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a b s t r a c t

Mortality forecasting has crucial implications for insurance and pension policies. A large
amount of literature has proposed models to forecast mortality using cross-sectional
(period) data instead of longitudinal (cohort) data. As a consequence, decisions are gen-
erally based on period life tables and summary measures such as period life expectancy,
which reflect hypothetical mortality rather than the mortality actually experienced by a
cohort. This study introduces a novel method to forecast cohort mortality and the cohort
life expectancy of non-extinct cohorts. The intent is to complete the mortality profile of
cohorts born up to 1960. The proposed method is based on the penalized composite
link model for ungrouping data. The performance of the method is investigated using
cohort mortality data retrieved from the Human Mortality Database for England & Wales,
Sweden, and Switzerland for male and female populations.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mortality forecasts are, in almost all cases, based on
period mortality information. These forecasts are cal-
culated using period life tables, constructed under the
following assumption: what if a hypothetical cohort was
subject to the mortality conditions of that specific time
period, normally one year (Preston, Heuveline, & Guillot,
2001). This shows the probability of death at a given point
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in time for people of different ages. A clear limitation of
this approach is that people are not living in one time
period but instead are members of a birth cohort that is
aging one year every year. The period perspective does
not reflect any real population and potentially ignores
important connections within a birth cohort. For example,
it has been argued that conditions in a person’s childhood
matter for the mortality experienced at more advanced
ages (Barker, 2004; Elo & Preston, 1992), and it has been
clearly demonstrated that smoking behaviors have an
impact on death rates later in life (Doll & Hill, 1950;
Doyle, Dawber, Kannel, Heslin, & Kahn, 1962; Janssen &
Kunst, 2005; Preston & Wang, 2006). Long-term effects
are potentially shared across a specific birth cohort; there-
fore, cohort life tables are often considered to be more
informative than period life tables.

Cohort forecasting has been less common due to the
heavy data demand it requires. To have mortality data
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on one complete cohort, one must wait for over a cen-
tury, and the ‘‘youngest’’ cohort with completed mortality
might provide outdated information. Because cohort life
tables represent the real mortality schedule for a group
of individuals, they provide relevant information for life
tables users, including life insurance and pension compa-
nies. A pension company is better off knowing the actual
future life expectancy of its customers than the period
life expectancies. Likewise, public institutions that plan
health care, public pensions, and so forth, are essentially
interested in the real future life time of people living in a
society. In order for a cohort life table to be useful to these
life table users, forecasting methods that can complete
recent cohorts that are not yet extinct are required.

Mortality forecasts are typically obtained by extrapo-
lating period death rates, which are used to calculate life
expectancy forecasts. The most widely used forecasting
method in countries with reliable vital statistics data is
the model by Lee and Carter (1992). It summarizes death
rates on a logarithmic scale using principal component
techniques and linearly extrapolates the associated time
index. The Lee–Carter model has been the inspiration for
various modifications and extensions, including Booth,
Maindonald, and Smith (2002), Hyndman, Booth, and
Yasmeen (2013), Lee and Miller (2001) and Renshaw
and Haberman (2006). The model is used by statistical
offices to produce official mortality forecasts (Stoeldrai-
jer, van Duin, van Wissen, & Janssen, 2013). Instead of
using period death rates, Cairns, Blake, and Dowd (2006)
suggested using another period life table measure, the
probability of death, which can be linearly extrapolated
after a logit transformation. More recently, the life table
death distribution has been suggested as another useful
measure when forecasting period mortality (Basellini &
Camarda, 2019; Bergeron-Boucher, Canudas-Romo, Oep-
pen, & Vaupel, 2017; Bergeron-Boucher, Simonacci, Oep-
pen, & Gallo, 2018; Kjærgaard, Ergemen, Kallestrup-Lamb,
Oeppen, & Lindahl-Jacobsen, 2019; Pascariu, Lenart, &
Canudas-Romo, 2019). Common to all these mortality
models is that period life table information is used.

