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Abstract: In this paper we consider the path planning problem for a team of identical mobile
robots that should fulfill a given global specification. This specification is given as a Boolean
formula over some regions of interest and should be satisfied on the final state (when the robots
stop) and on the trajectories. The main novelty of this paper is the automatic computation of
collision-free trajectories. The approach is based on a Petri net model and on solving two Mixed
Integer Linear Programming problems. Based on the solutions of these problems, intermediate
synchronization points are introduced in order to avoid possible collisions. Additionally, the
algorithm in this paper is implemented in an open-source Matlab toolbox, called RMTool.
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1. INTRODUCTION

This paper deals with path planning problem for teams
of identical robots that consists in computing trajectories
for the robots to achieve a given specification expressed as
a Boolean formula over some regions of the environment.
The specification is global and the robots should cooperate
in order to fulfill it.

Path-planning with high-level specifications is a problem
extensively studied in literature, both for single robot
Belta et al. (2007); Kress-Gazit et al. (2009); Fainekos
et al. (2009); Ding et al. (2014); Kloetzer and Mahulea
(2015) or for multi-robot systems Schillinger et al. (2018);
Lacerda and Lima (2019); Kloetzer and Mahulea (2020). In
the case of multi-robot systems, one of the main problems
is to obtain a compact model for the team of robots. One
possibility to tackle this problem is to use Petri net models
Lacerda and Lima (2019); Mahulea et al. (2020) that are
scalable with respect to the number of robots (assuming
identical robots), i.e., by adding a new robot to the team,
the structure of the model is not changing but only the
initial marking (state).

In Mahulea and Kloetzer (2018) a solution for the path-
planning problem in multi-robot systems with Boolean
specifications is proposed. In particular, two optimiza-
tion problems are presented. The first one permits to
obtain trajectories when the specification contains only
constraints on the final state while the second problem
considers also constraints on the trajectories. The compu-
tational complexity of the second problem is very big since

? The work of C. Mahulea has been partially supported by the
MINECO ”Salvador de Madariaga” mobility program. M. Kloetzer
acknowledges the grant PN-III-P1-1.1-TE-2016-0737.

the number of variables in the Mixed Integer Linear Pro-
gramming (MILP) problem is depending on the number of
intermediate markings (states). These markings are used
to avoid solutions containing spurious firing vectors (firing
vectors not corresponding to any firing sequence). The
number of intermediate markings should be big enough
to allow the robots to reach the required cells (or regions
in which the environment has been partitioned), being
upper-bounded by the number of transitions of the Petri
net model (equal to twice the number of common edges).
Therein, the number of possible collisions is reduced, but
collision-free trajectories were not guaranteed.

This paper proposes a method to compute collision-free
trajectories by using a fixed number of intermediate mark-
ings, equal to the number of robots. Furthermore, assum-
ing that the formula can be divided into two independent
parts, one for the trajectory and one corresponding to
the final state, we show that the solution for the plan-
ning problem can be obtained by solving two independent
MILPs. The first one is used to compute an intermediate
state at which the formula on the trajectory is fulfilled,
while the second one is used to obtain a final marking
to fulfill the formula on the final state. In both cases,
we introduce a number of intermediate markings corre-
sponding to the synchronization points, ensuring that the
collisions cannot appear. Under the assumptions on the
formula, the proposed MILPs return firing vectors that
are easy to transform into firing sequences, hence to robot
movements. Spurious firing vectors will not appear, mean-
ing that under these assumptions it is not necessary to
introduce intermediate markings to ensure the fireability
of the firing vectors as in Mahulea and Kloetzer (2018).
Furthermore, the proposed algorithms are implemented in



Robot Motion Toolbox (RMTool), an open-source MAT-
LAB toolbox Parrilla et al. (2017).

2. PRELIMINARIES AND PROBLEM DEFINITION

Robot workspace and team model. We consider
an environment where a number of Nr identical robots
evolve, the robots being labeled with r1, r2, . . . , rNr

. In the
environment there exist some disjoint regions of interest,
labeled with elements from the set Y = {y1, y2, . . . , y|Y|}.
Common to multiple planning scenarios, the robots are
reduced to points and the environment is assumed to be
partitioned in a set of regions (cells), e.g., by an existing
cell decomposition method Choset et al. (2005); Mahulea
et al. (2020). Thus, the motion of a robot is basically a
movement over a discrete event system, i.e., moving from
one cell to an adjacent one means taking a transition in
the discrete abstraction.

