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We study rough high-dimensional landscapes in which an increasingly stronger preference for a given
configuration emerges. Such energy landscapes arise in glass physics and inference. In particular, we focus
on random Gaussian functions and on the spiked-tensor model and generalizations. We thoroughly analyze
the statistical properties of the corresponding landscapes and characterize the associated geometrical phase
transitions. In order to perform our study, we develop a framework based on the Kac-Rice method that
allows us to compute the complexity of the landscape, i.e., the logarithm of the typical number of stationary
points and their Hessian. This approach generalizes the one used to compute rigorously the annealed
complexity of mean-field glass models. We discuss its advantages with respect to previous frameworks, in
particular, the thermodynamical replica method, which is shown to lead to partially incorrect predictions.
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I. INTRODUCTION

Characterizing rough multidimensional energy land-
scapes is a challenging task that is central in many different
fields from physics to computer science, high-dimensional
statistics, machine learning, and biology. In a nutshell, this
problem consists in analyzing the statistical properties of
functions defined on very high dimensional spaces.
Relevant information that one wants to obtain is, for
instance, the number of minima at a given energy, and
more generally of the critical points, and the spectral
properties of their corresponding Hessian. This issue is
crucial to understand the dynamics within these landscapes,
in particular, gradient descent, which has many physical
and practical applications. Depending on the context, the
landscape can correspond to the energy of a physical

system, to the loss function of a machine-learning algo-
rithm, to the cost function of an optimization problem, or to
the fitness function of a biological system.
Pioneering works on this subject were done in physics, in

the context of mean-field spin glasses, starting in the 1980s
[1–4]; see Ref. [5] for a review. One of the essential results,
besides the explicit computations in several models, is the
understanding that the statistical properties of rough energy
landscapes are the ones characteristic of two different
physical systems: spin glasses and glasses [5]. The origin
of this universality lies in replica theory: The properties of
the landscape are actually encoded in the type of mean-field
solution obtained by the replica method, respectively, full
replica symmetry breaking and one-step replica symmetry
breaking [6]. Remarkably, it was also realized that pure
systems can behave as disordered ones, as first found in
long-range spin models [7]; accordingly, energy functions
of several complex systems are qualitatively similar to
random functions.
In mathematics, in particular, in probability theory, there

has been a recent and growing research activity aimed at
developing a rigorous analysis of rough energy landscapes.
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Starting from the seminal work in Ref. [8], the Kac-Rice
method has emerged as the mathematical framework suited
to do that [9–13]. It puts on a firmer basis previous results
obtained in the physics literature, and it highlights impor-
tant relationships with the randommatrix theory. Moreover,
it has been recently exploited to analyze landscape proper-
ties of machine learning and inference models [14,15].
The recent results and questions concerning the statis-

tical properties of rough landscapes make clear that what
has been found for mean-field glassy systems represents
only a facet of a much more general challenge. There are
several different directions in which further investigations
are timely and interesting. One of them is the characteri-
zation of landscapes in current problems central in machine
learning and high-dimensional statistics, such as the
analysis of rough energy landscapes and associated phase
transitions when an increasingly stronger preference for a
given configuration arises. This problem is central in data
science (the signal versus noise problem) [16], as well as in
biology and in physics, in cases where a specific ground
state competes with many random ones (e.g., protein
folding [17] and random pinning glass transition [18]).
Another important and quite distinct research direction
consists in studying the number of equilibria in noncon-
servative dynamical systems that arise in neuroscience [19]
and theoretical ecology [20]. In this case, forces do not
derive from a potential; hence, there is no landscape to start
with, but nevertheless information about the number of
equilibria and their stability can be obtained by methods
similar to the one used for the conservative case [21,22].
From the methodological point of view, the main open

crucial issue is developing the Kac-Rice method to compute
the typical number of critical points, related to the average of
the logarithm of the number of critical points (called
quenched entropy). Computing the logarithm of the average
(called annealed entropy), as done until now, is correct in a
few cases only [13]; in general, the two computations lead to
different results even at leading order. Physics methods
based on replica theory and supersymmetry provide guid-
ance and results in specific cases, but as we discuss in the
following they suffer important limitations [23–29].
Our work has a double valence. One is conceptual: We

present a general analysis of the properties and the phase
transitions occurring in rough energy landscapes whenever
an increasingly stronger preference for a given configura-
tion arises, an interesting and timely issue as discussed
above. The other is methodological: We develop the sought
generalization of the Kac-Rice method to compute the
typical number of critical points and the corresponding
quenched entropy, a theoretical framework expected to
have multiple applications in several fields. Overall, our
work opens the way to a thorough analysis of the statistical
properties of rough landscapes in topical problems relevant
in several different fields, from physics to machine learning
and biology.

We focus on the p-spin spherical model and add to its
Hamiltonian a term favoring all configurations that are
close to a given one [30]. This choice is natural from
different points of view. First, the system without the
additional extra term has already proven to be an instru-
mental paradigm for rough energy landscapes [5,31], so it
is a natural starting point to study the effect of a preferred
configuration on a random landscape. Second, it is directly
relevant for very recent problems studied in the computer
science literature; in fact, a particular realization of it
corresponds to the so-called spiked-tensor model, which
recently attracted a lot of attention [15,32–35]. The
thermodynamics of the system we focus on, that we
henceforth call the generalized spiked-tensor model, has
been originally introduced in Ref. [30] to study the effect of
a ferromagnetic coupling on a p-spin spherical model.
Here, we investigate in detail its energy landscape.
Depending on the functional form of the additional term,
we generically find different scenarios and different types
of energy landscape (or geometric) phase transitions.
Although this model is certainly extremely simplified,
we think that the lessons that can be learned from its
analysis provide instrumental guidelines and extend to
more realistic cases. Moreover, because of its relation with
the spiked-tensor model, our results are directly relevant to
current issues investigated in high-dimensional statistics
and inference.
As stressed above, one of the main outcomes of our work

is the construction of a general Kac-Rice method which
allows one to analyze cases in which the so-called
quenched entropy does not coincide with the annealed
one, as happens for the model we consider. Since we use
replicas in a rather innocuous way—we remain at the
replica symmetric level—transforming it from a theoretical
physics technique to a fully rigorous one should be within
reach in a not-too-distant future.
In the following two sections, we present a summary of

the main results. In Sec. IV, we discuss the zero-temper-
ature thermodynamics of the model by means of the replica
method. In Sec. V, we present the new Kac-Rice method for
the quenched complexity, and we compare its findings with
the ones obtained with the replica method in Sec. VI. After
reviewing the implications of these findings for the special
case of the spiked-tensor model in Sec. VII, we present our
conclusions in Sec. VIII.

