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SAMPLING THE FLOW OF A BANDLIMITED FUNCTION

AKRAM ALDROUBI, KARLHEINZ GRÖCHENIG, LONGXIU HUANG, PHILIPPE JAMING,

ILYA KRISHTAL, AND JOSÉ LUIS ROMERO

Abstract. We analyze the problem of reconstruction of a bandlimited function f from the

space-time samples of its states ft “ φt ˚f resulting from the convolution with a kernel φt. It

is well-known that, in natural phenomena, uniform space-time samples of f are not sufficient

to reconstruct f in a stable way. To enable stable reconstruction, a space-time sampling

with periodic nonuniformly spaced samples must be used as was shown by Lu and Vetterli.

We show that the stability of reconstruction, as measured by a condition number, controls

the maximal gap between the spacial samples. We provide a quantitative statement of this

result. In addition, instead of irregular space-time samples, we show that uniform dynamical

samples at sub-Nyquist spatial rate allow one to stably reconstruct the function pf away from

certain, explicitly described blind spots. We also consider several classes of finite dimensional

subsets of bandlimited functions in which the stable reconstruction is possible, even inside the

blind spots. We obtain quantitative estimates for it using Remez-Turán type inequalities. En

route, we obtain Remez-Turán inequality for prolate spheroidal wave functions. To illustrate

our results, we present some numerics and explicit estimates for the heat flow problem.

1. Introduction

In this paper, we consider the sampling and reconstruction problem of signals u “ upt, xq

that arise as an evolution of an intial signal f “ fpxq under the action of convolution op-

erators. The intial signal f is assumed to be in the Paley-Wiener space PWc, c ą 0 (fixed

throughout this paper) given by

PWc :“
!

f P L2
pRq : suppp pfq Ď r´c, cs

)

with the Fourier transform normalized as pfpξq “
ş

R fptqe
´itξ dt.

The functions u are solutions of initial value problems stemming from a physical system.

Thus, due to the semigroup properties of such solutions, there is a family of kernels tφt : t ą 0u

such that upt, xq “ φt ˚fpxq, φt`s “ φt ˚φs for all t, s P p0,8q, and f “ lim
tÑ0`

φt ˚f , f P L2pRq.
As we are primarily interested in physical systems, we typically consider the following set

of kernels:

Φc “ tφ P L
1
pRq : there exists κφ ą 0 such that κφ ď pφpξq ď 1 for |ξ| ď c, pφp0q “ 1u.(1.1)

Observe that φ P L1 implies that pφ is continuous and, therefore, the existence of κφ ą 0

such that pφ ě κφ on r´c, cs is equivalent to pφ ą 0 on r´c, cs. We remark that some of our

results hold for a less restrictive class of kernels.
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Example 1.1. A prototypical example is the diffusion process with pφtpξq “ e´tσ
2ξ2

, t ą 0

It corresponds to the initial value problem (IVP) for the heat equation (with a diffusion

parameter σ ­“ 0)

(1.2)

#

Btupx, tq “ σ2B2
xupx, tq for x P R and t ą 0

upx, 0q “ fpxq
,

for which the solution is given by upx, tq “ pφt ˚ fqpxq.

Other examples include the IVP for the fractional diffusion equation
#

Btupx, tq “ pB
2
xq
α{2upx, tq for x P R and t ą 0

upx, 0q “ fpxq
, 0 ă α ď 1,

for which the solution is given by upx, tq “ pφt ˚ fqpxq with pφtpξq “ e´t|ξ|
α
, and the IVP for

the Laplace equation in the upper half plane
#

∆upx, yq “ 0 for x P R and y ą 0

upx, 0q “ fpxq
,

for which the solution is given by upx, yq “ pφy ˚ fqpxq with pφypξq :“ e´y|ξ|.

The following problem serves as a motivation for this paper.

Problem 1. Let φ P Φ, L ą 0, and Λ Ă R be a discrete subset of R. What are the conditions

that allow one to recover a function f P PWc in a stable way from the data set

(1.3) tpf ˚ φtqpλq : λ P Λ, 0 ď t ď Lu?

The set of measurements (1.3) is the image of an operator T : PWc Ñ L2
`

Λˆ r0, Ls
˘

. Thus,

the stable recovery of f from (1.3) amounts to finding conditions on Λ, φ and L such that T
has a bounded inverse from T pPWcq to PWc or, equivalently, the existence of A,B ą 0 such

that

(1.4) A‖f‖2
2 ď

ż L

0

ÿ

λPΛ

|pf ˚ φtqpλq|
2 dt ď B‖f‖2

2, for all f P PWc.

If for a given φ and L the frame condition (1.4) is satisfied, we say that Λ “ Λφ,L is a stable

sampling set.

Remark 1.2. It was shown in [5, Theorem 5.5] that Λφ,L is a stable sampling set for some

L ą 0, if and only if Λφ,1 is a stable sampling set. Thus, for qualitative results, we will only

consider the case of L “ 1. For quantitative results, however, we may keep L in order to

estimate the optimal time length of measurements.

Remark 1.3. Whenever (1.4) holds, standard frame methods can be used for the stable re-

construction of f [11].

Let us discuss Problem 1 in more detail in the case of our prototypical example.
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1.1. Sampling the heat flow. Consider the problem of sampling the temperature in a heat

diffusion process initiated by a bandlimited function f P PWc:

ft :“ f ˚ φt, 0 ď t ď 1,

where φt is the heat kernel at time t:

pφtpξq “ e´tσ
2ξ2

,(1.5)

with a parameter σ ­“ 0. According to Shannon’s sampling theorem, f can be stably recon-

structed from equispaced samples tfpk{T q : k P Zu if and only if the sampling rate T is bigger

than or equal to the critical value T “
c

π
, known as the Nyquist rate. The Nyquist bound

is universal in the sense that it also applies to irregular sampling patterns: if a bandlimited

function can be stably reconstructed from its samples at Λ Ď R, then the lower Beurling

density

D´pΛq :“ lim inf
rÑ8

inf
xPR

#pΛ
Ş

rx´ r, x` rsq

2r

satisfies D´pΛq ě
c

π
. Recall that the upper Beurling density is defined by

D`pΛq :“ lim sup
rÑ8

sup
xPR

#pΛ
Ş

rx´ r, x` rsq

2r
.

We are interested to know if the spatial sampling rate can be reduced by using the infor-

mation provided by the following spatio-temporal samples:

(1.6) tftpk{T q : k P Z, 0 ď t ď 1u.

Observe that the amount of collected data in (1.6) is not smaller than that in the case of

sampling at the Nyquist rate T “
c

π
. If T ă

c

π
, however, the density of sensors is smaller,

and thus such a sampling procedure may provide considerable cost savings.

Lu and Vetterli showed [16] that for all T ă
c

π
there exist bandlimited signals with norm

1 that almost vanish on the samples (1.6), i.e. stable reconstruction is impossible from (1.6).

As a remedy, they introduced periodic, nonuniform sampling patterns Λ Ď R that do lead to

a meaningful spatio-temporal trade-off : there exist sets Λ Ď R that have sub-Nyquist density

and, yet, lead to the frame inequality:

(1.7) A‖f‖2
2 ď

ż 1

0

ÿ

λPΛ

|pftqpλq|
2 dt ď B‖f‖2

2, for all f P PWc,

with A,B ą 0; see Example 4.1 for a concrete construction. The emerging field of dynamical

sampling investigates such phenomena in great generality (see, e.g., [1, 2, 3, 4, 5]).

As follows from Example 4.1, the estimates (1.7) may hold with an arbitrary small sensor

density. The meaningful trade-off between spatial and temporal resolution, however, is limited

by the desired numerical accuracy. For example, in the following theorem we relate the

maximal gap of a stable sampling set to the bounds from (1.7).
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Theorem 1.4. Let Λ Ď R be such that (1.7) holds. Then there exists an absolute constant

K ą 0 such that, for R ě K max

ˆ

B

A
,
1

c

˙

and every a P R, we have ra´R, a`Rs XΛ ‰ H.

In particular, we have D´pΛq ě K´1 min
`

A
B
, c
˘

and D`pΛq ď KB.

Theorem 4.4, which is a more general version of the above result, provides a more explicit

dependence of K on the parameters of the problem.

Besides the constraints implied by Theorem 1.4, the special sampling configurations of

Lu and Vetterli that lead to (1.7) lack the simplicity of regular sampling patterns. In this

article, we explore a different solution to the diffusion sampling problem. We consider sub-

Nyquist equispaced spatial sampling patterns (1.6) with T “
c

mπ
, m P N, and restrict the

sampling/reconstruction problem to a subset V Ď PWc, aiming for an inequality of the form:

A}f}22 ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt ď B}f}22, f P V.(1.8)

Specifically, we consider the following signal models.