The set of cells is denoted by P = {p1, p2, . . . , p|P |}. Since
the regions of interest Y are disjoint and their boundaries
are not crossed by partition regions, each cell from P
corresponds to either a region of interest or to the free
space. The observation of each cell is given by function
h : P → Y ∪ {∅}, with h(pi) = yj if cell pi is included in
or equal to region yj , and h(pi) = ∅ if pi does not belong
to any region from Y.

Example 1. Fig. 1 shows an environment constructed in
RMTool that has been partitioned in 200 grid-based cells
denoted by p1 (bottom-left) to p200 (top-right). There are
20 regions of interest (the ones filled with different colors),
10 of them placed in the middle of the environment and 10
in the right. For example, cell p10 corresponds to the first
region of interest and it is labeled by y1, p30 is the second
region of interest labeled by y2, etc. Hence, h(p10) = y1,
h(p30) = y2, while h(p2) = ∅. �

Under the above, we abstract the evolution of the robotic
team to a Robot Motion Petri Net (RMPN) Mahulea
and Kloetzer (2018); Kloetzer and Mahulea (2020) Q =
〈P, T,Pre,Post,m0,Y, h〉, where: P is the set of places
(one place for each cell); T is the set of transitions, each
transition corresponding to a robot movement between
adjacent cells; Post ∈ {0, 1}|P |×|T | is the post-incidence
matrix, defining the arcs from transitions to places; Pre ∈
{0, 1}|P |×|T | is the pre-incidence matrix defining the arcs
from places to transitions;m0 is the initial marking, where
m0[p] gives the number of robots initially deployed in cell
p ∈ P ; Y ∪ {∅} is the set containing the output symbols,
∅ being the empty symbol; and h : P → Y ∪ {∅} is the
observation map, defined above. Thus, if pi has at least
one token (i.e., at least one robot is currently in cell pi),
then region of interest h(pi) is visited.

Additional details on RMPN can be found in Mahulea
et al. (2020), and here we briefly recall some important
aspects. RMPN Q has Nr tokens (each one corresponding
to a robot), and it models the evolution of the entire
team by maintaining a fixed topology, since its places and
transitions do not change when adding or removing robots.
Moreover, each transition from T has only one input and
one output place, and therefore Q is a state machine.

For a generic transition tj ∈ T , •t denotes its input place,
while t• denotes its output place. Same notations are

used for places, when denoting their input and output
transitions. Formally, •tj = {pi ∈ P |Pre[pi, tj ] = 1}
and tj

• = {pi ∈ P |Post[pi, tj ] = 1}. Transition tj ∈ T
is enabled at marking m if its input place contains at
least one token 1 , i.e., m[pi] ≥ 1, where pi = •tj . An
enabled transition tj can fire, and the RMPN reaches a
new marking m̃ = m + C[·, tj ], where C = Post −
Pre is the token flow matrix and C[·, tj ] is its column
corresponding to tj .

According to RMPN structure, the firing of a transition
t corresponds to the movement of a robot from cell pi
to cell pj , where Pre[pi, t] = 1 and Post[pj , t] = 1.
For the moving robot, transition t thus means to apply
a control law that drives the robot from cell pi to pj , and
there exist approaches for designing such continuous laws
Habets et al. (2006); Belta and Habets (2006).

We will be interested in finding sequences of transitions
to be fired such that the team fulfils a given specification.
If a RMPN marking m̃ can be reached from m through
a finite sequence of transition firings, we denote with

σ ∈ N|T |≥0 the firing count vector, i.e., its jth element is
the cumulative amount of firings of tj . In this case, the
state (or fundamental) equation (1) is satisfied.

m̃ = m+C · σ. (1)

For a live 2 state machine Petri net system as is our model
Q, the solutions of the fundamental equation (1) give the
set of reachable markings Silva et al. (1998). Moreover,
for this class of Petri nets, if we find a firing vector σ
that drives the RMPN to a desired marking by firing the
minimum number of transitions (i.e., σ is solution of the
following optimization problem: min 1T ·σ subject to (1)),
it can be transformed into the corresponding sequence
of robot movements Mahulea et al. (2020). However, if
constraints are imposed on the intermediate markings (or
equivalently on σ) this is not true in general because of the
empty cycles (subtours disjoint from the main trajectory)
Silva et al. (1998). These cycles could be included in the
firing count vector σ in order to satisfy the constraints
on the intermediate markings but the resulted σ is not
corresponding to any firing sequence (see Example 2).