II. DEFINITION OF THE MODEL

We consider the Hamiltonian or energy functional:

Hp;kðrÞ¼−
X

hi1;i2;…;ipi
Ji1;i2;…;ipsi1si2…sip − rNfk

�
s ·v0
N

�
;

where the first sum is over all distinct p-uples and the
subindices run from 1 to N. The configuration space of the
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model is the sphere of radius
ffiffiffiffi
N

p
; i.e., a given configu-

ration is a vector s of N components fs1; s2;…; sNg such
that

P
N
i s2i ¼ N. The N-dimensional vector v0 points

towards a specific direction, say, v0 ¼ f1; 1;…; 1g without
the loss of generality (we impose on v0 the same normali-
zation condition as s). In the following, we refer to this
preferential direction of the model as the north pole.
The first term of Hp;k is the Hamiltonian of the

standard spherical p-spin model [5] with random coupling
Ji1;i2;…;ip normally distributed with zero mean and vari-

ance hJ2i ¼ p!=2Np−1.
The second term represents an energetic gain when the

system’s configuration s is aligned with v0. We generically
describe this energetic gain by a function fkðxÞ of the
scalar product x ¼PN

i sivi0=N. Our aim is to use fkðxÞ
as a template of a smooth function defined on the N-
dimensional sphere, with a deep minimum in a specific
direction. We found that the main relevant features of fkðxÞ
are its derivatives in x ¼ 0: The subindex k indicates what
is the first nonzero derivative in x ¼ 0. We assume that the
function fkðxÞ reaches its highest value in x ¼ 1, is zero for
x ¼ 0, and is monotonically increasing in [0, 1]. It also has
a symmetric or an antisymmetric continuation for x ≤ 0
depending on whether k is even or odd, respectively.
For concreteness, we often refer to the case fkðxÞ ¼

xk=k, which is first introduced in Ref. [30]. When p ¼ k,
the model corresponds to the so-called spiked-tensor
model, which is the focus of several recent studies in
the computer science literature [15,32–35]. In particular,
for this limiting case, the calculation of the average number
of stationary points has been very recently performed
in Ref. [15].

III. SUMMARY OF RESULTS

The energy functionHp;k contains two terms. The first is
a random Gaussian function, whereas the second one is
deterministic. These contributions are competing: The
random fluctuations encoded in the former lead to an
exponential (in N) number of critical points. On the sphere
in very high dimensions, the majority of the configurations
are orthogonal to the north pole; thus, it is on the equator
that we expect the deepest minima created by the first term
alone. Since there are exponentially less configurations in
the direction of v0, and the less so when the overlap with v0
is higher, the random fluctuations alone lead to minima of
higher energy on parallels closer to the north pole. On the
other hand, the deterministic term energetically favors
configurations aligned with v0. In consequence, depending
on the relative strength of the two terms, that can be tuned
by changing the value of r, and on the form of the function
fkðxÞ, the resulting rough energy landscape changes shape,
and the low-lying energy minima change position and
nature from many to a single one. As we see, all that
corresponds to phase transitions in the geometry of the

landscape. Topological phase transitions, occurring when
the landscape changes from being complex to simple, have
been recently studied in Refs. [36–38] and dubbed topo-
logical trivialization. The change in the global minima
structure, which is directly accessible to a thermodynamic
study, is already reported in Ref. [30].
In the following, we present our main results on the

evolution with r of the full energy landscape. For the sake
of the presentation, we group the different scenarios in three
classes, associated with the behavior of the global minima
as a function of r.

A. Case I: f 0(0) > 0

This case corresponds to functions fkðxÞ which are
monotonically increasing and such that f0ð0Þ > 0. The
simplest example, fkðxÞ ¼ x, corresponds to the p-spin
spherical model in an external magnetic field (with r playing
the role of the field), and is studied in Refs. [3,37,39].
Reference [39] contains the calculation of the quenched
complexity of critical points of the so-calledTAP free energy
functional that reduces to Hp;k¼1ðrÞ when the limit of zero
temperature is taken. The approach of Ref. [39] is performed
using fermionic and bosonic variables, as done previously.
In Sec.VI,we compare its results to the ones of the replicated
Kac-Rice formalism and point out some drawbacks.
In case I, we find that the energy landscape evolves as

illustrated in Fig. 1. First, at r ¼ 0, there are an exponential
number of minima located around the equator, i.e., for
q̄ ∈ ½q̄mð0Þ; q̄Mð0Þ�, where q̄mð0Þ ¼ −q̄Mð0Þ. This situa-
tion corresponds to the first sphere on the left, in which the
presence of minima is indicated with a red strip. The deepest
minima, not exponentially numerous, are at q̄ ¼ 0 and
correspond to the continuous yellow line. The most numer-
ous states, which are also the marginally stable ones since
the density of states of their Hessian is a Wigner semicircle
with the left edge touching zero, are also at q̄ ¼ 0 for r ¼ 0
(and they are, of course, at a higher energy).
By increasing r, the strip containing all theminimamoves

toward the north pole; see the second sphere from the left in
Fig. 1. The deepest ones are on a parallel closer to the north
pole as soon as r > 0. The most numerous ones, always
marginally stable, are now on a different parallel with
smaller latitude, as can be expected on general grounds,
since, in order to have a lot ofminima, it is better to avoid too
large latitudes at which fewer configurations are available
(they are represented by a yellow dashed line in the figure).
By increasing r, the landscape becomes smoother due to

a larger deterministic term, and, accordingly, the number of
minima and the strip where they are located shrink until
reaching a value rc, above which only one minimum
remains. This changement corresponds to a phase transition
of the landscape, which is associated to recovering a replica
symmetric solution for the global minimum within the
replica method and, hence, also to a phase transition in the
thermodynamics (related to the structure of the global

COMPLEX ENERGY LANDSCAPES IN SPIKED-TENSOR … PHYS. REV. X 9, 011003 (2019)

011003-3



minima). For r > rc, there is only one minimum in the
energy landscape. In this case, the random contribution
due to the first term in the Hamiltonian is no longer
strong enough to create a rugged landscape but still
deforms it sufficiently to move the global minimum at a
finite overlap with v0. This situation corresponds to the
rightmost sphere in Fig. 1. As we see in the following, a
much richer energy landscape evolution is found for
k > 1. In these cases, the behavior of the global minima
is only a facet of a more general complex organization in
configuration space.

B. Case II: f 0(0)= 0 and f 00(0) > 0

This regime corresponds to functions fkðxÞwhich have a
vanishing derivative in x ¼ 0 but a finite second derivative
and are monotonically increasing from x ¼ 0 to x ¼ 1.

