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Unimodular Gauge in Perturbative Gravity and Supergravity

This paper explains the Unimodular gauge fixing of gravity and supergravity in the framework of a perturbative BRST construction. The unphysical sector contains additional BRST-exact quartets to suppress possible ambiguities and impose both the Unimodular gauge fixing condition on the metric and a gauge condition for the reparametrization symmetry of the unimodular part of the metric. The Unimodular gauge choice of the metric must be completed by a γ-Traceless gauge condition for the Rarita-Schwinger field in the case of supergravity. This gives an interesting new class of gauges for gravity and supergravity.

Introduction

Albert Einstein recognized as early as in 1916 that there is a preferred gauge in classical gravity. He recommended the choice of a system of coordinates such that the determinant of the space-time metric g µν is locally unimodular. This means the gauge choice -det(g µν ) = 1 for solving the Einstein equations of motion [START_REF] Einstein | Die Grundlage der Allgemeinen Relativitatstheorie[END_REF]. Since this epoch, there has been some interesting activities about the concept of the Unimodular gauge. The word "Unimodular gravity" has actually become quite common. The non-exhaustive series of papers [START_REF] Henneaux | The Cosmological Constant As A Canonical Variable[END_REF][3][4] [START_REF] Upadhyay | BRST Quantization of Unimodular Gravity[END_REF][6] [START_REF] Oda | Fake Conformal Symmetry in Unimodular Gravity[END_REF][8] [START_REF] De Leon Ardon | The Path Integral of Unimodular Gravity[END_REF][10] [START_REF] Anero | Off-shell unimodular N=1, d=4 supergravity[END_REF] [START_REF] Jirouek | New Weyl-invariant vector-tensor theory for the cosmological constant[END_REF] and references therein address interesting questions related to this domain. A priori, the so-called Unimodular gravity has a different physical content than the standard Einstein theory. When looking at the literature, there are mainly two formulations: one that imposes g ≡ -det(g µν ) = 1 as a gauge choice and another one that imposes the constraint √ g = 1. Some confusion is spread around these formulations, although their difference is actually quite clear.

Working in the "Unimodular gauge" g = 1 for the Einstein theory is nothing but a possible choice, maybe unfamiliar and difficult to enforce, but formally equivalent to any other gauge choice. The BRST methodology to enforce this gauge choice is the subject of this paper. It exhibits interesting non trivialities that we find worth being published. The end of this introduction sketches physical motivations for using this gauge. Maybe the most striking one is that the gravity observables can be represented as functionals of the unimodular part of the metric, because of the physical redundancy between metrics related by a Weyl transformation. This last property was underlined in a different way in the classical theory in [START_REF] York | Role of conformal three-geometry in the dynamics of gravitation[END_REF].

In contrast, the "Unimodular gravity" means that one changes the theory by varying classically the Einstein-Hilbert action by only considering variation of metrics with √ g = 1. One motivation of the "Unimodular gravity" is that the cosmological constant is introduced as a constant of integration that can be chosen at will, while the "Unimodular gauge" fixes the cosmological constant as a parameter of the Lagrangian from the beginning.

Imposing √ g = 1 is a well-defined classical local gauge condition for gravity made possible by the reparametrization invariance of the theory. Thus, as a matter of principle, there should be no ambiguity to define a perturbative quantum field theory of gravity in this gauge, at least semi-classically. A solution must exist perturbatively for quantizing gravity by imposing the unimodular condition √ g = 1 on g µν and gauge fixing afterwards the residual reparametrization invariance of its unimodular part ĝµν . If supergravity is involved, the Unimodular condition on the metric also implies a γ-traceless condition on the spin 3/2 Rarita-Schwinger field Ψ µ and the residual local supersymmetry of its pure spin 3/2 part Ψµ must be further gauge fixed.

This paper is thus aimed at building a local quantum Lagrangian that defines gravity and supergravity unambiguously in the Unimodular gauge, at least for defining a consistent perturbative BRST invariant quantum field theory. A BRST exact gauge fixing action will be build that enforces consistently the Unimodular gauge condition, to be added to the Einstein action (and the Rarita-Schwinger action). We don't fear a possible anomaly for this process in the d = 4 case, because consistent 4d gravitational anomalies cannot possibly exist due to the structure of the SO(3, 1) Lie algebra.

For any given choice of a classical gauge function, getting a BRST symmetry invariant gauge fixing is necessary to possibly enforce all relevant Ward identities that define the quantum theory eventually. Gravity is non renormalizable by power counting but, presumably, the Unimodular gauge fixing procedure can be made stable under radiative corrections by introducing the needed counterterms that are compatible with the Ward identities in this gauge, order by order in perturbation theory.

The Unimodular gauge quantum Lagrangian built in this work makes explicit some particularities of diffeomorphisms with a divergence-less vector parameter. One of its subtleties is that a formal Faddeev-Popov gauge fixing of Unimodular metrics provides a singular determinant with a ghost of ghost phenomenon. To control this phenomenon, techniques analogous as those used to currently define TQFT's with a gauge invariance are needed. This provides a localisation of fields around their unimodular components with a remaining degeneracy to be further fixed in a BRST invariant way. It follows an enlargement of the standard BRST field content of perturbative gravity with additional BRST trivial quartets to define the Unimodular gauge. The Unimodular gauge fixing in first formalism and the expression of the spin connection in this gauge will be also discussed.

Although this work is self contained, it has a hidden motivation that is the stochastic quantization of gravity. The latter remedies the absence of a well-defined Lorentz time evolution in quantum gravity by the stochastic quantization time as the variable that orders the non-perturbative quantum gravity phenomena. In this framework, [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] indicates that the conformal factor of the metric behaves as a spectator, while the relevant non trivial aspects of the quantum gravity dynamics are carried by the unimodular part of the metric. But [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] also predicts that, at the perturbative level, the limit at infinite stochastic time of the stochastically quantized gravity is the well-defined (modulo UV questions) standard 4d perturbative quantum theory, for which the Lorentz time can be defined. To show this result, [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] uses the decomposition of the metric in its unimodular component and conformal factor. It thus appears necessary to dispose of a precise construction of semi-classical gravity in the unimodular gauge, the subject of this paper.