Away from blind spots. We will identify a set E with measure arbitrarily close to 1 such

that (1.8) holds with V “ VE “ tf P PWc : supp pf Ď Eu. In effect, E is the set r´c, cszO
where O is a small open neighborhood of a finite set, i.e., E avoids a certain number of “blind

spots.”

Theorem 1.5. Let φ P Φ and m ě 2 be an integer. Then for any r ą 0 there exists a certain

compact set E Ď r´c, cs of measure at least 2c´ r such that any f P VE can be recovered from

the samples

M “

!

ft

´mπ

c
k
¯

: k P Z, 0 ď t ď 1
)

in a stable way.

The set E in the above theorem depends only on φ and the choice of r. The stable recovery

in this case means that (1.8) holds with B “ 1 and some A ą 0 which is estimated in a more

explicit version of the above result, Theorem 2.8.

Prolate spheroidal wave functions. The Prolate Spheroidal Wave Functions (PSWFs)

are eigenfunctions of an integral operator known as the time-band liminting operator or sinc-

kernel operator

Qcfpxq “

ż 1

´1

sin πcpy ´ xq

πpy ´ xq
fpyq dy.

Using the min-max theorem, we get that ψn,c is the norm-one solution of the following ex-

tremal problem

max

"

‖f‖L2p´1,1q

‖f‖L2pRq
: f P PWc, f P spantψk,c : k ă nuK

*

where the condition f P spantψk,c : k ă nuK is void for n “ 0. The family pψn,cqně0 forms an

orthogonal basis for PWc and has the property to form an orthonormal sequence in L2p´1, 1q.
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We consider the N -dimensional space

(1.9) VN “ spantψc0, . . . , ψ
c
Nu Ă PWc.

The Landau-Pollak-Slepian theory shows that this subspace provides an optimal approxi-

mation of a bandlimited function that is concentrated on r´1, 1s. More precisely, V “ VN
minimizes the approximation error

sup
fPPWc
‖f‖2“1

inf
gPV

ż 1

´1

|fpxq ´ gpxq|2 dx,

among all N -dimensional subspaces of PWc.

Sparse sinc translates with free nodes. In this model, we let

(1.10) VN “

#

N
ÿ

n“1

cn sinc cpx´ λnq : c1, . . . , cN P C, λ1, . . . , λN P R

+

be the class of linear combinations of N arbitrary translates of the sinc kernel sincpxq “ sinx
x

Note that VN is not a linear space. However, VN ´ VN Ď V2N . Therefore, (1.8) with V “ V2N

implies

A}f ´ g}22 ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯

´ gt

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt ď B}f ´ g}22, f, g P VN ,

which ensures the numerical stability of the sampling problem f ÞÑ tftpmπk{cq : k P Z : 0 ď

t ď 1u restricted non-linearly to the class VN . In other words, if (1.8) holds with V “ V2N

then any f P VN can be stably reconstructed from the samples (1.6).

Fourier polynomials. As our last model, we consider the Fourier image of the space of

polynomials of degree at most N restricted to the unit interval. Explicitly,

(1.11) VN “

#

N
ÿ

n“0

cnD
n sinc c¨ : c0, . . . , cN P C

+

,

where D : PWc Ñ PWc is the differential operator Df “ f 1. Observe that the union of such

VN , N P N, is dense in PWc.

In this article, we show that each of the above-mentioned signal models regularizes the

diffusion sampling problem, albeit with possibly very large condition numbers.

Theorem 1.6. Let m ě 2 be an integer, Φ be given by pΦpξq “ e´σ
2ξ2

. Let V “ VN be given

by (1.9), (1.10), or (1.11). Then (1.8) holds with

A “
cκ0pcq

pσcq2 `m
exp

´

´κ1pcqN ´m
2
`

´κ2pcq lnσ ` κ3pcqσ
2
` lnm

˘

¯

, B “ 1,

where the κj’s are positive constants that depend on c only.
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We provide a more precise expression for the lower frame constant in Theorem 3.5. Note

that the lower bound deteriorates when σ2 Ñ 0 (no diffusion) and σ2 Ñ `8 (very rapid

diffusion). This agrees with the intuition and numerical experiments for (non-bandlimited)

sparse initial conditions presented in [20]: if σ2 is very small, because of spatial undersampling,

some components of f may be hidden from the sensors, while for large σ2 the diffusion

completely blurs out the signal and no information can be extracted.

Remark 1.7. To simplify the discussion we take c “ 1{2 in this remark. There are instances

when Theorem 1.6 applies for a signal f P VN which cannot be recovered simply from its

samples on, say, 2Z. As an example, we offer V1 given by (1.10) with λ1 “ 1. The samples

at time t “ 0 are not sufficient to identify each signal since sincp¨ ´ 1q P VN vanishes on mZ,

m ě 2. Similarly, for Theorem 1.5: the function sinpω¨q sincp ¨
a
q, with an appropriately chosen

a and ω, belongs to VE and vanishes on mZ for m ě 2. In finite dimensional subspaces VN ,

e.g., given by (1.9) and (1.11), sampling at time t “ 0 with any m P N may be sufficient for

stable recovery. However, the expected error of reconstruction in the presence of noise will

be reduced if temporal samples are used in addition to those at t “ 0. Theorems 1.5 and 1.6

can be used together. For example, a function f can be reconstructed away from the blind

spots using Theorem 1.5 and approximated around the blind spots using Theorem 1.6.

1.2. Technical overview. Lu and Vetterli explain the impossibility of subsampling the heat-

flow of a bandlimited function on a grid (1.6) as follows [16]. The function with Fourier

transform

pf :“ δ´T ´ δT

is formally bandlimited to I “ r´c, cs if T ă c, and vanishes on the lattice π
T
Z. Moreover, f

is an eigenfunction of the diffusion operator since

pft “ e´tσ
2p´T q2δ´T ´ e

´tσ2T 2

δT “ e´tσ
2T 2

pf,

see (1.2) and (1.5). Hence, all the diffusion samples (1.6) vanish, although f ı 0. While

no Paley-Wiener function is infinitely concentrated at t´T, T u, a more formal argument

can be given by regularization. If η : R Ñ R is continuous and supported on r´1, 1s and

ηεpxq “ ε´1ηpx{εq, then f ¨ pηε P PWc and provides a counterexample to (1.4), provided that

ε is sufficiently small.

As we show below in Subsection 2.1, a similar phenomenon holds for more general diffusion

kernels φ as in (1.1). Indeed, an analysis along the lines of the Papoulis sampling theorem [18]

shows that the diffusion samples (1.6) of a function f P PWc do not lead to a stable recovery

of pf . However, these samples do allow for the stable recovery away from certain blind spots

determined by φ; that is, one can effectively recover pf ¨ 1E, for a certain subset E Ď I of

positive measure (1E denotes the characteristic function of the set E). If we, furthermore,

restrict the sampling problem to one of the finite dimensional spaces V “ VN given by (1.9),

(1.10), or (1.11), we may then infer all other values of pf . The main tools, in this case, are

Remez-Turán-like inequalities of the form:

‖ pf1I‖ ď CE‖ pf1E‖, f P V.
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For Fourier polynomials (1.11) the classical Remez-Turán inequality provides an explicit con-

stant CE, while the case of sparse sinc translates (1.10) is due to Nazarov [17]. The corre-

sponding inequality for prolate spheroidal wave functions (1.9) is new and a contribution of

this article (our technique relies on [15]).

1.3. Paper organization and contributions. In Section 2, we show that uniform dynam-

ical samples at sub-Nyquist rate allow one to stably reconstruct the function pf away from

certain, explicitly described blind spots determined by the kernel φ. We also provide an

upper and lower estimate for the lower frame bound in (1.8). The upper estimate relies on

the standard formulas for Pick matrices (see, e.g. [7, 10]). The lower estimate is far more

intricate and is based on the analysis of certain Vandermonde matrices. We also provide some

numerics and explicit estimates in the case of the heat flow problem.

In Section 3, we restrict the problem to the sets V “ VN given by (1.9), (1.10), or (1.11).

We provide quantitative estimates for the frame bounds in (1.8). En route, we obtain an

explicit Remez-Turán inequality for prolate spheroidal wave functions – a result which we

find interesting in its own right.

In Section 4, we discuss the case of irregular spacial sampling. We recall that a stable

reconstruction may be possible with sets Λ that have an arbitrarily small (but positive) lower

density. Nevertheless, we show that the maximal gap between the spacial samples (and,

hence, the lower Beurling density) is controlled by the condition number of the problem

(i.e. the ratio B
A

of the frame bounds).

2. Recovering a bandlimited function away from the blind-spot

2.1. Dynamical sampling in PWc. In this section, we recall some of the results on dynam-

ical sampling from [4, 5] and adapt them for problems studied in this paper.

