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Abstract: Many strongly coupled field theories admit a spectrum of gauge-invariant

bound states that includes scalar particles with the same quantum numbers as the vacuum.

The challenge naturally arises of how to characterise them. In particular, how can a dilaton

— the pseudo-Nambu-Goldstone boson associated with approximate scale invariance — be

distinguished from other generic light scalars with the same quantum numbers? We address

this problem within the context of gauge-gravity dualities, by analysing the fluctuations of

the higher-dimensional gravitational theory. The diagnostic test that we propose consists

of comparing the results of the complete calculation, performed by using gauge-invariant

fluctuations in the bulk, with the results obtained in the probe approximation. While

the former captures the mixing between scalar and metric degrees of freedom, the latter

removes by hand the fluctuations that source the dilatation operator of the boundary field-

theory. Hence, the probe approximation cannot capture a possible light dilaton, while it

should fare well for other scalar particles.

We test this idea on a number of holographic models, among which are some of the

best known, complete gravity backgrounds constructed within the top-down approach to

gauge-gravity dualities. We compute the spectra of scalar and tensor fluctuations, that are

interpreted as bound states (glueballs) of the dual field theory, and we highlight those cases

in which the probe approximation yields results close to the correct physical ones, as well

as those cases where significant discrepancies emerge. We interpret the latter occurrence as

an indication that identifying one of the lightest scalar states with the dilaton is legitimate,

at least as a leading-order approximation.
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1 Introduction

The dilaton is the hypothetical particle associated with the spontaneous breaking of (ap-

proximate) scale invariance. It arises in a way that parallels the pseudo-Nambu-Goldstone

Bosons (pNGBs) associated with the spontaneous breaking of internal symmetries: it is a

spin-0 particle, the mass of which is suppressed by an approximate bosonic symmetry. A

distinctive feature of the dilaton is that its couplings are controlled by symmetry-breaking

parameters, that also provide a mass for the dilaton. In general, the spin-0 mass eigenstates

(particles) of a theory can be sourced both by individual field theory operators, or by the

dilatation operator, and mixing effects can be large. Such mixing disappears completely

only in the limit in which scale symmetry is exact (but spontaneously broken), which is

also the limit in which the massless dilaton decouples.

The programme of describing the long-distance dynamics of the dilaton in terms of a

weakly coupled Effective Field Theory (EFT) has been ongoing for a long time (see for

instance ref. [1]). This programme has gained renewed attention is recent years (see for

example refs. [2–12]), in conjunction with experimental searches carried out at the Large

Hadron Collider (LHC), which led to the discovery of the Higgs boson [13, 14]. Even in

the minimal realisation of the Standard Model, the Higgs particle is itself an approximate

dilaton. In new physics scenarios in which a dilaton emerges as a composite particle — as

advocated a long time ago in the context of dynamical symmetry breaking [15–17] — it

might play a role in explaining at a fundamental level the origin of the Higgs boson.

– 1 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
7

In a different context, lattice results on SU(3) gauge theories with Nf = 8 fundamental

Dirac flavours [18–22], or Nf = 2, 2-index symmetric Dirac flavours [23–27], have shown

indications that such theories present in the spectrum an anomalously light scalar, flavour-

singlet state, that it is tempting to interpret as a dilaton. This finding stimulated another

branch of studies of the EFT describing the coupling of the dilaton to the light pNGBs

associated with approximate chiral symmetry [28–41]

The fundamental theoretical questions that all the aforementioned works are trying to

address can be summarised in a simplified way as follows. What type of fundamental four-

dimensional theories yield a dilaton in the spectrum? What are the phenomenologically

measurable and distinctive properties (couplings) of such a particle? Could it be that the

Higgs particle is at the fundamental level a composite dilaton emerging from a strongly

coupled field theory? And above all stands the question we address in this paper: how can

one distinguish between a (pseudo-)dilaton and other generic light scalar particles, that

have the same quantum numbers? We will address this question in the restricted context

of models that can be studied with the tools provided by gauge-gravity dualities.

The study of the strong-coupling regime of field theories has undergone a paradigm

change in the past twenty years, because of the advent, within string theory, of gauge-

gravity dualities (or holography) [42–44] (see ref. [45] for an introductory review on the

subject). Some special, strongly-coupled, four-dimensional field theories admit an equiv-

alent description in terms of a dual, weakly-coupled, gravity theory in higher dimensions.

Observable quantities can be extracted from the boundary-to-boundary correlation func-

tions of the gravity theory, along the prescription of holographic renormalisation [46] (ped-

agogical introductions are given in refs. [47, 48]).

Papers on the dilaton in the context of holography have proliferated quite copiously,

both in reference to the Goldberger-Wise (GW) stabilisation mechanism [49–55], as well as

in dedicated studies of holographic models (see for example [56–68]), thanks in parts to the

comparative ease with which systematic and rigorous calculations can be performed, within

a wide variety of models. Within the rigorous top-down approach to holography, in which

the gravity theory is derived from string theory or M-theory, in many cases the important

long-distance properties are captured by a sigma-model theory coupled to gravity, that re-

stricts the low-energy supergravity description to retain only a comparatively small number

of degrees of freedom. The calculation of the spectrum of fluctuations of the sigma-model

coupled to gravity can be performed algorithmically, by adopting the formalism developed

in the series of papers in refs. [69–73].

We review the procedure for computing mass spectra. One must solve a set of cou-

pled, linearised second-order differential equations for the small fluctuations, subject to

appropriate boundary conditions. They describe physical states that result from the mix-

ing between fluctuations of the scalar fields with the scalar parts of the fluctuations of

the metric. In particular, the trace of the four-dimensional part of the fluctuations of the

metric is naturally associated with the trace of the stress-energy tensor in the dual field

theory, the operator that sources the dilaton.

This paper addresses the aforementioned question about identifying the dilaton in the

context of holography. When computing the (gauge-invariant) spectrum of scalar fluctua-
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tions of the sigma-model coupled to gravity, if one of the spin-0 particles is somewhat light,

compared to the rest of the spectrum, how can one determine whether such particle is a

dilaton of the dual field theory? In principle, this could be done by simply computing the

couplings of the particle, and trying to match the results to the dilaton EFT. In practice,

such calculations are not at all simple, but more often than not they require prohibitively

convoluted numerical work. Furthermore, a conceptual difficulty arises because of the dif-

ferent nature of the dilaton with respect to other pNGBs: the limit in which scale symmetry

is broken only spontaneously is somewhat pathological, as in this limit all the couplings of

the dilaton vanish identically. We propose a pragmatic strategy to answer the complemen-

tary question: how can we exclude that such a scalar particle be a dilaton, even partially?

To this purpose, we propose to repeat the calculation of the spectra by making a

drastic approximation: ignore in the equations of motion (and boundary conditions) the

fluctuations of the metric, hence disregarding the effect of their mixing with the fluctuations

of the sigma-model scalars. We will refer to this as the probe approximation. It has

some resemblance to the quenched approximation used occasionally by lattice field theory

practitioners. As its lattice counterpart, it is flawed at the conceptual level, because, by

ignoring the fluctuations of certain fields, it introduces non-local deformations of the theory

that may compromise gauge invariance, causality and unitarity. Yet, as is again the case

in the lattice quenched approximation, the probe approximation may teach us something

useful thanks to the simplification it introduces. Somewhat paradoxically, and in parallel

with the quenched approximation on the lattice, the better the probe approximation works,

the less interesting the underlying dynamics is. If the probe approximation yields sensible

results, that agree with the complete, gauge-invariant ones, then one can conclude that

neglecting the mixing with the dilaton is admissible, which indicates that the scalar particle

is not, even approximately, to be identified with the dilaton. Our implementation of the

probe approximation has more general applicability than the quenched approximation,

which we mention here only as an analogy. The process we develop requires breaking the

gauge symmetry of the gravity description, that is essential for consistency of the bulk

theory, and hence does not have a clean equivalent in the dual field theory defined at the

boundary of the space.

Our intent is mostly to establish in principle that this technique can be used as a

diagnostic tool. We explain in detail how to perform the calculations, and then apply

the resulting procedure to a few classes of comparatively simple examples. But we choose

our examples to include some of the most interesting background solutions of supergravity

theories known in the literature.

In passing, we will also try to address another open question in the literature on gauge

theories. It is known from lattice studies that the spectrum of glueballs consists of a rather

complicated set of states, of all possible integer spins, with masses that, at first glance,

do not show particularly striking features. Yet, upon more careful examination, some

commonly occurring features seem to emerge. The lightest spin-0, parity- and charge-

conjugation invariant particle, has a mass somewhat lighter than the rest. A peculiar

pattern emerges if one inspects the fine details of the properties of this particle; for example,

the conjectured Casimir scaling [74] of its mass appears to be supported surprisingly well by
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current lattice studies of Yang-Mills glueballs [75–81]. This pattern would admit a natural

explanation if the lightest scalar glueball is approximately a dilaton (see also ref. [82]).

More generally, it has been proposed that the ratio of masses of the lightest scalar and

tensor states might capture some general properties of the dynamics [83], which could be a

consequence of the breaking of scale invariance, and the special role played by the dilatation

operator and the stress-energy tensor.

