢ τ [t]t : ϒ0 ▷τ ϒ,T
(τ ;τ ′)

□

We then show that the construction lifting values to the level of terms is safe with respect to typing:

Lemma F.2 (Lifting values). The following is derivable:

Γ ⊢ V : ϒ ▷V T
Γ ⊢↑t V : ϒ ▷t T

(↑)

Proof. We can derive (weakening contexts on-the-fly to ease readability):

ΠE

Γ ⊢ V : ϒ ▷V T s : Y <: ϒ ⊢ s : Y <: ϒ (<:ax)

Γ, s : Y <: ϒ ⊢↑
sV : Y ▷V T

(↑σ)

Γ, s : Y <: ϒ, δ : Y , E : ϒ ▷E T ⊢ E Y idY δ (↑
sV) : ⊥

(@)

Γ ⊢ λYsδE.E v idY δ (↑
sV) : ϒ ▷t T

(λ)

where we used Lemma D.9 and ΠE is the following derivation:

E : ϒ ▷E T ⊢ E : Y ▷E T
(Ax)

E : ϒ ▷E T ⊢ E Y : Y <:Y → Y → Y ▷V T → ⊥
(∀E)

⊢ idY : Y <:Y
(<:id)

δ : Y , E : ϒ ▷E T ⊢ E Y idY : Y → Y ▷V T → ⊥
(∀E)

δ : Y ⊢ δ : Y
(Ax)

δ : Y , E : ϒ ▷E T ⊢ E Y idY δ : Y ▷V T → ⊥
(@)

□

We are finally equipped to prove the main theorem:

Theorem 4.1. The translation is well-typed, i.e.:

1. If Γ ⊢v v : T then JΓ ⊢v v : T K
2. If Γ ⊢F F :T⊥⊥ then JΓ ⊢F F : T⊥⊥K
3. If Γ ⊢V V : T then JΓ ⊢V V : T K
4. If Γ ⊢E E :T⊥⊥ then JΓ ⊢E E : T⊥⊥K
5. If Γ ⊢t t : T then JΓ ⊢t t : T K

6. If Γ ⊢e e : T⊥⊥ then JΓ ⊢e e : T⊥⊥K
7. If Γ ⊢c c then JΓ ⊢c cK
8. If Γ ⊢l l then JΓ ⊢l lK
9. If Γ ⊢τ τ then JΓ ⊢τ τ : Γ′K

Proof. We reason by induction over typing derivations. We (ab)use of Lemma D.8 to make the derivations more compact by
systematically weakening contexts as soon as possible, and compact the first (∀I) and (λ) rules in one rule.

1. Strong values JkKv = k , which has the desired type by hypothesis.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

• Case λxi .t . In the source language, we have:

Γ, xi : T ⊢t t : U |Γ | = i

Γ, Γ′ ⊢v λxi .t : T → U

Hence, we get by induction a proof Πt of JtKt : JΓ, xi : T K ▷t U and we can derive:

Πt

⊢ JtKt : ∀Y ′ <: JΓ, xi : T K.Y ′ → Y ′ ▷E U → ⊥ Πs

s : Y <: JΓ, Γ′K ⊢ JtKt (Y ,T) σΓ,Γ′ : (Y ,T) → (Y ,T) ▷E U → ⊥
(∀E)

Πδ

s : Y <: JΓ, Γ′K, δ : Y ,u : Y ▷t T ⊢ JtKt (Y ,T) σΓ,Γ′ δ [u] : (Y ,T) ▷E U → ⊥
(@)

ΠE

s : Y <: JΓ, Γ′K, δ : Y ,u : Y ▷t T , E : Y ▷E U ⊢ JtKt (Y ,T) σΓ,Γ′ δ [u] ↑
⇑idϒE : ⊥

(@)

⊢ λYsδuE.JtKt (Y ,T) σΓ,Γ′ δ [u] ↑
⇑idϒE : ∀Y <: JΓ, Γ′K.Y → Y ▷t T → Y ▷E U → ⊥

(λ)

where:
• ΠE is a proof of E : Y ▷E U ⊢↑

⇑idϒE : (Y ,T) ▷E U (derivable according to Lemma D.9);
• Πδ is a proof of δ : Y ,u : Y ▷t T ; ⊢ δ [u] : Y ,T (derivable according to Lemma F.1);
• σΓ,Γ′ ≜ (s◦ ⇑ JΓ′KidJΓK)

+ and Πs is:

s : Y <: JΓ, Γ′K ⊢ s : Y <: JΓ, Γ′K
(<:ax)