For φ P L1, consider the function

pφppxq “
ÿ

kPZ

pφpx´ 2ckq1r´c,cqpx´ 2ckq,

that is, the 2c-periodization of the piece of pφ supported in r´c, cq. Recall that we consider

kernels from the set Φ given by (1.1). Hence,

κφ ď pφppξq ď 1, ξ P R.

We also write

pftpξq :“ pfpξqpφtpξq, f P PWc.

Next, we introduce the sampled diffusion matrix, which is the mˆm matrix-valued function

given by

(2.12)

Bmpξq “

¨

˝

1
ż

0

ppφqtp

ˆ

2c

m
pξ ` jq

˙

ppφqtp

ˆ

2c

m
pξ ` kq

˙

dt

˛

‚

0ďj,kďm´1

“

ż 1

0

A˚mpξ, tqAmpξ, tq dt,
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where

Ampξ, tq “

ˆ

ppφqtp

ˆ

2c

m
pξ ` kq

˙˙

k“0,...,m´1

“

ˆ

ppφqtp

ˆ

2c

m
ξ

˙

¨ ¨ ¨ ppφqtp

ˆ

2c

m
pξ `m´ 1q

˙˙

PM1,mpCq.

Remark 2.1. Observe that the matrix function Bm is m-periodic. Its eigenvalues, however,

are 1-periodic because the matrices Bmpξq and Bmpξ ` kq, k P Z, are similar via a circular

shift matrix.

The following lemma explains the role of the sampled diffusion matrix. In the lemma, we

let

(2.13) fpξq “

ˆ

p pfqp

ˆ

2c

m
pξ ` jq

˙˙

j“0,...,m´1

“

¨

˚

˚

˚

˚

˚

˝

p pfqp

ˆ

2c

m
ξ

˙

...

p pfqp

ˆ

2c

m
pξ `m´ 1q

˙

˛

‹

‹

‹

‹

‹

‚

PMm,1pCq.

Note that if we recover fpξq for ξ P r0, 1s then we can recover fp. Observe also that

ż 1

0

}fpξq}2 dξ “
m´1
ÿ

j“0

ż 1

0

ˇ

ˇ

ˇ

ˇ

p pfqp

ˆ

2c

m
pξ ` jq

˙ˇ

ˇ

ˇ

ˇ

2

dξ “
m

2c

m´1
ÿ

j“0

ż 2cpj`1q{m

2cj{m

|p pfqppuq|
2 du

“
m

2c

ż 2c

0

|p pfqppsq|
2 ds “

m

2c

ż c

´c

| pfpsq|2 ds

(2.14)

In other words, f ÞÑ
b

2c
m

f : PWc Ñ L2pr0, 1s,Mm,1pCqq is an isometric isomorphism.

Lemma 2.2. For f P PWc,

(2.15)

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt “
´ c

mπ

¯2
ż 1

0

fpξq˚Bmpξqfpξq dξ.

Proof. Observe that it suffices to prove the result in PWcXSpRq (the Schwarz class). Consider

the function

bpξ, tq “
ÿ

kPZ

ft

´mπ

c
k
¯

e´2iπkξ.

Using the Poisson summation formula and the definition of ft, we get

bpξ, tq “
c

mπ

ÿ

jPZ

pft

ˆ

2c

m
pξ ` jq

˙

“
c

mπ

ÿ

´m
2
´ξďjăm

2
´ξ

pφt
ˆ

2c

m
pξ ` jq

˙

pf

ˆ

2c

m
pξ ` jq

˙

“
c

mπ

m´1
ÿ

j“0

ppφqtp

ˆ

2c

m
pξ ` jq

˙

p pfqp

ˆ

2c

m
pξ ` jq

˙

,
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Note that the functions bp¨, tq are 1-periodic,

(2.16) bpξ, tq “
c

mπ
Ampξ, tqfpξq,

and thus
ż 1

0

|bpξ, tq|2 dt “
´ c

mπ

¯2

fpξq˚Bmpξqfpξq, ξ P R.

Combining the last equation with the Parseval’s relation
ż 1

0

|bpξ, tq|2dξ “
ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

.(2.17)

yields the desired conclusion. �

Remark 2.3. Lemma 2.2 shows that the stability of reconstruction from spatio-temporal

samples is controlled by the condition number of the self-adjoint matrices Bmpξq in (2.12).

For symmetric φ P Φ and m ě 2, however,

inf
ξPr0,1s

λmin

`

Bmpξq
˘

“ λmin

`

Bmp0q
˘

“ 0,

which precludes the stable reconstruction of all f P PWc, see, e.g., [4]. This adds to our

explanation of the phenomenon of blind spots in Subsection 1.2. We can nonetheless hope

to find a large set rE Ď r0, 1s such that λmin

`

Bmpξq
˘

ě κ for ξ P rE. Then, repeating the

computation in (2.14), we get
ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt “
´ c

mπ

¯2
ż 1

0

fpξq˚Bmpξqfpξq dξ. ě κ
´ c

mπ

¯2
ż

Ẽ

}fpξq}2 dξ

“
cκ

2mπ2

ż

E

} pfpξq}2 dξ

(2.18)

where E “

ˆ

2c

m
pẼ ` Zq

˙

X r´c, cs.

In the following example, we offer some numerics. To simplify the computations, we repre-

sent Bmpξq in (2.12) as a Pick matrix (see, e.g., [7, 10]). For ξ P r´c, cq, we write pφpξq “ e´ψpξq,

so that ψ ě 0 and ψp0q “ 0, and obtain for j, k “ 0, . . . ,m´ 1,

pBmqjkpξq “
ż 1

0

pφt
ˆ

2c

m
pξ ` j1q

˙

pφt
ˆ

2c

m
pξ ` k1q

˙

dt

where the indices j1, k1 are in the set

(2.19) Iξ “

"

n P Z :
ξ ` n

m
P r´1{2, 1{2q

*

,

m divides |j ´ j1| and |k ´ k1|, and j, k, and ξ are not 0 simultaneously. Thus

pBmqjkpξq “
ż 1

0

e´tpψp
2c
m
pξ`j1qq`ψp 2c

m
pξ`k1qqq dt

“

ˆ

ψ

ˆ

2c

m
pξ ` j1q

˙

` ψ

ˆ

2c

m
pξ ` k1q

˙˙´1
´

1´ e´pψp
2c
m
pξ`j1qq`ψp 2c

m
pξ`k1qqq

¯

(2.20)
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Observe that pBmq00p0q “ 1.

Example 2.4. Here, we choose φ to be the Gaussian function, i.e.,

pφpξq “ pφ1pξq “ e´σ
2ξ2

for various values of σ ­“ 0. Hence, ψpξq “ σ2ξ2, and we get

pBmqjkpξq “
m2

4c2σ2
¨

1´ e
´

´

σ2

m2 ppξ`j
1q2`pξ`k1q2q

¯

pξ ` j1q2 ` pξ ` k1q2

with j1, k1, and pBmq00p0q as above.

In Figure 1, we show the condition numbers of the matrices Bmpξq with ξ “ 0.45, c “ 1{2,

m P t2, 3, 5u, and σ varying from 1 to 200.

(a) (b) (c)

Figure 1. Condition numbers of Bmpξq for m P t2, 3, 5u, c “ 1{2, ξ “ 0.45,

and σ P r1, 200s.

In Figure 2, we also show the condition numbers of the matrices Bmpξq. This time, however,

still c “ 1{2, the parameter σ is fixed to be 200, whereas the point ξ is allowed to vary from

0.35 to 0.49. We still have m P t2, 3, 5u.

2.2. Estimating the minimal eigenvalue of the sampled diffusion matrix. In this

subsection, we use Vandermonde matrices to obtain a lower estimate for the eigenvalue λ
pmq
minpξq

of the matrices Bmpξq in (2.12). We also present an upper estimate for λ
pmq
minpξq, which follows

from the general theory of Pick matrices [7, 10].

We begin with the following auxiliary result.

Lemma 2.5. Let v0, v1, . . . vm´1 be m distinct non-zero real numbers and let v “ pv0, . . . , vm´1q.

For k P N, define a function Ψk : R Ñ R by Ψkptq “
1´t2

1´t2{k
if t ‰ 1 and ψkp1q “ k. For

j “ 0, . . . ,m´ 1, define

σ2
j “

m´1
ÿ

k“0

v2k
j “ Ψmpv

m
j q “

$

&

%

m if vj “ 1
1´v2m

j

1´v2
j

otherwise
.
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(a) (b) (c)

Figure 2. Condition numbers of Bmpξq for m P t2, 3, 5u, c “ 1{2, σ “ 200,

and ξ P r0.35, 0.49s.