Forecasts accounting for a cohort effect have been
estimated based on age-period-cohort (APC) models. For
example, Renshaw and Haberman (2006) provided an
extension of the Lee–Carter model and Cairns et al. (2009)
an extension of the Cairns et al. (2006) model to pro-
duce APC forecasts of mortality. These models, which
have been shown to improve the fit to mortality data,
provide period forecasts. They are also subject to lim-
itations such as identifiability problems, which are ad-
dressed with parameter constraints, and independence is
assumed between the period and the cohort effects even
though they can be correlated (Currie, 2012). Cohort (age-
cohort) forecasting has rarely been implemented. Such
forecasts can be performed by applying parametrization
functions (e.g., Heligman-Pollard or Siler models) to in-
complete cohort data to estimate mortality after the age
of truncation (Booth & Tickle, 2008). However, applying
these models to incomplete data can lead to estimation
problems. In an extensive literature review of forecasting
models, Booth and Tickle (2008) found that only the Con-
tinuous Mortality Investigation Bureau (2006) achieved a

true cohort forecast, using the P-spline regression method
from Currie, Durban, and Eilers (2004) to smooth age-
cohort mortality. Later, Chiou and Müller (2009) explored
the use of functional data analysis to model cohort lifeta-
bles and derive mortality forecasts, and Basellini, Kjær-
gaard, and Camarda (2019) used an age-at-death distri-
bution model which segments the death distribution. To
the knowledge of the authors, these latter three are the
only applications of cohort data used for forecasting.

In this article, we suggest a novel method to fore-
cast mortality using cohort information from a cohort
life table. We aim to complete the mortality trajecto-
ries for non-extinct cohorts with a penalized composite
link model (PCLM) (Eilers, 2007). Rizzi, Gampe, and Eilers
(2015) previously used the model to estimate detailed
age-at-death distributions from coarsely grouped death
counts, and the model is further extended in the analysis
here. The PCLM has proven useful for ungrouping data
aggregated in an open-age interval (e.g., 85+). The number
of survivors from a given birth cohort at the age of trunca-
tion can be considered as a coarsely grouped death count
not yet observed. The remaining deaths can be ungrouped
(forecast) by age using the PCLM, and the cohort mortality
can be completed. The forecast is based on the death
distribution of a cohort life table. This makes it possible to
exploit several observable features: the death distribution
sums to the radix of the life table, a well-defined local
maximum of the distribution can be found at high ages,
and the number of deaths after the age of 120 is very close
to zero or equal to zero. We exploit all three features in
our model to allocate remaining deaths for cohorts that
are still alive.

2. Material and methods

2.1. Cohort death distributions

The cohort death distribution is the basis of the pro-
posed method so as to forecast cohort mortality. Standard
life table techniques (Preston et al., 2001) are used to
calculate death distributions for all complete and non-
complete cohorts assuming an initial population size, con-
ventionally set at N = 100.000, and known as the radix
of the life table. The death distribution is denoted by the
matrix dx,c , where x stands for ages x ∈ (0, 1, . . . , 110)
and c for the specific birth cohort.

We divide dx,c into three time windows that are treated
differently. First, a time window denoted by T1 consists of
all complete cohort death distributions. For observed data,
we define complete cohorts by a maximum life length of
110 years following standard conventions similar to, for
example, Wilmoth et al. (2017). A small fraction of the
population lives past the age of 110, but closing the life
table at 110 years is of minor importance for the studied
populations and does not affect the results. The T1 time
frame ends with the cohort born 1905. The second time
frame is denoted by T2 and consists of incomplete cohorts
until the birth cohort 1935.2 Here, the complete death

2 For Swiss males, T2 ends at the 1933 cohort because the model
was unable to find a stable trend for the mode for the 1934 and 1935
cohorts.
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distribution of the cohorts not yet extinct is estimated
with the PCLM for ungrouping (Rizzi et al., 2015). The
birth cohort 1935 is the final cohort where the PCLM
can determine a correct local maximum of the death
distribution at adult ages for the studied populations. The
local maximum at adult ages is referred to as the number
of deaths at the mode, and the corresponding age as the
modal age at death (Canudas-Romo, 2010). Any cohort in
T2 consists of a part, d0:A,c , with observed deaths from age
zero to the last observed age (A) and a part, dA+,c , which
is unobserved and grouped for all ages above A. Because
the number of deaths over all ages, by construction, sum
to the radix of the life table, it is possible to determine the
unobserved part using the equation dA+,c = N−

∑A
x=0 dx,c .