⊢ idJΓK : JΓK<: JΓK
⊢⇑ JΓ′KidJΓK : JΓK, JΓ′K<: JΓK

(<:ϒ
⇑
)

s : Y <: JΓ, Γ′K ⊢ s◦ ⇑ JΓ′KidJΓK : Y <: JΓK
(<:◦)

s : Y <: JΓ, Γ′K ⊢ (s◦ ⇑ JΓ′KidJΓK)
+ : Y ,T <: JΓK,T

(<:+)

2. Forcing contexts

• Case JκKF. JκKF = κ , which has the desired type by hypothesis.
• Case Jt .EKF. In the source language, we have:

Γ ⊢t t : T Γ ⊢E E : U ⊥⊥

Γ ⊢F t · E : (T → U)⊥⊥

Therefore, we have by induction hypothesis that ⊢ JtKt : JΓK ▷t T and ⊢ JEKt : JΓK ▷E U , so that we can derive:

v : Y ▷v T → U ⊢ v : ∀Y ′ <:Y : Y ′ → Y ′ ▷t T → Y ′ ▷E U → ⊥
(Ax)

Πs

δ : Y ,v : Y ▷v T → U ⊢ v Y idY : Y → Y ▷t T → Y ▷E U → ⊥
(∀I)

Πδ

δ : Y ,v : Y ▷v T → U ⊢ v Y idY δ : Y ▷t T → Y ▷E U → ⊥
(@)

Πt

s : Y <: JΓK, δ : Y ,v : Y ▷v T → U ⊢ v Y idY δ (↑
sJtKt) : Y ▷E U → ⊥

(@)

ΠE

s : Y <: JΓK, δ : Y ,v : Y ▷v T → U ⊢ v Y idY δ (↑
sJtKt) (↑sJEKE) : ⊥

(@)

⊢ λYsδv .v Y idY δ (↑
sJtKt) (↑sJEKE) : ∀Y <: JΓK.Y → Y ▷v T → U → ⊥

(λ)

where:
• ΠE is a proof of s : Y <: JΓK ⊢ (↑sJEKE) : Y ▷E U , derived from the induction hypothesis for t and Lemma D.9;
• Πt is a proof of s : Y <: JΓK ⊢ (↑sJtKt) : Y ▷t T , derived from the induction hypothesis for E and Lemma D.9;
• Πδ is the axiom rule δ : Y ⊢ δ : Y ;
• Πs is the proof of ⊢ idY : Y <:Y .

3. Weak values

• Case JvKV. In the source language, we have:
Γ ⊢v v : T
Γ ⊢V v : T

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Hence, we have by induction hypothesis that ⊢ JvKv : JΓK ▷v T and we can derive:
F : Y ▷F T ⊢ F : ∀Y ′ <:Y .Y ′ → Y ′ ▷v T → ⊥ ΠY

s : Y <: JΓK, F : Y ▷F T ⊢ F Y idY : Y → Y ▷v T → ⊥
(@)

δ : Y ; ⊢ δ : Y
s : Y <: JΓK, δ : Y , F : Y ▷F T ⊢ F Y idY δ : Y ▷v T → ⊥

(@)
Πv

s : Y <: JΓK, δ : Y , F : Y ▷F T ⊢ F Y idY δ (↑
sJvKv) : ⊥

(@)

⊢ λYsδF .F Y idY δ (↑
sJvKv) : ∀Y <: JΓK.Y → Y ▷F T → ⊥

(λ)

where:
• Πv is a proof of s : Y <: JΓK ⊢↑sJvKv : Y ▷v T , derivable from the induction hypothesis and Lemma D.9.
• Πδ is the axiom rule δ : Y ⊢ δ : Y
• ΠY is a proof of ⊢ idY : Y <:Y (Proposition D.7)

• Case JxiKV. In the source language, we have:
Γ(i) = (xi : T)
Γ ⊢V xi : T

so that Γ is of the form Γ0, xi : T , Γ1 with i = |Γ0 |. By definition, we have:

JΓ0, xi : T , Γ1 ⊢ xi : T KV =λYsδF . split δ at i along (s : Y <: JΓ0K,T , JΓ1K) as (Y0, s0, δ0), x, (Y1, s1, δ1)

in x Y0 idY0 δ0 (λY
′
0s

′
0δ

′
0V .V (Y ′

0 ,T ;Y1) (⇑⇑Y1 idY ′
0
) (δ ′

0[↑
t V];↑s

′
0
+

δ1) (↑
σ ′

F))

where ↑tV = λZsδE.E Z idZ δ (↑sV) and σ ′ = (s ′+)+Y1 .

x : Y0 ▷t T ⊢ x : Y0 ▷t T ⊢ idY0 : Y0 <:Y0
(<:ax)

x : Y0 ▷t T ⊢ x Y0 idY0 : Y0 → Y0 ▷E T → ⊥
(∀E)

δ0 : Y0 ⊢ δ0 : Y0
(Ax)

s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▷t T ⊢ x Y0 idY0 δ0 : Y0 ▷E T → ⊥
(@)