Let σ “
´

řm´1
j“0 σ2

j

¯1{2

, γ´ “ minj |vj| ą 0, γ` “ maxj |vj| and let

α “

ˆ

m´ 1

σ2

˙
m´1

2 ź

0ďjăkďm´1

|vj ´ vk|.

For N P N, let WN be the pmNqˆm Vandermonde matrix associated to vN “ pv
1
N
0 , v

1
N
1 , . . . v

1
N
m´1q,

i.e.,

WN “

”

v
i´1
N
j

ı

1ďiďmN,0ďjďm´1
.

Then for each x P Cm, we have

α2ΨNpγ´q}x}
2
ď }WNx}

2
ď σ2ΨNpγ`q}x}

2.

Proof. let V be the mˆm Vandermonde matrix associated to v:

V “ rvijs0ďiďm´1,0ďjďm´1.

Note that the Frobenius norm of V and its determinant are given by

‖V ‖F “ σ and | detV | “
ź

0ďjăkďm´1

|vj ´ vk|.

Recall from [23] an estimate for the minimal singular value of an mˆm matrix A:

(2.21) σminpAq ě

ˆ

m´ 1

}A}2F

˙pm´1q{2

| detA|.

Specifying this to V we get σminpV q ě α. As ‖V ‖ ď ‖V ‖F , it follows that, for all x P Cm,

(2.22) α2
}x}2 ď }V x}2 ď σ2

}x}2.

Let DN be the diagonal matrix with vN on the main diagonal. Since

}WNx}
2
“ xW ˚

NWNx, xy “
N´1
ÿ

`“0

xpD`
Nq
˚V ˚V D`

Nx, xy “
N´1
ÿ

`“0

}V D`
Nx}

2,
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we deduce from (2.22) that

N´1
ÿ

`“0

α2
}D`

Nx}
2
ď }WNx}

2
ď

N´1
ÿ

`“0

σ2
}D`

Nx}
2.

Moreover, we have γ
2`
N
´ }x}

2 ď }D`
Nx}

2 ď γ
2`
N
` }x}

2 by definition of DN . The conclusion now

follows by summing the two geometric sequences. �

Note that the function ΨN is increasing on p0,`8q and that, for t ‰ 1, t ą 0

(2.23) lim
NÑ8

1

N
ΨNptq “

1´ t2

limNÑ8Np1´ e2 ln t{Nq
“

ˇ

ˇ

ˇ

ˇ

1´ t2

2 ln t

ˇ

ˇ

ˇ

ˇ

.

Corollary 2.6. With the notation of Lemma 2.5, assume further that 0 ă ν ď vj ď 1 and

m ě 2. Let

(2.24) rα “ e´1{2m´m´1
2

ź

0ďjăkďm´1

|vj ´ vk|.

Then for each x P Cm, we have

rα2ΨNpνq}x}
2
ď }WNx}

2
ď m2N}x}2.

Proof. Indeed, ν ď γ´ ď γ` ď 1 so ΨNpνq ď ΨNpγ´q and ΨNpγ`q ď ΨNp1q “ N .

Further, since vj ď 1, σ2 ď m2. Moreover, the derivative of
`

t´1
t

˘pt´1q{2
“
`

1´ 1
t

˘pt´1q{2
is

1

2

ˆ

1´
1

t

˙pt´1q{2 ˆ
1

t
` ln

ˆ

1´
1

t

˙˙

ď 0

for t ě 1. Thus,
ˆ

m´ 1

m

˙pm´1q{2

ě lim
tÑ`8

exp

„

t´ 1

2
ln

ˆ

1´
1

t

˙

“ e´1{2.

It follows that α in the statement of Lemma 2.5 satisfies

α ě

ś

0ďjăkďm´1 |vj ´ vk|
?
empm´1q{2

,

and the result is established. �

Proposition 2.7. Let φ P Φ. Define

∆mpξq “
ź

0ďjăkďm´1

ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙

´ pφp

ˆ

2c

m
pξ ` kq

˙
ˇ

ˇ

ˇ

ˇ

.

Then, for each x P Cm, we have

1

2emm2 ∆mpξq
2
¨

1´ κ
2{m
φ

| lnκφ|
}x}2 ď xBmpξqx, xy ď m}x}2.
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Proof. We fix ξ and apply Corollary 2.6 to vj “ ppφqp

ˆ

2c

m
pξ ` jq

˙
1
m

. With rα given by (2.24),

rα “ e´1{2m´m´1
2

ź

0ďjăkďm´1

ˇ

ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙1{m

´ pφp

ˆ

2c

m
pξ ` kq

˙1{m
ˇ

ˇ

ˇ

ˇ

ˇ

,

we get

rα2ΨNpκ
1{m
φ q}x}2 ď }WNx}

2
ď m2N}x}2.

On the other hand, 1
mN

W ˚
NWN equals the left-end mN -term Riemann sum for the integral

defining Bmpξq. It follows that

xBmpξqx, xy “ lim
NÑ8

1

mN
xW ˚

NWNx, xy “ lim
NÑ8

1

mN
}WNx}

2.

Using (2.23), we get

rα2
1´ κ

2{m
φ

2m| lnκφ|
}x}2 ď xBmpξqx, xy ď m}x}2.

Finally, note that if 0 ă a, b ď 1, using the mean value theorem, there is an η P pa, bq such

that

|a1{m
´ b1{m

| “
1

m
|a´ b|η´1`1{m

ě
1

m
|a´ b|.

Therefore

rα “ e´1{2m´m´1
2

ź

0ďjăkďm´1

ˇ

ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙1{m

´ pφp

ˆ

2c

m
pξ ` kq

˙1{m
ˇ

ˇ

ˇ

ˇ

ˇ

ě e´1{2m´m´1
2
´
mpm´1q

2 ∆pξq “ e´1{2m´m2´1
2 ∆pξq

establishing the postulated estimates. �

For an upper estimate of the minimal eigenvalue λ
pmq
minpξq we use the estimates of the singular

values of Pick matrices by Beckerman-Townsend [7]. For pj P C, j “ 1, . . . ,m, and 0 ă a ď

x1 ă x2 ă ¨ ¨ ¨ ă xm ď b let

(2.25) pPmqjk “
pj ` pk
xj ` xk

, j, k “ 1, . . . ,m,

be the corresponding Pick matrix. Then the smallest singular value smin of Pm is bounded

above by

(2.26) smin ď min

$

&

%

1, 4

«

exp

˜

π2

2 ln
`

4b
a

˘

¸ff´2tm{2u
,

.

-

smax,

where smax is the largest singular value.

If p rPmqjk “
1´cjck
xj`xk

, then rPm is related to a Pick matrix of the form (2.25) via the diagonal

matrix D “ diagp1` cjq:
1

2
D´1

rPmD
´1
“ Pm

with pj “
1´cj
1`cj

, cj ‰ ´1.
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In our case, see (2.20), xj “ ψ
`

2c
m
pξ ` jq

˘

and cj “ e´xj P p0, 1s, so Id ď D ď 2Id

and the singular values of Bmpξq and the corresponding Pick matrix Pm differ at most by

a factor 4. Therefore, (2.26) holds with apξq “ min
 

ψ
`

2c
m
pξ ` kq

˘

: k P Iξ
(

and bpξq “

max
 

ψ
`

2c
m
pξ ` kq

˘

: k P Iξ
(

, Iξ defined in (2.19), and an additional factor 4 provided that

apξq ‰ 0.

For our main examples, we have ψpξq “ |ξ|α, α ą 0. This yields

bpξq ď cα and apξq “ min

"
ˇ

ˇ

ˇ

ˇ

2c

m
pξ ´ kq

ˇ

ˇ

ˇ

ˇ

α

:
2c

m
|ξ ´ k| ď c, |ξ| ď

1

2

*

“

ˆ

2c

m
|ξ|

˙α

So for the smallest singular value of Bmpξq we obtain the estimate

λ
pmq
minpξq ď 42

»

–exp

¨

˝

π2

2 ln 4
´

m
2|ξ|

¯α

˛

‚

fi

fl

´2tm{2u

m

ď 16m exp

˜

´
pm´ 1qπ2

ln 16` 2α ln m
2|ξ|

¸

.

(2.27)

Observe that the Beckerman-Townsend estimate (2.26) holds for all Pick matrices with

the same values for a “ minxj and b “ maxxj and is completely independent of the par-

ticular distribution of the xj. Regardless, it shows that the condition number grows nearly

exponentially with m, establishing limitations on how well the space-time trade-off can work

numerically. Of course, the condition number may be much worse if two values xj and xj`1

are close together (if xj “ xj`1, then Pm is singular). Thus, (2.27) is an optimistic upper

estimate for λ
pmq
minpξq. By comparison, our lower estimate in Proposition 2.7 depends crucially

on the distribution of the parameters xj and is much harder to obtain. It does, however,

establish an upper bound on the condition number and, thus, shows that the space-time

trade-off may be useful. A precise result is formulated in the following subsection.