As anticipated, we restrict our examples to comparatively simple, yet physically well

motivated systems. We first devote section 2 to reviewing the formalism we apply in

computing the spectra of bound states of four-dimensional theories, in particular by defining

the gauge-invariant variables in the five-dimensional gravity theory, as well as the probe

approximation. Our first application in section 3.1 is given by a simple realisation of the

GW mechanism, built from phenomenological considerations. The model is both easy to

compute with, as well as to interpret. However, it does not descend from string theory

or M-theory, it is not the dual of any field theory, and it does not capture correctly the

physics of confinement, at long distances.

The examples in sections 3.2, 3.3, and 3.4, are chosen from the body of work on top-

down holographic models: supergravity theories that are known to represent low-energy

limits of superstring theory or M-theory. We require regularity of the models in the region

of the geometry corresponding to the far-UV of the field theory: all their geometries are

asymptotically AdSD, with D > 4. The UV asymptotic geometry is (locally) AdS5 for the

model in section 3.2, AdS6 for the model in section 3.3 and AdS7 for the model in section 3.4.

The supersymmetric AdSD solutions of supergravity have been classified by Nahm [84] (see

also refs. [85, 86]), and no such solutions exist for D > 7. Yet, non-supersymmetric solutions

might be discovered in higher dimensions (see for instance ref. [87]), hence in section 3.5 we

consider the reduction on a torus of a generic gravity theory admitting an AdSD background

geometry. We also require that the models describe the dual of a confining gauge theory

in four dimensions, at least in the sense of dynamically generating a mass gap, and hence

focus our attention on solutions for which the geometry closes smoothly at a finite value

of the holographic coordinate.

The combination of the aforementioned three requirements — simplicity, asymptotic

AdS behaviour, and confinement — restricts quite drastically the examples we provide.

Most importantly, we will not consider in this paper gravity backgrounds with UV be-

haviour related to the conifold [88–93], among which the most persuasive evidence of the

existence of the holographic dilaton has been found to date [67, 68]. We defer such (highly

non-trivial) investigations to future dedicated studies.

We also include in section 4 the generalisation to D-dimensional gravity theories of

the formalism we use for the fluctuations, including the definition of the probe approxi-

mation. We exemplify the application of the resulting generalised equations to the circle

compactification of the system yielding the AdS5 × S5 background. The calculation of the

physical spectra has been performed before by the authors of ref. [94], and our results agree

with theirs, where the comparison is possible. Nevertheless, we report in section 4.1 the

details of our calculation, as the formalism we use is different from that adopted in ref. [94],

and hence these results provide an interesting consistency check. Furthermore, the probe
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approximation yields useful insight into the properties of the physical states, and connects

this model to those in sections 3.3, 3.4, and 3.5.

2 Five-dimensional holographic formalism

We consider five-dimensional sigma-models of n scalars coupled to gravity. We adopt the

formalism developed in [69–73], and follow the notation of [73]. We focus on gravity back-

grounds in which one of the dimensions is a segment, parameterised by the (holographic)

coordinate r1 < r < r2. The background metric has the form

ds2
5 = e2Adx2

1,3 + dr2 , (2.1)

with dx2
1,3 the four-dimensional measure, defined by the flat Minkowski metric ηµν ≡

diag(−1, 1, 1, 1). Greek indexes refer to four-dimensional quantities: µ, ν = 0, 1, 2, 3. In

order to preserve 4d Poincaré invariance manifestly, we choose backgrounds for which

A = A(r), dependent only on the radial direction r. The action of the scalars Φa, with

a = 1, · · · , n, is written as follows:

S5 =

∫
d5x

{√
−g
[
R

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V (Φa)

]
−
√
−g̃δ(r − r1)

[
λ(1)(Φ

a) +
K

2

]
+
√
−g̃δ(r − r2)

[
λ(2)(Φ

a) +
K

2

]}
, (2.2)

where g is the determinant of the metric gMN defined by eq. (2.1), with M,N = 0, 1, 2, 3, 5,

the indexes in five dimensions. R denotes the Ricci scalar in five dimensions, Gab(Φ
c) is

the metric in the internal space of the sigma model (which is a function of the scalar

fields Φc), V (Φa) is the potential in the sigma model. The boundary-localised terms in

eq. (2.2) depend on the induced metric. Given that the orthonormalised vector to the

boundary is NM = (0, 0, 0, 0, 1), one finds that the induced metric is g̃MN ≡ gMN −
NMNM = diag(e2Aηµν , 0). The Gibbons-Hawking-York boundary term is written with

K ≡ g̃MNKMN = 4∂rA, where the extrinsic curvature tensor is KMN ≡ ∇MNM , the

curved-space covariant derivative of the orthonormal vector to the boundary surface. Notice

that this choice of orthonormal vector is the reason for the difference in sign of the two

boundary terms in eq. (2.2). Finally, the boundary-localised potentials λ(i)(Φ
a) depend

only on the scalars, and are discussed in detail in ref. [73].

The equations of motion satisfied by the background scalars, in which we assume that

the profiles Φa(r) depend only on the radial direction, are the following:

∂2
rΦa + 4∂rA∂rΦ

a + Gabc∂rΦb∂rΦ
c − V a = 0 , (2.3)

for a = 1, · · · , n. The sigma-model derivatives are given by V a ≡ Gab∂bV , and ∂bV ≡ ∂V
∂Φb

.

We denote by Gab the inverse of the sigma-model metric, while the sigma-model connection

is defined, in analogy with the gravity connection, as

Gdab ≡
1

2
Gdc

(
∂aGcb + ∂bGca − ∂cGab

)
. (2.4)

– 5 –
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The Einstein equations reduce to

6(∂rA)2 + 3∂2
rA+Gab∂rΦ

a∂rΦ
b + 2V = 0 , (2.5)

6(∂rA)2 −Gab∂rΦa∂rΦ
b + 2V = 0 . (2.6)

The boundary terms are chosen in such a way that the variational problem is well defined.

This fixes the coefficient of the Gibbons-Hawking-York term, as well as the vacuum value

of λ(i)(Φ) and its first field derivative [73].

If one can find a superpotential W (Φc), such that the potential satisfies the relation

V ≡ 1

2
GabWaWb −

4

3
W 2 , (2.7)

then one can consider the system of first-order equations given by

∂rA = −2

3
W , (2.8)

∂rΦ
a = W a ≡ Gab ∂W

∂Φb
, (2.9)

the solutions of which are automatically guaranteed to satisfy the background equations.

Once a solution to the background equations has been identified, we parametrise its

fluctuations according to

Φa(xµ, r) = Φa(r) + ϕa(xµ, r) , (2.10)

and we adopt the ADM formalism to write the fluctuations of the metric as follows:

ds2
5 = ((1 + ν)2 + νσν

σ)dr2 + 2νµdxµdr + e2A(ηµν + hµν)dxµdxν , (2.11)

hµν = (hTT )µν + iqµεν + iqνε
µ +

qµqν
q2

H +
1

3
δµνh , (2.12)

where hTT is the transverse and traceless part of the fluctuations of the metric and εµ is

transverse. As described elsewhere [69–71, 73], the linearised equations can be written in

terms of the physical, gauge-invariant variables, given by

aa = ϕa − ∂rΦ
a

6∂rA
h , (2.13)

b = ν − 1

6
∂r

(
h

∂rA

)
, (2.14)

c = e−2A∂µν
µ +

e−2Aq2

6∂rA
h− 1

2
∂rH , (2.15)

dµ = e−2AΠµ
νν

ν − ∂rεµ , (2.16)

eµν = (hTT )µν . (2.17)

(The transverse projector is defined by Πµ
ν ≡ δµν − qµqν

q2
.)
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The equations of motion for the gauge-invariant fluctuations are the following [73]:

0 =
[
D2
r + 4∂rADr − e−2Aq2

]
aa −

[
V a
|c −R

a
bcd∂rΦ

b∂rΦ
d
]
ac+

− ∂rΦa
(
c + ∂rb

)
− 2V a b , (2.18)

b =
2∂rΦ

bGbaa
a

3∂rA
, (2.19)

0 = ∂rc + 4∂rA c + e−2Aq2 b , (2.20)

where the background covariant derivative is Draa ≡ ∂raa + Gabc∂rΦb ac, the sigma-model

covariant derivative of the potential is V a
|b ≡ ∂bV

a+GabcV c, and the sigma-model Riemann

tensor is Rabcd ≡ ∂cGabd− ∂dGabc +GebdGace−GebcGade. Given that eqs. (2.19) and (2.20)

are algebraic, we can solve them and replace into eq. (2.18), which yields the general,

gauge-invariant equation for the n scalar fluctuations:

0 =
[
D2
r + 4∂rADr − e−2Aq2

]
aa+

−
[
V a
|c −R

a
bcd∂rΦ

b∂rΦ
d +

4(∂rΦ
aVc + V a∂rΦc)

3∂rA
+

16V ∂rΦ
a∂rΦc

9(∂rA)2

]
ac . (2.21)

The boundary conditions are obtained in a similar manner. We take the limit in which the

boundary-localised mass terms diverge (which reproduces the choice of Dirichlet boundary

conditions for the fluctuations of the sigma-model scalars), in which case the boundary

conditions are given by [73]:

∂rΦ
a∂rΦ

dGdbDrab
∣∣∣
ri

=

[
3∂rA

2

q2

e2A
δab + ∂rΦ

a

(
4V

3∂rA
∂rΦ

dGdb + Vb

)]
ab
∣∣∣∣
ri

. (2.22)

The gauge-invariant fluctuations aa have a clear physical interpretation. They result

from the mixing of the fluctuations of the scalars ϕa and the trace of the four-dimensional

part of the metric h. The former is connected with the (scalar) field-theory operators at the

boundary, the latter with the trace of the stress-energy tensor of the boundary theory. The

generic scalar particle results from the admixture that is sourced by both types of operators.