For each region of interest yi, we denote by vi ∈ {0, 1}1×|P |
its characteristic vector, where vi[pk] = 1 if h(pk) = yi
and vi[pk] = 0 otherwise, ∀pk ∈ P . In words, at any given
marking m, the region yi is visited by at least one robot
if we have vi ·m > 0.

Example 2. Let us consider again the environment in
Example 1. The Petri net model of the part of the
environment delimited by the red rectangle in Fig. 1
is given in Fig. 2. This RMPN part is composed of
four places, {p9, p10, p29, p30} corresponding to the cells
with the same name. Assuming omnidirectional robots,
transitions are corresponding to the adjacency relation.
For example, because cells p9 and p10 are adjacent, two
transitions are added to the model, t13 modeling the
movement of a robot from p9 to p10 and t14 for the
movement from p10 to p9.

1 Petri net systems considered in this paper are ordinary.
2 A Petri net is live if independently by the actual reachable
marking, all transitions can fire in the future.



Fig. 1. Example of an environment composed by 200 grid cells and 20 regions of interest, constructed with RMTool.
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Fig. 2. Part of the RMPN modeling the environment in
Fig. 1 (corresponding to the red rectangle).

Since p10 corresponds to the first region of interest labeled
y1, the characteristic vector of y1, denoted v1, is such that
v1[p10] = 1. Assume now that there is only one robot
initially located in p9 and it should arrive at the final
state in p10. A firing vector can be obtained by solving
the following MILP:

min 1T · σ

s.t.

{
m = m0 +C · σ,
v1 ·m ≥ 1,

(2)

second constraint being equivalent to m[p10] ≥ 1. Obvi-
ously, the solution of this MILP is a firing vector σ having
all elements equal to zero except σ[t13] = 1. In this case,
the firing sequence is composed by only one transition, t13.

Assume now that the mission of the robot in p9 is again
to finally reach p10, but during the trajectory the robot
should pass through p30 (corresponding to the second
region of interest, y2). A first idea is to add to MILP (2) a

new constraint forcing the firing of one transition of •p30.

min 1T · σ

s.t.


m = m0 +C · σ,
v1 ·m ≥ 1,∑
t∈•p30

σ[t] ≥ 1,

(3)

with a possible solution σ with all elements equal to zero
except, σ[t13] = σ[t11] = σ[t12] = 1. Obviously, this
firing vector cannot be transformed into a fireable firing
sequence. This happens because the T-semiflow t11 + t12 is
added to the solution ensuring that a token will be created
in p30, but it cannot be fired if no token is in p29.

In order to solve the above problem of spurious firing
vectors, in Mahulea and Kloetzer (2018) a number of
intermediate markings are added and at each step a robot
can advance only to an adjacent cell. In this paper, less
expressive Boolean formulas are considered, which will
allow us to reach one intermediate marking at which
the part of formula on trajectory is satisfied. The only
constraints that we will introduce on the firing vectors is
to avoid some regions (and not to reach them), and this
guarantees that the solution is not spurious. �

Boolean-based specifications. The team of robots is
required to move so that it fulfils a Boolean formula over
the set of regions of interest. The formula can include
requirements on both the robot trajectories and on their
final (stopping) positions. Formally, the formula is given
over set Yi ∪ Yf , where Yi = {Y1, Y2, . . . , Y|Y|} and Yf =
Y = {y1, y2, . . . , y|Y|}, with the following meaning:

• Set Yi refers to intermediate requirements on robot
trajectories, i.e., it is used to specify which regions of
interest are to be visited or avoided during the robot
motion, excluding their stopping positions;

• Set Yf refers to final requirements and it is used
for indicating regions in which the robots should or
should not remain at the end of their movement.

For example, formula ϕ = Y1 ∧ ¬Y2 ∧ y2 requires that the
team should visit along trajectory the region y1, it should



avoid along trajectory the region y2 and at least one robot
must stop (remain for all future times) in region y2.