In order to simplify the discussion, we consider the
symmetric case in which fkð−xÞ ¼ fkðxÞ. The simplest
example of such a function is fkðxÞ ¼ x2=2. With this
choice, Hp;k corresponds to a p-spin spherical model
with an extra ferromagnetic interaction among spins (r
plays the role of the coupling). The evolution of the
energy landscape is now different from case I, and it is
illustrated in Fig. 2.
The starting point at r ¼ 0 is the same. However, by

increasing r, the strip containing all the minima widens,
and the deepest ones and the most numerous ones (always
marginally stable) remain stuck on the equator. Actually,
they are exactly the same ones found for r ¼ 0, since fkðxÞ
has no effect on the equation that determines the critical
points on the equator (which is due to the vanishing of the
first derivative in x ¼ 0).

FIG. 2. Evolution of the energy landscape in case II. In this drawing, we illustrate the evolution of the energy landscape due to the
increase of r in case II (k ¼ 2). The red strip denotes the region on the sphere where minima lie in an exponential number. The
continuous (dashed) yellow line corresponds to the parallel where the deepest (most numerous) minima are located. The energy
landscape has several transitions. At r2ND, the deepest minima are no longer on the equator and move toward the poles. Afterwards, the
band containing the exponential number of minima fractures into three parts, one around the equator and two symmetric ones closer to
the poles. At rc, the bands closer to the pole implode and are replaced by two isolated global minima (the one on the south hemisphere is
not visible, since it is on the back of the sphere), but the band at the equator persists. Finally, for even larger values of r, the landscape
becomes completely smooth with only two symmetric minima.

FIG. 1. Evolution of the energy landscape in case I. In this drawing, we illustrate the evolution of the energy landscape due to the
increase of r in case I (k ¼ 1). The red strip denotes the region on the sphere where minima lie in an exponential number. The continuous
yellow line corresponds to the parallel where the deepest minima are located. The dashed yellow line corresponds to the parallel where
the most numerous minima are located. At rc, the energy landscape has a transition: For r < rc, it is rough and full of minima; for r > rc,
it is smooth and contains only one minimum (represented by the yellow dot in the figure).
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This situation persists until r ¼ r2ND, at which a second-
order phase transition takes place at the bottom of the
landscape, as already found in Ref. [30]. By increasing r
above r2ND, the deepest minima continuously detach from
the equator; see the second sphere in Fig. 2 (due to the
symmetry x → −x, they are located in both the north and
south hemispheres).
The behavior for larger r is different from case I: There is

first a transition in the structure of the energy landscape in
which the strip separates into three bands, two closer to the
north and south poles, respectively, to which the deepest
minima belong, and one around the equator where the most
numerous ones are located; see the middle sphere in Fig. 2.
At r ¼ rc, there is another transition at which the two bands
closer to the north and south poles containing an expo-
nential number of minima shrink to zero and are replaced
by an isolated global minimum per hemisphere (fourth
sphere from the left in Fig. 2). This transition corresponds to
recovering the replica symmetric (RS) solution in the
thermodynamic treatment [30]. Finally, at even larger r,
all minima around the equator disappear, and a final
transition toward a fully smooth landscape characterized
by only two minima takes place. This situation corresponds
to the rightmost sphere in Fig. 2. Themost numerousminima
remain always at the equator for any value of r until this final
transition, at which they disappear. However, they change
nature when increasing r: At the beginning, all the eigen-
values of their Hessian are distributed along a Wigner
semicircle whose left edge touches zero (so-called threshold
states), whereas at large values of r they are all distributed
along a Wigner semicircle whose support is strictly positive
except for one eigenvalue, corresponding to an eigenvector
oriented toward the north pole, which pops out from the
semicircle and is located exactly at zero. Thus, in both cases,
they are marginally stable but in a very different way.
In conclusion, in the k ¼ 2 case, in which the strength of

the deterministic part is weaker, in particular, around the
equator, the spurious local minima created by the random
fluctuations are more stable. This stability results in a
different evolution of the landscape, that before becoming
fully smooth is characterized by isolated islands of rugged-
ness around the equator and close to the global minima.

C. Case III: f 0(0)= f 00(0)= 0

This regime corresponds to functions fkðxÞ which are
monotonically increasing in [0, 1] and have vanishing first
and second derivatives in x ¼ 0. For simplicity, we con-
sider even and odd functions under x → −x when k is odd
and even, respectively. The simplest example of such a
function is fkðxÞ ¼ xk=k with k ≥ 3, first introduced in
Ref. [30]. With this choice and taking p ¼ k, Hp;k

corresponds to the spiked-tensor model recently investi-
gated in Refs. [15,32–35].
The particularity of case III is that the critical points on

the equator are not affected at all by the deterministic

perturbation, not even their Hessian (contrary to case II)
since f00ð0Þ ¼ 0: They remain stable and unperturbed for
any finite value of r. In consequence, there is always a strip
of minima around the equator. We find that different
evolutions are possible in case III depending on p and k.

1. Option A

This is the case found, e.g., for spiked-tensor models
such as p ¼ k ¼ 3 and p ¼ k ¼ 4. For concreteness, we
focus on p ¼ k ¼ 3 [p ¼ k ¼ 4 is analogous, but one has
to take into account that fkðxÞ is even instead of being odd].
A band of minima, growing with r, is found around the
equator. At a value rc, an isolated minimum detaches from
the top of the band, and for larger values of r it moves to
higher latitudes, while the rest of the band shrinks around
the equator. The deepest minima are located on the equator
and are the ones of the original (unperturbed) p-spin model
until a value of r, that we call r1ST, is reached. When r
reaches the value r1ST, the global minimum switches from
the equator to the single minimum outside the band and
close to the north pole. Increasing r further, the isolated
global minimum approaches the north pole, and the band
around the equator shrinks but never disappears for any
finite r. The most numerous states are on the equator and
are the threshold states of the unperturbed p-spin model.
The evolution of the energy landscape and its transitions are
illustrated in Fig. 3.

2. Option B

This is the case found, e.g., for p ¼ 3 and k ¼ 4. A band
of minima, which first grows with r, is found around the
equator. The deepest minima are located on the equator
until r1ST and are the ones of the original (unperturbed)
p-spin model. When r reaches the value r1ST, the global
minimum switches discontinuously from the equator to
another minimum inside the band, at a higher latitude.
Increasing r further, the band divides in two: one closer to
the equator and one around the global minimum. For
r ¼ rc, the band around the global minimum shrinks to
zero (which corresponds to recovering the RS solution in
the thermodynamics treatment [30]). For r > rc, the global
minimum is isolated. The remaining band around the
equator shrinks but never disappears for any finite r.
The most numerous states are on the equator and are the
threshold states of the unperturbed p-spin model. The
evolution of the energy landscape and its transitions are
illustrated in Fig. 4.
Two other options are possible: The discontinuous

transition at r1ST could take place after the band has
divided, and, depending on whether r1ST is larger or
smaller than rc, it could take place when the global
minimum is isolated (option C) or is still surrounded by
many other local minima (option D). We scan a few more
(see Fig. 5), but not all possible values of p and k, nor
analyze all possible functions fkðxÞ to search for these two

COMPLEX ENERGY LANDSCAPES IN SPIKED-TENSOR … PHYS. REV. X 9, 011003 (2019)

011003-5



behaviors, but this analysis can be easily (even though
painfully) done if specific interest in these intermediate
cases arises.