The couplings of the resulting state are going to be well approximated by those of the

dilaton if the h component in eq. (2.13) is dominant, so that aa ∼ ∂rΦa

6∂rA
h. Conversely, in

the probe approximation one neglects completely the back-reaction on gravity in computing

spectra and other physical quantities, and this is accurate only provided one can neglect

the contribution of h in eq. (2.13), by identifying aa ∼ ϕa.
Let us assume that one can expand the fluctuations as a power series in the small

quantity ∂rΦa

6∂rA
� 1, and truncate the expansion at some finite order. If we truncate at the

leading order, we recover the probe approximation. Eqs. (2.19) and (2.20) are solved in

this case by setting b = 0 = c, and as a consequence the background equations simplify

greatly, to read

0 =
[
D2
r + 4∂rADr − e−2Aq2

]
aa −

[
V a
|c −R

a
bcd∂rΦ

b∂rΦ
d
]
ac , (2.23)

– 7 –
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while the boundary conditions reduce to

0 = aa
∣∣∣
ri
. (2.24)

We hence propose to perform the calculation of the spectra of scalar fluctuations in

two ways. First, by solving the exact, gauge-invariant eqs. (2.21), subject to the boundary

conditions in eqs. (2.22), and finding the spectrum of masses M2 ≡ −q2 > 0. Subsequently,

we repeat the calculation on the same background, but by using the probe approximation

and solving eqs. (2.23), subject to the boundary conditions in eqs. (2.24). We anticipate

that if the two processes result in spectra that are very close to one another, then the probe

approximation is valid, and none of the states observed can be identified with the dilaton.

If otherwise, mixing of the scalar fluctuations with the dilaton is important.

Finally, we also compute the spectrum of fluctuations of tensor modes. The bulk

equations are written in the following form [73][
∂2
r + 4∂rA∂r + e−2AM2

]
eµν = 0 , (2.25)

and are subject to Neumann boundary conditions

∂re
µ
ν

∣∣∣
ri

= 0 . (2.26)

We anticipate that in the numerical calculations we will normalise the spectra in units of

the lightest tensor mode, as a way to set a universal scale in comparing between different

gravity backgrounds (and dual field theories).

3 Applications

In this section, we survey several classes of holographic models that describe, at least up

to some given approximation, the asymptotically-AdS duals of confining, strongly coupled

field theories in four dimensions. We will start with models that do not have their origin in

rigorous supergravity, yet admit a simple field-theory interpretation. We then proceed to

examine some of the most celebrated models that have their origin in higher-dimensional

supergravity.

3.1 Example A: the Goldberger-Wise system

Following the notation of ref. [50], we discuss the five-dimensional theory consisting of one

single, real scalar field Φ with canonical kinetic term, and the quadratic superpotential

W = −3

2
− ∆

2
Φ2 , (3.1)

such that the potential is given by

V = −3 +
1

2
(∆2 − 4∆)Φ2 − 1

3
∆2Φ4 . (3.2)

The normalisations are chosen so that for Φ = 0 the background has AdS5 geometry, with

unit curvature, and the putative dual theory is scale invariant.

– 8 –
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The parameter ∆ is a real number, and can be identified with the (mass) dimension

either of the operator condensing in the dual field theory (in case of spontaneous symmetry

breaking) or of its coupling (in the case of explicit symmetry breaking). We consider the

background satisfying the first-order equations ∂rA = −2
3W and ∂rΦ = ∂W/∂Φ. The

general solutions can be written in closed form as

Φ = Φ1e
−∆(r−r1) , (3.3)

A = a0 + r − 1

6
Φ2

1e
−2∆(r−r1) , (3.4)

where Φ1 and a0 are the two integration constants. We can set a0 = 0, without loss of

generality.

When ∆ ' 0, this system provides the simplest realisation of the Goldberger-Wise

(GW) mechanism [49] for the stabilisation of the hierarchy between UV and IR scales.

With some abuse of notation we refer to the system governed by eq. (3.1), for generic ∆,

as the GW system.

The presence of a hard-wall cutoff in the IR is a rough way of modelling confinement,

as if it were triggered by the vacuum expectation value of an operator of infinite dimen-

sion [53, 54], and hence a light dilaton may be present, depending on how large the effects

of explicit breaking of scale invariance are. As we stated in the introduction, this system

has been studied before [49–55], as has the light mode associated with what is often called

the radion, in the literature on extra dimension theories [95].

Figure 1 shows the results of our calculation of the spectra of fluctuations for an illustra-

tive choice of parameters. The gauge-invariant scalar and tensor modes are supplemented

by the results for the scalar system in the probe approximation. We fixed ∆ = 1, r1 = 0,

r2 = 6, and a0 = 0. For small Φ1 we know that the spectrum must contain an approximate

dilaton, as in this case the main source of explicit breaking, encoded in the bulk profile

of Φ, is small. A second source of explicit symmetry breaking, due to the presence of a

hard-wall cutoff in the UV, has negligible effects for these choices of parameters.

We notice how the probe approximation fails for all values of Φ1. Yet, distinct behav-

iors characterise the large and small values of Φ1. Provided Φ1 is small, only the lightest

state is completely missed by the probe approximation, with the excited states at least ap-

proximately reproduced. In this case, the lightest state is indeed a dilaton, sourced by the

dilatation operator in the dual theory. It is more subtle to interpret what happens when

Φ1 is large: the qualitative shape of the spectrum is correctly captured by the probe ap-

proximation, but none of the states, neither light nor heavy ones, are reproduced correctly.

The reason for this is that the ratio ∂rΦ/∂rA is not negligibly small when Φ1 is large. As

a result, all scalar states in the physical spectrum result from non-trivial mixing with the

dilaton, and neglecting such mixing effects is not admissible. All the scalar states that

are not captured by the probe approximation have a sizeable overlap with the dilatation

operator in the dual field theory.

Figure 2 is obtained in the same way, but for ∆ = 2.5. The deviation from AdS5 of the

background geometry is due to a vacuum expectation value (VEV) in the dual field theory.

There are hence two operators developing non-trivial vacuum values, of dimension ∆ = 2.5

– 9 –
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Example A: ∆ = 1
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Figure 1. Masses M =
√
−q2 of fluctuations in the GW system, for ∆ = 1, r1 = 0, r2 = 6, and

a0 = 0, as a function of the integration constant Φ1. All masses are expressed in units of the mass

of the lightest tensor mode. The (red) squares represent the tensor modes, the (blue) disks are the

scalar modes, computed with the complete, gauge-invariant variables. The (black) triangles are the

scalar modes computed by making use of the probe approximation.

and ∆ = +∞. In this case, one would expect a massless dilaton to emerge. However,

the comparatively low choice of UV cutoff we adopted acts as a small source of explicit

breaking, so that the light dilaton is not exactly massless, but has a suppressed mass. By

contrast, the probe approximation misses the lightest state and yields a tachyon.

While instructive, the example discussed here is not derived from a fundamental gravity

theory, as the choice of (super-)potential is arbitrary. Furthermore, the background space

has no dynamically-generated end of space, but rather one is modelling the arising of a

mass gap in the dual field theory by introducing an arbitrary, non-dynamical boundary in

the IR, which in field-theory terms is reminiscent of an IR regulator. The examples in the

next sections will address both of these two points.

3.2 Example B: the GPPZ system and five-dimensional maximal supergravity

As a second example, we consider a well known sigma-model in five dimensions that emerges

from a consistent truncation of Type-IIB supergravity reduced on S5 [96–99]. The scalar

manifold in five dimensions consists of two canonically normalised real fields Φa = (m,σ).

We follow the notation in ref. [63], in which the scalar fluctuations have been studied in

some detail (see also refs. [69, 73, 100, 101]). The superpotential is

W = −3

4

(
cosh 2σ + cosh

2m√
3

)
, (3.5)
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Example A: ∆ = 2.5
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Figure 2. Masses M =
√
−q2 of modes in the GW system, for ∆ = 2.5, r1 = 0, r2 = 6, and

a0 = 0, as a function of the integration constant Φ1. All masses are expressed in units of the mass

of the lightest tensor mode. The (red) squares represent the tensor modes, the (blue) disks are the

scalar modes, computed with the complete, gauge-invariant variables, while the (black) triangles

are the scalar modes computed by making use of the probe approximation.

with the potential given by V = 1
2(∂ΦaW )2− 4

3W
2. The solutions are known in closed form:

σ = arctanh
(
e−3(r−c1)

)
, (3.6)

m =
√

3 arctanh
(
e−(r−c2)

)
, (3.7)

e2A = e−2r
(
− 1 + e6(r−c1)

)1/3 (
− 1 + e2(r−c2)

)
e2c1+2c2 , (3.8)

where we have chosen an integration constant in A so that for r → +∞ the warp factor is

A ' r. The two integration constants c1 and c2 are related, respectively, to the VEV and

coupling (mass) of two distinct operators of dimension ∆ = 3 in the dual field theory. We

restrict our attention to the solutions with c1 > c2, yet (with some abuse of language) refer

to the system as the GPPZ system, as the earliest reference to this sigma-model is ref. [96],

although the proposal by GPPZ relies on taking c1 → −∞, while holding c2 finite.