ΠE

F : Y0,T ;Y1 ▷F T , s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▷t T , s1 : (Y0,T ;Y1 <: ϒ), δ1 : (Y0,T) ▷τ Y1 ⊢ x Y0 idY0 δ0 E : ⊥
(@)

Πs Πδ

(s : Y <: JΓ0K,T , JΓ1K), δ : Y , F : Y ▷F T ⊢ split δ at i along (s : Y <: JΓ0K,T , JΓ1K) as (Y0, s0, δ0), x, (Y1, s1, δ1) inx Y0 idY0 δ0 E : ⊥
(split)

⊢ λYsδF . split δ at i along s : Y <: JΓ0K,T , JΓ1K as (Y0, s0, δ0), x, (Y1, s1, δ1) inx Y0 idY0 δ0 E : ∀Y <: JΓK.Y → Y ▷F T → ⊥
(λ)

where:
• Πs is the axiom rule:

s : Y <: JΓ0K,T , JΓ1K ⊢ s : Y <: JΓ0K,T ; JΓ1K
(<:ax)

• Πδ is the axiom rule:
δ : Y ⊢ δ : Y

(τax)

• E = λY ′
0s

′
0δ

′
0V .V (Y ′

0 ,T ;Y1) (⇑⇑Y1 idY ′
0
) (δ ′

0[↑
t V];↑s

′
0
+

δ1) (↑
σ ′

F) and ΠE is the following derivation:

V : Y ′
0 ▷V T ; ⊢ V : Y ′

0 ▷t T
(Ax)

Γ ⊢⇑⇑Y1 idY ′
0

: Y ′
0 ,T ,Y1 <:Y ′

0
Γ,V : Y ′

0 ▷V T ⊢ V (Y ′
0 ,T ;Y1) (⇑⇑Y1 idY ′

0
) : (Y ′

0 ,T ,Y1) → (Y ′
0 ,T ,Y1) ▷F T → ⊥

(∀E)
Π′
τ

Γ, s ′0 : Y ′
0 <:Y0,V : Y ′

0 ▷V T ⊢ V (Y ′
0 ,T ;Y1) (⇑⇑Y1 idY ′

0
) (δ ′

0[↑
t V];↑s

′
0
+

δ1) : (Y ′
0 ,T ,Y1) ▷F T → ⊥

(@)

Πf

Γ, s ′0 : Y ′
0 <:Y0, δ

′
0 : Y ′

0 ,V : Y ′
0 ▷V T ⊢ V (Y ′

0 ,T ;Y1) (⇑⇑Y1 idY ′
0
) (δ ′

0[↑
t V];↑s

′
0
+

δ1) (↑
σ ′

F) : ⊥
(@)

Γ ⊢ λY ′
0s

′
0δ

′
0V .V (Y ′

0 ,T ;Y1) (⇑⇑Y1 idY ′
0
) (δ ′

0[↑
t V];↑s

′
0
+

δ1) (↑
σ ′

F) : Y0 ▷E T
(λ)

where Γ = F : Y0,T ;Y1 ▷F T , s0 : Y0 <: JΓ0K, δ0 : Y0, x : Y0 ▷t T , s1 : (Y0,T ;Y1 <: ϒ), δ1 : (Y0,T) ▷τ Y1.

• ΠF is the following proof, obtained by Lemma D.9:

F : (Y0,T ,Y1) ▷F T ; ⊢ F : (Y0,T ,Y1) ▷F T
(Ax)

s ′0 : Y ′
0 <:Y0 ⊢ s

′
0 : Y ′

0 <:Y0
(<:ax)

s ′0 : Y ′
0 <:Y0 ⊢ (s

′
0
+)+Y1 : Y ′

0 ,T ,Y1 <:Y0,T ,Y1
(<:ϒ+)

F : (Y0,T ,Y1) ▷F T ; s ′0 : Y ′
0 <:Yn

0 ⊢ (↑
σ ′

F) : (Y ′
0 ,T ,Y1) ▷F T

(↑σ)

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

• Π′
τ is the following derivation, where we use Lemmas F.1 and F.2:

δ ′0 : Y ′
0 ⊢ δ ′0 : Y ′

0
(τax)

V : Y ′
0 ▷V T ⊢↑tV : Y ′

0 ▷t T
(↑t)

Y ′
0 <:Y0, δ ′0 : Y ′

0,V : Y ′
0 ▷V T ⊢ δ ′0[↑

t V] : Y ′
0,T

(τ [t])
δ1 : (Y0,T) ▷τ Y1 ⊢ δ1 : (Y0,T) ▷τ Y1

(τax)
s ′0 : Y ′

0 <:Y0 ⊢ s : Y ′
0 <:Y0

(<:ax)

s ′0 : Y ′
0 <:Y0 ⊢ s ′0

+ : Y ′
0,T <:Y0,T

(<:+)