The unobserved deaths in that sense remain because the
people are still alive but will eventually die. Hence, a fore-
cast of the mortality for each birth cohort can be found
by allocating the remaining deaths in a way similar to an
ungrouping problem for right censored data, which can
be performed accurately for high ages (Rizzi et al., 2015).
The third time window, T3, consists of all cohorts born
after 1935. In this setting, the complete death distribution
of the incomplete young cohorts is estimated with an
extended version of the PCLM for ungrouping by aug-
menting the input data: estimates of the local maximum
of the death distribution, the corresponding modal age at
death, and the proportion of deaths after the mode are all
incorporated into the PCLM. Note that the separation of
T2 and T3 is based on the selected populations and might
differ for other populations than those analyzed in this
study. Fig. 1 illustrates the three time windows and the
corresponding analysis strategy.

2.2. PCLM used on T2 cohorts

The aim of the PCLM is to estimate a complete cohort
death distribution from an incomplete life table; i.e., from
a cohort that is not yet extinct. Rizzi et al. (2015) shows
that a PCLM can be formulated so that it relates age-
specific death counts from a latent but expected sequence
of death counts, γ = (γj), with j = 0, . . . , J + 1 to
an observed sequence of death counts d = (di) with
i = 0, . . . , I + 1, where I < J gives the number of
age intervals; i.e., the length of all the observed single
ages plus an open interval, which includes the remaining
deaths of a cohort not yet extinct. The sum of the latent
sequence γ equals the sum of the observed death counts
d. The observed death counts for each cohort are assumed
to be realizations of a random variable Xi that follows a
Poisson distribution with the expected value µi = E(Xi)
so that µi measures the expected number of counts from
a realization of Xi. Hence, the age-specific death count is
observed with the probability P(Xi = di) = µ

di
i e

−µi/di!.
Latent death counts in a population of size N equal the

age-specific probability of death pj times the sample size
γj = N pj. In other words, the vector γ represents the
complete cohort death distribution of expected means so
that we aim to estimate from the observed incomplete
cohort death distribution d. We assume that γ and µ
are linearly related by a composition matrix C with a
dimension (I + 1) × (J + 1) such that µ = Cγ . The

composition matrix C is a 0/1 matrix that describes how
the latent sequence γ was summed before generating the
data.

To estimate the complete death distribution of the
cohorts not yet extinct in T2, the PCLM for ungrouping
redistributes the sum of the remaining deaths on a fine
grid of single ages until age 130, under the assumption
that γ is smooth. An interval of zero death counts at the
ages 120–130 is added to provide sufficient flexibility at
high ages. Extending with a zero death count interval
ensures that the estimated deaths after age 120 in the
death distribution forecasts are very close to zero. Results
from the PCLM are aggregated for ages 110 to 130. Esti-
mates up to age 110 with the residual category 110+ are
used coherently with the input data. Hence, the vector
of observed deaths will be equal to (d0, . . . , dA, dA+, 0).
The corresponding composition matrix C is equal to the
identity matrix for the first A ages in which we observe
that deaths since γj and µi are related one to one. For the
unobserved and zero parts, C equals sequences of ones as
dA+ should be distributed to all ages from A + 1 to 130,
as follows:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 ··· γA γA+1 ··· γ120 γ121 ··· γ130

d0 1 0 0 · · · 0 · · · · · · · · · · · · · · · 0
d1 0 1 0 · · · 0 · · · · · · · · · · · · · · · 0
d2 0 0 1 · · · 0 · · · · · · · · · · · · · · · 0
...

...
...

...
. . .

... · · · · · · · · · · · · · · · 0
dA 0 0 0 · · · 1 0 · · · · · · · · · · · · 0

dA+

...
...

...
... 0 1 · · · 1 0 · · · 0

0 0 · · · · · · · · · · · · · · · · · · 0 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For further details on the PCLM for ungrouping, see
Rizzi et al. (2015).

2.3. PCLM used on T3 cohorts

For cohorts younger than the birth cohort of 1935
the PCLM is not able to determine a reliable forecast of
the death distribution without further assumptions: in
particular, the procedure fails to estimate the modal age
at death. The PCLM relies on the modest assumptions that
death counts are Poisson distributed and that the result-
ing complete death distribution is smooth, which makes it
less suitable for redistributing deaths over a high number
of ages without further restrictions. Hence, we augment
the matrix of observed deaths dx,c with forecasts of deaths
at the mode dM,c of the modal age at death M and of the
number of deaths after the mode dM+,c . Information on
the structure of the death distribution is thereby given to
the PCLM, making it possible to efficiently allocate deaths
over a long age range. Augmenting the data by dM,c and M
leaves two intervals of deaths to be distributed: one with
deaths before M (dM−,c) and one after (dM+,c). Estimates
of these are found by forecasting the proportion of deaths
after the mode and, from that, by calculating dM+,c and
dM−,c , again using the property that all deaths sum to the
radix. The corresponding compositional matrix is given in
Box I:

For the populations considered in this study, dM,c and
M have shown a highly linearly increasing pattern over
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Fig. 1. Analysis scheme. Summary of the time windows T1, T2, T3, in which the cohort death distributions are divided and follow different modeling
strategies.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 ··· γA γA+1 ··· γM−1 γM γM+1 ··· γ120 γ121 ··· γ130

d0 1 0 0 · · · 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
d1 0 1 0 · · · 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
d2 0 0 1 · · · 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
...

...
...

...
. . .

... · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
dA 0 0 0 · · · 1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

dM−

...
...

...
... 0 1 · · · 1 0 · · · · · · · · · · · · · · · 0

dM
...

...
...

... · · · · · · · · · 0 1 0 · · · · · · · · · · · · 0

dM+

...
...

...
... · · · · · · · · · · · · 0 1 · · · 1 0 · · · 0

0 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Box I.

many years - see Fig. 2 panels a) and b). The proportion
of deaths after the mode does also show an increasing
pattern, but is less pronounced compared to the two other
time series.

The three time series are forecast using a state space
model; more precisely, a structural time series model;
i.e., the local linear trend model (LLT) (Durbin & Koopman,
2001). The LLT model allows an explicit estimation of both
trend and local components for long- and short-term fluc-
tuations and it is in general more flexible compared with
the ARIMA models that are traditionally used (Durbin
& Koopman, 2001). The model allows for a stochastic
trend that can model an increasing and trending pat-
tern. A detailed description of the LLT model is provided
in the Supplementary Material. Residuals of the mod-
els are shown in the Supplementary Material and show
that the models provide a reasonably good estimate with
stationary residuals.

An increasing pattern is most pronounced for the
modal age and the number of deaths at the modal age, but
an increasing pattern can also be found for the proportion
of deaths after the mode for some of the considered
populations. For the populations with a less increasing

pattern, the slope component (modeling the trending
behavior) will be close to zero and not affect the forecast.
The proportion of deaths after the mode cannot trend
upwards in a long horizon because this will collapse the
distribution. Thus, we recommend that the model is re-
estimated when new data are available so that new data
patterns can be modeled. Furthermore, very long-term
forecasts should be interpreted with caution.

Fig. 2 shows both the observed time series, fitted
(smoothed with the Kalman smoother), and forecast val-
ues using the LLT model for Swedish females. The number
of deaths at the mode shows little high-frequency varia-
tion compared to the long-term trending behaviour, and
thus the fitted values are close to the observed values.
The LLT model fits the time series well without any
notable signs of autocorrelation in the residuals. See the
Supplementary Material for further details and plots of
the residuals.

2.4. Estimation of the PCLM model

For both time windows T2 and T3, the PCLM can be
estimated by maximizing a penalized log-likelihood func-
tion. To avoid negative deaths counts, γ is assumed to
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Fig. 2. Demographic data augmentation. Time series of modal age at death (a), number of deaths at the mode (b), and proportion of deaths after the
mode (c) of Swedish females by cohorts 1860–1960. Forecast with ARIMA model starting with the 1936 cohort. Source: Human Mortality Database
(HMD).

follow the functional form γ = eXβ and thus the max-
imization process determines the β values (Rizzi et al.,
2015). A roughness penalty is imposed to ensure smooth
death distribution forecasts. We follow the method pro-
posed by Eilers (2007) and use a roughness penalty with
an order of difference of two or three. The second-order
difference can be written as P = λ∥D2β∥

2
= λβ ′D′

2D2β ,
where D2 is a second-order difference matrix. A third-
order difference penalty, D3, can be implemented by tak-
ing the third-order differences of β instead of the second.
We select the order of differences based on an out-of-
sample procedure as described in Section 3.1.1 by se-
lecting the order that provides the lowest RMSE in an
out-of-sample scheme.