We assume that any given Boolean formula is expressed
in Conjunctive Normal Form (CNF), mentioning that
any Boolean expression can be transformed in CNF King
et al. (2003). Thus, we denote the formula that should be
satisfied by the team movement by ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn,
where each term ϕi is a disjunction of terms from Yi∪Yf .

Problem statement. Given (1) a RMPN corresponding
to the movement of a robotic team in their workspace and
(2) a Boolean formula ϕ expressing the regions of interest
that should be visited or avoided along trajectories and
in final positions, find a collision-free sequence of robotic
movements such that the specification is accomplished.

In Mahulea and Kloetzer (2018) we have proposed a so-
lution for this problem, based on solving some MILP op-
timizations. Here, under some additional assumptions, we
will propose a solution that guarantees collision avoidance.

Assumptions. As in Mahulea and Kloetzer (2018), the
robots are assumed to be able to synchronize if required,
i.e., to leave some partition cells at the same time. Addi-
tionally to Mahulea and Kloetzer (2018), we assume:

(i) Each disjunction ϕi of formula contains only terms
from either the set Yi or Yf , but not from both.

(ii) The part of the formula referring to intermediate
requirements can be satisfied by a single deployment
of the Nr robots, i.e., there exists at least a marking
of Q where all intermediate requirements are fulfilled.
Of course, the same should hold for the final require-
ments, otherwise the satisfaction of the formula being
impossible.

(iii) Each disjunction over Yi (intermediate requirements)
can contain either multiple non-negated elements, or
it is solely formed by a negated region.

(iv) The robots are initially deployed in different cells,
yielding that the initial RMPN marking satisfies
m0[p] ≤ 1, ∀p ∈ P .

Note that the above requirements (i)-(iii) yield less expres-
sive requirements than in Mahulea and Kloetzer (2018).
For example, due to assumption (i) we cannot have a
specification containing (Y1 ∨ y2). Due to (ii), if there is
only one robot, the specification Y1∧Y2 will be impossible,
while the approach from Mahulea and Kloetzer (2018)
would return a solution that visits at different moments
the two different regions. Finally, assumption (iii) forbids
disjunctive terms as (Y1 ∨ ¬Y2). However, under these
assumptions, the solution from Section 3 will guarantee
that the robots cannot collide during their motion, even if
their trajectories intersect.

3. COLLISION-FREE MOVEMENT PLANS

In this section we present a new approach for solving
the collision-free path planning problem for specifications
given as Boolean formulas on final state and on trajectory.
First we recall some previous results used to manage the
Boolean formulas and then we develop two new MILPs
that guarantee collision-free trajectories.

Inequalities corresponding to ϕ. The Boolean formula
ϕ can be transformed into a set of n linear inequalities, one

inequality for each disjunctive term. These translation is
detailed in Mahulea and Kloetzer (2018) and it is briefly
recalled here for completeness of presentation.

Define a binary vector x with 2 · |Y| variables, denoted by
x = [xY1

, xY2
, . . . , xY|Y| , xy1 , xy2 , . . . , xy|Y| ]

T ∈ {0, 1}2·|Y|,
as follows: xYi

= 1 (respectively xyi = 1) if region labeled
with yi is visited along trajectory (respectively in the final
state) by at least one robot, and xYi = 0 (respectively
xyi = 0) otherwise.

For each disjunction ϕi, construct a function αi : Yi ∪
Yf → {−1, 0, 1} as:

αi(γ) =

{−1, if ϕi = ¬γ
0, if γ does not appear in ϕi
1, if γ appears in ϕi

,∀γ ∈ Yi ∪ Yf

(4)

Now, disjunction ϕi is equivalent to,∑
γ∈Yi∪Yf

(αi(γ) · xγ) ≥ 1 +
∑

γ∈Yi∪Yf

min (αi(γ), 0) . (5)

Of course, due to assumption (i), the sums from (5) can
be taken for set Yi or for Yf , but not both.

The intuition behind (4) and (5) is the following: if ϕi
does not include the region corresponding to a symbol γ,
then the binary variable for γ can have any value, without
affecting ϕi’s truth value. If ϕi includes more non-negated
regions, the sum of their binary variables should be greater
or equal than 1 in order to visit at least one of these
regions. If ϕi equals a negated region, its corresponding
binary variable xγ should be 0, equivalent with −xγ ≥ 0
that would result from (5).