Interestingly, having a well-defined perturbative quantization of gravity in the unimodular gauge makes contact with the work of York [START_REF] York | Role of conformal three-geometry in the dynamics of gravitation[END_REF], who showed that what the classical Einstein equations truly propagate are the equivalence classes of metrics defined modulo Weyl transformations. Solving the Einstein equations is a Cauchy problem. York pointed out that, taking as initial conditions two metrics related by a Weyl transformation, their evolution at any given future time provides two metrics that are also related by a Weyl transformation. This fact holds true although the gravity equations of motions are not Weyl invariant [START_REF] York | Role of conformal three-geometry in the dynamics of gravitation[END_REF]. This makes the principle of gauge invariance and the definition of observables more subtle in gravity than in Yang-Mills and p-form gauge invariant theories. Showing that one can gauge fix the metric to be unimodular in a BRST invariant way is a way to generalize at the quantum level the classical arguments of York, since the set of the Weyl classes of metrics can be represented by the set of unimodular metrics.

Our work suggests that the (super)gravity observables should be defined as the functionals of unimodular metrics (and gravitino γ-Traceless components) although the (super)gravity action is not Weyl invariant. This property is very natural when one works in the Unimodular gauge. Since the BRST invariance ensures that the same physics can be computed with any other (well-defined) choice of gauge, the same conclusion must be true in other gauges. The expression of observables may then occur with more complicated expressions.

2 Pure Gravity

Improved BRST symmetry for the Unimodular gauge

The current method to perturbatively gauge fix gravity in Lagrangian formalism is by introducing a BRST symmetry operation s acting on the metric field g µν (x) and the vector ghost field ξ µ (x) of the reparametrization symmetry. The covariance of the BRST trivial pair made of a reparametrization antighost and a Lagrange multiplier depends on the gauge condition one wishes to use. Choosing the gauge function ∂ ν g µν , the anticommuting antighost and commuting Lagrange multiplier are both vector fields ξ µ (x) and b µ (x). The BRST symmetry is defined by the following graded differential operator s acting on the gravity BRST multiplet fields

sg µν = Lie ξ g µν sξ µ = ξ ν ∂ ν ξ µ sξ µ = b µ sb µ = 0. (1) 
One has [s, ∂ µ ] = 0 and the nilpotency s 2 = 0. t'Hooft and Veltman defined the perturbation expansion of quantum gravity in the de-Donder gauge by adding the s-exact term s(ξ µ ∂ ν g µν ) to the Einstein action [16]

L Einstein → L Einstein + s(ξ µ ∂ ν g µν ) = L Einstein + b µ ∂ ν g µν -ξ µ Lie ξ ∂ ν g µν . (2) 
They used the Feynman rules for the metric and the ghosts and antighosts that stem from the local action (2). Their gravity Ward identities are implied by the symmetry [START_REF] Einstein | Die Grundlage der Allgemeinen Relativitatstheorie[END_REF] where

L ξ g µν = g ρµ ∂ ν ξ ρ + g ρν ∂ µ ξ ρ + ξ ρ ∂ ρ ĝµν .
Using an Unimodular gauge choice with √ g ≡ -det g µν = 1 seems impossible with only the standard Fadeev-Popov fields: the 4 conditions ∂ µ g µν = 0 exhaust the possibilities allowed by the Lagrange multiplier b µ .

In fact, something more refined than the standard Faddeev-Popov construction must be done to define the gauge fixing of g µν to its unimodular part ĝµν , defined as (here

d = 4) ĝµν ≡ g µν / √ g 2 d , (3) 
with a further gauge fixing of the reparametrization symmetry of ĝµν , which satisfies

sĝ µν ≡ L ξ ĝµν = ĝρµ ∂ ν ξ ρ + ĝρν ∂ µ ξ ρ + ξ ρ ∂ ρ ĝµν - 2 d ĝµν ∇ρ ξ ρ . ( 4 
)
The value of the coefficient of the last term in (4) ensures that ĝµν sĝ µν = 0 consistently with det ĝµν = 1.

The clarification comes by considering ĝµν and g as the independent quantum field variables, with reparametrization transformations defined by ( 4) for ĝµν and s √ g = ∇ µ ξ µ . This generalizes for d > 2 the decomposition of a 2d metric in its Beltrami parameter and its conformal factor [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF]. The off-shell decomposition of g µν in ĝµν and √ g is justified because the variations of g µν are not irreducible Lorentz tensors and split into trace and traceless components. In fact, an off-shell decomposition of any given Lorentz tensor fields in irreducible representations should be done systematically for spin values larger than 1. For spin 3/2, the Rarita-Schwinger field Ψ µ must be split in its γ-Trace and γ-Traceless irreducible components, and so-on.

The gauge fixing problem of gravity in the Unimodular gauge draws us quickly deeper in the BRST symmetry formalism than the Yang-Mills theory and, more generally, than the theory of p-form fields whose field variations belong to irreducible Lorentz representations. The reason is that if one formally applies the Faddeev-Popov method and impose both gauge conditions ∂ ν ĝµν = 0 and √ g = 1, (which make sense classically), the situation becomes confusing. The Unimodular gauge condition √ g = 1 equates the Einstein action density √ gR(g µν ) as

R| gµν =ĝµν and the later term is invariant under all restricted diffeomorphisms with a divergent-less vector field parameter ξ µ with ∇ µ ξ µ = 0 according to [START_REF] Padilla | A Note on Classical and Quantum Unimodular gravity[END_REF]. But for such a vector field, one has

s √ g √ g=1 = ∂ µ ξ µ = 0. ( 5 
)
This justifies the necessity of separating the "longitudinal" components of ξ µ (satisfying ∂ µ ξ µ = 0) from its "transverse" component. The same must be done for the antighost partner ξ µ of ξ µ to understand the further gauge fixing of R| gµν =ĝµν . If it can be done, ĝµν and g can be truly treated as independent fields, with a welldefined path integral measure in a consistent BRST approach for the Einstein action in the Unimodular gauge.