δ1 : (Y0,T) ▷τ Y1; s ′0 : Y ′
0 <:Y0 ⊢↑

s ′0
+

δ1 : Y ′
0,T ▷τ Y1

δ1 : (Y0,T) ▷τ Y1, s ′0 : Y ′
0 <:Y0, δ ′0 : Y ′

0,V : Y ′
0 ▷V T ⊢ δ ′0[↑

t V];↑s
′
0
+

δ1 : Y ′
0,T ,Y1

(τ <:)

4. Catchable contexts

• Case JFKE. This case is similar to the case JvKV.

• Case Jµ̃[xi].⟨xi || F ⟩τ ′KE. In the source language, we have:

Γ, xi : T , Γ′ ⊢F F : T⊥⊥ Γ, xi : T ⊢τ τ ′ : Γ′ |Γ | = i

Γ, Γ′′ ⊢E µ̃[xi].⟨xi || F ⟩τ
′ : T⊥⊥

We have by induction hypothesis a proof of ⊢ Jτ ′Kτ : JΓ, xi : T K ▷τ JΓ′K and a proof ΠF of ⊢ JFKF : JΓ, xi : T , Γ′K ▷F T .
We can thus derive:

V : Y ▷V T ⊢ V : Y ▷V T
(Ax)

⊢⇑T ;JΓ′Kidϒ : Y ,T ; JΓ′K<:Y
V : Y ▷V T ⊢ V (ϒ,T ; JΓ′K) σV : (Y ,T , JΓ′K) → (Y ,T , JΓ′K) ▷F T → ⊥

(∀E)
Πτ

s : Y <: JΓ, Γ′′K, δ : Y ,V : Y ▷V T ⊢ V (ϒ,T ; JΓ′K) σV (δ [↑t V]t ;↑στ Jτ ′Kτ) : (Y ,T , JΓ′K) ▷F T → ⊥
(@)

ΠF

s : Y <: JΓ, Γ′′K, δ : Y ,V : Y ▷V T ⊢ V (ϒ,T ; JΓ′K) σV (δ [↑t V]t ;↑στ Jτ ′Kτ) (↑σF JFKF) : ⊥
(@)

⊢ λYsδV .V (ϒ,T ; JΓ′K) σV (δ [↑t V]t ;↑στ Jτ ′Kτ) (↑σF JFKF) : JΓ, Γ′′K ▷F T
(λ)

where:
• στ = (s◦ ⇑ JΓ′′KidJΓK)

+,σF = σ
+JΓ′K
τ and σV =⇑A;JΓ′Kidϒ

• ΠF is the following proof, obtained by Lemma D.9:

⊢ F : (JΓK,T ; JΓ′K) ▷F T

s : Y <: JΓ, Γ′′K ⊢ s : Y <: JΓ, Γ′′K
(<:ax)

⊢ idJΓK : JΓK<: JΓK
⊢⇑ JΓ′′KidJΓK : JΓ, Γ′′K<: JΓK

(<:ϒ
⇑
)

s : Y <: JΓ, Γ′′K ⊢ s◦ ⇑ JΓ′′KidJΓK : Y <: JΓK
(<:◦)

s : Y <: JΓ, Γ′′K ⊢ ((s◦ ⇑ JΓ′′KidJΓK)
+)+JΓ′K : Y ,T ; JΓ′K<: JΓK,T , JΓ′K

(<:ϒ+)

s : Y <: JΓ, Γ′′K ⊢ (↑σFF) : (Y ,T , JΓ′K) ▷F T
(↑σ)

• Πτ is the following proof:

δ : Y ⊢ δ : Y
(Ax)

V : Y ▷V T ⊢ V : Y ▷V T
(Ax)

V : Y ▷V T ⊢↑tV : Y ▷t T
(↑t)

δ : Y ,V : Y ▷V T ⊢ δ [↑tV]t : Y ,T
(τ [t])

⊢ Jτ ′Kτ : JΓK,T ▷τ JΓ′K
see ΠF

s : Y <: JΓK ⊢ ((s◦ ⇑ JΓ′′KidJΓK)
+) : Y ,T <: JΓK,T

(<:+)

s : Y <: JΓ, Γ′′K ⊢↑s
+

Jτ ′Kτ : Y ,T ▷τ JΓ′K
(↑τ)

s : Y <: JΓ, Γ′′K, δ : Y ,V : Y ▷V T ⊢ (δ [↑tV]t ;↑στ Jτ ′Kτ)
(τ ;τ ′)

5. Terms

• Case JV Kt. This case is similar to the case JvKV.