Solution for intermediate requirements. Let Ȳ ⊆
Yi be the set of regions that appear negated on the
trajectory requirements, i.e., those mentioned at the end
of assumption (iii). Formally, Ȳ = {Yj ∈ Yi|∃ϕi s.t. ϕi =

¬Yj}. Let η ∈ {0, 1}1×|T | be a row vector with η[•pk] = 1
for any pk for which h(pk) ∩ Ȳ 6= ∅, and η[•pk] = 0
otherwise. Basically, vector η indicates the transitions that
should not fire in order to avoid the regions negated in the
intermediate requirements.

min 1T ·
Nr+1∑
j=1

j · σj (a)

s.t. mj = mj−1 +C · σj , j = 1, 2, . . . , Nr + 1 (b)∑
γ∈Yi\Ȳ

(αj(γ) · xγ) ≥ 1 +
∑

γ∈Yi\Ȳ

min (αj(γ), 0) ,

∀ϕj (c)
Nr · xγ ≥ vγ ·mNr+1,∀γ ∈ Yi \ Ȳ (d)
xγ ≤ vγ ·mNr+1,∀γ ∈ Yi \ Ȳ (e)
η · σj = 0, j = 1, 2, . . . , Nr + 1 (f)
Post · σj +mj−1 ≤ 1, j = 1, 2, . . . , Nr + 1 (g)

mj ∈ R|P |≥0 , j = 1, 2, . . . , Nr + 1,

σj ∈ N|T |≥0, j = 1, 2, . . . , Nr + 1,x ∈ {0, 1}|Yi\Ȳ|.

(6)

The MILP (6) finds a sequence of firing count vectors
σj , such that: (A) RMPN satisfies the part of formula
ϕ containing regions from Yi, and (B) the robots cannot
collide during movement.



The main idea for ensuring (A) is to drive the RMPN
from m0 to a marking mNr+1 where the team satisfies the
part of ϕ requiring trajectory visits. Later, mNr+1 will be
left for satisfying the final requirements from ϕ. Due to
assumption (ii), a marking as mNr+1 exists. During the
robot movements, the team should avoid any intermediate
region that is negated in ϕ - as in assumption (iii), there
is no choice (disjunction) between avoiding such a region
or visiting some other region.

For ensuring (B) (no collisions), MILP (6) uses a number
of Nr intermediate markings betweenm0 andmNr+1. The
robots are required to synchronize in each intermediate
marking, i.e., wait for whole team to reach that marking
and continue the movement after that. A collision-free
movement will be obtained, based on facts given in Remark
3, but for showing this we need to first explain MILP (6):

• The cost function (6a) minimizes a weighted sum of
firing count vectors σj . Due to the weights, we force
that the last firing count vectors contain as few as
possible transitions (even no transitions), the idea
being to reduce the number of synchronizations. That
is, if a vector σj results empty, then mj−1 = mj ,
meaning that there will be less than Nr markings to
synchronise in. Also, due to the cost function, there
will be no unnecessary transitions fired.
• The set of constraints (6b) corresponds to eqn. (1).
• The constraints (6c) corresponds to the formula that

should be satisfied along trajectory, by imposing
conditions for variables x such that the intermediate
team requirements are true. Note that we only need a
number of |Yi \ Ȳ| variables in x, because the regions
to be avoided (Ȳ) will be handled by constraint (6f).
• The constraints (6d) and (6e) impose the value for

the reached marking mNr+1, in accordance to value
of x that satisfies the Boolean formula. Basically, if
a region γ is visited in mNr+1, than vγ ·mNr+1 can
take any value from 1 to the number of robots Nr
(depending on how many robots/tokens arrive in cells
from region γ). Correspondingly, xγ should be one
due to visiting γ and this is imposed by inequality
Nr · xγ ≥ vγ ·mNr+1. Contrary, if γ is not visited in
mNr+1, then vγ ·mNr+1 = 0 and the value of xγ is
set to 0 by inequality xγ ≤ vγ ·mNr+1.