The penalty is multiplied by the weight, λ, which de-
termines the impact of the penalty and thereby how
smooth the resulting death distribution should be. λ is
selected by a grid search over different values; the opti-
mal λ chosen returns the lowest AIC value. An additional
weight is imposed for T3 to ensure that the estimated
death distribution is close to the forecasts for dM−, dM+,
and dM , and close to the zero death count at age 121+.
V = diag(1, 102, 108, 103, 103) is the diagonal matrix
with weights, and the first A + 1 elements equal to 1
refer to the observed deaths up to age A. In summary, the
penalized log likelihood function for a given cohort c can
be written as:

l∗ = l −
λ

2
=

∑
x

(dx ln µx − µx) −
λ

2
P . (1)

Eilers (2007) showed that the maximization can be solved
by an Iteratively Re-Weighted Least Squares (IRWLS) algo-
rithm. The maximizing equation (1) leads to the following
system of equations:

(X̆
′

VW̃ X̆ + P)β = X̆
′

VW̃ [VW̃
−1

(d − µ̃) + X̆ β̃], (2)

where the matrix X̆ has elements x̆ik =
∑

j cijxjkγj/µi and
can be considered a ‘working X ’ in the IRWLS algorithm
and W̃ = diag(µ̃). The tilde indicates the current values
in the algorithm. See Eilers (2007) for further details on
the IRWLS. All computations have been performed with
the software R (R Core Team, 2018). Demo R code can be
found in the Supplementary Material.

2.5. Comparison with the two-dimensional P-spline method

P-spline methods are well established for smoothing
mortality rates (Camarda, 2019; Currie et al., 2004). In
a two-dimensional setting for forecasting cohort mortal-
ity by Continuous Mortality Investigation Bureau (2006),
death and exposure counts are modeled assuming that
the deaths are subject to a Poisson process. B-splines
are used as a regression basis in a penalized IRWLS al-
gorithm. Death counts and exposures are considered as
the response and the offset, respectively. An additional
penalty enforces smoothness over both age and time.
The forecast is treated as a missing value problem that
assumes no information for future years. Therefore, the
two-dimensional splines method allows smoothing over
both age and time and can be used to forecast mortal-
ity by treating the forecast period as a missing variable
problem (Camarda, 2012; Currie et al., 2004). The main
problem with the two-dimensional spline method is its
robustness when used for forecasting. Although the
method can be very useful and produces accurate fore-
casts with a short time horizon, it often fails to pro-
duce reliable and robust long-term forecasts (Camarda,
2019). We find that the two-dimensional spline method
(without further restrictions) is less useful for long-term
forecasting because of these robustness problems.

The PCLM model presented in this article is one-
(age)dimensional in the sense that each cohort is esti-
mated independently from the other. However, the time
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dimensional is modelled via the augmented data, where
information on the modal age of death is imposed de-
pending on and forecast in time. The PCLM model, there-
fore, differs from the two-dimensional spline method by
using the death distribution as an input variable instead
of death rates, and by incorporating the time dimension
by augmenting the data instead of specifying age and time
parameters.

2.6. Data

Data from four countries, England, Wales, Sweden, and
Switzerland, are used to illustrate the fit and forecast of
the model. These four countries have been chosen because
they have high quality data and sufficiently long data
series of deaths and exposure. Actual cohort death rates
and exposures have been downloaded from the Human
Mortality Database (HMD) (Human Mortality Database,
2019). For females and males in Sweden and England &
Wales, we start with the birth cohort 1860. We begin in
1860 because the data quality for Sweden is considerably
lower before 1860 (Glei & Lundström, 2019) and we aim
to have equally long time series. Data for Switzerland are
only available from the 1876 birth cohort and hence this
is the first cohort used for both Swiss males and females.
For all countries, data are collected for years up to and
through 2016.

3. Application and results

For each country analyzed, cohort death rates are cal-
culated by dividing cohort death counts and exposures
from the HMD. From the cohort death rates, cohort life
tables are derived. Cohort life tables are completed up to
the birth cohort of 1905 and are abridged for all more
recent birth cohorts. From the estimated complete cohort
death distribution, cohort life expectancy is calculated to
provide information on the average period that a specific
birth cohort may be expected to live. For each country,
and separately for each incomplete cohort death distri-
bution, the PCLM is estimated. For cohorts in T2, the
simple PCLM for ungrouping is applied, while in T3 the
extended version of the PCLM with augmented data is
used. A second-order difference penalty provided the low-
est forecast error for all of the considered populations and
thus we use this throughout. Forecast errors for the third-
order difference penalty are shown in the Supplementary
Material.