D. Randomness versus deterministic contribution

A short conclusion of the results presented above is that the
evolution of an energy landscape in which random fluctua-
tions compete with a deterministic contribution favoring a
single minimum depends on the behavior of the deterministic
part on the portion of configuration space where the majority
of minima created by randomness lie. If the deterministic part
affects and deforms these minima, then the evolution is quite
simple: The number of minima decreases, and they become
more and more oriented toward the direction favored by the
deterministic part, until a point at which only one isolated

global minimum remains. A different behavior is instead
found when the deterministic part does not deform the
majority of minima created by randomness. In this case,
the competition between random and deterministic contribu-
tions is resolved in two different ways: It deforms the
landscape in the proximity of the configurations favored
by the deterministic part, which can even result in an island of
ruggedness and many local minima, and it creates a very
rugged landscape in the region where the deterministic part
has no effect, where the majority of the configuration lies.
As can be easily guessed, this landscape structure can have
crucial consequences on dynamical properties.
We discuss these issues and, more generally, the impli-

cations and consequences of our results in the conclusion.
In the following, we present the methods we use and our

FIG. 4. Evolution of the energy landscape in case III (option B). In this drawing, we illustrate one of the possible evolutions of the
energy landscape due to the increase of r in case III. The red strips denote the regions on the sphere where minima lie in an exponential
number. At r1ST, the deepest minimum is no longer on the equator and switches discontinuously to one at a higher latitude. For larger
values of r, the band of local minima divides in two: one around the equator and one around the global minimum. For r ¼ rc > r1ST, the
latter band shrinks to zero, and the global minimum becomes isolated. The band around the equator shrinks but does not disappear for
any finite r. The most numerous states, denoted by a dashed line, are always located on the equator.

FIG. 3. Evolution of the energy landscape in case III (option A). In this drawing, we illustrate one of the possible evolutions of the
energy landscape due to the increase of r in case III. The red strips denote the regions on the sphere where minima lie in an exponential
number. The continuous yellow line corresponds to the parallel where the global minimum is located. At rc, an isolated local minimum
appears. The dotted yellow line denotes that it is not yet the global one. At r1ST > rc, the deepest minimum is no longer on the equator
and switches discontinuously to the isolated one close to the north pole. For larger values of r, the global minimum approaches the north
pole, and the band around the equator shrinks but does not disappear for any finite r. The most numerous states, denoted by a dashed
line, are always located on the equator.
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findings in more detail. We first recall the thermodynamic
analysis of the model, focusing on the zero-temperature
limit, in order to discuss the behavior of the global minima
of the landscape. Subsequently, we analyze the evolution of
the full set of minima, encoded in the quenched complexity.

IV. STRUCTURE OF GLOBAL MINIMA
BY THE REPLICA METHOD

Using the replica method, one can only partially char-
acterize the energy landscape and its critical points. The
aim of this section is to show and recall what kind of
information can be gained in this way. The comparison
with the Kac-Rice analysis is presented in Sec. VI.
Previous studies can be found in Ref. [30] (see also

Ref. [40]). Our motivation and perspective on the equilib-
rium results are different from those, since we focus on
where, and to which extent, the recovery of a signal is
thermodynamically favored against the noise dispersion.
The starting point of the thermodynamic analysis is the

evaluation of the free energy fðβ; rÞ, obtained by comput-
ing the n-times-replicated partition function hZni:

fðβ; rÞ ¼ − lim
n→0;N→∞

1

βN
hZni − 1

n
; ð1Þ

where

Z ¼
X
fsig

exp½−βHp;kðrÞ� ð2Þ

and where the signal contribution to the Hamiltonian is
represented by fkðxÞ ¼ xk=k. To gain direct information on
the energy landscape,we focus on the zero-temperature limit,
when the equilibrium states dominating the partition function
(2) coincide with the absolute minima (or minimum) of the
energy landscape. This thermodynamic analysis gives then
access to the equilibrium transitions, which occur whenever
these global minima detach from the equator and move at
higher latitudes in the sphere, becoming correlated to the
signal. Moreover, it allows one to determine whether the
bottom of the energy landscape is simple, i.e., just one global
minimum, or has a more complicated structure, encoded in
the replica symmetry-breaking (RSB) formalism.

A. Energy at fixed overlap and cases I, II, and III

We first describe the main results of the replica
analysis; the computation is shown later. One important
remark is that the signal affects the model’s solution only
through the value of the typical overlap q̄ with the north
pole. To get the zero-temperature solution, it is interesting
then to focus on the intensive ground-state energy of the
original p-spin spherical model, i.e., without the function
fkðxÞ, for configurations constrained to have a fixed
overlap q̄. We denote this function Eðq̄Þ. As is expected
by the q̄ → −q̄ symmetry of the original p-spin problem,

Eðq̄Þ ¼ EGS þ ðCp=2Þq̄2 þOðq̄4Þ for small q̄, where EGS

is the intensive ground-state energy of the p-spin spherical
model and Cp happens to be a positive constant.
This result already allows us to show the existence of the

three regimes discussed in the previous section, because
now we can obtain and study the ground-state energy of our
model as Eðq̄Þ − rðq̄k=kÞ.

(i) Case I.—If k ¼ 1, then, no matter how small r is, the
ground state is at q̄ > 0 and increases when r is
augmented. This case is the first scenario described
in the previous section.

(ii) Case II.—If k ¼ 2, then the ground state is at q̄ ¼ 0
for r < r2ND ¼ Cp and becomes continuously dif-
ferent from zero by increasing r above Cp. This case
corresponds to a second-order-like transition and to
the second scenario discussed before.

(iii) Case III.—If k ≥ 3, then a discontinuous transition
is bound to take place: For r < r1ST the ground state
is at q̄ ¼ 0, whereas for r > r1ST it jumps to a finite
value. This case corresponds to a first-order-like
transition and to the third scenario discussed before.