• The constraint (6f) imposes that the RMPN fires no
transition that would lead to a place whose output is
in Ȳ (regions that should be avoided). For this, vector
η is necessary, since the product η ·σj equals the total
number of firings of those unpermitted transitions,
during evolution from mj−1 to mj .

• The set of inequalities (6g) enforces that each place
(cell) is crossed by at most one robot during succes-
sive markings mj−1 to mj , ∀j = 1, . . . , Nr + 1. This
is because the vector Post ·σj+mj−1 (with size |P |)
contains on every position the number of total visits
through each place ofQ, during movement frommj−1

to mj . Equivalently, these inequalities limit each cell
as having a capacity of containing at most one robot
during two successive markings. We use this require-
ment to avoid collisions, since the RMPN abstraction
does not capture time intervals spent by each robot
in each cell. Note that assumption (iv) from Section 2
is necessary because otherwise inequality (6g) would

be violated by a m0 containing more tokens in the
same place.
• The MILP variables aremj , σj , and x, with the indi-

cated sizes. Once some values for these variables are
found through optimization, we have the guarantee
thatmNr+1 satisfies the intermediate requirements of
formula, and each σj is a feasible firing count vector.

The sequence of firing count vectors σj obtained from
MILP (6) is easily transformed to a sequence of firings,
i.e., movements of each robot Mahulea et al. (2020).

Remark 3. Solution of MILP (6) yields a collision-free
movement. This is because of the following aspects:

◦ The robots synchronize in each marking mj , j =
1, . . . , Nr + 1, i.e., the team definitely reaches the
deployment given by mj and after that the robots
can continue to move.
◦ From mj−1 until mj , each place of Q is visited

by at most one robot or token, as imposed by the
sixth set of constraints from (6). Together with the
above synchronization, this implies that along all
movements from m0 up to mNr+1, there is not a
single moment in which two or more robots could be
in the same region.
◦ Since the robots are identical and the cost function

of (6) reduces the number of firings, two robots
cannot exchange their positions (cells), because such
a swapping would increase the cost function without
any benefit in terms of satisfying the constraints.
Thus, collisions cannot occur in traversed cells, nor
when crossing the edges between adjacent cells.

MILP (6) can be solved by using existing software tools as
GLPK, CPLEX - Makhorin (2012); IBM (2016). We note
that the number of Nr intermediate markings between m0

and mNr+1 is sufficient, i.e. MILP (6) cannot be infeasible
due to a too small number. A quick explanation is that in
the worst case, each intermediate firing count vector would
drive only one robot from its position in m0 to its position
to be reached in mNr+1. Thus, under assumptions (i)-(iv),
if MILP (6) has no solution, it means that the requirement
on trajectory cannot be satisfied, e.g., the only way to
reach some regions to be visited would be by crossing some
negated propositions. Therefore, the formulation given by
MILP (6) is complete, since a solution is found whenever
it is possible to satisfy the intermediate requirements. Fur-
thermore, the number of synchronizations can be smaller
than Nr + 1, if some vectors σj are null in solution of (6).

Solution for final requirements. After reaching the
marking mNr+1 at which the trajectory part of ϕ is
satisfied, the robots should go to some stopping positions
where they satisfy the part of ϕ given on Yf . For this,
we extend MILP (6) to MILP (7), in which the robots
start from marking mNr+1 (returned by MILP (6)). For
simplicity of notations, let us further denote by m0 the
value mNr+1 obtained from (6) (as being a new initial
marking). Now, the idea is to reach a final markingmNr+2

where the final requirements are true. We now need a
number of Nr + 1 intermediate markings (with one extra
than in MILP (6)). We have to make sure that the RMPN
places reached between m0 and mNr+2 do not violate
the intermediate negated regions, i.e., no region from Ȳ
is visited. Note that it is possible that a region avoided



along trajectory should be visited in the final positions
(e.g., a formula as ϕ = ¬Y1 ∧ y1). For coping with this, we
need the extra marking mNr+1 right before mNr+2, such
that from mNr+1 to mNr+2 each robot performs at most
one movement.

min 1T ·
Nr+2∑
j=1

j · σj (a)

s.t. mj = mj−1 +C · σj , j = 1, 2, . . . , Nr + 2, (b)∑
γ∈Yf

(αj(γ) · xγ) ≥ 1 +
∑
γ∈Yf

min (αj(γ), 0) ,∀ϕj (c)