• Case Jµαi .cKt. In the λ[lvτ⋆]-calculus, we have:

Γ,αi : T⊥⊥ ⊢c c |Γ | = i

Γ, Γ′ ⊢t µαi .c : T

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Hence we have by induction a proof of ; ⊢ JcKc : JΓ, xi : T⊥⊥K ▷c ⊥ and we can derive:

⊢ JcKc : JΓ, xi : T⊥⊥K ▷c ⊥
Πs

s : Y <: JΓ, Γ′K ⊢ (s◦ ⇑ JΓ′KidJΓK)
+ : Y ,T <: JΓK,T

(<:+)

s : Y <: JΓ, Γ′K, δ : Y ⊢ JcKc (ϒ,A⊥⊥) σΓ,Γ′ : (Y ,T⊥⊥) → ⊥
(∀E)

δ : Y ⊢ δ : ▷τ Y
(Ax)

E : Y ▷E T ⊢ E : Y ▷E T
(Ax)

δ : Y , E : Y ▷E T ⊢ δ [E] : ▷τ Y ,T⊥⊥
(τ [E])

s : Y <: JΓ, Γ′K, δ : Y , E : Y ▷E T ⊢ JcKc (ϒ,A⊥⊥) σΓ,Γ′ δ [E]E : ⊥
(@)

⊢ λYsδE.JcKc (ϒ,A⊥⊥) σΓ,Γ′ δ [E] : JΓ, Γ′K ▷t T
(λ)

where Πs is as in the first case for λxi .t .

6. Contexts

• Case JEKe. This case is similar to the case JvKV.

• Case Jµ̃xi .cKe. This case is similar to the case Jµαi .cKt.

7. Commands

• Case J⟨t || e⟩Kc. In the λ[lvτ⋆]-calculus we have:
Γ ⊢t t : T Γ ⊢e e : T⊥⊥

Γ ⊢c ⟨t || e⟩

thus we get by induction two proofs of ; ⊢ JtKt : JΓK ▷t T and ; ⊢ JeKc : JΓK ▷e T . We can then derive:

⊢ JeKe : JΓK ▷e T s : Y <: JΓK ⊢ s : Y <: JΓK
(<:ax)

s : Y <: JΓK, δ : Y ⊢ JeKe Y s : Y → Y ▷t T → ⊥
(∀E)

δ : Y ⊢ δ : Y
(Ax)

s : Y <: JΓK, δ : Y ⊢ JeKe Y s δ : Y ▷t T → ⊥
(τE)

⊢ JtKt : JΓK ▷t T s : Y <: JΓK ⊢ s : Y <: JΓK
(<:ax)

s : Y <: JΓK ⊢↑sJtKt : Y ▷t T
s : Y <: JΓK, δ : Y ⊢ JeKe Y s δ (↑

sJtKt) : ⊥
(@)

⊢ λYsδ .JeKe Y s δ (↑
sJtKt) : JΓK ▷c ⊥

(λ)

8. Closures

• Case Jcτ ′Kl. In the λ[lvτ⋆]-calculus, we have:
Γ, Γ′ ⊢c c Γ ⊢τ τ ′ : Γ′

Γ ⊢l cτ
′

We thus get by induction two proofs ⊢ Jτ ′Kτ : JΓK ▷τ JΓ′K and ⊢ JcKc : JΓ, Γ′K ▷c ⊥. We can derive:

⊢ JcKc : JΓ, Γ′K ▷c ⊥
s : Y <: JΓK ⊢ s : Y <: JΓK

(<:ax)

s : Y <: JΓK ⊢ (s+JΓ′K) : (Y ; JΓ′K)<: JΓ, Γ′K
(<:ϒ+)

s : Y <: JΓK ⊢ JcKc (Y ; JΓ′K) (s+JΓ′K) : (Y , JΓ′K) → ⊥
(∀E)

δ : Y ⊢ δ : Y
(Ax)

⊢ Jτ ′Kτ : JΓK ▷τ JΓ′K ⊢ s : Y <: JΓK
(<:ax)

⊢↑
sJτ ′Kτ : Y ▷τ JΓ′K

(↑τ)

s : Y <: JΓK ⊢ δ ;↑sJτ ′Kτ : Y JΓ′K
(τ ;τ ′)

s : Y <: JΓK, δ : Y ⊢ JcKc (Y ; JΓ′K) (s+JΓ′K) (δ ;↑s
′

Jτ ′Kτ) : ⊥
(τE)

⊢ λYsδ .JcKc (Y ; JΓ′K) (s+JΓ′K) (δ ;↑sJτ ′Kτ)
(λ)

9. Stores

• Case Jτ [xi := t]Kτ . We only consider the case τ [xi := t], the proof for the case τ [αi := E] is identical. This corresponds to
the typing rules:

Γ ⊢τ τ : Γ′ Γ, Γ′ ⊢t t : T |Γ, Γ′ | = i

Γ ⊢τ τ [xi := t] : Γ′, xi : T
By induction, we obtain two proofs of ⊢ Jτ Kτ : JΓK ▷τ JΓ′K and ⊢ JtKt : JΓ, Γ′K ▷t T . We can thus derive by Lemma F.1:

⊢ Jτ Kτ : JΓK ▷τ JΓ′K ⊢ JtKt : JΓ, Γ′K ▷t T
⊢ Jτ Kτ [JtKt] : JΓK ▷τ JΓ′K,T

(τ [t])

□

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

JΓi , Γ′ ⊢ λxi .t : A → BKV ϒ σ τ u E ≜ JtKt (ϒ,A) σΓi ,Γ′ τ [u] ↑
⇑idϒE JkKV ≜ k

Jt · EKE ϒ σ τ v ≜ v ϒ idϒ τ (↑
σJtKt) (↑σJEKE) JκKE ≜ κ

JαiKE ϒ σ τ V ≜ split τ at i along σ as (Y0, s0, δ0), x, (Y1, s1, δ1) inx ϒ (⇑⇑Y1 idY0) τ V

JV Kt ϒ σ τ E ≜ E ϒ idϒ τ (↑
σJV KV) JΓi , Γ′ ⊢ µαi .c : AKt ϒ σ τ E ≜ JcKc (ϒ,A⊥⊥) σΓi ,Γ′ τ [E]

JxiKt ϒ σ τ E ≜ split τ at i along σ as (Y0, s0, δ0), x, (Y1, s1, δ1) inx ϒ (⇑⇑Y1 idY0) τ E

JEKe ϒ σ τ t ≜ t ϒ idϒ τ (↑
σJEKE) JΓi , Γ′ ⊢ µ̃xi .c : A⊥⊥Ke ϒ σ τ t ≜ JcKc (ϒ,A) σΓi ,Γ′ τ [t]

J⟨t || e⟩Kc ϒ σ τ ≜ JeKe ϒ σ τ (↑
σJtKt) Jcτ ′Kl ϒ σ τ ≜ JcKc (ϒ; Γ′) (σ+JΓ′K) (τ ;↑σJτ ′Kτ) where† τ ′ : Γ′

JεKτ ≜ ε Jτ0[xi := t]Kτ ≜ Jτ0Kτ [JtKt] Jτ0[αi := E]Kτ ≜ Jτ0Kτ [JEKE]

†τ ′ : Γ′ in the source of the translationwhere idϒ = ε+ϒ , σΓ,Γ′ ≜ (σ◦ ⇑JΓ′KidJΓK)
+ and Γi indicates that |Γ | = i

(a) Translation of terms

JΓ ⊢e e : T⊥⊥K ≜ ⊢ JeKe : JΓK ▷e T
JΓ ⊢t t : T K ≜ ⊢ JtKt : JΓK ▷t T
JΓ ⊢E E : T⊥⊥K ≜ ⊢ JEKE : JΓK ▷E T
JΓ ⊢V V : T K ≜ ⊢ JV KV : JΓK ▷V T

JΓ ⊢c cK ≜ ⊢ JcKc : JΓK ▷c ⊥
JΓ ⊢l lK ≜ ⊢ JlKl : JΓK ▷c ⊥
JΓ ⊢τ τ : Γ′K ≜ ⊢ Jτ Kτ : JΓK ▷τ JΓ′K

JεK ≜ ε

JΓ, xi : T K ≜ JΓK,T
JΓ,αi : T⊥⊥K ≜ JΓK,T⊥⊥

ϒ ▷c T ≜ ∀Y <: ϒ.Y → ⊥

ϒ ▷e T ≜ ∀Y <: ϒ.Y → (Y ▷t T) → ⊥

ϒ ▷t T ≜ ∀Y <: ϒ.Y → (Y ▷E T) → ⊥

ϒ ▷E T ≜ ∀Y <: ϒ.Y → (Y ▷V T) → ⊥

ϒ ▷V X ≜ X

ϒ ▷V T → U ≜ ∀Y <: ϒ.Y → (Y ▷t T) → (Y ▷E U) → ⊥

ϒ ▶ T ≜ ϒ ▷t T

ϒ ▶ T⊥⊥ ≜ ϒ ▷E T

(b) Translation of types and judgments

Figure 17. Call-by-name continuation-and-environment-passing style translation

G A typed call-by-name translation
We first rephrase the reduction rules to use de Bruijn levels:

⟨t || µ̃xi .c⟩τ → c[xn/xi]τ [xn := t] with |τ | = n
⟨µαi .c || E⟩τ → c[αn/αi]τ [αn := E] with |τ | = n
⟨xn || E⟩τ → ⟨τ (n) || E⟩τ
⟨V || αn⟩τ → ⟨V || τ (n)⟩τ