The model was introduced in order to provide the dual description of a deformation

of the large-N limit of the N = 4 super-Yang-Mills theory with gauge group SU(N). The

two scalars are part of the 42-dimensional scalar manifold of maximal N = 8 supergravity

in D = 5 dimensions. They correspond to two operators that can be written in terms of

fermion bilinears of the N = 4 field theory. The mass deformation (dual to m) breaks

supersymmetry to N = 1, as well as scale invariance, by igniting the renormalisation
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group flow, so that the field theory must confine at long distances, and produce a non-

trivial gaugino condensate (dual to σ). The lift to 10-dimensional Type-IIB supergravity is

known [99, 102, 103], but unfortunately it results in a singularity, most likely indicating that

the model is incomplete. A plausible resolution of the singularity, beyond the supergravity

approximation, is discussed in ref. [104].

It was noticed in ref. [63] that as long as c1−c2 > 0, despite the presence of a singularity,

the spectrum of scalar glueballs can be computed without technical problems. In particular,

the results do not depend appreciably on the position of the IR and UV regulators — as long

as they are close enough to the physical limits. Furthermore, it was noticed that the spec-

trum of scalars contains one parametrically light state, the mass of which can be made arbi-

trarily small (in comparison to the other mass eigenvalues) by dialling c1−c2 to large values.

The reason for this is that by dialling c1−c2 to large values one is effectively tuning the mass

deformation in the field theory to small values (in appropriately defined units, set by the

VEV). It is hence natural to interpret the lightest scalar state as a dilaton. We note that

the limit c1 � c2 differs substantially from the original GPPZ proposal, in which the con-

formal N = 4 theory is deformed only by the insertion of a symmetry-breaking mass term.

In figure 3, we show the result of the calculation of the spectrum of tensors (red squares)

and scalars (blue disks) — both of which had already been presented in the literature

before — that we update and present normalised to the lightest spin-2 state. In addition,

we show the comparison with a new calculation of the spectrum of scalars, obtained in

probe approximation (black triangles). The results are striking: the probe approximation

completely fails to capture the existence of the lightest scalar state, confirming that its

field content in terms of sigma-model fluctuations is predominantly h, the trace of the

four-dimensional part of the fluctuations of the metric, rather than fluctuations of m or σ,

and hence it should be identified with the dilaton. For large values of c1 − c2, we expect

that the scalar m can be truncated, and indeed the probe approximation captures well

its spectrum of fluctuations. But the fluctuations of the active scalar σ are never really

reproduced correctly by the probe approximation, even at high masses. We notice that the

spectrum of σ computed in probe approximation agrees well with the spectrum of spin-2

states, for coincidental reasons.

Unfortunately, this is as far as we can go with models that are asymptotically AdS5

— unless we reduce the number of dimensions by further compactifying the geometry on

circles, as we will do in section 4.1. As anticipated in the Introduction, we will not discuss

here models that are related to the conifold, in particular the baryonic branch solutions [93]

— of which the Klebanov-Strassler (KS) [91] and Chamseddine-Volkov-Maldacena-Nunez

(CVMN) [89, 92] backgrounds are special limits. But we will, in the next sections, discuss

models in which (locally) the background geometry approaches asymptotically AdSD with

D > 5, while the deep IR admits an interpretation in terms of a confining four-dimensional

dual field theory, because some of the dimensions are compactified on (shrinking) circles.

3.3 Example C: circle reduction of Romans supergravity

The half-maximal, six-dimensional supergravity with F (4) superalgebra was first identified

by Romans [105]. It can be obtained from ten-dimensional massive Type-IIA supergrav-

– 12 –
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Figure 3. Masses M =
√
−q2 of modes in the GPPZ model, as a function of the parameter

c1 − c2 defined in the main body of the paper. All masses are expressed in units of the mass of

the lightest tensor mode. The (red) squares represent the tensor modes, the (blue) disks are the

scalar modes, computed with the complete, gauge-invariant variables, while the (black) triangles

are the scalar modes recalculated by making use of the probe approximation. The calculations have

been performed by setting r1 = 0.001 and r2 = 10, in order to minimise spurious cutoff-dependent

effects [63].

ity [106], by warped compactification and reduction on S4 [107, 108]. Alternative lifts

within Type-IIB supergravity are known [109, 110]. The scalar manifold of half-maximal,

non-chiral supergravities in D = 6 dimensions can be extended by introducing n vector mul-

tiplets [111, 112] (see also refs. [113, 114]). These theories have attracted some attention in

the literature (see for example refs. [115–120]) thanks to their non-trivial properties, in par-

ticular to the fact that they admit several AdS6 solutions, which makes them interesting as

the putative duals of non-trivial, somewhat mysterious, strongly-coupled five-dimensional

field theories.

Following refs. [121, 122], the reduction on a circle of the six-dimensional, pure, non-

chiral supergravity (with n = 0 vector multiplets) yields a system that admits solutions that

are the holographic dual of confining four-dimensional gauge theories. The six-dimensional

metric has the form

ds2
6 = e−2χds2

5 + e6χdη2 , (3.9)

where ds2
5 is the five-dimensional metric in eq. (2.1), η is the coordinate along the circle,

and χ is a scalar function. The solutions we are interested in are such that the geometry

closes smoothly at some finite value of r, at which point the circle shrinks to zero size.
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We follow the notation in refs. [123, 124], and denote by Φa = {φ, χ} the two active

scalars in the five-dimensional reduced theory. A one-parameter family of regular back-

ground solutions is known. The spectrum of fluctuations associated with the active scalars

has been computed in ref. [123] for this whole family, while the full bosonic spectrum of

vector, tensor, and other scalar modes has been completed in ref. [124]. The sigma-model

kinetic term is given by Gab = diag (2, 6). The scalar potential is V = e−2χV6, while the

potential of the six-dimensional supergravity is

V6 =
1

9

(
e−6φ − 9e2φ − 12e−2φ

)
. (3.10)

Let us briefly describe the basic properties of the solutions of interest. The details can

be found elsewhere in the aforementioned literature. The six-dimensional potential has two

critical points for

φ = 0 =⇒ V6 = −20

9
, (3.11)

and

φ = − log(3)

4
=⇒ V6 = − 4√

3
, (3.12)

respectively. Locally, the system admits two distinct AdS6 solutions, for these two values of

φ. The former corresponds to the supersymmetric solution predicted by Nahm [84]. In six

dimensions, there is a solution that interpolates between the two critical points, reaching

the non-trivial φ = − log(3)
4 in the IR. The solutions we are interested in are closely related to

these: they all approach the φ = 0 AdS6 geometry at large r → +∞, and flow towards the

other fixed point for small r, except that one dimension has been compactified on a circle,

which shrinks before the solution can reach the IR fixed point. After the change of variables

dρ ≡ e−χdr, the asymptotic expansions take the form χ(ρ) = 2
9ρ+ · · · and A(ρ) = 8

9ρ+ · · ·
for large ρ. But the solutions of interest end at ρ = 0 with χ(ρ) = 1

3 log(ρ) + · · · . Their

lift back to six dimensions is completely regular. (The five-dimensional system is singular

because ρ = 0 is the position at which the circle shrinks to vanishing size, though this

singularity is resolved by the (completely regular) lift to six dimensions.1)

The solutions are labelled by the parameter s∗ defined in ref. [123]. The precise defini-

tion of this parameter and its meaning are inessential in the context of this paper, and we

refer the reader to the literature, except for clarifying the fact that in the limit s∗ → −∞
the field φ is constant with φ = 0 (the UV fixed point), while for s∗ → +∞ it is constant

with φ = − log(3)
4 (the IR fixed point). For all finite real values of s∗ the solution of φ is

smooth and monotonically increasing, and interpolates between the two critical values.

For this paper, we recalculated the spectra of fluctuations associated with the spin-

2 (tensor) field and the two active scalar fields φ and χ retained in the five-dimensional

reduced and truncated action. We adopt the same conventions and normalisations as in

ref. [124]. In addition, we further performed the new calculation of the spectrum of fluctu-

ations of the two scalars φ and χ in the probe approximation. The results are illustrated

1Conversely, the further lift to ten dimensions is not completely smooth, as it involves a warp factor

that depends explicitly on one of the coordinates of the internal S4, and turns out to be singular at the

equator [108].

– 14 –
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Figure 4. Masses M =
√
−q2 of modes in the circle reduction of Romans theory, as a function of

the parameter s∗. All masses are expressed in units of the mass of the lightest tensor mode. The

(red) squares represent the tensor modes, the (blue) circles are the scalar modes, computed with

the complete, gauge-invariant variables, while the (black) triangles are the scalar modes computed

by making use of the probe approximation. We notice that in probe approximation, and for large

values of s∗, two of the towers of scalar state become so close to degenerate that in our numerical

study we could not resolve them, and they are represented by just one set of points. In the numerical

calculations ρ1 = 0.001 and ρ2 = 8.

in figure 4. We normalise the spectrum so that the lightest spin-2 state has unit mass. By

comparing the spectra of gauge invariant fluctuations (blue disks) with the probe approx-

imation (black triangles), we notice a few interesting facts. We start by focusing on the

limits s∗ → ±∞, for which the background field φ is constant. In these cases, the field φ

can be truncated. As a consequence, the equation of motion and boundary conditions for

the fluctuations of φ coincide with the probe approximation. And so does their spectrum,

as visible in the figure.