Nr · xγ ≥ vγ ·mNr+2,∀γ ∈ Yf (d)
xγ ≤ vγ ·mNr+2,∀γ ∈ Yf (e)
η · σj = 0, j = 1, 2, . . . , Nr + 1 (f)
Post · σj +mj−1 ≤ 1, j = 1, 2, . . . , Nr + 2 (g)
mNr+1 − Pre · σNr+2 ≥ 0 (h)

mj ∈ R|P |≥0 , j = 1, 2, . . . , Nr + 2,

σj ∈ N|T |≥0, j = 1, 2, . . . , Nr + 2,x ∈ {0, 1}|Yf |.

(7)

We next include brief explanations of formulation (7):

• The cost function (7a) mimics the one of (6a), by
having the same idea but one extra intermediate
marking.
• The sets of constraints (b) to (g) exactly mimic the

constraints from MILP (6), with the justifications
given there. Of course, we use the set Yf for regions
captured by final requirements, while regions from
Ȳ are still avoided until mNr+1 due to equalities
involving η. As explained before MILP (7), mNr+2

should not avoid those intermediate regions.
• The constraint (7h) imposes that each robot takes

at most one transition between mNr+1 and mNr+2.
This enables formulas that require some regions from
Ȳ to become true in final state.
• MILP (7) has more unknowns than (6): an extra

marking and firing vector, and more binary variables.

MILP (7) provides a complete method for satisfying the
requirements on final positions. As before, the firing count
vectors σj given by (7) are mapped to sequences of
robot movements. Again, the robots should synchronize in
each intermediate marking returned by MILP (7), before
executing transitions given by σj . Otherwise, the unitary
capacity of places could be violated. As for MILP (6), some
synchronizations may not appear, indicated by some null
vectors σj .

Resolution Algorithm. The overall solution based on
MILPs (6) and (7) is captured in Alg. 1, which provides
the pseudo-code for the planning strategy. Note that the
procedure begins by testing the assumptions from Sec. 2.
These tests are easy (according to the given assumptions)
and if any of them fails we use the more general solu-
tion from Mahulea and Kloetzer (2018). However, that
approach does not always enforce collision-free plans, since
it was developed for more general formulas and scenarios.
Recall that MILP (6) gives the robot movement plans up
to a marking that fulfills the intermediate requirements
on visiting regions along trajectories. Similarly, MILP (7)
continues the movement plans up to a marking where
robots stop and fulfill the final requirements. As explained,

Algorithm 1. Solution pseudo-code

Input: RMPN Q, set Y, formula ϕ, Nr
Output: Robot movement strategies

if Any assumption (i)-(iv) from Sec. 2 is False then
Use the more complex and general method from
Mahulea and Kloetzer (2018) and Return solution;

Solve MILP (6);
Construct movement plans from non-empty
σj , j = 1, . . . , Nr + 1;
Robots synchronize in each marking mj for which
σj 6= 0, j = 1, . . . , Nr + 1;
Set m0 := mNr+1, to use in MILP (7);
Solve MILP (7);
Robots further move based on non-empty
σj , j = 1, . . . , Nr + 2;
Robots synchronize in each marking mj for which
σj 6= 0, j = 1, . . . , Nr + 2;

the synchronizations in intermediate markings are needed
in order to ensure a collision-free movement.

Since methods (6) and (7) are complete, the problem is
infeasible if there is no solution for (6) or (7). In terms
of number of unknowns, MILP (6) has (Nr + 1) · |P | real
variables, (Nr + 1) · |T | integer variables, and |Y \ Ȳ|
binary variables. MILP (7) has (Nr + 2)·|P | real variables,
(Nr + 2)× |T | integer variables, and |Y| binary variables.

4. SIMULATION RESULTS

Let us consider again the environment in Fig. 1 (from Ex.
1 and Ex. 2), but now assuming all 10 robots initially
deployed in the left cells.

Case 1. Reachability of the regions at the middle.
Let us first assume the following Boolean formula:

ϕ1 =

10∧
i=1

yi,

meaning that the regions at the middle of the environ-
ments should be reached at the final state.