The use of ghost and/or antighost fields defined modulo some degeneracy is often done by introducing ghosts of ghosts. In our case, the use of ghosts of ghosts will correct very concretely the wrong statement that the 5 conditions ∂ ν ĝµν = 0, √ g = 1 might imply an over-gauge fixing. The longitudinal and transverse components of the auxilary field b µ = sξ µ must be also separated as those of ξ µ and ξ µ . The longitudinal component of b µ may need a BRST invariant gauge fixing. The current understanding of topological quantum field theories with gauge symmetries involving systematically ghosts of ghosts can be used as a road map. It justifies the introduction of extended BRST symmetries involving new fields organized under the form of BRSTexact quartets. Such quartets count altogether for zero degrees of freedom and solve in general all issues about ghosts with an internal degeneracy. Their field components often play the role of Lagrange multipliers. For gauge fixing the unimodular part of the metric such quartets will allow the construction of a BRST invariant path integral with a functional measure using ĝµν and √ g as fundamental fields.

One thus completes the ordinary BRST system in Eq. ( 1) by addition of the trivial BRST quartet L (00) , η (10) , η (01) , b (11) .

The scalar bosonic fields L, b and fermionic fields η, η count altogether for zero=1+1-1-1 degrees of freedoms in unitary relations provided their dynamics is governed by an s-exact action defining invertible propagators.

Having available this extra set of unphysical fields is exactly what one needs to get a Lagrangian with invertible propagators in the Unimodular gauge, with a BRST invariant gauge fixing of zero modes that otherwise would spoil the definition of gravity by a path integral in the Unimodular gauge. Eventually, a path integral with a measure depending only on the unimodular part of the metric will be obtained. One can interpret this result as the quantum generalization of the classical prescription of Einstein [START_REF] Einstein | Die Grundlage der Allgemeinen Relativitatstheorie[END_REF].

The following diagram displays suggestively all necessary ghosts, antighosts and Lagrange multipliers *

g µν = (ĝ µν , √ g), L (00) 
ξ µ (10) , η (10) ξ

(01) µ , η (01) b (11) 
µ , b (11) 1 0 -1 .

(7) * The notation φ g,g means that the field φ g,g carries ghost number g and antighost number g for a total net ghost number G = g -g . φ g,g is a boson if G is even and a fermion if G is odd. We often skip these ghost and antighost indices in the formula.

The numbers -1, 0, 1 in the bottom line indicate the net ghost number of fields that are aligned vertically above each number. The BRST transformations that generalizes (1) are

sg µν = Lie ξ g µν sξ µ = Lie ξ ξ µ sξ µ = b µ sb µ = 0 sL = η sη = 0 sη = b sb = 0. ( 8 
)
One still has [s, ∂ µ ] ≡ 0, {s, d} ≡ 0 and s 2 = 0 on this extended set of fields. In fact d, s, i ξ , Lie ξ = [i ξ , d] build a system of nilpotent graded differentials operators. † The last two lines in Eqs. ( 8) identify L, η, η, b as the elements of a BRST exact quartet. The commuting scalar b is an additional scalar Lagrange multiplier with ghost number 0. Both anticommuting scalar η, η are odd Lagrange multipliers with ghost numbers -1 and 1.

The BRST invariant quantum Einstein Lagrangian for the Unimodular gauge

Define now a class of BRST invariant gauge fixing actions with the gauge functions ∂ ρ ĝρν and √ g -1.

Using the definition of s in [START_REF] Oda | Classical Weyl Transverse Gravity[END_REF], one can complete dx √ gR(g µν ) by addition of an s-exact term. One defines

dxL BRST inv. gauge fixed = dx √ gR + s ξ µ (ĝ µν ∂ ρ ĝρν + γ∂ µ L + α 2 b µ ) + η( √ g -1) . (9) 
The range of these Unimodular gauges is parametrized by all possible choices for the gauge parameters γ = 0 and α. Observables are the elements of the cohomology of s. Their expectation values are independent on the choice of α and γ = 0. We will consider the case α = 0 and γ = 1. Expanding the s-exact term yields

dxL BRST inv. gauge fixed (g µν , L, b µ , ξ µ , ξ µ , η, η, b) = dx √ gR(g µν ) + b µ (ĝ µν ∂ ρ ĝρν + ∂ µ L) + b( √ g -1) -ξ µ (ĝ µν ∂ ρ Lie ξ ĝρν + (Lie ξ ĝµν )∂ ρ ĝρν -ξ µ ∂ µ η + η∇ ν ξ ν . (10) 
(Lie ξ ĝµν is expressed in [START_REF] Padilla | A Note on Classical and Quantum Unimodular gravity[END_REF].) The equation of motion of the auxiliary field b imposes √ g = 1, ie g µν = ĝµν , everywhere in [START_REF] Nagy | The Super-Stuckelberg procedure and dS in Pure Supergravity[END_REF]. Its elimination yields the BRST invariant action of gravity in the Unimodular gauge