In this section, we report results for Swedish women
only as an illustration. Extensive results by country and
gender are presented in the Supplementary Material. Fig. 3
shows the age-at-death distribution of Swedish females
by cohort: the blue part of the distributions represents
the actual raw data (smoothed with the PCLM), whereas
the red part of the distributions shows the estimate of
the PCLM that allocates the sum of the remaining cohort
deaths in single ages up to age 110. Up to the cohort
of 1935, the PCLM successfully redistributes the death
counts in the death distribution. For the younger cohorts,
the PCLM is fed information on the forecast modal age at
death and the number of deaths at the mode, as well as

Fig. 3. PCLM dx forecast. The age-at-death distribution (dx) of Swedish
females by cohorts 1910-1960: raw data and forecast. Cohorts 1910–
1935 are forecast with PCLM; cohorts 1936–1960 are forecast with
PCLM and augmented data. Source: Human Mortality Database (HMD).

before and after the mode. With such augmented data,
the PCLM is proven to be able to estimate cohort death
distributions up to the 1960 cohort.

The life expectancy at birth for Swedish females, com-
puted with the estimates of the complete death distri-
butions, is illustrated in Fig. 4. The life expectancy is
smoothed on a small scale such that the overall patterns
are more visible, and a local polynomial regression fitting
smoothing procedure is applied. For both time windows
T2 and T3, life expectancy at birth increases over cohorts.

3.1. Model validation

3.1.1. Validation tests leaving out data for T2
The proposed modeling of cohort mortality is validated

by an out-of-sample comparison of observed and forecast
life expectancies. Because actual life expectancy can only
be calculated for complete cohorts, only data until the
1905 birth cohort can be used for validation. Death dis-
tribution forecasts are constructed, fitting the PCLM to a
restricted part of the data and leaving out 10, 15, 20, 25,
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Fig. 4. PCLM e(0) forecast, smoothed. Life expectancy at birth e(0)
of Swedish females by cohorts 1900–1960. Cohorts 1905–1935 are
forecast with PCLM; cohorts 1936–1960 are forecast with PCLM and
augmented data. Source: HMD.

and 30 years to be forecast. From the perspective of the
cohort, when 10 years are omitted, this means that obser-
vations for the 10 oldest ages are left out for validation of
the 1905 cohort, the 9 oldest ages for the 1904 cohort,
and so on until the 1896 cohort. Life expectancies are
then calculated for the cohorts for which data are left out
or until no earlier cohort is available. For example, when
10 years are left out from the analysis, life expectancies
for cohorts from 1896 to 1905 are computed. A similar
procedure is performed, leaving 15, 20, 25, and 30 years
out. Observed and forecast life expectancies are compared
by calculating the root mean squared error (RMSE):

RMSE =

√ H∑
i=1

(êx,i − ex,i)2/H, (3)

where êx,i is the life expectancy forecast, ex,i is the one
observed, and H is the number of years left out. Results
are reported in Table 1 for life expectancies at age 0, 50,
and 65 years.

When calculating life expectancy, a combination of in-
sample fitted death distributions and out-of-sample death
distribution forecasts are used. Because life expectancy at
age x only depends on ages higher than or equal to x,
the RMSE at age 65 will depend more on out-of-sample
forecast values compared to the RMSE at ages of 0 and
50 years. A similar argument holds for the RMSE at age
50 compared to age 0.

We also measure the forecast bias of the model by
calculating the mean forecast error using a similar scheme
as with the RMSE; that is:

ME =

H∑
i=1

(êx,i − ex,i)/H. (4)

Table 1 shows the accuracy of the results for all an-
alyzed populations; i.e. England & Wales, Sweden and
Switzerland, females, and males. The PCLM in general
forecasts life expectancy accurately. Even when 30 years
are left out, the RMSE error remains below 1 year. The
RMSE error for life expectancy increases when the fore-
cast horizon widens, which is to be expected because

Table 1
Accuracy measures: RMSE observed vs. fitted and forecast life
expectancy for selected ages and out-of-sample periods.
Years left out 10 years 15 years 20 years 25 years 30 years

Switzerland, females

RMSE for e0,i 0.0016 0.0046 0.0324 0.0389 0.3357
RMSE for e50,i 0.0040 0.0081 0.0429 0.0520 0.2858
RMSE for e65,i 0.0035 0.0074 0.0495 0.0595 0.2953