However, the spectrum of gauge invariant fluctuations containing χ disagrees with the

probe approximation. This is particularly evident in the case of the lightest, universal

scalar mass (in the plot, this is the state with mass that does not depend on s∗). From

these observations, we learn that the wave function associated with this light state must

have a significant overlap with the dilaton. Yet, smaller discrepancies are present also for

the excitations of this state, hence signifying that while the dilaton mode is to a large

extent captured by the lightest state, mixing with all heavier excitations is present as well.

We do not see clear evidence of decoupling of the heavy modes. We noticed something

similar earlier on in the paper, in the case of the GW system, but for ∆ = 1 and large Φ1

– 15 –
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(see section 3.1). We will see it again in sections 3.3 and 3.4. It is particularly informative

to notice that, for s∗ � 0, the lightest scalar state is actually captured by the probe

approximation, while the next-to-lightest is not. For this regime of parameter choices, it

is the next-to-lightest state that one can identify (approximately) with the dilaton, as the

test we proposed clearly shows.

For finite values of s∗, the spectrum of scalar excitations computed in probe approx-

imation interpolates between the two asymptotic behaviours. We do not see any clear

evidence of regularity emerging from the comparison. In this case, the dilaton mixes with

all the excitations of both χ and φ, resulting in a rather complicated, not particularly

informative spectrum.

3.4 Example D: toroidal reduction of seven-dimensional maximal supergravity

It has been known for a long time that the eleven-dimensional maximal supergravity theory

admits an AdS7 × S4 maximally symmetric background [125]. The reduction on S4 to

seven-dimensional maximal supergravity (with gauge group SO(5)) has been known for

quite some time as well [126, 127]. If one further truncates the theory to retain only one

scalar φ, the lift to 11-dimensions simplifies [128]. The resulting scalar system admits two

critical points, as well as solutions that interpolate between the two corresponding, distinct

AdS7 backgrounds [129]. The model is reduced to five dimensions by further assuming that

two of the external directions, named ζ and η in the following, describe a torus S1 × S1.

One of the circles (parameterised by ζ) retains a finite size in the background solutions of

interest here, and can be interpreted in terms of the ten-dimensional dilaton field in the

lift to type IIA supergravity. The shrinking to zero of the other circle (parametrised by

η) is interpreted in terms of confinement of the dual theory. For φ = 0, this construction

was proposed by Witten [130] and exploited as a model dual to quenched QCD by Sakai

and Sugimoto [131, 132]. Here we follow ref. [123] and generalise Witten’s construction by

allowing φ to take profiles that interpolate between the two critical points.

We follow the notation in ref. [123], except for the fact that the seven-dimensional

indexes are denoted by M̂ = 0, 1, 2, 3, 5, 6, 7. The seven-dimensional action is2

S7 =

∫
d7x
√
−g7

(
R7

4
− 1

2
Gab(Φ

a)gM̂N̂∂M̂Φa∂N̂Φb − V7(Φa)

)
, (3.13)

where Φa = φ, where Gφφ = 1
2 and where the potential is

V7(φ) =
1

2

(
1

4
e
− 8√

5
φ − 2e

− 3√
5
φ − 2e

2√
5
φ
)
. (3.14)

The seven-dimensional potential V7 admits two distinct critical points,

φ = 0 =⇒ V7(φ) = −15

8
, (3.15)

and

φ = − 1√
5

log 2 =⇒ V7(φ) = − 5

27/5
, (3.16)

2This action is 1
2
of that in ref. [123], which amounts to a harmless overall rescaling of Newton’s constant.
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respectively, that correspond to two distinct 6-dimensional CFTs. The first of the two

preserves maximal supersymmetry and is the one appearing in Nahm’s classification [84].

There exist solutions that approach the first fixed point for large r (UV) and the sec-

ond for small r (IR). By expanding around the two fixed points, the field φ has mass

m2R2 = {−8, 12}, at the UV and IR fixed points, respectively, in units of the AdS ra-

dius R2 ≡ −15/V7 =
{

4, 32/5
}

. The corresponding field-theory operator has dimension

∆ =
{

4, 3 +
√

21
}

in the two six-dimensional dual field theories.

The reduction to D = 5 dimensions makes use of the following ansatz:

ds2
7 = e−2χds2

5 + e3χ−2ωdη2 + e3χ+2ωdζ2 , (3.17)

where one assumes that χ and ω do not depend on the ζ and η coordinates. The action

can be rewritten as

S7 =

∫
dηdζ

{
S5 +

1

2

∫
d5x∂M

(√
−g5g

MN∂Nχ
)}

, (3.18)

where in D = 5 dimensions the three sigma-model scalars are Φa = {φ, ω, χ}, the sigma-

model metric is Gab = diag(1
2 , 1,

15
4 ), and the potential is V = e−2χV7.

It is convenient to restrict attention to solutions for which A = 5
2χ + ω. The UV

expansion of solutions that approach the φ = 0 critical point in the far-UV can be written

in terms of the convenient radial variable z ≡ e−ρ/2 as follows

φUV = φ2z
2 + z4

(
φ4 −

18φ2
2 log(z)√

5

)
+ z6

(
162

5
φ3

2 log(z)− 637φ3
2

30
− 9φ2φ4√

5

)
+

+
1

600
z8
(
−11664

√
5φ4

2 log2(z)− 8928
√

5φ4
2 log(z) + 11921

√
5φ4

2+ (3.19)

+ 6480φ2
2φ4 log(z) + 2480φ2

2φ4 − 180
√

5φ2
4

)
+O

(
z9
)
,

ωUV = ω0 + ω6z
6 +O

(
z9
)
, (3.20)

χUV = χ0 −
2

3
log(z)− φ2

2z
4

30
+

+
2z6

675

(
−150ω6 + 72

√
5φ3

2 log(z)− 6
√

5φ3
2 − 20φ2φ4

)
+

+
z8

1200

(
− 2592φ4

2 log2(z) − 1944 φ4
2 log(z) + 1355φ4

2+ (3.21)

+ 288
√

5φ2
2φ4 log(z) + 108

√
5φ2

2φ4 − 40φ2
4

)
+O

(
z9
)
,

AUV =
5

2
χ0 + ω0 −

5

3
log(z)− φ2

2z
4

12
+

+
z6

270

(
−30ω6 + 144

√
5φ3

2 log(z)− 12
√

5φ3
2 − 40φ2φ4

)
+

+
z8

480

(
− 2592φ4

2 log2(z)− 1944φ4
2 log(z) + 1355φ4

2+ (3.22)

+ 288
√

5φ2
2φ4 log(z) + 108

√
5φ2

2φ4 − 40φ2
4

)
+O

(
z9
)
.
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These expressions show explicitly all five integrations constants. φ2 and φ4 correspond,

respectively, to the coupling and VEV of an operator of dimension ∆ = 4 in the six-

dimensional dual field theory. A marginal operator is also present in the six-dimensional

field theory, the VEV of which, ω6, is ultimately responsible for the shrinking to zero of

the circle parametrised by η. The integration constants ω0 and χ0 do not appear explicitly

in the bulk equations and enter only in setting the overall mass scale of the system.

The solutions of interest end at some finite value of the radial direction. Without loss

of generality, we choose the radial direction so that this value is ρ = 0. The corresponding

IR expansions are lifted directly from eqs. (4.56) of ref. [123], which we report here for

convenience:

φ(ρ) =− log(2)√
5

+φ̃−
e
− 8φ̃√

5

(
2−3e

√
5φ̃+e2

√
5φ̃
)
ρ2

22/5
√

5
+ (3.23)

+
e
− 16φ̃√

5

(
−2+e

√
5φ̃
)(
−1+e

√
5φ̃
)(
−18+17e

√
5φ̃+6e2

√
5φ̃
)
ρ4

20 24/5
√

5
+O(ρ6) ,

ω(ρ) =−2log(ρ)+2
e
− 8φ̃√

5

(
−1+4e

√
5φ̃+2e2

√
5φ̃
)
ρ2

5 22/5
+ (3.24)

−2
e
− 16φ̃√

5

(
31−128e

√
5φ̃+162e2

√
5φ̃+76e3

√
5φ̃+34e4

√
5φ̃
)
ρ4

250 24/5
+O(ρ6) ,

c(ρ)≡ 3

2
χ+

2

3
ω=

log(ρ)

6
+
e
− 8φ̃√

5

(
−1+4e

√
5φ̃+2e2

√
5φ̃
)
ρ2

15 22/5
+ (3.25)

− 1

375
5
√

2e
− 16φ̃√

5

(
13−44e

√
5φ̃+51e2

√
5φ̃−2e3

√
5φ̃+7e4

√
5φ̃
)
ρ4+O(ρ6) .

In these expressions, 0 ≤ φ̃ ≤ log(2)√
5

is the free parameter that defines the family of solutions

of interest.