I BRST Unimodular ĝµν , L, b µ , ξ µ , ξ µ , η, η = dx R(ĝ µν ) + b µ ( ĝµν ∂ ρ ĝρν + ∂ µ L ) -ξ µ ( ĝµν ∂ ρ Lie ξ ĝρν + (Lie ξ ĝµν )∂ ρ ĝρν ) -ξ µ ∂ µ η + η∇ ν ξ ν . (11) 
The BRST invariant gauge-fixed action [START_REF] Anero | Off-shell unimodular N=1, d=4 supergravity[END_REF] and the associated non linear coupled differential equations of motion may look complicated at first sight. It is worth explaining the role of all terms in I BRST Unimodular . R(ĝ µν ) stands for R(g µν ) where one replaces g µν by ĝµν . A reparametrization invariance remains for R(ĝ µν ), but with the constraint ∇ µ ξ µ = 0 on the longitudinal part of the vector ξ µ , as implied by the transformation law (4). The reading of I BRST Unimodular shows that this constraint is the fermionic equation of motion of η. Before the gauge fixing of √ g = 1 by the equation of motion of b = sη, ĝµν ≡ g µν /g 1 d is a composite of g µν and √ g. After the gauge fixing √ g = 1, ĝµν becomes an independent field with d(d+1)
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-1 degrees of freedom whose covariance is defined by (4). This makes consistent the approach that identifies the d(d+1) 2 -1 independent degrees of freedom of the unimodular matrix ĝµν and the single one carried by √ g (or equivalently by φ, g ≡ exp -2φ) as the d(d+1) 2 independent fundamental fields of gravity. This proposition makes sense classically and our BRST construction verify that it remains true at the quantum level. The (lesser relevant) gauge fixing of ĝµν involves the auxilary field b µ and the propagating field L. b µ becomes a Lagrange multiplier when α = 0. Its equation of motion enforces in a BRST invariant way the φ independent condition on ĝµν

∂ ρ ĝρµ + ĝµν ∂ ν L = 0 (12) 
† ŝ = s-L ξ is nilpotent as s in the absence of local supersymmetry because in this case sξ = Lie ξ ξ. In supergravity, ŝ2 = i Φ = 0, where Φ µ = χγ µ χ is the vector field quadratic in the commuting supersymmetry ghost χ [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF].

The path integration over all possibilities over the field L avoids an over gauge fixing if one performs the path integral of exp -I BRST Unimodular over all metrics. The BRST invariant action ( 9) is a quadratic form of the anticommuting fields ξ µ , ξ µ , η and η. These ghosts sandwich local operators. Their functional integral from exp -I BRST Unimodular determines a now well-defined product of Faddeev-Popov determinants associated to both gauge functions √ g -1 and ∂ µ ĝµν . If one reinstall the general γ = 1 gauge parameter dependence of ( 9), the free ghost field quadratic approximation of the action is

dx -g µν ξ µ ∂ 2 ξ ν + (η + 2 -d d ∂ξ)∂ξ + γη∂ξ . ( 13 
)
Its invertibility and the absence of zero modes for the ghosts imply γ = 0. This justifies our choice γ = 1 and the use of all the elements of the quartet (L, η, η, b) for defining consistently the unimodular gauge.

All this establishes that I BRST Unimodular is truly the local BRST invariant action that enforces at the quantum level the classically admissible gauge functions √ g and ∂ ρ ĝρν for gauge fixing the reparametrization invariance of the Einstein action. It is instructive enough to observe that the variation with respect to ĝµν of dxR(ĝ µν ) gives the following contribution to the ĝµν equation of motion of the complete BRST invariant action

δ δĝ µν dxR(ĝ αβ ) = R µν (ĝ αβ ) - 1 2 ĝµν R(ĝ αβ ). ( 14 
)
One recognizes in the right hand side the Einstein tensor E µν ≡ R µν -1 2 g µν R with g µν replaced by its unimodular component ĝµν , with the already mentioned reparametrization invariance. In fact, following [START_REF] Thomas | Conformal correspondence of Riemann spaces[END_REF], [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] indicates how to express all gravity tensors in term of ĝµν and φ, using the important Christoffel symbols decomposition

Γ µ νρ = Γµ νρ + Σ µ νρ , where Γµ νρ ≡ 1 2 ĝµα (∂ ν ĝαρ + ∂ ρ ĝαν -∂ α ĝνρ ), Σ µ νρ ≡ δ µ ρ ∂ ν φ + δ µ ν ∂ ρ φ -ĝµα ĝνρ ∂ α φ. ( 15 
)
The "hat covariant derivative" ∇µ is ∇ µ where the Christoffel Γ µ νρ (g αβ ) is replaced by Γµ νρ (ĝ αβ ). Rµν and R are defined as R µν and R, but using the hatted quantities Γµ νρ and ĝµν (for instance R ≡ R(ĝ µν )). [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] shows

R µν (g αβ ) = Rµν (ĝ αβ ) -(d -2) ∇µ ∂ ν φ -ĝµν ∇α ĝαβ ∂ β φ + (d -2)∂ µ φ∂ ν φ -(d -2)ĝ µν ∂ α φĝ αβ ∂ β φ R(g αβ ) = g µν R µν (g αβ ) = exp(-2φ) R(ĝ αβ ) -2(d -1)ĝ µν ∇µ ∂ ν φ + d -2 2 ∂ µ φ∂ ν φ . (16) 
[15] also computes the traceless component of the variation with respect to ĝµν of dxR(ĝ µν )

E T µν = Rµν - 1 d ĝµν R -(d -2)( ∇µ ∂ ν φ -∂ µ φ∂ ν φ) + d -2 d ĝµν ĝαβ ∇α ∂ β φ -∂ α φ∂ β φ = ÊT µν -(d -2)( ∇µ ∂ ν φ -∂ µ φ∂ ν φ) T . ( 17 
)
This decomposition helps understanding the meaning of Eq.( 14) by taking φ = 0. Eventually, although [START_REF] Anero | Off-shell unimodular N=1, d=4 supergravity[END_REF] and its equations of motion may look impressive, everything relies on a consistent and meaningful construction.

Perturbatively, the consistency of the gauge fixing provides a matricial system of invertible propagators for all fields. The unimodular components ĝµν of g µν circulate in Feynman diagrams loops while √ g remains a spectator field with some compensations due to bosonic loops of L and fermionic loops of η and η. All propagators between the bosons ĝµν , b µ , b, L and the fermions ξ µ , ξ µ , η, η are invertible (provided γ = 0) ‡ . Thus, the action ( 9) is well suited for a quantum description of gravity with the Unimodular gauge choice

√ g = 1,
giving a concrete sense to the visionary classical prescription of Einstein [START_REF] Einstein | Die Grundlage der Allgemeinen Relativitatstheorie[END_REF] as a genuine gauge fixing prescription, valid also at the quantum level. For perturbations around non-trivial classical backgrounds, the latter classical fields must be expressed in the Unimodular gauge.