An insight on the changes in the structure of the bottom of the
landscape can be obtained along the same lines. At r ¼ 0, the
replica solution is 1RSB. Proceeding as before, i.e., studying
the p-spin spherical model at fixed q̄, one can show that at
fixedp the solution always remains 1RSBuntil a givenvalue
of q̄c is reached where the 1RSB-RS transition takes place.
Moreover, the replica structure is the same for identical
values of q̄. Only theway inwhich q̄ changes as a function of
r depends on thevalue ofk. In consequence,when theground
state is at q̄ ¼ 0, there is a 1RSB structure of the energy
landscape close to the global minimum (roughly speaking,
the energy landscape is rough close to the bottom).When the
ground state is at q̄ > 0, for r larger than a critical value rc,
the structure of the energy landscape close to the global
minimum become RS (roughly speaking, the energy land-
scape is convex close to the bottom). In case III, there are
two minima of Eðq̄Þ close to the first-order transition: one
at q̄ ¼ 0 and one at q̄ > 0. The high-overlap minimum can
become 1RSB before or after the discontinuous transition
depending on the value of rc and r1ST. The replica analysis
that we present below (see also Refs. [30,40]) allows us to
find themodels in which this happens; see Fig. 5. The yellow
sheet identifies (on its right) models that display a regime
in which a rough landscape around the high-overlap global
minimum is present for r1ST ≤ r ≤ rc.
This type of analysis requires one to first maximize the

p-spin intensive ground-state energy with respect to the
replica parameters and subsequently to minimize the sum
Eðq̄Þ − rq̄k=k with respect to q̄; we remark that similar
minmax principles are exploited in Refs. [41,42] to prove
mathematically rigorous results for the ground-state energy
of mixed p-spin models. The methods developed in
Refs. [41,42] can likely be used to make the results we
discuss above rigorous.
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We present below the replica computation. The follow-
ing section is also useful to fully understand the comparison
with the Kac-Rice method discussed in Sec. VI. (Readers
not interested in replica theory can skip Sec. IV B and jump
directly to Sec. V.)

B. Replica solution

The standard replica computation [5] for fðβ; rÞ leads to
the following result:

f ¼ − lim
n→0;N→∞

1

βNn

Z
dQα;β expðnNS½Qα;β�Þ;

where

S ¼ β2

4n

X
a;b

Qp
ab þ

1

2n
log detQαβ þ r

β

n

X
a

fkðQ0aÞ

and Qαβ is an ðnþ 1Þ × ðnþ 1Þ matrix (α; β ∈ ½0; n�)
composed by 1 on the diagonal, Q0;a on the 2n entries
of the first line and column, and a matrix Qa;b with a; b ∈
½1; n� on the remaining n × n block.
The action has three parts: the energy of the p-spin part

of the original Hamiltonian, the energy due to the added
potential fk controlled by the parameter r, and the entropy
of an N-dimensional spherical system with one special
direction.
To proceed in the calculation, we use a RS ansatz on the

entriesQ0;a,Q0;a ¼ q̄, and the usual RS or 1RSB ansatz for
theQa;b matrix (no additional breaking of replica symmetry
is expected). The first case corresponds to Qa;b ¼ q if
a ≠ b. In the second case, the replicas are classified
according to n=m different blocks, Qa;b ¼ q1 for a ≠ b
with a and b in the same block of size m and Qa;b ¼ q0
when a and b belong to different blocks. The 1RSB ansatz
contains the RS one: The second can be recovered by
setting either m ¼ 1 or q1 ¼ q0. We thus focus only on
the first.

1. The 1RSB saddle-point equations

The expression of the 1RSB action S1RSB in the N → ∞
and n → 0 limit is reported in Appendix A for generic
values of β. When β → ∞, the action reads

S1RSB
β

¼ 1

4
½pβð1 − q1Þ þ βmð1 − qp0 Þ� þ rfkðq̄Þ

þ 1

2βm
log

�
βð1 − q1Þ þ βmð1 − q0Þ

βð1 − q1Þ
�

þ 1

2

q0 − q̄2

βð1 − q1Þ þ βmð1 − q0Þ
;

where the parameters βð1 − q1Þ, q0, βm, and q̄ have to be
determined by the following saddle point equations:

p
2
¼ 1

βm

�
1

βð1 − q1Þ
−

1

βð1 − q1Þ þ βmð1 − q0Þ
�

þ q0 − q̄2

½βð1 − q1Þ þ βmð1 − q0Þ�2
;

p
2
qp−10 ¼ q0 − q̄2

½βð1 − q1Þ þ βmð1 − q0Þ�2
;

1

2
ð1 − qp0 Þ þ

1

ðβmÞ2 log
�

βð1 − q1Þ
βð1 − q1Þ þ βmð1 − q0Þ

�

þ 1

βm
1 − q0

βð1 − q1Þ þ βmð1 − q0Þ

−
ð1 − q0Þðq0 − q̄2Þ

½βð1 − q1Þ þ βmð1 − q0Þ�2
¼ 0; ð3Þ

and

q̄ ¼ r½βð1 − q1Þ þ βmð1 − q0Þ�f0kðq̄Þ; ð4Þ

with f0kðxÞ ¼ xk−1 being the first derivative of fk. For each
value of r, the value of q̄ obtained by solving the saddle-
point equations gives the latitude of the deepest minima of
the landscape, while the function −S1RSB=β evaluated at the
saddle-point parameters gives their energy density.

2. RS-1RSB transition for the high-overlap phase

We now discuss the limit where the ground-state energy
ceases to be obtained by a 1RSB solution and is instead
determined by a RS one. The transition between these two
regimes signals a change in the structure at the bottom of
the landscape from many low-lying minima to one single
global minimum. We call rc the corresponding critical
value of r at which this transition occurs.
The first piece of information about this change of

structure is obtained by expanding the four 1RSB saddle-
point equations [31] for small q1 − q0 and by keeping
the lowest-order nonzero terms. This expansion gives four
equations; see Appendix A. Applying them to the 1RSB
solution with high q̄, we get that the critical point occurs at

rcðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 2Þ

2

r
f0k

0
@

ffiffiffiffiffiffiffiffiffiffiffi
p − 2

p − 1

s 1
A−1

; ð5Þ

when

βð1 − qcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pðp − 1Þ

s

and

q̄c ¼
ffiffiffiffiffiffiffiffiffiffiffi
p − 2

p − 1

s
: ð6Þ
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At this point, the high-q̄ solution recovers a RS structure;
i.e., it becomes a single minimum. Still, one has to consider
whether this solution is a global minimum of the energy
landscape or only a local one. This piece of information is
recovered by comparing the energy cost of the high-q̄
solution with the solution with q̄ ¼ 0, when this does still
exist. A full account of all the possible models’ solutions
obtained by using all the gathered information is presented
in the next section.