The spectrum of scalar fluctuations of the model, in which φ has non-trivial profile, has

been computed in ref. [123]. An earlier calculation restricted to backgrounds with trivial

φ = 0 [94], but performed with a different approach and different truncation, agrees on the

states common to the two truncations for which the comparison is meaningful. For earlier

attempts see [133]. We show in figure 5 our updated calculation of the spectrum of scalar

and spin-2 excitations, comparing it with the probe calculation.

By looking at the figure, one realises that considerations quite similar to those in sec-

tion 3.3 apply. In particular, the probe approximation captures correctly the qualitative

features of the scalar spectrum, but never really agrees with the fluctuations of the field χ,

while it is a good approximation for the fluctuations of ω and φ. The dilatation operator

in the dual theory sources all the states that correspond to fluctuations of χ, including the

lightest state. Once again, this is due to the fact that the ratio ∂rχ/∂rA is not particu-

larly small. However, coincidental reasons render the discrepancies in the spectra always

small. We will return to this point in section 3.5. In the next section we will generalise

the toroidal compactification of higher-dimensional backgrounds with AdSD asymptotic
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Figure 5. Masses M =
√
−q2 of modes in the torus reduction of maximal D = 7 dimensional

supergravity, as a function of the parameter s∗. All masses are expressed in units of the mass of the

lightest tensor mode. The (red) squares represent the tensor modes, the (blue) circles are the scalar

modes, computed with the complete, gauge-invariant variables, while the (black) triangles are the

scalar modes computed by making use of the probe approximation. We notice that in the probe

approximation, and for large negative values of s∗, two of the towers of scalar state become so close

to degenerate that in our numerical study we could not resolve them. Conversely, for large positive

values of s*, we notice what appears to be cutoff artifacts in the case of the probe approximation.

In the numerical calculations ρ1 = 0.001 and ρ2 = 15.

behaviour, clearly show the failure of the probe approximation, and further comment on

the underlying physical reasons for this failure.

3.5 Example E: toroidal reduction of generic AdSD backgrounds

In this section, we consider gravity theories in D = 5 + n dimensions in which the matter

content consists only of a (negative) constant potential. These systems admit solutions

with AdSD geometry. We further assume that n dimensions describe a n-torus. We study

solutions that, asymptotically at large radial direction r, approach AdSD, but have an end

of space to the geometry at some finite value of the radial coordinate r, corresponding to

the IR regime of a putative dual field theory. At this point, one of the circles in the internal

geometry shrinks smoothly to zero size.

These systems generalise Witten’s model of confinement within holography [130], to

any number of dimensions D > 5, though we do not commit to the fundamental origin

of the models. There are several motivations to study these systems, besides the illus-

trative purposes of this paper. Recently, non-supersymmetric AdS8 solutions have been
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constructed within Type-IIA supergravity [87], and more such solutions, not captured by

Nahm’s classification, might exist. Independently of these considerations, within the con-

text of the clockwork mechanism, it has been suggested that phenomenologically interesting

spectra could emerge from the compactification of infinitely many dimensions [134]. Yet,

the backgrounds in ref. [134] exhibit hyperscaling violation [135], while we will only consider

smooth geometries in which one of the internal dimensions shrinks to zero size. Finally,

this requirement will allow us to draw comparisons and analogies with the study of gravity

in the limit of large number of dimensions D [136].

In D = 5 + n dimensions the action of pure gravity is3

SD =

∫
dDx
√
−gD

(
RD
4
− VD

)
, (3.26)

where the constant potential is normalised to

VD = −1

4
(n+ 4)(n+ 3) = −1

4
(D − 1)(D − 2) , (3.27)

for convenience. We use the following ansatz (for n ≥ 2):

ds2
D = e−2δχ̄ds2

5 + e
6
n
δχ̄

(
n−1∑
i=1

e

√
8

n(n−1)
ω̄

dθ 2
i + e−

√
8(n−1)
n

ω̄dθ 2
n

)
, (3.28)

where 0 ≤ θi < 2π, for i = 1, · · · , n, are the coordinates on the n internal circles, while the

parameter δ is given by

δ2 =
2n

3(3 + n)
. (3.29)

The normalisation constants VD and δ are chosen, respectively, so that the system admits

an AdSD solution with unit curvature, and that the field χ̄ in the dimensional reduction

is canonically normalised — we will return to these points later on. Notice, from the

expression of the metric, that ω̄ is associated with a traceless generator of U(1)n, so that

ω̄ does not enter the determinant of the metric in D dimensions. For n > 2, one could

introduce additional independent scalars, each one controlling the individual size of the

circles. Setting all such scalars to zero is consistent.

By assuming that all functions appearing in the metric are independent of the internal

angles, we can reduce the theory to 5 dimensions, and perform the integrals to obtain

SD = (2π)n
(
S5 + ∂S

)
, (3.30)

where the boundary term is given by

∂S =

∫
d5x∂M

(
δ

2

√
−g5g

MN
5 ∂N χ̄

)
, (3.31)

while S5 is defined in eq. (2.2), with the potential V given by

V = e−2δχ̄VD , (3.32)

and the sigma-model kinetic terms canonically normalised as Gab = δab.

3We ignore the boundary terms, such as the GHY one, in this discussion.
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After the convenient change of variable ∂
∂r = e−δχ̄ ∂

∂ρ , the background equations are

the following:

∂2
ρχ̄− δ(∂ρχ̄)2 + 4∂ρA∂ρχ̄ = −2δVD , (3.33)

∂2
ρω̄ − δ∂ρχ̄∂ρω̄ + 4∂ρA∂ρω̄ = 0 , (3.34)

3∂2
ρA− 3δ∂ρχ̄∂ρA+ 6(∂ρA)2 = −(∂ρχ̄)2 − (∂ρω̄)2 − 2VD , (3.35)

6(∂ρA)2 = (∂ρχ̄)2 + (∂ρω̄)2 − 2VD . (3.36)

The solution of the background equations of interest in this paper is given by

χ̄ =

√
n+ 3

6n(n+ 4)2

{
n log

[
1

2
sinh((n+ 4)ρ)

]
+ (3.37)

− 4 log

[
coth

(
1

2
(n+ 4)ρ

)]
+ n(n+ 4) log

[
2

n+ 4

]}
,

ω̄ = −
√
n− 1

2n
log

[
tanh

(
(4 + n)ρ

2

)]
, (3.38)

A =
3 + n

3(4 + n)
log

[
1

2
sinh((4 + n)ρ)

]
+

1

3(4 + n)
log

[
tanh

(
(4 + n)ρ

2

)]
. (3.39)

The UV-expansion (at large ρ) of the same solution agrees with the solutions exhibiting

hyperscaling violation, which are given by the following:

χ̄ =

√
n(n+ 3)

6
ρ , (3.40)

ω̄ = 0 , (3.41)

A =
3 + n

3
ρ , (3.42)

up to two inconsequential additive integration constants. Fluctuations of these hyperscal-

ing backgrounds were studied in ref. [134] and also in ref. [66], with the former within

the context of the clockwork mechanism. In the cases where n is large, these hyperscal-

ing solutions are also good approximations to the smooth solutions in eqs. (3.37), (3.38),

and (3.39).

In the regular solutions one finds that ∂ρA − δ∂ρχ̄ = 1 + · · · for large ρ, which is the

statement that (locally and asymptotically) the background in the far-UV approaches AdSD
with unit AdS curvature. The generic solutions of this class depend on five integration

constants. We adjusted one integration constant in ω̄ so that ω̄ vanishes asymptotically in

the UV. We adjusted a second integration constant so that all the solutions end at ρ→ 0.

At the end of the space, after projecting onto the (ρ, θn) plane, the IR expansion yields

ds̃2
2 = dρ2 + e

6
n
δχ̄−

√
8(n−1)
n

ω̄dθ2
n = dρ2 + ρ2 dθ2

n , (3.43)

confirming that there is no conical singularity, and the space closes smoothly, with the circle

described by θn shrinking to zero. This choice amounts to fixing a third integration constant

in χ̄. Additionally, the form of the solution is such that there is no curvature singularity,

which is equivalent to setting a fourth integration constant. Finally, an additive integration

constant A0 has been removed from A as it only sets an overall energy scale.
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Figure 6. Masses M =
√
−q2 of modes in the toroidal reduction from D = 5 + n dimensional

gravity with a negative cosmological constant, as a function of the parameter n. The five dimensional

action we use can be obtained from toroidal compactification of higher-dimensional gravity theories

only for integer n > 1, but we analytically continue our study to model for all values of n ≥ 1. All

masses are expressed in units of the mass of the lightest tensor mode. The (red) squares represent

the tensor modes, the (blue) circles are the scalar modes, computed with the complete, gauge-

invariant variables, while the (black) triangles are the scalar modes computed by making use of the

probe approximation, in the case of the fluctuations of the field ω. For the probe approximation,

the fluctuations of the field χ are shown only for n . 2.4, with the purple triangles. In the numerical

calculations we set ρ1 = 0.001 and ρ2 = 8.

3.5.1 Spectrum and connection with large-D gravity

We can now compute the spectrum of fluctuations, following the same procedure as for

the other examples in this paper. We consider fluctuations of the sigma-model coupled to

gravity for all values of n ≥ 1, including non-integer values. The final result is illustrated

in figure 6. As can be seen in the figure, as usual a scalar is the lightest state, and its

mass is not well reproduced by the probe approximation, indicating that it should be

interpreted, at least partially, as a dilaton. The probe approximation captures well the

masses of one tower of excitations, roughly corresponding to ω̄, for all values of n. As long

as n is somewhat small, the probe approximation captures some approximate features of

the second tower of scalars, associated with χ̄, but does not provide a good approximation

of the numerical values of the associated masses.