Sweden, females

RMSE for e0,i 0.0028 0.0043 0.0120 0.0378 0.3380
RMSE for e50,i 0.0047 0.0069 0.0168 0.0503 0.3142
RMSE for e65,i 0.0045 0.0063 0.0173 0.0558 0.3305

England & Wales, females

RMSE for e0,i 0.0096 0.0637 0.2164 0.3665 0.4231
RMSE for e50,i 0.0091 0.0481 0.1515 0.2498 0.3120
RMSE for e65,i 0.0086 0.0471 0.1466 0.2403 0.3094

Switzerland, males

RMSE for e0,i 0.0007 0.0018 0.0098 0.0240 0.1731
RMSE for e50,i 0.0037 0.0040 0.0143 0.0366 0.1305
RMSE for e65,i 0.0020 0.0031 0.0175 0.0454 0.1312

Sweden, males

RMSE for e0,i 0.0010 0.0207 0.0564 0.1289 0.2381
RMSE for e50,i 0.0031 0.0160 0.0420 0.0988 0.1775
RMSE for e65,i 0.0019 0.0171 0.0420 0.0995 0.1785

England & Wales, males

RMSE for e0,i 0.0014 0.0041 0.0403 0.1521 0.2359
RMSE for e50,i 0.0018 0.0039 0.0326 0.1152 0.1780
RMSE for e65,i 0.0011 0.0046 0.0344 0.1190 0.1835

longer and less-certain forecasts are being calculated. The
PCLM fits all the analyzed countries equally well, with
no systematically lower accuracy errors found for one
particular country or sex. The only difference occurs with
the 30-years analysis, for which larger errors are found for
the female population, but we have no reason to expect
this to be a general tendency.

Table 2 shows the mean forecast error (ME) for all the
analyzed populations. The ME shows a similar result to
the RMSE in terms of accuracy, and displays no systematic
bias in the model as negative and positive ME errors are
found.

3.1.2. Sensitivity analysis for T2
In addition to the out-of-sample test, we validate the

model by comparing actual and fitted death distributions.
For such a comparison, again, only complete cohorts can
be analyzed. Therefore, data from the first cohort available
(see Section 2.6 for country- and gender-specific starting
cohorts) up to the 1905 cohort are used. For each cohort
analyzed, we assume that the last observed age is 65,
70, 75, and 80. We apply the PCLM to the artificially
uncompleted cohorts and compare the fit with the actual
death distributions. See Fig. 5 for an example of results;
i.e., Swedish females born in 1901 with an assumed last
age observed of 75.

To further assess the quality of the results, we use the
Kullback–Leibler (KL) divergence for each cohort:

KL =

∫
f (x) ln

[
f (x)

f̂ (x)

]
dx, (5)
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Table 2
Mean forecast error (ME) observed vs. fitted and forecast life
expectancy for selected ages and out-of-sample periods.
Years left out 10 years 15 years 20 years 25 years 30 years

Switzerland, females

ME for e0,i 0.000 0.003 0.001 0.013 −0.043
ME for e50,i 0.000 0.003 0.002 0.018 −0.059
ME for e65,i 0.001 0.004 0.002 0.020 −0.067

Sweden, females

ME for e0,i −0.002 0.001 −0.002 0.005 −0.017
ME for e50,i 0.000 0.001 −0.002 0.007 −0.021
ME for e65,i 0.000 0.001 −0.002 0.007 −0.024

England & Wales, females

ME for e0,i 0.000 0.001 0.004 0.012 0.032
ME for e50,i 0.000 0.001 0.005 0.016 0.019
ME for e65,i 0.000 0.001 0.007 0.019 0.017

Switzerland, males

ME for e0,i 0.000 0.000 0.000 0.011 −0.007
ME for e50,i 0.000 0.001 0.001 0.016 −0.010
ME for e65,i 0.000 0.001 0.001 0.020 −0.013

Sweden, males

ME for e0,i 0.000 0.001 0.002 0.003 0.011
ME for e50,i 0.000 0.001 0.002 0.004 0.016
ME for e65,i 0.000 0.001 0.002 0.005 0.019

England & Wales, males

ME for e0,i 0.000 0.000 0.001 0.005 0.009
ME for e50,i 0.000 0.000 0.001 0.008 0.014
ME for e65,i 0.000 0.000 0.002 0.010 0.018

Fig. 5. Sensitivity analysis. Example of an age-at-death distribution of
one cohort: Fitted distribution with PCLM as if the last age observed is
75 (smooth line) and actual observed data (dots) for Swedish females.
Source: HMD.

where f (x) stands for the density of the truly observed
age-at-death distribution, and f̂ (x) is the density of the
forecast age-at-death distribution. The KL divergence mea-
sures the information lost when the fitted density is
used to approximate the true one. The minimum of the
divergence equals 0. For each country and gender, an
average of the KL for each cohort analyzed is reported in
Table 3: as a general pattern, the KL divergence decreases
as the last age observed of a cohort increases.