Gravity observables

Mean values of observables are defined as

< O(ĝ µν ) >≡ [dĝ µν )][dξ µ ][dξ µ ][dL][dη][dη]O(ĝ µν ) exp - 1 I BRST Unimodular ĝµν , L, b µ , ξ µ , ξ µ , η, η . (18) 
‡ For α = 0, one has a Feynman type propagator for ĝµν and a Klein-Gordon propagator for L after the algebraic elimination of b µ . There are mixed propagators between ĝµν b µ and L as a consequence of the the choice α = 0.

If matter is coupled, the gauge fixing g µν = ĝµν also affects its energy momentum tensor, which then depends on g µν only through ĝµν . Because gravitational anomalies cannot exits in d = 4, the Unimodular gauge can be enforced order by order at any finite order of perturbation theory, modulo the necessity of adding more and more relevant local counterterms. The Ward identities should guarantee the stability of the gauge √ g = 1.

Unimodular supergravity

We consider the supergravity N = 1, d = 4 as an example, but the method is general. We use the new minimal system of auxiliary fields (a 1-form A and a 2-form B 2 ) of Sohnius and West [START_REF] Sohnius | An Alternative Minimal Off-Shell Version of N=1 Supergravity[END_REF] in the notations of [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF]. Auxiliary fields are often necessary for the nilpotency of the BRST symmetry operator in supergravity, but their role is secondary in this paper § . We use a Lorentz signature. The flat metric η µν has signature (-, +, +, +). The Dirac matrices γ µ are real and γ 5 ≡ γ 0 γ 1 γ 2 γ 3 = 1 4! µνρσ γ µ γ ν γ ρ γ σ . One has (γ 5 ) 2 = -1, γ 5 † = γ 5 and γ µ † = γ 0 γ µ γ 0 . The Dirac conjugate of a spinor X is * X ≡ X † γ 0 . One chooses the charge conjugation matrix C to be γ 0 with X C ≡ (C * X) T . Majorana spinors have 4 real components since by definition X C = X . The Rarita-Schwinger Lagrangian of the spin 3/2 Majorana gravitino Ψ µ is

L RS = 1 2 i µνρσ Ψ * µ γ 5 γ ν D ρ Ψ σ . ( 19 
)
We refer to [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF] as well as to [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF] for properties of the covariant derivative D µ = ∂ µ + ω µ + A µ in the new minimal formulation of N = 1, d = 4 supergravity where ω is the spin connection. As we already said, the dependance in the auxiliary fields A and B 2 can be omitted without loss of generality in our discussion.

The use of the following 3/2 spin projection operators (as in [18] and [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF]) that satisfy all relevant orthogonality conditions make more transparent the gravitino gauge fixing.

P 3 2 µν = θ µν - 1 3 γµ γν (P 1 2 11 ) µν = 1 3 γµ γν (P 1 2 12 ) µν = 1 √ 3 γµ Ω ν (P 1 2 
21 ) µν = 1 √ 3 γν Ω µ (P 2 2 12 ) µν = 1 3 Ω µ Ω ν Ω µ ≡ ∂ µ γ • ∂ γµ ≡ γ µ -Ω µ θ µν ≡ η µν -Ω µ Ω ν . ( 20 
)
The free part of the Rarita-Schwinger Lagrangian, invariant under the transformation Ψ µ → Ψ µ + ∂ µ , is

L f ree RS = 1 2 i µνρσ * Ψ µ γ 5 γ ν ∂ ρ Ψ σ ≡ * Ψ µ (P 3 2 -P 1 2 11 ) µν Ψ ν . (21) 
An interesting observation is that

L f ree RS = Ψ * µ (g µν - ∂µ∂ν ∂ 2 )/ ∂Ψ ν + (....) / Ψ.
Consider now the following algebraic constraint on Ψ µ

/ Ψ ≡ γ µ Ψ µ = 0. ( 22 
)
It can be enforced by adding the term * a / Ψ to L f ree RS where a is a fermionic spin 1/2 Lagrange multiplier ¶

L f ree RS + a * / Ψ = Ψ * µ (g µν - ∂ µ ∂ ν ∂ 2 )/ ∂Ψ ν + (a * + ....) / Ψ. ( 23 
)
The non-locality seemingly presents in

∂ µ ∂ ν / ∂
∂ 2 is spurious as it will be shown shortly. Eq. ( 23) expresses the naturalness of the off-shell gauge condition (22). One can define the following off-shell decomposition of Ψ µ

Ψ µ = Ψµ + γ µ Ψ where Ψ ≡ 1 d / Ψ Ψµ ≡ Ψ µ - 1 d γ µ / Ψ. ( 24 
)
This notation will be convenient when completing the Unimodularity gauge condition √ g = 1 by a γ-Traceless condition for Ψ µ § To generalize and precisely incorporate the auxiliary fields dependence in the Unimodular gauge fixing of supergravity, one can consistently use [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF], although it is devoted to the different subject of N = 1, d = 4 supergravity superHiggs mechanism.

¶ Consider the addition of a mass term imΨ * µ σ µν Ψν to the free Rarita-Schwinger Lagrangian L f ree RS . One has imΨ * µ σ µν Ψν = mΨ * µ P 

Additional fields for imposing the γ traceless gauge in supergravity

We wish to separately gauge fix in a BRST invariant way both irreducible spin 1/2 and spin 3/2 spinors Ψ and Ψµ in Eq. ( 24) with the gauge functions / Ψ and ∂ µ Ψµ . This choice of spinorial gauge functions is quite different than the conventional ones in supergravity. The latter amount to add to the Rarita-Schwinger Lagrangian a gauge fixing term / Ψ * / ∂ / Ψ [18] with additional subtleties in the massive case [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF]. However, such a gauge fixing term vanishes for / Ψ = 0. It is thus inconsistent with the off-shell γ-Traceless condition of Ψ µ that will be used shortly to build the Unimodular gauge supergravity.