For large n, except for the lightest scalar, the rest of the physical spectrum degenerates

into a continuum that starts at M2 = 1, in units of the lighest spin-2 state mass. The

one isolated state was not found in ref. [134]. We notice that for the largest values of n
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presented in the figure, the mass of the lightest state is slightly overestimated, because it

is affected by spurious cut-off effects. The probe approximation fails completely to provide

an approximation of the spectrum of masses (for fluctuations associated with χ̄), yielding

a continuum (in the sense that the discretisation is determined by ρ1 and ρ2, not by the

dynamics).

It is instructive to consider the n → +∞ approximation of the fluctuation equation

for the tensor modes. This can be done by replacing the hyperscaling violating solutions,

and the result reads [
∂2
ρ + (4 + n)∂ρ +M2x2e−2ρ

]
eµν = 0 , (3.44)

where x is an arbitrary constant controlled by the integration constant appearing in A (with

x = 1 corresponding to the solution in eq. (3.42)). The general solution of the fluctuation

equation is

eµν = e−
n+4
2
ρ
(
cJJ2+n

2

(
xMe−ρ

)
+ cY Y2+n

2

(
xMe−ρ

))
. (3.45)

By imposing Neumann boundary conditions at ρ = 0 and ρ → +∞, one finds that the

solutions for n→ +∞ are given by the zeros of J1+n
2

(xM). Given that the zeros of Jν(x)

are given approximately by xk ' ν + 1.86 ν1/3 + αk π for k = 0, 1, · · · , with 1 . α . 2,

when ν is large [137], in the limit n → +∞ the spectrum consists of a gap followed

by a continuum, which we can set to start at M2 = 1 by using the normalisation of

figure 6. The two gauge-invariant scalar fluctuations obey the same equations of motion,

in the hyperscaling violating case, in particular they decouple from one another. Imposing

Dirichlet boundary conditions (obeyed by the fluctuation corresponding to ω̄) leads to the

zeros of J2+n
2

(xM), and hence in the n→ +∞ limit the same continuum spectrum as for

the tensors. The case of the fluctuations of χ̄ is slightly more interesting, as the boundary

conditions reduce to

x2M2aχ̄ +
n

3
e2ρ∂ρa

χ̄
∣∣∣
ρi

= 0 , (3.46)

which results again in the same continuum cut starting at M2 = 1, with the addition of a

single isolated state with mass M < 1.

Most interesting is to compare to the probe calculation. Again, for the purposes of this

qualitative discussion we compare it to the hyperscaling violating background solutions. In

this case, we still find that the equation obeyed by the fluctuations of ω̄ takes the form of

eq. (3.44), and decouples from the equation of the fluctuations of χ̄. But the equation for

the fluctuation aχ̄ of χ̄ is modified, and reads as follows[
∂2
ρ + (4 + n)∂ρ +M2x2e−2ρ +

2

3
n(n+ 4)

]
aχ̄ = 0 , (3.47)

with an additional (potential) term present compared to eq. (3.44). The additional term

in the differential equation comes from the last line of eqs. (2.21), more specifically from

the second (field) derivative V a
|c of the scalar potential. In the complete, correct equation

this term is exactly cancelled by the two terms that depend on the potential V and its

first derivative Vc, that the probe approximation omits. The general solution of the probe
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approximation equation is of the form

aχ̄ = e−
n+4
2
ρ

(
cJJ√ (12−5n)(4+n)

12

(
xMe−ρ

)
+ cY Y√ (12−5n)(4+n)

12

(
xMe−ρ

))
, (3.48)

and the probe approximation requires imposing Dirichlet boundary conditions. This ob-

servation sets an intrinsic bound: the zeros of the J√ (12−5n)(4+n)
12

(y) and Y√ (12−5n)(4+n)
12

(y)

are real for n < 12
5 , but imaginary for n > 12

5 . While this bound is derived for the solutions

with hyperscaling violation, in the case of the solutions with smoothly closing background

geometry the same line of argument cannot be immediately applied. However, since this

bound is mainly due to the properties of the background at large values of ρ, we find that

it provides a reasonable approximation of the value of n at which the probe approximation

fails to produce a discrete spectrum independent of the boundary conditions.

The reason why the cancellation in the bulk equation is spoiled is ultimately that for

the solutions of this class, in which the space is asymptotically AdSD with D > 5, in the

language of the five-dimensional gravity model the ratio ∂ρχ̄/∂ρA ∼ O(1) is not small,

and hence the probe approximation is not justified. The scalar χ̄ is indeed part of the

higher-dimensional metric, and its fluctuations mix with those of the trace of the metric,

in a way that is not parametrically suppressed. (See also sections 3.3 and 3.4.)

Finally, we return to and expand on a brief comment we made in section 3.4. We notice

that the result of studying the fluctuations of χ̄ in probe approximation (the purple triangles

in figure 6) does not agree with the dependence on n of the mass of the lightest scalar state.

Yet, the two curves describing the mass as computed in the probe approximation and in the

full, gauge-invariant formalism, while radically different, cross each other. It so happens

that the crossing point is located for n ' 2. This is the reason why we found, in the Witten

model, that the probe approximation works quite well, which we deemed ‘coincidental’ —

see last paragraph of section 3.4.

4 Generalisation to other dimensions

The formalism we are using can be generalised to other dimensions D. With the bulk

action written as

S =

∫
dDx
√
−g
[
R

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V (Φa)

]
, (4.1)

the backgrounds of interest are identified by first introducing the following ansatz for the

metric and scalars:

ds2
D = dr2 + e2A(r) ηµνdxµdxν , (4.2)

Φa = Φa(r) . (4.3)

The equations of motion satisfied by the background scalars generalise eq. (2.3):

∂2
rΦa + (D − 1)∂rA∂rΦ

a + Gabc∂rΦb∂rΦ
c − V a = 0 . (4.4)
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The Einstein equations generalise eqs. (2.5) and (2.6) to read

(D − 1)(∂rA)2 + ∂2
rA+

4

D − 2
V = 0 , (4.5)

(D − 1)(D − 2)(∂rA)2 − 2Gab∂rΦ
a∂rΦ

b + 4V = 0 . (4.6)

If the potential V can be written in terms of a superpotential W satisfying the following:

V =
1

2
Gab∂aW∂bW −

D − 1

D − 2
W 2 , (4.7)

then any solution of the first order system defined by

∂rA = − 2

D − 2
W , (4.8)

∂rΦ
a = Gab∂bW , (4.9)

is also a solution of the equations of motion.

The fluctuations around the classical background are treated again with the gauge-

invariant formalism developed in refs. [69–73], which allows for the computation of the

scalar and tensor parts of the spectrum. In applying the ADM formalism, one generalises

eqs. (2.11) and (2.12) to read

ds2
D =

(
(1 + ν)2 + νσν

σ
)

dr2 + 2νµdxµdr + e2A(r) (ηµν + hµν) dxµdxν , (4.10)

hµν = eµν + iqµεν + iqνε
µ +

qµqν
q2

H +
1

D − 2
δµνh. (4.11)

The gauge-invariant (under infinitesimal diffeomorphisms) combinations are now given by

the following generalisations of eqs. (2.13)–(2.16)

aa = ϕa − ∂rΦ
a

2(D − 2)∂rA
h , (4.12)

b = ν − ∂r
(

h

2(D − 2)∂rA

)
, (4.13)

c = e−2A∂µν
µ − e−2Aq2h

2(D − 2)∂rA
− 1

2
∂rH , (4.14)

dµ = e−2AΠµ
νν

ν − ∂rεµ . (4.15)

The tensorial fluctuations eµν are gauge-invariant, and obey the equation of motion[
∂2
r + (D − 1)∂rA∂r − e−2A(r)q2

]
eµν = 0 , (4.16)

and boundary conditions

∂re
µ
ν

∣∣∣
ri

= 0 . (4.17)

The equations of motion for the scalar fluctuations can be written by generalising eq. (2.21)

as follows

0 =
[
D2
r + (D − 1)∂rADr − e−2Aq2

]
aa+ (4.18)

−
[
V a
|c −Rabcd∂rΦb∂rΦ

d +
4(∂rΦ

aV b + V a∂rΦ
b)Gbc

(D − 2)∂rA
+

16V ∂rΦ
a∂rΦ

bGbc
(D − 2)2(∂rA)2

]
ac ,
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and the boundary conditions generalising eq. (2.22) as

2e2A∂rΦ
a

(D − 2)q2∂rA

[
∂rΦ

bDr −
4V ∂rΦ

b

(D − 2)∂rA
− V b

]
ab

∣∣∣
ri
− aa

∣∣∣
ri

= 0 . (4.19)

The probe approximation for the scalars is given by the generalisation of eqs. (2.23)

and (2.24) to

0 =
[
D2
r + (D − 1)∂rADr − e−2Aq2

]
aa −

[
V a
|c −Rabcd∂rΦb∂rΦ

d
]
ac , (4.20)

and

0 = aa
∣∣∣
ri
. (4.21)

4.1 Example F: circle reduction of AdS5 × S5

Here, we perform the calculation of the spectrum of tensor and scalar glueballs in the dual

of the gravity theory obtained by compactifying AdS5 on a circle and identifying smooth

solutions. We check that the results agree with those by Brower et al. [94], that were

obtained with a different treatment of the fluctuations. We then compare it to the result

of the probe approximation for the same system.