2.3. Partial recoverability.

Theorem 2.8. Let φ P Φ, m ě 2 an integer and rE Ď I “ r0, 1s be a compact set. Assume

that there exists δ ą 0 such that, for every 0 ď j ă k ď m´ 1 and every ξ P rE
ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙

´ pφp

ˆ

2c

m
pξ ` kq

˙ˇ

ˇ

ˇ

ˇ

ě δ.

Let E “

ˆ

2c

m
pẼ ` Zq

˙

X r´c, cs. Then for any f P PWc, the function pf1E can be recovered

from the samples

(2.28) M “

!

ft

´mπ

c
k
¯

: k P Z, 0 ď t ď 1
)

in a stable way. Moreover, we have

(2.29) A‖ pf1E‖2
ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt ď
c

2π2
} pf}2,



SAMPLING THE FLOW OF A BANDLIMITED FUNCTION 15

where

A “
c

4eπ2

δmpm´1q

m1`m2

κ
2{m
φ ´ 1

lnκφ
.

Proof. Recall from (2.15) that we need to estimate

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt “
´ c

mπ

¯2
ż 1

0

fpξq˚Bmpξqfpξq dξ.

The upper bound follows directly from Proposition 2.7, and (2.14):

ż 1

0

fpξq˚Bmpξqfpξq dξ ď m

ż 1

0

}fpξq}2 dξ “
m2

2c
‖ pf‖2.

Let us now prove the lower bound using (2.18). First, ∆mpξq ě δ
mpm´1q

2 . It follows from

Proposition 2.7 that, if ξ P rE then

fpξq˚Bmpξqfpξq ě
κ

2{m
φ ´ 1

2emm2 lnκφ
δmpm´1q

}fpξq}2.

Taking κ “
κ

2{m
φ ´ 1

2emm2 lnκφ
δmpm´1q in (2.18) gives the result. �

Remark 2.9. The condition number implied by the above theorem is not the best possible one

can obtain through this method. For instance, a better estimate for the σmin of a Vandermonde

matrix may be used in place of (2.21).

However, the method will always lead to a deteriorating estimate of the condition number

as m increases. This follows from the Beckerman-Townsend estimate (2.26) we discussed in

the previous subsection.

Corollary 2.10. Assume that φ P Φ, pφ is even and strictly decreasing on R`, and m ě 2 is

an integer. Given η P p0, 1
4
q, let rE “ r´1

2
`η,´ηsYrη, 1

2
´ηs and E “

ˆ

2c

m
pẼ ` Zq

˙

Xr´c, cs.

Then there exists A ą 0 such that, for any f P PWc,

A‖ pf1E‖2
ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯ˇ

ˇ

ˇ

2

dt ď } pf}2.

Proof. We look into the main condition of Theorem 2.8: there exists δ ą 0 such that, for

every 0 ď j ă k ď m´ 1 and every ξ P rE

(2.30)

ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙

´ pφp

ˆ

2c

m
pξ ` kq

˙ˇ

ˇ

ˇ

ˇ

ě δ.

For a general φ P Φ, the function pφ is continuous and, therefore, pφp is continuous, except

possibly on c ` 2cZ where a jump discontinuity occurs if pφp´cq ‰ pφpcq. Under current

assumptions, however, pφ is even and, therefore pφp is continuous everywhere.
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For 0 ď ` ď m´ 1 and ξ P I, we have ´
1

2m
ď
ξ ` `

m
ď 1´

1

2m
and

pφp

ˆ

2c

m
pξ ` `q

˙

“

$

’

’

&

’

’

%

pφ

ˆ

2c

m
pξ ` `q

˙

if
ξ ` `

m
ă 1{2

pφ

ˆ

2c

m
pξ ` `´mq

˙

if
ξ ` `

m
ě 1{2

.

Thus, the condition of Theorem 2.8 would be satisfied with rE “ I if |pφ| were one-to-one

on I, that is, either strictly decreasing or strictly increasing. However, pφ is even and strictly

decreasing on R`, so that pφp is continuous, strictly decreasing on r0, cs and strictly increasing

on r´c, 0s. It follows that (2.30) may only fail in small intervals around the points ξ P I

where pφp

ˆ

2c

m
pξ ` jq

˙

´ pφp

ˆ

2c

m
pξ ` kq

˙

“ 0 for some j, k P Z. Such points must satisfy

ξ ` j

m
“ 1´

ξ ` `

m
, 0 ď j ď

m´ 1

2
ă ` ď m´ 1.

Thus, we need ξ “ 1
2
pm´j´`q, i.e. ξ P t0,˘1

2
u. In view of the continuity of pφp, it follows that

there exists η ą 0 such that (2.30) holds for ξ P rE “ r´1
2
` η,´ηs Y rη, 1

2
´ ηs. It remains to

observe that with any given η P p0, 1
4
q inequality (2.30) will hold for δ sufficiently small. �

2.4. Explicit quantitative estimates for the Gaussian.

To obtain explicit estimates, we need to establish a precise relation between η and δ in

the proof of Corollary 2.10. In other words, we need to estimate min
ξP rE

ψpξq, where, as above,

rE “ r´1
2
` η,´ηs Y rη, 1

2
´ ηs, η P p0, 1

4
q, and the function ψ is given by

ωpξq “ min
j,kPZ

ˇ

ˇ

ˇ

ˇ

pφp

ˆ

2c

m
pξ ` jq

˙

´ pφp

ˆ

2c

m
pξ ` kq

˙
ˇ

ˇ

ˇ

ˇ

.

Lemma 2.11. Let E and rE be as in Corollary 2.10. Assume that the kernel φ P Φ is such

that pφ is differentiable on E and

min
ξPE

ˇ

ˇ

ˇ

pφ1pξq
ˇ

ˇ

ˇ
ě R.

Then

min
ξP rE

ωpξq ě
4cRη

m
.

Proof. Observe that

min
ξP rE

min
j,kPZ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2c

m
pξ ` jq

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

2c

m
pξ ` kq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
2c

m
2η.

With this, the assertion of the lemma follows immediately from the mean value theorem. �

The above observation leads to the following explicit estimate for the Gaussian kernel.
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Proposition 2.12. Let pφpξq “ e´σ
2ξ2

, σ ­“ 0, and m ě 2 be an integer. Given η P p0, 1
4
q, let

rE “ r´1
2
` η,´ηs Y rη, 1

2
´ ηs and E “

ˆ

2c

m
pẼ ` Zq

˙

X r´c, cs. Then, for any f P PWc, we

have

(2.31) A‖ pf1E‖2
ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯
ˇ

ˇ

ˇ

2

dt ď } pf}2,

where

(2.32) A “
c

2eπ2p2pσcq2 `mq

p4cRηqmpm´1q

m1´m`2m2 with R “ 2σ2 min
!

ηe´pσηq
2

, ce´pσcq
2
)

.

Proof. Observe that Lemma 2.11 applies with R given by (2.32). It remains to apply Theorem

2.8 with κφ “ e´pσcq
2

and δ “ 4cRη{m. We deduce that (2.31) holds with

A “
c

4eπ2

δmpm´1q

m1`m2

κ
2{m
φ ´ 1

lnκφ
“

c

2eπ2

1´ e´
2pσcq2

m

2pσcq2

m

¨
p4cRηqmpm´1q

m2´m`2m2 .

Using
1´ e´t

t
ě

1

t` 1
, we obtain the claimed bound. �

We remark that the estimate in the above proposition is quite pessimistic. Our numerical

experiments showed that the true bound may be much better.

3. Remez-Turán Property and Fixing the Blind Spots

In Theorem 2.8, the main issue is that the lower bound is only in terms of ‖ pf1E‖ and not

‖ pf‖ so that stability is not obtained. In this section, we consider a certain class of subsets of

PWc for which Theorem 2.8 does lead to stable reconstruction.

3.1. Remez-Turán Property.

Definition 3.1. Let V Ă PWc and write pV “ t pf : f P V u Ă L2pr´c, csq. We will say that pV

has the Remez-Turán property if, for every E Ă r´c, cs of positive Lebesgue measure, there

exists C “ CpE, V q such that, for every f P V ,

(3.33) ‖ pf1E‖2 ě C‖ pf1r´c,cs‖2.

When V is a finite dimensional subspace of PWc such that pV consists of analytic functions

(restricted to I), then pV has the Remez-Turán property since ‖ pf1E‖2 is then a norm on

V which, by finite dimensionality of V , is equivalent to ‖ pf1r´c,cs‖2. However, the previous

argument does not provide any quantitative estimate on the constant CpE, V q. Let us start

with two fundamental examples of spaces that have the Remez-Turán property, and for which

quantitative estimates are known.
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3.2. Fourier polynomials. Let VN be given by (1.11), so that pVN “ tP1r´c,cs, P P CN rxsu

is the space of polynomials of degree at most N , restricted to I. The quantitative form

of the Remez-Turán property for pVN is then known as the Remez Inequality [9]: for every

polynomial of degree at most N ,

(3.34) ‖P1r´c,cs‖2 ď

ˆ

8c

|E|

˙N`1{2

‖P1E‖2.