The simulation data is shown in Tab. 1 and it can be
observed that the solution proposed in this paper is slower
than the one presented in Mahulea and Kloetzer (2018)
(TAC2018), mainly because of the number of intermedi-
ate markings that is bigger. For TAC2018 approach, a
number of k = 9 intermediate markings was chosen (with
smaller k the problem is infeasible) - as mentioned, in
TAC2018 intermediate markings have different meaning
than here, referring to at most one movement of each robot
between two markings. For the approach proposed here,
intermediate markings are imposed by Nr = 10 for both
MILPs. But, for TAC2018 approach a collision between
two robots could occur in the grey region in the middle of
the environment, as shown in Fig. 3(b). Fig. 3(a) shows the
trajectories obtained by using the approach in this paper.

Case 2. Reachability of the regions at the right
by avoiding middle regions. Let us now consider the
following Boolean specification:

ϕ2 =

(
10∧
i=1

¬Yi

)
∧

(
20∧
i=11

yi

)
,



Approaches
Alg. 1 (proposed in this paper) TAC2018

# variables (MILPs (6) - (7)) optimization time [s] k # variables optimization time [s]

Case 1 - ϕ1 10,360 - 11,300 0.78 9 8,501 0.19

Case 2 - ϕ2 10,360 - 11,300 0,93 24 22,601 1.72

Case 3 - ϕ3 10,360 - 11,300 1.08 36 33,881 6.5

Table 1. Numerical data for simulations by using the current and the TAC2018 approaches;
simulations were run on a laptop with i7 (8th generation) CPU, 16 GB RAM.

(a) Approach in this paper and in TAC2018 with k ≥ 10 for ϕ1. (b) Approach in TAC2018 with k = 9 for ϕ1.

(c) Approach in this paper for ϕ3. (d) Approach in TAC2018 with k = 36 for ϕ3.

Fig. 3. Trajectories for different simulation experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 4. Synchronization positions for specification ϕ2 using the approach presented in this paper.



meaning that the robots should reach the regions at the
right by avoiding the regions in the middle. The complexity
data regarding simulation is given in Tab. 1. For the
approach presented in this paper, a solution is obtained
in less than one second, ensuring the collisions avoidance
by using 10 intermediate synchronization points shown in
Fig. 4. The approach in TAC2018 returns a solution if
the number of intermediate markings is greater than 24,
case in which the optimization problem has more variables
and the solution is obtained in 1.72 seconds. In the case
of TAC2018 approach the intermediate markings of the
solution have places with more than one robot, meaning
that the collisions could appear.

Case 3. Reachability of the right regions and finally
of the middle regions. We now consider the following
new formula:

ϕ3 =

(
10∧
i=1

¬Yi

)
∧

(
20∧
i=11

Yi

)
∧

(
10∧
i=1

yi

)
,

meaning that during the trajectories the robots should
avoid the regions at the middle of the environment, should
reach the regions at the right part, and should finally stop
in the regions in the middle.

For the approach presented in this paper, the solution
is obtained in about one second. Notice that both op-
timization problems have the same numbers of variables
as in the previous cases. However, there is necessary one
more synchronization point versus the previous case, just
before entering the final state. The numerical results of
the simulations are given in Tab. 1, while the trajectories
are given in Fig. 3(c),(d). In particular, Fig. 3(c) shows
the trajectories obtained for the approach in this paper,
while Fig. 3(d) gives the trajectories with the approach in
TAC2018. The TAC2018 solution drives two robots to visit
all the intermediate regions (which is impossible with the
current approach, due to assumption (ii)), but collisions
are possible.

In subsequent works, we plan to exemplify the presented
planning methods through real-time experiments in the
laboratory setup reported in Kloetzer et al. (2019).

5. CONCLUSION

The work focuses on planning the movement of a team of
robots such that a Boolean formula over a set of regions
of interest is satisfied. The formula includes requirements
both along trajectories and on final positions, and a
discrete-event system model is assumed for the team. The
solution starts with some additional assumptions than
in our previous work Mahulea and Kloetzer (2018), and
it is based on formulating two MILP sub-problems that
give movement plans for the robotic team. Although the
formula expressivity is limited compared with Mahulea
and Kloetzer (2018), the current approach gives collision-
free plans. Comparisons between the two approaches are
included, together with simulations in RMTool. Further
work will investigate scalability with the number of robots,
which influences the intermediate number of markings of
proposed MILPs.
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