We must advance with caution because a propagator degeneracy for the local supersymmetry ghosts is feared if we impose / Ψ = 0, analogous to that occurring for the reparametrization ghosts in the gauge √ g = 1.

Call χ the commuting supersymmetry Majorana spinor ghost of supergravity. χ is the commuting antighost and d = sχ is the anticommuting spinor auxilary field (often known as the Nielsen-Kallosh ghost), which is generally used to possibly enforce a spin 1/2 gauge condition on the gravitino. d is the analog of b µ that allows a vector gauge condition on the metric. The standard BRST symmetry of the N = 1, d = 4 supergravity is

sg µν = Lie ξ g µν + iΨ * {µ γ ν} χ sΨ µ = Lie ξ Ψ µ + D µ χ sξ µ = Lie ξ ξ µ + iχ * γ µ χ = ξ ν ∂ ν ξ µ + iχ * γ µ χ sχ = Lie ξ χ = ξ ν ∂ ν χ - 1 2 χ∂ ν ξ ν sχ = d sd = 0. ( 25 
)
The novelty will be the use the fermionic Lagrange multiplier d to gauge fix the irreducible component Ψµ of Ψ µ , and not the full Ψ µ . This makes the situation quite different than for standard gauge choices of [18] and [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF].

Here is the point. The unimodularity constraint √ g = 1 implies for consistency that the supersymmetry variation of √ g vanishes. Thus, Eq. ( 5) generalizes as

0 = s √ g| √ g=1 = ∂ µ ( √ gξ µ ) + ig µν χ * γ µ Ψ ν = ∂ µ ξ µ + iχ * / Ψ. ( 26 
)
The supergravity path integral measure must therefore separate between BRST invariant "transverse" and "longitudinal" off-shell field components of all ghosts, where "longitudinal" means the conditions ∂ µ ξ µ = 0 and / Ψ = 0 and refers to the decompositions of g µν and Ψ µ in ĝµν , √ g, Ψµ and Ψ .

For the Rarita-Schwinger action, to consider Ψµ and Ψ as the independent classical components of the Rarita-Schwinger field to be possibly gauge fixed separately, one must correspondingly complete the standard supergravity BRST fields appearing in (25) by addition of a spinorial trivial quartet λ, a, λ, a. The reason is the same as for having introduced the quartet L, η, η, b to possibly gauge fix separately the unimodular part and the conformal factor of the metric, considered as independent field variables of the pure gravity theory and possibly enforce the Unimodular gauge for the metric alone.

The BRST gravity fields in [START_REF] Oda | Fake Conformal Symmetry in Unimodular Gravity[END_REF] get therefore the following Rarita-Schwinger partners

Ψ µ = ( Ψµ , Ψ ≡ / Ψ), a (00) 
χ µ (10) , λ (10) χ (01) , λ

d (11) , a (11) 1 0 -1

. ( 27 
)
The BRST transformations that complete those in Eqs. (25) and express λ, a, λ, a as a trivial quartet are

sa = λ sλ = 0 sλ = a sa = 0. ( 28 
)
For the sake of notational simplicity, the supergravity auxiliary field dependence of the BRST transformations is left aside. The way to use them for quantization is eg in [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF] and [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF]. Such refinements play no role in the argumentation of this paper.

BRST exact-terms for the γ-traceless gauge in supergravity

To impose the γ-Traceless condition / Ψ = 0 on the Rarita-Schwinger field, one defines

L / Ψ gf = s λ * / Ψ) = a * / Ψ + λ * / Dχ + λ * (se µ a )γ a Ψ µ . (29) 
The equation of motion of a enforces / Ψ = 0 for the spin 3/2 field, analogously as that of b enforces √ g = 1.

To impose the longitudinal gauge function ∂ • Ψ on the γ-Traceless spin 3/2 field Ψµ , one defines

L ∂• Ψ gf = s(χ * (∂ • Ψ + β/ ∂a + δ 2 / ∂d)) = δd * / ∂ 2 d + d * (∂ • Ψ + β/ ∂a) + χ * (∂ • Dχ + β/ ∂λ)
+ghost interaction terms proportional to sg µν .

β and δ are parameters. The field a is the fermionic analogous of the boson L in Eq [START_REF] De Leon Ardon | The Path Integral of Unimodular Gravity[END_REF].

The proposed gauge fixed action of the massless Rarita-Schwinger field in the γ-traceless gauge is therefore

dxL RS BRST (Ψ µ , χ, χ, d, λ, λ, a, a) ≡ dx( L RS + L / Ψ gf + L ∂• Ψ gf ). ( 31 
)
The γ-traceless condition (22) / Ψ = 0 holds everywhere after the elimination of a by its algebraic equation of motion from L RS BRST , while the corresponding BRST symmetric ghost term remains. In particular, the free quadratic part of dxL RS is gauge fixed to (23). One must check that all fields in (27) have invertible propagators stemming from the action (31).