3.3. Sparse sinc translates with free nodes. Let VN be given by (1.10), so that pVN “
#

P1r´c,cs : P pξq “
N
ÿ

n“1

cne
2iπλnξ

+

. Recall that pVN is not a linear subspace. The fact that

pVN has the Remez-Turán property is a deep result of Nazarov [17]: for every exponential

polynomial of order at most N , i.e. every P of the form P pξq “
řN
n“1 cne

2iπλnξ one has

(3.35) ‖P1r´c,cs‖ ď
ˆ

γc

|E|

˙N`1{2

‖P1E‖,

where γ is an absolute constant.

3.4. Prolate spheroidal wave functions (PSWF). The Prolate spheroidal wave functions

(PSWFs) denoted by pψn,cp¨qqně0, are defined as the bounded eigenfunctions of the Sturm-

Liouville differential operator Lc, defined on C2pr´1, 1sq, by

(3.36) Lcpψq “ ´p1´ x2
q
d2ψ

dx2
` 2x

dψ

d x
` c2x2ψ.

They are also the eigenfunctions of the finite Fourier transform Fc, as well as the ones of the

operator Qc “
c

2π
F˚
c Fc, which are defined on L2pr´1, 1sq by

(3.37) Fcpfqpxq “

ż 1

´1

ei c x yfpyq dy, and Qcpfqpxq “

ż 1

´1

sinpcpx´ yqq

πpx´ yq
fpyq dy.

They are normalized so that }ψn,c}L2pr´1,1sq “ 1 and ψn,cp1q ą 0. We call pχnpcqqně0 the

corresponding eigenvalues of Lc, µnpcq the eigenvalues of Fc

(3.38) µnpcqψn,cpxq “

ż 1

´1

ψn,cpyqe
´icxy dy, x P r´1, 1s.

and λnpcq the ones of Qc which are arranged in decreasing order. They are related by

λnpcq “
c

2π
|µnpcq|

2.

A well known property is then that ‖ψn,c‖L2pRq “
1?
λnpcq

. Further, their Fourier transform is

given by

(3.39) yψn,cpξq “

ż

R
ψn,cpxqe

´ixξ dx “ p´1qk
2π

c

µn
|µnpcq|2

ψn,c

ˆ

ξ

c

˙

1|ξ|ďc

The crucial commuting property of Lc and Qc has been first observed by Slepian and co-

authors [21], whose name is closely associated with all properties of PSWFs, the spectrum
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of the operators Lc and Qc and almost time- and band-limited functions. Among the basic

properties of PSWFs, we cite their analytic extension to the whole real line and their unique

properties to form an orthonormal basis of L2pr´1, 1sq and an orthogonal basis of PWc.

The prolate spheroidal wave functions admit a good representation in terms of the or-

thonormal basis of Legendre polynomials. In agreement with the standard practice, we will

be denoting by Pk the classical Legendre polynomials, defined by the three-term recursion

Pk`1pxq “
2k ` 1

k ` 1
xPkpxq ´

k

k ` 1
Pk´1pxq,

with the initial conditions

P0pxq “ 1, P1pxq “ x.

These polynomials are orthogonal in L2pr´c, csq and are normalized so that

Pkp1q “ 1 and

ż 1

´1

Pkpxq
2 dx “

1

k ` 1{2
.

We will denote by Pk,c the normalized Legendre polynomial rPk,cpxq “

c

2k ` 1

2c
Pk

´x

c

¯

and

the Pk,c’s then form an orthonormal basis of L2pr´c, csq.

We start from the following identity relating Bessel functions of the first kind to the finite

Fourier transform of the Legendre polynomials, see [6]: for every x P R,

(3.40)

ż 1

´1

eixyPkpyq dy “ 2ikjkpxq, k P N,

where jk is the spherical Bessel function defined by jkpxq “ p´xq
k

ˆ

1

x

d

dx

˙k
sinx

x
. Note that

jk has the same parity as k and recall that, for x ě 0, jkpxq “
a

π
2x
Jk`1{2pxq where Jα is the

Bessel function of the first kind. In particular, from the well-known bound |Jαpxq| ď
|x|α

2αΓpα`1q
,

valid for all x P R, we deduce that

|jkpxq| ď
?
π

|x|k

2k`1Γpk ` 3{2q
, k P N.

Using the bound Γpxq ě
?

2πxx´1{2e´x we get

(3.41) |jkpxq| ď
ek`3{2

?
2p2k ` 3qk`1

|x|k, k P N.

We have the following lemma.

Lemma 3.2. Write yψn,c “
ř

kě0 β
n
k pcqPk,c. Then for every k, ` ě 0

|βnk | ď
10

c3{2|λnpcq|

ˆ

e

2k ` 3

˙k`1

This bound is an adaptation of techniques from [15] to improve the proof of the exponential

decay from [22].
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Proof. Using (3.39), we have

βnk pcq “ xψn,c, Pk,cyL2pIq “

ż c

´c

yψn,cpxqPk,cpxq dx

“ p´1qk
µnpcq

|µnpcq|2
2π

c

c

2k ` 1

2c

ż c

´c

ψn,cpx{cqPk

´x

c

¯

dx

“ p´1qkπ
µnpcq

c1{2|µnpcq|2

?
4k ` 2

ż 1

´1

ψn,cpxqPkpxq dx

“
p´1qkπ

?
4k ` 2

c1{2|µnpcq|2

ż 1

´1

ż 1

´1

ψn,cpyqe
´icxy dy Pkpxq dx

with (3.38). Recalling that λnpcq “
c

2π
|µnpcq|

2 and using Fubini, we get

βnk pcq “
p´1qk2

?
4k ` 2

c3{2λnpcq

ż 1

´1

ż 1

´1

Pkpxqe
´icxy dxψn,cpyq dy

“
p´iqk4

?
4k ` 2

c3{2λnpcq

ż 1

´1

ψ`pyqjkpyq dy

with (3.40). But then, from (3.41) and Cauchy-Schwarz, we deduce that

|βnk pcq| ď
4
?

4k ` 2

c3{2λnpcq

ˆ
ż 1

´1

jkpyq
2 dy

˙1{2

ď
4
?

2k ` 1ek`3{2

p2k ` 3qk`1c3{2λnpcq

ˆ
ż 1

´1

|y|2k dy

˙1{2

“ 4
?

2e
1

c3{2λnpcq

ˆ

e

2k ` 3

˙k`1

.

As 4
?

2e ď 10, the result follows. �

We will also need the following estimate.

Lemma 3.3. The eigenvalues (3.38) of Qc satisfy

(3.42) ΛN :“

˜

N
ÿ

n“0

1

λnpcq

¸1{2

ď

$

&

%

?
3` ec if N ď maxpec, 2q

´

2pN`1q
ec

¯
2N`1

2
if N ě maxpec, 2q

.

Proof. Precise pointwise estimates of the λnpcq’s have been obtained in [15, Section 4 &

Appendix C] and have been further improved in [8] to

λnpcq ď

ˆ

ec

2pn` 1q

˙2n`1

for n ě max
´

n,
ec

2

¯

.

while we always have λnpcq ă 1.
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It follows that

N
ÿ

k“0

1

λnpcq
ě

$

&

%

N ` 1 ď 3` ec if N ď maxpec, 2q

1
λN pcq

ě

´

2pN`1q
ec

¯2N`1

if N ě maxpec, 2q
.

The result follows. �

We can now prove our Remez lemma for Prolate spheroidal wave functions.

Theorem 3.4 (Remez’s Lemma for PSWF). Let N be an integer and

VN “ spantψ0,c, . . . , ψN,cu Ă PWc.

Then, for every ψ P pVN and every E Ď r´c, cs of positive measure,

‖ψ‖ ď 2

ˆ

8c

|E|

˙KpNq

‖ pψ1E‖,(3.43)

where

(3.44) KpNq “

$

&

%

max
´Q

3200p3`ecq
c3

U

,
Q

4ec
|E|

U¯

if N ď maxp2, ecq,

max
´

20, N,
Q

8pN`1q
|E|

U¯

if N ě maxp2, ecq.

Proof. Let ψ “
řN
n“0 c`ψn,c so that, by orthogonality and the fact that ‖ψn,c‖ “ λnpcq

´1{2,

‖ψ‖ “

˜

N
ÿ

n“0

|cn|
2

λnpcq

¸1{2

.

On the other hand

pψ “
N
ÿ

n“0

c`yψn,c “
N
ÿ

n“0

c`
ÿ

kě0

βnk pcqPk,c.