C. Results

From the numerical study of all the T ¼ 0 equations
above, we recover the three distinct scenarios accounted for
in Sec. III.
Casek ¼ 3 andhigher.—Fork > 2,we finda stable 1RSB

q̄ ¼ 0 solution at every value of r. This solution is orthogonal
to the signal and completely dominated by the noise repre-
sented by the p-spin part. Beside this solution, when r
increases, we find a second, high-q̄ solutionwhich undergoes
a continuous transitionbetween a 1RSBphase and aRSphase
at rc. The high-q̄ solution (q̄ ≠ 0) contains at least partial
information about the signal, the amount of this information
being represented by the overlap q̄. This solution is at first
metastable compared to the q̄ ¼ 0 state, but it becomes
stable at higher r. This change occurs through a first-order
transition at r1ST. If r1ST > rc, the first-order transitionmarks
a thermodynamic discontinuity between a 1RSB state (at
q̄ ¼ 0) and a RS state (the high-q̄ one). This scenario is
generally found for k ≥ p as shown in the phase diagram in
Fig. 5. If r1ST < rc, instead two transitions are observedwhen
r increases. A first-order transition occurs at lower r, showing
the exchange of stability between the q̄ ¼ 0 and high-q̄,
1RSB, states. A continuous transition between the 1RSB
and the RS phases follows within the high-q̄ state at higher r.
An intermediate complex phase, related to a rugged land-
scape, already containing partial information on the signal,
or north pole, then emerges in this case.
Case k ¼ 2.—The case k ¼ 2 is qualitatively different

from k ¼ 3. The first-order transition is replaced by a
continuous, second-order-like, transition between the
q̄ ¼ 0 state and the high-q̄ state before the last one becomes
RS at rc. As explained before, this transition can be
rationalized thinking that the 1RSB action is quadratic in
q̄. As such, a term fk with a higher power of q̄ (k > 2)
cannot affect the local stability of the q̄ ¼ 0 state. When
k ¼ 2 instead, fk can counterbalance the quadratic con-
tribution of the 1RSB action leading to the instability of the
q̄ ¼ 0 solution at a high enough r2ND. The 1RSB-RS
transition happens for a strictly larger value of r, since it
takes place for a finite value of q̄.
Case k ¼ 1.—Finally, the case k ¼ 1 has been exten-

sively studied years ago [31], and it corresponds to the
p-spin spherical model in an external magnetic field. In this
case, there are no competing 1RSB states at all. The linear
field immediately shifts q̄ of the 1RSB phase away from

zero until the continuous transition at rc brings the 1RSB
phase into the RS solution.
In order to show concrete examples, we report in Table I

the different transition values for different p and k, in
particular, for the spike-tensor model p ¼ k ¼ 3. As shown
above, in the k ≥ 3 case, whether the discontinuous
transition to the high-q̄ phase takes place before or after
the 1RSB-RS transition depends on the model, i.e., on p
and k. In order to find a general criterion, we evaluate the
action of the high-overlap phase at the 1RSB-RS transition:

SHc
RS

β
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ðp − 1Þ
r

kþ p − 2

k
;

see Eqs. (A3)–(A6) in Appendix A. We then compare this
action to the one of the 1RSB phase with q̄ ¼ 0: SL1RSB.
There are two possible cases:

FIG. 5. Models (represented by the white spheres for integer p
and k) in which the 1RSB-RS transition takes place after (before)
the discontinuous transition to the high-overlap phase are to the
right (left) of the black line. The yellow sheet represents the range
of r, i.e., rc − r1ST, for which the 1RSB phase of high q̄ is
globally stable for the first kind of models. Mesh lines are placed
at rc − r1ST ¼ 1, 2, 3, 4 as a reference.

TABLE I. Values of r at the available transitions in a few
instances of p and k. The dots indicate that the corresponding
transitions are not present for the given values of p and k.

rc r1ST r2ND

p ¼ 3
1.225 � � � � � �

k ¼ 1
p ¼ 3

1.732 � � � 0.7297
k ¼ 2
p ¼ 3

2.449 2.559 � � �
k ¼ 3
p ¼ 4

3. 2.256 � � �
k ¼ 3
p ¼ 8

5.715 1.594 � � �k ¼ 3
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(i) SHc
RS < SL1RSB.—In this case, the high-overlap phase

becomes energetically favorable after the 1RSB-RS
transition takes place. Thus, the rough energy land-
scape around the north pole described by the 1RSB
phase does not contain the global minima of the
landscape but only some local (metastable) ones.

(ii) SHc
RS > SL1RSB.—In this case, the high-overlap phase

becomes energetically favorable before the 1RSB-
RS transition takes place; hence, there is a range of r
where the stable high-overlap phase is 1RSB. This
region extends up to rc.

In Fig. 5, we show a diagram in the p, k space, with the
black line representing the point where SHc

RS=β ¼ SL1RSB=β
at zero temperature. To the right (respectively, left) of the
line lie models in which the 1RSB-RS transition takes place
after (respectively, before) the discontinuous transition to
the high-overlap phase. Whenever the 1RSB-RS transition
takes place after the discontinuous transition, the complex
phase with partial information about the signal contains
ground-state minima for a finite range of r. The height of
the colored sheet in Fig. 5 represents the range of r for
which this result holds, i.e., rc − r1ST. Note that the range
becomes larger and larger when p increases for fixed k or k
decreases at fixed p.
The two complex phases we discuss present a multi-

minima structure that is worth studying to get insights on
the possibility to recover the signal through different
sampling dynamics. We perform this study in the following
section, making use of the Kac-Rice formalism. A com-
parison with the results obtained by means of the replica
formalism is postponed to Sec. VI.

V. LANDSCAPE ANALYSIS VIA REPLICATED
KAC-RICE FORMULA

In this section, we present the analysis of the energy
landscape of Hp;kðrÞ performed through the replicated
version of the Kac-Rice method.
Our aim is to determine the number N Nðϵ; q̄Þ of local

minima (or, more generally, of stationary points) of the
energy functional, having a given energy density ϵ and a
fixed overlap s · v0 ¼ Nq̄ with the special direction v0. The
number N Nðϵ; q̄Þ is a random variable that, when the
random fluctuations dominate over the signal, scales
exponentially with N. This scaling occurs over a finite
range of energies; among the exponentially many local
minima, the lowest-energy ones dominate the thermody-
namics of the model (described in detail in the previous
section), while the higher-energy ones are expected to play
a relevant role when discussing the dynamical evolution on
the energy landscape.
We are interested in determining the exponential

scaling of the typical value of N Nðϵ; q̄Þ; that is, we
aim at computing the quenched complexity Σp;kðϵ; q̄; rÞ
defined as