The term s(χ * / ∂a) in L ∂• Ψ gf enforces the propagation of the fields λ and a. In order its coefficient doesn't vanish, one has the following condition, analogous to γ = 0 in [START_REF] De Leon Ardon | The Path Integral of Unimodular Gravity[END_REF], 

β = 0. ( 32 

Free quadratic approximation of the γ-traceless gauge fixed BRST invariant Rarita-Schwinger action

The equations of motion of dxL RS BRST (Ψ µ , χ, χ, d, λ, λ, a, a) present a complicated aspect analogous to that already discussed for the action [START_REF] Anero | Off-shell unimodular N=1, d=4 supergravity[END_REF] of the Einstein theory in the Unimodular gauge. The analysis of each term in dxL RS BRST can be done as we did in section 2.2 for the action [START_REF] Anero | Off-shell unimodular N=1, d=4 supergravity[END_REF]. To verify that the gauge fixing is complete and consistent, it is enough to display the quadratic approximation of the Lagrangian, out of which one can get a clear insight on the general aspect of the equations of motion. One has

dx L RS free + L / Ψ gf + L ∂• Ψ gf ) ≡ dx L F free (Ψ µ , a, a) + L B free (χ, χ, λ, λ) . (33) 
The fermionic part of L free is

L F free = (a * + ...) / Ψ + η µν Ψ * µ / ∂Ψ ν -∂ • Ψ * 1 / ∂ ∂ • Ψ * + δd * / ∂ 2 d + d * (∂ • Ψ + β/ ∂a) ∼ η µν Ψ * µ / ∂ Ψν -∂ • Ψ * 1 / ∂ ∂ • Ψ + δd * / ∂ 2 d + d * (∂ • Ψ + β/ ∂a) ∼ η µν Ψ * µ / ∂ Ψν -∂ • Ψ * 1 / ∂ ∂ • Ψ -(∂ • Ψ * + β/ ∂a * ) δ / ∂ (∂ • Ψ + β/ ∂a). (34) 
In both last lines, the Rarita-Schwinger field dependance is only through its spin 3/2 γ-traceless component Ψµ after eliminating a by its equation of motion. Taking δ = -1, the terms ∂ • Ψ * 1 / ∂ ∂ • Ψ cancel and one gets the following Lagrangian that defines the fermionic free propagators of Ψµ and a with a mixing for β = 0

L F f ree,δ=-1 ∼ η µν Ψ * µ / ∂ Ψν + β 2 a * / ∂a + 2βa * ∂ • Ψ. ( 35 
)
The bosonic part of L free is

L B f ree,δ=-1 = χ * λ * ∂ 2 β/ ∂ / ∂ 0 χ λ . (36) 
The choice β = 0 is necessary for the invertibility, giving the following matrix of free bosonic propagators

χ * a * 0 1 / ∂ 1 β/ ∂ -1 β χ λ . (37) 
The propagators stemming from L free have standard dimensions and are suitable for a perturbative expansion. The constraint / Ψ = 0 holds in the Feynman rules of interactions. The spin 1/2 component / Ψ of the Rarita-Schwinger field doesn't circulate within loops. This phenomenon is compensated by a circulation of appropriate ghosts. The decoupling of / Ψ and of the conformal factor φ are analogous phenomena in the Unimodular gauge.

Supergravity action in the Unimodular gauge

In the Unimodular gauge for the graviton and γ-Traceless gauge for the gravitino, the previous results give the following BRST invariant gauge fixed action for the classical supergravity action dx

√ g(R(g µν )+ 1 2 i µνρσ Ψ µ * γ 5 γ ν D ρ Ψ σ ) I Unimodular supergravity [ĝ µν , Ψµ , ghosts] = dx R(ĝ µν ) + 1 2 i µνρσ Ψ * µ γ 5 γ ν D ρ Ψσ + ghost terms. ( 38 
)
The fields b and λ have been eliminated by their algebraic equations of motion. This BRST invariant action depends on the metric and on the Rarita-Schwinger field only through their unimodular and γ-Traceless components ĝµν and Ψµ . Such a genuine dependence in function of the metric and the gravitino simplify the expression of Ward identities of local supersymmetry. In particular, all terms obtained by variations of ĝµν are traceless and interactions between spin 1/2 and 3/2 components of Ψ µ disappear because / Ψ = 0.

The first order formalism spin connection in the Unimodular gauge

Explaining the determination of the spin connection ω in the Unimodular gauge is necessary to make precise how all half-integer spin fields couple in this gauge to gravity and supergravity via their covariant derivative D = d+ω.

In the first order formulation, the 1-form vielbein e a = e a µ (x) and the 1-form spin connection ω ab (x) = ω ab µ (x)dx µ that gauges the local Lorentz transformations are introduced as independent fields (a, b... are Lorentz indices). For any given supergravity model expressed in first order formalism, one generally eliminates the spin connection by its algebraic equation of motion and expresses it as a local function of the metric, the gravitino and possibly auxiliary fields. Equivalently, one can impose a covariant constraint on the torsion in the supergravity first order action, solved by the same choice of the spin connection [18]. In fact the determination of the spin connection by such a covariant constraint respects the off-shell closure of the gauge symmetries provided the constraint on the torsion is fixed such that it is compatible with Bianchi identities [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF].

In what follows, we keep restricting to the N = 1, d = 4 supergravity case and neglect for simplicity the auxiliary fields (see however the footnote * * for their inclusion). In this case, the curvature R ab of the Lorentz gauge field ω ab , the torsion T a of e a and the field strength ρ of the gravitino 1-form Ψ = Ψ µ dx µ are the following 2-forms satisfying Bianchi identities that amount to d 2 = 0 when all curvatures vanish R ab ≡ dω ab + ω a c ω cb 

functionals of ĝµν and Ψµ in the cohomology of s. The set of physical S-matrix elements to be computed in this gauge are those with external legs made of unimodular components of the graviton and γ-traceless gravitino.