Let K be an integer that will be fixed later and write

pψ “
N
ÿ

n“0

c`

K
ÿ

k“0

βnk pcqPk,c `
N
ÿ

n“0

c`
ÿ

kąK

βnk pcqPk,c :“ FK `RK .

Note that FK is a polynomial of degree K so that

(3.45) ‖FK1r´c,cs‖ ď
ˆ

8c

|E|

˙K` 1
2

‖FK1E‖

by (3.34). On the other hand,

RK “
ÿ

kąK

˜

N
ÿ

n“0

cnβ
n
k pcq

¸

Pk,c

so that

‖RK1E‖ ď ‖RK1r´c,cs‖ “

¨

˝

ÿ

kąK

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“0

cnβ
n
k pcq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2

ď

˜

ÿ

kąK

N
ÿ

n“0

λnpcq |β
n
k pcq|

2

¸1{2

‖ψ‖



22 A. ALDROUBI, K. GRÖCHENIG, L. HUANG, PH. JAMING, I. KRISHTAL, AND J.-L. ROMERO

by Cauchy-Schwarz. We now apply Lemma 3.2 to get

‖RK1E‖ ď
10

c3{2

˜

ÿ

kąK

N
ÿ

n“0

1

λnpcq

ˆ

e

2k ` 3

˙2k`2
¸1{2

‖ψ‖

“
10

c3{2

˜

N
ÿ

n“0

1

λnpcq

¸1{2 ˜
ÿ

kąK

ˆ

e

2k ` 3

˙2k`2
¸1{2

‖ψ‖

ď
12

c3{2

˜

N
ÿ

n“0

1

λnpcq

¸1{2
ˆ

e

2K ` 5

˙K`1

‖ψ‖.

Using Lemmas 3.3 and 3.2 we can rewrite this in the form ‖RK1E‖ ď ΛNΦK‖ψ‖ with

ΛN :“

$

&

%

?
3` ec if N ď maxpec, 2q

´

2pN`1q
ec

¯N` 1
2

if N ě maxpec, 2q
and ΦK “

12

c3{2

ˆ

e

2K ` 5

˙K`1

.

Next

‖ pψ1E‖ ě ‖FK1E‖´ ‖RK1E‖ ě
ˆ

|E|

8c

˙K` 1
2

‖FK1r´c,cs‖´ ‖RK1r´c,cs‖

ě

ˆ

|E|

8c

˙K` 1
2

‖ pψ‖´

˜

1`

ˆ

|E|

8c

˙K` 1
2

¸

‖RK1r´c,cs‖

ě

ˆ

|E|

8c

˙K` 1
2

‖ pψ‖´ 2‖RK1r´c,cs‖

since E Ă r´c, cs implies
´

|E|
8c

¯K` 1
2
ď 1. Therefore

‖ pψ1E‖ ě
ˆ

|E|

8c

˙K` 1
2

˜

1´ 2ΛNΦK

ˆ

8c

|E|

˙K` 1
2

¸

‖ pψ‖.

It remains to choose K so that ΛNΦK ď
1

4

ˆ

|E|

8c

˙K` 1
2

.

First, if N ď maxpec, 2q, then we want
ˆ

e

2K ` 5

˙1{2 ˆ
e

2K ` 5

˙K`1{2

“

ˆ

e

2K ` 5

˙K`1

ď
c3{2

48
?

3` ec

ˆ

|E|

8c

˙K` 1
2

so that it is enough that
e

2K ` 5
ď

c3

482p3` ecq
and

e

2K ` 5
ď
|E|

8c
so we take

K “ KpNq :“ max

ˆR

3200p3` ecq

c3

V

,

R

4ec

|E|

V˙

.

On the other hand, if N ě maxpec, 2q, then we want
ˆ

e

2K ` 5

˙1{2 ˆ
e

2K ` 5

˙K`1{2

“

ˆ

e

2K ` 5

˙K`1

ď
1

4

ˆ

ec

2pN ` 1q

˙N` 1
2
ˆ

|E|

8c

˙K` 1
2
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Taking K :“ KpNq “ max
´

20, N,
Q

8pN`1q
|E|

U¯

, we get

ˆ

e

2K ` 5

˙K`1

ď
1

4

´ e

2K

¯K`1{2

ď
1

4

ˆ

ec

2pN ` 1q

|E|

8c

˙K`1{2

which gives the desired estimate since 2pN ` 1q ą ec and K ě N . �

3.5. Sampling the heat flow. Equipped with the Remez-Turán Property, we are ready to

close the blind spots in Theorem 2.8. We do it only in the case of heat flow as it should be

clear how to obtain similar estimates in the case of other kernels φ P Φ.

Theorem 3.5. Let pφpξq “ e´σ
2ξ2

, σ ­“ 0, and m ě 2 be an integer. Let V “ VN be given by

(1.9), (1.10), or (1.11). Then, for every f P V ,

(3.46) κ‖ pf‖2
ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯ˇ

ˇ

ˇ

2

dt ď } pf}2,

where

κ “
cκ0pcq

pσcq2 `m
exp

´

´κ1pcqN ´m
2
`

´κ2pcq lnσ ` κ3pcqσ
2
` lnm

˘

¯

(3.47)

with κj positive constants that depend on c only.

Remark 3.6. For V “ VN given by (1.10), (1.11) and for V “ VN given by (1.9) when

N ě maxp2, ecq, κ0, κ1 do not depend on c.

Proof. To obtain this result, we take η “
1

8
in Proposition 2.12. First note that if rE “

„

´
3

8
,´

1

8



Y

„

1

8
,
3

8



and E “

ˆ

2c

m
pẼ ` Zq

˙

X r´c, cs then
c

|E|
ě

1

8
(say). Then (2.31) tells

us that

(2.31) A‖ pf1E‖2
ď

ż 1

0

ÿ

kPZ

ˇ

ˇ

ˇ
ft

´mπ

c
k
¯ˇ

ˇ

ˇ

2

dt ď } pf}2,

for any f P PWc, where

A “
c

2eπ2p2pσcq2 `mq

pcR{2qmpm´1q

m1´m`2m2 with R “ 2σ2 min

"

1

8
e´pσ{8q

2

, ce´pσcq
2

*

.

Note that
cR

2
“ min

"

c
σ2

8
e´pσ{8q

2

, c2σ2e´pσcq
2

*

ă 1

so that

pcR{2qmpm´1q

m1´m`2m2 ě

ˆ

cR{2

m

˙m2

“ exp
´

´m2
`

´γ1pcq lnσ ` γ2pcqσ
2
` lnm

˘

¯

.

Finally A ě cγ0
`

pσcq2`m
˘ exp

´

´m2
`

´γ1pcq lnσ` γ2pcqσ
2` lnm

˘

¯

where γ0, γ1pcq, γ2pcq are con-

stants depending on c only.
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It remains to fix the blind spots ‖ pf1E‖2 with the help of a Remez type inequality. For

V “ VN given by (1.10), (1.11) and f P VN , we simply have ‖ pf1E‖2 ě γ2N`1
3 ‖f‖2 where

γ3 ă 1 is a constant.

For V “ VN given by (1.9), ‖ pf1E‖2 ě γ
2KpNq
3 ‖f‖2 where KpNq is given by (3.44)

KpNq “

$

&

%

max
´Q

3200p3`ecq
c3

U

,
Q

4ec
|E|

U¯

ď γ4pcq if N ď maxp2, ecq,

max
´

20, N,
Q

8pN`1q
|E|

U¯

ď 64pN ` 1q if N ě maxp2, ecq.

Adding the estimates for fixing the blind spot yields (3.47). �

Remark 3.7. Theorem 3.5 immediately implies Theorem 1.6. We also note that if V “ VN is

given by (1.9) or (1.11), the reconstruction can be done from measurements at a finite number

of spacial locations. Indeed, our results imply that in this case one can find the coefficients

of f in its decomposition in a basis of V via simple least squares.

4. Sensor density, maximal spatial gaps and condition numbers

In this section, we discuss irregular spatio-temporal sampling. We establish that stable

reconstruction from dynamical samples may occur when the set Λ has an arbitrarily small

density. More importantly, however, we show that the density cannot be arbitrarily small for

fixed frame bounds in (1.4). In fact, we provide an explicit estimate for the maximal spatial

gap in terms of the condition number B
A

.

Example 4.1. In this example, we take c “ 1{2 to simplify discussion. Assume that φ P Φ

is such that pΦ is real, even, and decreasing on r0, 1{2s. Let Λ0 “ mZ, with m P N odd,

Λk “ mnZ ` k, where n is any fixed odd number and k “ 1, . . . m´1
2

. Then Λ “

m´1
2
Ť

k“0

Λk has

density D´pΛq ď 1{n` 1{m and is a stable set of sampling, i.e., (1.7) is satisfied.