We start from the five-dimensional theory of gravity coupled to a cosmological constant,

which is given by the following bulk action:

S5 =

∫
d5x
√
−g5

[
R
4
− V

]
. (4.22)

If we choose V = −3 and the metric ansatz

ds2
5 = dρ2 + e2A(ρ)ηµ̂ν̂dxµ̂dxν̂ , (4.23)

the equations of motion reduce to

4(∂ρA)2 + ∂2
ρA− 4 = 0 , (4.24)

12(∂ρA)2 − 12 = 0 , (4.25)

which admit the AdS5 solution with A = Ao + ρ .

We proceed otherwise, and introduce the ansatz

ds2
5 = e−2δχ(r)ds2

4 + e4δχ(r)dη2 , (4.26)

ds2
4 = dr2 + e2A(r)ηµνdxµdxν , (4.27)

which assumes that one of the coordinates be compactified on a circle, with 0 ≤ η < 2π.

We also introduce the four-dimensional sigma-model coupled to gravity, with the only field

being χ. The action is given by

S4 =

∫
d4x
√
−g4

[
R

4
− 1

2
Gχχg

MN∂Mχ∂Nχ− V
]
, (4.28)
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with

V = e−2δχV , (4.29)

and

Gχχ = 3δ2 . (4.30)

One then finds that the five-dimensional action can be rewritten as

S5 = 2π
(
S4 + ∂S4

)
, (4.31)

where

∂S4 =

∫
d4x∂M

(
δ

2

√
−g4g

MN∂Nχ

)
. (4.32)

The latter being a total derivative, the two theories yield the same equations of motion.

Choosing δ2 = 1
3 renders the scalar canonically normalised. The system admits the super-

potential

W = −3

2
e
− χ√

3 , (4.33)

and with the change of variable ∂r ≡ e
−χ(ρ)√

3 ∂ρ, we find a first class of solutions that read

(up to additive integration constants)

χ(ρ) =

√
3

2
ρ , (4.34)

A(ρ) =
3

2
ρ . (4.35)

These take the form of hyperscaling violating solutions. By comparison with the system in

D = 5 dimensions, we see that the ansatz for the lift from D = 4 to D = 5 is compatible

with the AdS5 solutions provided A = 2δχ = A − δχ, which indeed allows us to identify

the hyperscaling solutions in D = 4 dimensions obtained from the superpotential with the

AdS5 ones upon lifting back to the higher-dimensional theory.

A more interesting class of solutions is the following:

χ(ρ) = χ0 −
3
√

3

8
log
(

coth(2(ρ− ρo))
)

+

√
3

8
log
(

sinh(4(ρ− ρo))
)
, (4.36)

A(ρ) = A0 +
1

8
log
(

tanh(2(ρ− ρo))
)

+
3

8
log
(

sinh(4(ρ− ρo))
)
. (4.37)

One can see that this three-parameter class of solutions asymptotically agrees with the

hyperscaling ones for large ρ. Both χ and A are monotonic. If we set ρo = 0, χ0 =

−
√

3
8 log(2) and A0 = −3

8 log(2), by making the change of variables τ =
√

cosh(2ρ) we find

that the five-dimensional metric becomes(
τ2 − 1

τ2

)
dη2 + τ2ηµνdxµdxν +

(
τ2 − 1

τ2

)−1

dτ2 , (4.38)

in agreement with eq. (16) of ref. [94]. The result of the calculation of the spectra for the

fluctuations around this background are shown in figure 7. We find that R ≡ m2++

m0++
' 1.46,
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Example F

0

1

2

3

4

5

6

M

a eµν

Figure 7. The spectrum of scalar a (left, blue) and tensor eµν (right, red) fluctuations in the

holographic model defined by the regular background solution of circle compactification of the

AdS5×S5 system. All masses are expressed in units of the lightest tensor. In the calculation of the

spectrum we use the cutoffs ρ1 = 10−6 and ρ2 = 8. The black (long-dashed) spectrum illustrates

the result of the probe approximation for the scalars.

which agrees with the results in table 4 of ref. [94] (the states there dubbed S3 and T3

correspond, respectively, to scalar and tensor states we computed here).

Besides the scalar and tensor fluctuations, we show also the results of the probe approx-

imation, which captures the physical spectrum only approximately. The physical states are

the result of significant mixing of the operators sourcing the scalars with the dilatation op-

erator, in a way that resemble the GW case for ∆ = 1 and large Φ1 (Example A, figure 1).

We notice in particular that even at large values of M , the probe approximation yields

results that are shifted with respect to the complete calculation. Ultimately, the reason for

this is the same as that discussed in section 3.5.1: asymptotically, the backgrounds have

geometries that exhibit hyperscaling violation, and the ratio ∂ρχ/∂ρA ∼ O(1) is not small.

5 Summary and outlook

In this paper we considered a variety of holographic models, for which the calculation of the

spectrum of scalar and tensor fluctuations (corresponding to spin-0 and spin-2 glueballs of

the dual theory) can be carried out unambiguously. We addressed the following question:

is any one of the scalar states, at least approximately, to be identified with the dilaton, the

pseudo-Nambu-Goldstone boson associated with scale invariance? We proposed to answer

this question by repeating the calculation of the scalar spectrum in probe approximation,
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and then comparing the results to the complete calculation. The probe approximation

ignores fluctuations of gravity, in particular it dismisses the fluctuation of the trace of

the four-dimensional part of the metric. The boundary value of this field is identified by

the holographic dictionary with the source corresponding to the dilatation operator. By

definition, the dilaton must couple to such an operator, and hence if by ignoring it (in probe

approximation) we still recover the correct spectrum, it implies that the corresponding

states have no (or negligible) overlap with the dilaton.

We exemplified the process on six classes of models, and the results are summarised

in table 1. There are states that are very well captured by the probe approximation: for

example, the fluctuations of ω̄ in example E discussed in section 3.5 are all well approx-

imated. In example C (based on Romans supergravity), it is interesting to notice how

the dilaton is not always the lightest state of the spectrum: when varying the parameter

s∗ � 1, there is a region of parameter space in which the probe approximation captures

well the lightest state, but not the next to lightest one. It is the latter that we identify

with an approximate dilaton, while the former is due to fluctuations of a field that can be

truncated.

The conclusion of these exercises can be expressed as follows:

• in all cases we considered, the lightest states in the spectrum are scalar,

• in all cases, one of the lightest scalar states shows evidence of significant overlap with

the dilaton,

• in several cases, this state is a dilaton,

• in the other cases, the state is an admixture, given that even the excited states show

a non-trivial overlap with the dilaton.

The examples we listed here are not only relevant for illustration purposes. Some of

them represent well known examples from the literature, in particular examples C, D, and

F have been used as holographic models of Yang-Mills theories. This study suggests that

while the lightest glueball of Yang-Mills theories is not a pure dilaton state, it does contain

a significant overlap with it, in the sense that the dilaton operator sources the light scalar

glueball. This might explain some of the regular patterns in the spectra of glueball masses

computed on the lattice, observed for example in refs. [74, 80, 81, 83].

The strategy we presented in this paper can be applied to all possible holographic

models in which the calculation of the spectrum of fluctuations is amenable to treatment

within supergravity. Of particular relevance are the models related to the conifold and

the baryonic branch of the Klebanov-Strassler system, as the first evidence of a para-

metrically light scalar state in top-down holographic models was discovered in this con-

text [61, 63, 65, 67, 68]. Such calculations are non-trivial, due to a combination of at least

three factors: the large number of scalars in the sigma-models, the non-AdS asymptotic be-

haviour of the solutions, and the fact that the solutions are known only in numerical form.

All of this combines to make such calculations rather resource intensive compared to the

ones we reported in these few pages. Hence we postpone these more advanced applications

to future, dedicated work.
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Model Parameters Light states Heavy states Lightest scalar

captured by probes captured by probes is a dilaton

A ∆ = 1, Φ1 � 1 No Yes Yes

A ∆ = 1, Φ1 & 1 Qualitatively Qualitatively Partially

A ∆ = 2.5, Φ1 � 1 No Yes Yes

A ∆ = 2.5, Φ1 & 1 No (tachyon) Qualitatively Yes

B c1 − c2 & 1 No Qualitatively Yes

C s∗ � 1 Qualitatively Qualitatively Partially

C s∗ � −1 Qualitatively Qualitatively Partially

(second lightest)

D |s∗| � 1 Qualitatively Qualitatively Partially

D |s∗| ∼ O(1) Qualitatively Qualitatively Partially

E n . 12
5 No Half of them Partially

E n & 12
5 No Half of them Partially

F Qualitatively Qualitatively Partially

Table 1. Critical summary of the results of the probe approximation, for all of the six examples

discussed in the body of the paper, and (where useful) for different values of the parameters. The

details can be found in the subsections devoted to each of the individual models. The adverb qual-

itatively is used in the table to mean that the spectrum is comparable to the probe approximation,

but there are visible numerical discrepancies. Partially refers to cases where the lightest scalar has

a sizable overlap with states other than the dilaton.
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