⟨λxi .t ||u · E⟩τ →
〈
u
���� µ̃xi .⟨t || E⟩〉τ

We give in Figure 17 the full translation for the call-by-name λ̄µµ̃-calculus with global environment. Once again, we have:
Theorem 4.2. The translation is well-typed, i.e.:

1. If Γ ⊢V V : T then JΓ ⊢V V : T K
2. If Γ ⊢E E :T⊥⊥ then JΓ ⊢E E : T⊥⊥K
3. If Γ ⊢t t : T then JΓ ⊢t t : T K
4. If Γ ⊢e e : T⊥⊥ then JΓ ⊢e e : T⊥⊥K

5. If Γ ⊢c c then JΓ ⊢c cK
6. If Γ ⊢l l then JΓ ⊢l lK
7. If Γ ⊢τ τ then JΓ ⊢τ τ : Γ′K

Proof. The proof is very similar (and easier) than the proof in the call-by-need case, by induction on typing derivations. In
particular, all the lemmas proved in Appendix F also hold for the call-by-name translation. □

It is interesting to observe that even though terms are stored once and for all in call-by-name, the use of a global environment
forces us to quantify over arbitrary extensions of the store. Indeed, through the translation each (typed) term t is waiting
for a store whose type should match its former typing context. Yet, many computations may happen before JtKt is evaluated,
corresponding to other branches of the global typing derivation. As a consequence, the store may contain arbitrarily more
elements at that time.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

Example G.1. Consider a term x : A,y : B ⊢t u : C , through the translation we will thus have ⊢ JuKt : A,B ▷t C → D. Now,
imagine that we dispose of three valuesV0,V1,V2 respectively of types A,B,C , we can thus construct three closed terms t0, t1, t2
such that, given a continuation, ti is going to produce arbitrary computations (and in particular store arbitrarily many terms,
let us denote the resulting store by τi : ®Ui) before returning Vi to its continuation. These terms can thus be assigned the types
(A → D) → D, (B → D) → D, (C → D) → D, and the closed term tu ≜ t0(λx .t1(λy.t2u)) can thus be typed by ⊢ tu : D. Now, if
tu is evaluated in an initially empty store, at the moment where uV2 will be evaluated, the store will be τ0[x := V0]τ1[y := V1]τ2
of type ®U0,A, ®U1,B, ®U2.

A calculus of expandable stores Hugo Herbelin and Étienne Miquey

JΓi , Γ′ ⊢ λxi .t : A → BKV ϒ σ τ u E ≜ JtKt (ϒ,A) σΓi ,Γ′ τ [u] ↑
⇑idϒE JkKV ≜ k

JxiKV ϒ σ τ ≜ split τ at i along σ as (Y0, s0, δ0), x, (Y1, s1, δ1) inx ϒ (⇑⇑Y1 idY0) τ

Jt · EKe ϒ σ τ V ≜ V ϒ idϒ τ (↑
σJtKt) (↑σJEKE) JκKe ϒ σ τ V ≜ V ϒ idϒ κ

JαiKe ϒ σ τ V ≜ split τ at i along σ as (Y0, s0, δ0), x, (Y1, s1, δ1) inx ϒ (⇑⇑Y1 idY0) τ V

JΓi , Γ′ ⊢ µ̃xi .c : A⊥⊥Ke ϒ σ τ V ≜ JcKc (ϒ,A) σΓi ,Γ′ τ [V]

JV Kt ϒ σ τ e ≜ e ϒ idϒ τ (↑
σJV KV)

JΓi , Γ′ ⊢ µαi .c : AKt ϒ σ τ e ≜ JcKc (ϒ,A⊥⊥) σΓi ,Γ′ τ [e]

J⟨t || e⟩Kc ϒ σ τ ≜ JtKt ϒ σ τ (↑
σJeKe) Jcτ ′Kl ϒ σ τ ≜ JcKc (ϒ; Γ′) (σ+JΓ′K) (τ ;↑σJτ ′Kτ) where† τ ′ : Γ′

JεKτ ≜ ε Jτ0[xi := V]Kτ ≜ Jτ0Kτ [JV KV] Jτ0[αi := e]Kτ ≜ Jτ0Kτ [JeKe]

†τ ′ : Γ′ in the source of the translationwhere idϒ = ε+ϒ , σΓ,Γ′ ≜ (σ◦ ⇑JΓ′KidJΓK)
+ and Γi indicates that |Γ | = i

(a) Translation of terms

JΓ ⊢t t : T K ≜ ⊢ JtKt : JΓK ▷t T
JΓ ⊢e e : T⊥⊥K ≜ ⊢ JeKe : JΓK ▷e T
JΓ ⊢V V : T K ≜ ⊢ JV KV : JΓK ▷V T