Σp;kðϵ; q̄; rÞ≡ lim
N→∞

hlogN Nðϵ; q̄Þi
N

: ð7Þ

As anticipated, we perform the calculation making use of
the Kac-Rice formula [43,44]. This formalism has been
recently exploited to characterize the topological properties
of random landscapes associated to the pure and mixed
p-spin models [10,11] and to the spiked-tensor model [15],
as well as to count the equilibria of dynamical systems
modeling large ecosystems [22,36] and neural networks
[21]. In these contexts, results have been given for annealed
complexity, which governs the exponential scaling of
the average number of stationary points, or equilibria.
This quantity corresponds to averaging N N over the
disorder realization before taking the logarithm, at variance
with Eq. (7).
For the Hamiltonian Hp;kðrÞ with r ¼ 0, it is known that

the quenched and annealed prescriptions give the same
result for the complexity [3,13]. In the presence of a signal,
however, this equivalence does not hold (as we show
below) so that the quenched calculation becomes necessary.
We perform the latter by means of the replica trick, via the
identity

Σp;kðϵ; q̄; rÞ ¼ lim
N→∞

lim
n→0

hN n
Nðϵ; q̄Þi − 1

Nn
; ð8Þ

analytically continuing the expression for the higher
moments of N N . The replicated version of the Kac-Rice
formula allows us to obtain (to leading order in N) the
moments hN n

Ni, for integer values of n.
As we show in the following, the expression for hN n

Ni
that we obtain involves n critical points sa, a ¼ 1;…; n,
each with energy density ϵ and overlap Nq̄ with the north
pole. Introducing their mutual overlaps sa · sb ¼ Nqab, we
find that we can parametrize the moments as

hN n
Nðϵ; q̄Þi ¼

Z Y
a<b

dqabe
NSðnÞ

p;kðϵ;q̄;r;fqabgÞþoðNÞ; ð9Þ

where the integral can be computed with the saddle-point
approximation, optimizing over the order parameters qab.
In consequence, the action evaluated at the saddled point
directly gives lnhN n

Nðϵ; q̄Þi=N up to vanishing corrections
in the large N limit. To get the complexity, i.e., the typical
value of the number of critical points, we perform this
calculation assuming replica symmetry, meaning that we
set qab ≡ q for a ≠ b, and take the n → 0 limit; we expect
this assumption to give accurate results, in view of the fact
that Hp;kðrÞ does not exhibit full RSB but only 1RSB in
the statics.
Before entering into the details of the calculation, we

collect the main resulting expressions in the following
subsection.
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A. The main results: Quenched complexity and
mapping between the three cases

For arbitrary values of n and assuming replica symmetry,
we find that the action in Eq. (9) is given by

SðnÞ
p;k ¼

n
2
log½2eðp−1Þ�þnI½βðϵ; q̄Þ�− Q̃ðnÞ

p;kðϵ; q̄;qÞ; ð10Þ

where IðyÞ is an even function of its argument, equal to

I¼

8><
>:

y2−1
2

þ y
2

ffiffiffiffiffiffiffiffiffiffiffiffi
y2−2

p
þ log

�
−yþ

ffiffiffiffiffiffiffiffi
y2−2

p
2

�
if y≤−

ffiffiffi
2

p
;

1
2
y2− 1

2
ð1þ log2Þ if −

ffiffiffi
2

p
≤ y≤ 0;

while

βðϵ; q̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

p − 1

r
ϵþ ðp=k − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðp − 1Þp rq̄k: ð11Þ

The dependence on the overlap q between the various

replicas enters in the term Q̃ðnÞ
p;k, which reads

Q̃ðnÞ
p;k ¼−

1

2
log

��
1−q

1−qp−1

�
n−1 1−nq̄2þðn−1Þq

1þðn−1Þqp−1
�

−nðn−1Þr2q̄2k ð1−qÞqp½1þðn−1Þqp−pð1−qÞ�
p½1þðn−1Þqp−1�DðqÞ

þnr2q̄2k−2ð1− q̄2Þ 1

p½1þðn−1Þqp−1�

þ2nðn−1Þrq̄k
�
rq̄k

k
þ ϵ

�
qpþ1ð1−qÞ

DðqÞ

þn

�
rq̄k

k
þ ϵ

�
2qp−q2−pqpð1−qÞ½1þðn−1Þq�

DðqÞ ;

where we define

DðqÞ ¼ ðqp − q2Þ½1þ ðn − 1Þqp�
− pqpð1 − qÞ½1þ ðn − 1Þq�: ð12Þ

From this result, we can readily obtain the expression for
the annealed complexity, which is obtained by setting
n ¼ 1. In this case, the dependence on q drops (as is natural
to expect, since there is only one replica and thus no overlap
with any other one), and the action reduces to

ΣðannÞ
p;k ðϵ; q̄; rÞ ¼ 1

2
log½2eðp − 1Þð1 − q̄2Þ� þ I½βðϵ; q̄Þ�

−
�
ϵþ rq̄k

k

�
2

−
1

p
r2q̄2k−2ð1 − q̄2Þ: ð13Þ

For p ¼ k, this expression agrees with the results in
Ref. [15]. The annealed complexity is an upper bound to
the quenched one. As we argue in Sec. V I, it captures
correctly the properties of the energy landscape whenever
this is smooth and has only one isolated minimum, i.e., in
the regime r > rc.
Our result at fixed n provides all the integer moments of

the number of critical points. To get the quenched complex-
ity, the limit n → 0 has to be performed, by analytically
continuing (10). The result is

Σp;kðϵ; q̄; rÞ ¼
1

2
log½2eðp − 1Þ� þ I½β� − Q̃p;kðϵ; q̄; qSPÞ;

ð14Þ

where Q̃p;k is defined from Q̃ðnÞ
p:k ¼ nQ̃p;k þOðn2Þ

and reads

Q̃p;kðϵ; q̄; qÞ ¼
1

2

�
log

�
1 − qp−1

1 − q

�
þ qp−1

1 − qp−1
þ q̄2 − q

1 − q

�
þ r2q̄2k

p

� ð1 − qpÞq2
ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2 þ

q̄−2

ð1 − qp−1Þ
�

− 2rq̄k
�
rq̄k

k
þ ϵ

�
qpþ1ð1 − qÞ

ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2 þ
�
rq̄k

k
þ ϵ

�
2 qp − q2 − pqpð1 − qÞ2
ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2 ;

ð15Þ

while qSP ¼ qSPðϵ; q̄Þ is the saddle point extremizing the
function (15).
The evaluation of the quenched complexity

therefore requires one to compute a saddle point on
q for given values of the parameters q̄ and ϵ. A
substantial simplification comes from a general identity
that we derive in Sec. V H and which relates, for fixed
p and q̄, the complexities Σp;kðϵ; q̄; rÞ for different
values of k:

Σp;kðϵ; q̄; rÞ ¼ Σp;1

�
ϵþ rfk − r

f0k
f01

f1; q̄;
f0k
f01

r

�
ð16Þ

for fk ≡ fkðq̄Þ, meaning that all complexity curves for
k > 1 can be derived from the ones at k ¼ 1. This mapping
is convenient, as it allows us to solve the saddle-
point equations for q in one single case. We remark,
however, that not all the properties of the landscape at
k > 1 can be deduced from the case k ¼ 1: In particular,
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the analysis of the stability of the stationary points (i.e., of
the spectrum of their Hessian) has to be performed
separately for any k, as we discuss in more detail in the
following subsections.