The claim in the last example follows by stringing together several theorems on dynamical

sampling. Firstly, [4, Theorems 2.4 and 2.5] yield that any f P `2pZq can be recovered from the

space-time samples tφj ˚ fpxkq : j “ 0, . . . ,m´ 1, xk P Λu and that the problem of sampling

and reconstruction in PWc on subsets of Z is equivalent to the sampling and reconstruction

problem of sequences in `2pZq. Secondly, combining [5, Theorems 5.4 and 5.5] shows that for

φ P Φ, f P PWc can be stably reconstructed from tφj ˚ fpxkq : j “ 0, . . . ,m ´ 1, xk P Λu if

and only if (1.7) is satisfied.

Example 4.1 thus shows that (1.7) can hold with sets having arbitrarily small densities.

The goal of this section is to show that the maximal gap in such sets is controlled by the

condition number B{A.

We first establish the following lemma, which parallels [13, Proposition 4.4].

Lemma 4.2. Let φ P Φ be such that pφ is C1-smooth on I “ r´c, cs. Then there exists a finite

constant Cφ,L such that

(4.48)

ż L

0

|psincpc¨q ˚ φtqpxq|
2 dt ď

Cφ,L
1` x2

, for all x P R.
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On the other hand, setting cφ,L “
2pκ2L

φ ´1q

π2 lnκφ
ą 0, for |x| ď π{2c, we have

(4.49)

ż L

0

|psinc ˚φtqpxq|
2 dt ě cφ,L.

Proof. Firstly, writing the Fourier inversion formula shows that

(4.50) psincpc¨q ˚ φtqpxq “
1

2c

ż c

´c

`

pφpξq
˘t
eixξ dξ

from which it follows that

(4.51) |psincpc¨q ˚ φtqpxq| ď
1

2c

ż c

´c

|pφpξq|t dξ ď 1,

due to |pφ| ď 1.

Secondly, note that, due to its smoothness, pφ1 is bounded by EΦ :“ supξPr´c,cs |pφ
1pξq| ă `8

on r´c, cs Then, integrating (4.50) by parts leads to

xpsincpc¨q ˚ φtqpxq “
pφtpcqeicx ´ pφtp´cqe´icx

2ic
´

1

2ic

ż c

´c

eixξtpφt´1
pξqpφ1pξq dξ,

and, as κφ ď pφ ď 1 on I, we deduce that

|xpsincpc¨q ˚ φtqpxq| ď
1

c
`
Eφ
κφ
t.

Consequently,

x2

ż L

0

|psincpc¨q ˚ φtqpxq|
2 dt ď

ż L

0

ˆ

1

c
`
Eφ
κφ
t

˙2

dt “
κφ

3Eφ

˜

ˆ

1

c
`
Eφ
κφ
L

˙3

´
1

c3

¸

,

and the estimate (4.48) follows in view of (4.51).

On the other hand (4.50) implies that

|psincpc¨q ˚ φtqpxq| ě |<psincpc¨q ˚ φtqpxq| “

ˇ

ˇ

ˇ

ˇ

1

2c

ż c

´c

pφpξqt cosxξ dξ

ˇ

ˇ

ˇ

ˇ

.

But, for |ξ| ď c, we have pφpξqt ě κtφ. Further, if we also have |x| ď π{2c, then cos 2xξ ě 0.

Therefore,

|psincpc¨q ˚ φtqpxq| ě
1

2c

ż c

´c

pφpξqt cosxξ dξ ě κtφ
1

2c

ż c

´c

cosxξ dξ “ κtφ sincpcxq ě
2

π
κtφ

since sincpcxq is decreasing on r0, π{2cs and sinc
´

c
π

2c

¯

“
2

π
. It follows that

ż L

0

|psinc ˚φtqpxq|
2 dt ě

4

π2

ż L

0

κ2t
φ dt “

2pκ2L
φ ´ 1q

π2 lnκφ
ą 0,

and we get the desired result. �
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Remark 4.3. If pφpξq “ e´σ
2ξ2

, σ ­“ 0, then κφ “ e´pσcq
2

and we may take Eφ “
b

2
e
|σ|.

Therefore, the constants cφ,L and Cφ,L in the above lemma can be taken as

(4.52) Cφ,L “
1

c3
`
`

1` σ2epσcq
2˘

L3 and cφ,L “
2p1´ e´2Lpσcq2q

π2pσcq2
.

For the estimate of Cφ,L we have used that

1

3α
pa` αbq “ a2b` αab2

`
α2

3
b3
ď a3

`
b3

3
p1` 2α3{2

` α2
q ď a3

` b2
p1` α2

q

with Hölder.

Theorem 4.4. Let φ P Φ and assume that pφ is C1-smooth on r´c, cs. Assume that Λ Ď R is

a stable sampling set for Problem 1 with frame bounds A, B (i.e., (1.4) holds:

(1.4) A‖f‖2
2 ď

ż L

0

ÿ

λPΛ

|pf ˚ φtqpλq|
2 dt ď B‖f‖2

2, for all f P PWc.

Let cφ,L and Cφ,L be the constants from Lemma 4.2. Then for R ě max

ˆ

π

c
,
8c

π

B

A

CΦ,L

cΦ,L

˙

and

every a P R, we have ra´R, a`RsXΛ ‰ H. Further, we have D´pΛq ě min

ˆ

c

2π
,
π

16c

A

B

cΦ,L

CΦ,L

˙

and D`pΛq ď 4
B

cΦ,L

.

Proof. Denoting Ia “ ra´ π{4c, a` π{4cs, a P R, let us bound the covering number

nΛ :“ sup
aPR

# pΛX Iaq .

We use (4.49), i.e., the fact that

ż L

0

|psincpc¨q ˚ φtqpxq|
2 dt ě cΦ,L for |x| ď π{2c, and our

first observation to obtain

# pΛX Iaq ď
1

cΦ,L

ÿ

λPΛXIa

ż L

0

|psincpc¨q ˚ φtqpλ´ aq|
2dt

ď
1

cΦ,L

ÿ

λPZ

ż L

0

|psincpc¨q ˚ φtqpλ´ aq|
2dt ď

B

cΦ,L

‖sinc cpt´ aq‖2

where we applied (1.4) to fptq “ sinc cpt ´ aq for all a P R. As f̂pξq “
π

c
1r´c,cs, Parseval’s

relation gives ‖f‖2 “ π
c

hence

(4.53) nΛ ď
π

c

B

cΦ,L

.

As a first consequence, this implies that D`pΛq ď 4 B
cΦ,L

.

Now we assume that for some a0 P R, and some R ě
π

c
, Λ X ra0 ´ R, a0 ` Rs “ H. As

the Paley-Wiener space is invariant under translation, if (1.4) holds for Λ, it also holds for

its translates, so that we may assume that a0 “ 0.
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From Lemma 4.2, there exists CΦ,L such that

ż L

0

|psincpc¨q ˚ φtqpxq|
2dt ď CΦ,L{p1 ` x2

q.

Therefore, we have the following estimates

π

c
A ď

ÿ

λPΛ

ż L

0

|psincpc¨q ˚ φtqpλq|
2 dt ď

ÿ

λPΛ

CΦ,L

1` λ2

ď

8
ÿ

k“0

ÿ

λPΛXrR`kπ{2c,R`pk`1qπ{2cs

CΦ,L

1` λ2
`

8
ÿ

k“0

ÿ

λPΛXr´R´pk`1qπ{2c,´R´kπ{2cs

CΦ,L

1` λ2

ď 2nΛ

8
ÿ

k“0

CΦ,L

1` pR ` kπ{2cq2
ď 4

CΦ,LB

cΦ,L

ż 8

R´π{2c

dx

1` x2

ď 4
CΦ,LB

cΦ,L

ż 8

R{2

dx

x2
“ 8

CΦ,LB

cΦ,LR

since we assumed that R ě π{c. It follows that R ď
8c

π

B

A

CΦ,L

cΦ,L

. Finally, note that this implies

that D´pΛq ě 1
2R

. �

Remark 4.5. Computing the explicit estimate for
CΦ,L

cΦ,L
, we observe that the maximal allowed

gap in spacial measurements grows with L, which is to be expected. For the Gaussian, we

may take the constant
CΦ,L

cΦ,L
to be OpL2q (see (4.52)). The above results also shows that for

C1-smooth functions φ, stable sampling sets must have positive lower density.

Remark 4.6. Theorem 4.4 immediately implies Theorem 1.4.
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[13] K. Gröchenig, J.L. Romero, J. Unnikrishnan, and M. Vetterli. On minimal trajectories for mobile sam-

pling of bandlimited fields. Appl. Comput. Harmon. Anal., 39(3):487–510, 2015.
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