Additionally, we checked how accurately the PCLM
estimates the mode when the last age assumed to be
observed for a cohort is 75. We found that the model
correctly sets the modal age at death within ±4 years

Table 3
Divergence measures: KL divergence observed vs. fitted and forecast
age-at-death distributions for assumed last cohort ages.
Last cohort age age 65 age 70 age 75 age 80

Switzerland, females

KL for d 0.0656 0.0319 0.0149 0.0091

Sweden, females

KL for d 0.0284 0.017 0.0144 0.0108

England & Wales, females

KL for d 0.0167 0.0187 0.0101 0.0039

Switzerland, males

KL for d 0.0272 0.0108 0.0103 0.0098

Sweden, males

KL for d 0.0133 0.0082 0.0116 0.0112

England & Wales, males

KL for d 0.0097 0.008 0.0064 0.0066

of age and estimates the number of deaths at the mode
with a difference from the raw numbers within ±400
deaths (out of 100.000). We found a slight tendency of
the PCLM to overestimate the modal age at death and
underestimate the number of deaths at the mode when
the last age assumed to be observed for a cohort is 75, as
reported in Fig. 5.

4. Discussion and conclusion

We have presented a novel method to forecast age-
at-death distributions of cohorts not yet extinct based
on the penalized composite link model. The basis for the
forecast is the death counts of a cohort life table. For
the studied populations, we constructed cohort life tables
using cohort mortality data from the HMD. The grounding
assumptions of the proposed method are (i) the Poisson
distributed death counts di of a cohort life table, (ii) the
smoothness of the forecast age-at-death distribution γ ,
and (iii) no deaths occurring after age 120.

The PCLM applied to T2 cohorts - cohorts where the
last observed age of death is not far from the modal
age at death - only makes use of these three modest
assumptions. No target parametric model of the fore-
cast age-at-death distribution is given. Hence, the PCLM
smoothly redistributes the remaining deaths after the last
age of death is observed. In the presented application, we
are able to forecast with the simple PCLM age-at-death
distributions of cohorts born up to 1935; i.e., cohorts
where the last ages of deaths observed correspond to
around 30 years before the cohorts’ natural extinction.
For younger cohorts - T3 cohorts - where the modal age
at death is far from being observed, additional assump-
tions are required. We set up the necessary constraints
by augmenting the input data from the PCLM with prior
information on (iv) the position of the modal age at the
death of the distribution, and (v) the proportion of deaths
before and after the mode. In the presented study, the
modal age at death with the corresponding number of
death counts are estimated with a LLT model. This works
accurately for the populations we studied when both the
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modal age at death and the number of deaths at the mode
show a linearly increasing pattern over calendar years.
The PCLM with augmented data succeeds in forecasting
age-at-death distributions up to the birth cohort of 1960;
i.e., cohorts where the last age of death observed cor-
responds to around 50 years before the cohorts’ natural
extinction and have therefore not yet reached retirement
age. The proposed model can be applied both to forecast
mortality for country populations and sub-populations;
for instance, to groups of insured individuals.

The suggested forecasting method for T3 could show
limitations when the mortality pattern over time is not
relatively stable. For example, if an age-at-death distri-
bution for a particular cohort deviates from the pattern
of the neighboring cohorts, the predicted deaths and the
modal age at death of that particular cohort might become
inaccurate. Weights in the PCLM fitting methodology al-
low for some flexibility but cannot handle large devia-
tions between neighboring cohorts, and odd fitted death
distributions can occur in such situations.

Most mortality forecasts are based on period mortality
data, despite the demand from public and private insti-
tutions to obtain forecasts for actual cohorts rather than
synthetic populations. True cohort forecasts are rare in the
literature and this article is one of the few that success-
fully forecasts cohort mortality. Here, we have introduced
a novel method to complete the mortality trajectories of
non-extinct cohorts. The completion of cohort mortality
is not only useful for forecasting but also in comparisons
of cohorts over time.
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