JΓ ⊢c cK ≜ ⊢ JcKc : JΓK ▷c ⊥
JΓ ⊢l lK ≜ ⊢ JlKl : JΓK ▷c ⊥
JΓ ⊢τ τ : Γ′K ≜ ⊢ Jτ Kτ : JΓK ▷τ JΓ′K

JεK ≜ ε

JΓ, xi : T K ≜ JΓK,T
JΓ,αi : T⊥⊥K ≜ JΓK,T⊥⊥

ϒ ▷c T ≜ ∀Y <: ϒ.Y → ⊥

ϒ ▷t T ≜ ∀Y <: ϒ.Y → (Y ▷e T) → ⊥

ϒ ▷e T ≜ ∀Y <: ϒ.Y → (Y ▷V T) → ⊥

ϒ ▷V X ≜ X

ϒ ▷V T → U ≜ ∀Y <: ϒ.Y → (Y ▷V T) → (Y ▷e U) → ⊥

ϒ ▶ T ≜ ϒ ▷V T

ϒ ▶ T⊥⊥ ≜ ϒ ▷e T

(b) Translation of types and judgments

Figure 18. Call-by-value continuation-and-environment-passing style translation

H A typed call-by-value translation
To illustrate the generality of our construction, we give one more example by giving a typed continuation-and-environment-
passing style translation for the call-by-value λ̄µµ̃-calculus with explicit environments. Its syntax is given by:

Values V ::= λxi .t | xi | k
Terms t,u ::= V | µαi .c

Co-values E ::= t · e | αi | κ
Contexts e ::= E | µ̃xi .c

Environment τ ::= ε | τ [xi := V] | τ [αi := E]
Commands c ::= ⟨t || e⟩
Closures l ::= cτ

while the reduction rules are given by:
(Catch)
(Let)
(Lookupx)
(Lookupα)
(Beta)

⟨µαi .c || e⟩τ → c[αn/αi]τ [αn := e] with |τ | = n
⟨V || µ̃xi .c⟩τ → c[xn/xi]τ [xn := V] with |τ | = n
⟨V || αn⟩τ → ⟨V || τ (n)⟩τ
⟨xn || E⟩τ → ⟨τ (n) || E⟩τ

⟨λxi .t ||u · e⟩τ →
〈
u
���� µ̃xi .⟨t || e⟩〉τ

The main specificity of the translations is that since only values can be stored in environments, we define ϒ ▶ T = ϒ ▷V T .
The translations of types and judgments, is very similar to the translation in the call-by-name and call-by-need settings, but
adapted to match the alternation of levels in the operational semantics. Namely, since terms at level t are first analyzed, then
context at level e and finally values, the translation follows the same hierarchy. Again, we have:

Theorem H.1. The translation is well-typed, i.e.:
1. If Γ ⊢V V : T then JΓ ⊢V V : T K
2. If Γ ⊢e e : T⊥⊥ then JΓ ⊢e e : T⊥⊥K
3. If Γ ⊢t t : T then JΓ ⊢t t : T K

4. If Γ ⊢c c then JΓ ⊢c cK
5. If Γ ⊢l l then JΓ ⊢l lK
6. If Γ ⊢τ τ then JΓ ⊢τ τ : Γ′K

	Abstract
	1 Computing with global environments
	1.1 The Milner Abstract Machine
	1.2 The Milner Abstract Machine By-Need
	1.3 The -calculus with global environments
	1.4 The [lv]-calculus
	1.5 De Bruijn levels

	2 Towards typed CEPS translations
	2.1 Guidelines of the translation

	3 F: a calculus of expandable stores
	3.1 Core calculus
	3.2 Reduction rules
	3.3 Expressiveness

	4 Implementation for simply typed calculi
	4.1 A typed call-by-need translation for the [lv]-calculus
	4.2 A typed call-by-name translation for the [lv]-calculus
	4.3 Using System F as source calculus

	5 Conclusion
	Acknowledgments
	References
	A Simulations of Milner Abstract Machines with sequent calculi
	A.1 The MAM and the call-by-name -calculus with global environments
	A.2 The MAD and the [lv]-calculus

	B The [lv]-calculus
	B.1 Definitions
	B.2 The necessity of -renaming
	B.3 De Bruijn levels

	C Context-free abstract machines
	C.1 The named context-free abstract machine for the [lv]-calculus
	C.2 Context-free abstract machine for the call-by-name -calculus with environments

	D Properties of System F
	D.1 Coercions
	D.2 Subject reduction
	D.3 Normalization

	E Shallow embedding in Coq
	F Proof of well-typedness
	G A typed call-by-name translation
	H A typed call-by-value translation