Getting the conformal factor and the spin 1/2 component of the gravitino as spectators extends at the quantum level the old classical intuition of Einstein [START_REF] Einstein | Die Grundlage der Allgemeinen Relativitatstheorie[END_REF] and the work of [START_REF] York | Role of conformal three-geometry in the dynamics of gravitation[END_REF] at least semi-perturbatively. [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF] observed that a 2d world sheet is best described in terms of the Beltrami parametrisation of the 2d metric (and the 2d gravitino), with a correspondence between the 2d unimodular metric ĝµν and the Beltrami differential µ z z . Interestingly, the present paper generalizes to all dimensions d > 2 the possibility of formulating gravity (and supergravity) with the reduced fields ĝµν (and Ψµ ) as fundamental fields, modulo some ghosts that are not in the physical spectrum. In the 2d case, this gives a precise understanding of the factorisation properties of (super)strings, the decoupling of the conformal factor of the world sheet, the nature of 2d (super)conformal anomalies, the definition of (super)string observables and so on. The 2d (super)conformal factor fully disappears from the path integral measure and the Liouville fields couple only to the (super) Beltrami components of the 2d metric (and 2d gravitino). The perspectives of using the Unimodular gauge for d > 2 are not yet obvious. It might be for instance illuminating to revisit the Velo-Zwanziger phenomenon [START_REF] Velo | Propagation and Quantization of Rarita-Schwinger Waves in an External Electromagnetic Potential[END_REF] as well as the BRST superHiggs effect analysis of [START_REF] Baulieu | Anomaly Cancellation Mechanism In N = 1, D = 4 Supergravity and Distorted Supergravity with Chern-Simons Forms[END_REF] in this different gauge for the Rarita-Schwinger field. In fact, given that any perturbation around an unimodular background is purely traceless, as in particular a classical graviton is, one may consider the Unimodular gauge as a kind of physical gauge for gravity. Reformulating known General Relativity solutions in this gauge might be quite instructive.
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  Ψν . Then, L f ree,m RS in (23) generalizes into L f ree,m RS = Ψ * µ (gµν -∂µ∂ν ∂ 2 ) (/ ∂ -m) Ψν + (a * + ....) / Ψ.

)

  mixed propagator between ∂ µ Ψµ and the spin 1/2 field d. The second order propagation term * χ∂ 2 χ between the supersymmetry ghosts χ and χ is a mere consequence of the choice of a gauge fixing function ∂ • Ψ to gauge fix the remaining of the local supersymmetry invariance after having imposed / Ψ = 0.

T a ≡ de a + ω a b e b + i 4 Ψ

 4 * γ a Ψ ρ ≡ Dρ = dΨ + ωΨ = dΨ + ω ab σ ab Ψ. (39) (σ ab ≡ i 2 [γ a , γ b ]). The first order supergravity action isI first order = ( abcd e a ∧ e b ∧ R cd + i 2 Ψ * γ 5 γ a ∧ e a ∧ ρ).

Acknowledgments: It is a pleasure to thank Jean-Pierre Derendinger, John Iliopoulos and Mathias Blau for interesting discussions on the subject of this paper.

The equation of motion of the spin connection ω of this action is the super-Poincaré torsion zero condition T a = de a + ω a b e b + i 4 Ψγ a Ψ = 0. As said earlier, this condition can be postulated from the beginning as a geometrical constraint (with a possible covariant distortion when auxiliary fields are introduced compatible with the invariances of the action (40) * * ). The constraint on T a is an invertible system of linear equations for the components ω ab µ . The d(d -1)/2 dimensional local Lorentz symmetry of I first order can be gauge fixed by imposing the d(d -1)/2 relations e a µ = e µ a , giving a one to one one correspondence between the d(d + 1)/2 components of the Lorentz gauge-fixed e a µ and those of g µν , by using g µν ≡ e a µ e aµ . The Lorentz gauge-fixing gives a trivial Fadeev-Popov determinant implying the consequent-less elimination of the Faddeev-Popov ghosts of the local Lorentz symmetry by their algebraic equations of motion stemming from by the BRST symmetry. Their solution is a (complicated) local function of the d(d + 1)/2 non vanishing components of e a µ , of their derivatives and of the gravitino Ψ µ . In fact, as shown with many details for instance in [18], one has explicitly

The basic property of the first order formalism is thus the equivalence of both following local actions, where the gauge field ω of the Lorentz symmetry in the right hand side by is computed in Eq.( 41),

The Unimodular gauge that fixes g µν → ĝµν and Ψ µ → Ψµ is obtained by further imposing φ = 0 and Ψ = 0 everywhere, adding to the action the BRST exact terms discussed above. Notice that, in first order formalism, the gauge condition φ = 0 implies e a µ → êa µ , where êa µ can be parametrized by d(d + 1)/2 -1 fields because of the relation ĝµν = êa µ êaν and det ĝµν = 1. Moreover, with φ = 0 the vanishing torsion condition implies

The solution for ω is as in (41) by replacing g µν , e a µ , Ψ µ by ĝµν , êa µ , Ψµ , so that

This formula of the spin connection in the Unimodular gauge generalizes the range of applications of the golden rule of [START_REF] Baulieu | Weyl Symmetry in Stochastic Quantum Gravity[END_REF] to the first order formalism. Using Eq. ( 43), the expression of the covariant derivatives d + ω is what determines the details all half-integer spin couplings in the Unimodular gauge.

Conclusion

The completion of the ordinary BRST field content of supergravity (g µν , ξ µ , ξ This Unimodular gauge choice √ g = 1 for the metric and the γ-Traceless condition / Ψ = 0 for the Rarita-Schwinger field can be further completed by the less qualitative gauge functions ∂ ν ĝµν and ∂ µ Ψµ . One gets an off-shell decoupling of the conformal factor of the metric and of the γ-Trace of the Rarita-Schwinger field. This new class of gauges gives a different and maybe quite interesting perturbative theory of gravity and supergravity where the conformal factor φ is gauge fixed to zero ab initio in a BRST invariant way. The paper also indicates the relation satisfied by the first order order formulation spin connection in the Unimodular gauge.

A virtue of our extended BRST analysis is to provide a clearer approach to the definition of observables in gravity and supergravity. In view of Eq. ( 18) (and its extension to supergravity), observables can be defined as * * For including the auxiliary field dependence in the discussion, [START_REF] Baulieu | p-Forms and Supergravity: Gauge Symmetries in Curved Space[END_REF] shows the way to go. When auxiliary fields are introduced to get a closed system of equations without using some equations of motion, the classical supergravity action becomes ( abcd e a ∧ e