B. The replicated Kac-Rice formula

Here, we present the replicated version of the Kac-Rice
formula and outline the main steps of the subsequent
calculation. For convenience, we introduce the vectors σ ¼
s=

ffiffiffiffi
N

p
and w0 ¼ v0=

ffiffiffiffi
N

p
having unit norm, and we define

the rescaled energy functional

h½σ� ¼
ffiffiffiffi
2

N

r
Hp;kðrÞ ¼ hps½σ� −

ffiffiffiffiffiffiffi
2N

p
rfkðσ · w0Þ; ð17Þ

with hps½σ�≡ −
P

hi1;i2;…;ipi J
0
iσi1σi2…σip denoting the

p-spin energy functional with rescaled coupling satisfying
hðJ0iÞ2i ¼ p!. We count the stationary point σ of this
functional satisfying h½σ� ¼ ffiffiffiffiffiffiffi

2N
p

ϵ and σ · w0 ¼ q̄, which
are in one-to-one correspondence with the stationary points
of Hp;kðrÞ with energy density ϵ and s · v0 ¼ Nq̄.
The Kac-Rice formula incorporates the spherical con-

straint, as it counts the number of stationary points of the
functional h½σ� restricted to the unit sphere; such points σ
nullify the surface gradient of Eq. (17), which is a vector
g½σ� lying on the tangent plane to the sphere at the point σ.
Similarly, their stability is governed by the Hessian on the
sphere, which we denote with H½σ� [see Eq. (20) for a
precise definition of this matrix]. Given n replicas σa,
a ¼ 1;…; n, we introduce the shorthand notation
ga ≡ g½σa�, Ha ≡H½σa�, and ha ≡ h½σa� and denote with
pσ⃗ the joint density function of the ðN − 1Þn gradients
components gaα and of the n functionals ha, induced by the
distribution of the couplings J0i in Eq. (17). With this
notation, the replicated Kac-Rice formula reads

hN n
Nðϵ; q̄Þi¼

Z Yn
a¼1

dσaδðσa ·w0− q̄ÞE σ⃗ðϵÞpσ⃗ð0;ϵÞ; ð18Þ

with

E σ⃗ðϵÞ¼
��Yn

a¼1

jdetHaj
�
jfha ¼

ffiffiffiffiffiffiffi
2N

p
ϵ;ga ¼ 0 ∀ ag

�
:

ð19Þ

In Eq. (18), the integral is over n replicas σa constrained to
be in the unit sphere, at overlap q̄ with the vector w0. The
function pσ⃗ð0; ϵÞ is the joint density of gradients and
energies evaluated at gaα ¼ 0 and ha ¼ ffiffiffiffiffiffiffi

2N
p

ϵ for any
a ¼ 1;…; n. The expectation value (19) is over the joint
distribution of the Hessians Ha, conditioned on each σa

being a stationary point with rescaled energy
ffiffiffiffiffiffiffi
2N

p
ϵ, and

overlap q̄ with w0.

The computation of the moments (18) requires one to
determine, for each configuration of the replicas σa, the
joint distribution of the variablesHa

αβ, g
a
α, and ha, which are

all mutually correlated and whose distribution depends, in
principle, on the coordinates of all the replicas. For the
simplest case (n ¼ 1) of a single replica σ, it can be shown
(see the discussion below and Refs. [8,10]) that (i) the
gradient g½σ� is statistically independent from h½σ� and
from the Hessian and (ii) the distributions depend on σ only
through its overlap q̄ with the special direction w0 (in the
absence of the signal, the distribution turns out to be
independent on σ). These features make the computation of
the annealed complexity feasible; in particular, (ii) is
crucial, as it allows one to integrate out the variable σ
and get an expression for hN Ni which depends only on a
few parameters. Moreover, it suggests that the distributions
of the random vector g½σ� and of the random matrix H½σ�
satisfy some rotation-invariant symmetry, hinting at the
connection with the random matrix theory of invariant
ensembles [8,10].
When the number of replicas is larger than one, the

situation is more involved, as the random variables asso-
ciated to different replicas are nontrivially correlated.
However, it remains true that their joint distribution can
be parametrized in terms of q̄ and a few additional order
parameters that are the overlaps qab ¼ σa · σb between the
different replicas [45]. In the following subsection, we
discuss in more detail this structure, which allows us to
reexpress the moments (18) as an integral over the order
parameters qab of three terms scaling exponentially with N;
see Eq. (25). The first term is a volume factor, emerging
when integrating over the variables σa: This term is
evaluated with standard methods in Sec. V D. The second
term is the joint distribution of gradients and energy fields;
the difficulty in computing this term relies in the inversion
of the correlation matrix of the gradients: We overcome it
by realizing that it is sufficient to invert the projection of the
matrix on a restricted portion of replica space; see Sec. V E.
Finally, the third term is the conditional expectation
value of the product of determinants. We find that the
conditioned Hessians of the various replicas are coupled
matrices extracted from a weakly perturbed Gaussian
orthogonal ensemble (GOE), such that their mutual corre-
lations can be neglected when computing the expectation
value to leading order in N (Secs. V F 1 and V F 2). As a
consequence, we find that this term contributes with
a factor that is independent on qab and which is governed
by the properties of the GOE invariant ensembles; see
Sec. V F 3. We discuss the stability of the stationary points,
which is encoded in the statistics of the spectrum of the
Hessians, in Sec. V G. The final result of the calculation is
Eq. (14), where we remind that the integral over the order
parameters is performed within the saddle-point approxi-
mation, assuming a replica-symmetric structure of the
overlap matrix, qab ≡ q for a ≠ b.
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C. Structure of covariances and
order parameters

As a first step, we analyze the structure of the
correlations between the random variables Ha, ga, and
ha: Since they are Gaussian, their statistics is fully
determined by their averages and mutual covariances,
which turn out to depend only on q̄ and on the over-
laps qab ¼ σa · σb.
To uncover this structure, we consider the gradients

∇ha ≡ ∇h½σa� and Hessian ∇2ha ≡ ∇2h½σa� of the func-
tional (17) extended to the whole N-dimensional space [46]
and determine the covariances between their components
along arbitrary directions in the N-dimensional space,
given by some N-dimensional unit vectors ei. From here,
the correlations of the components ga and Ha are easily
determined by setting ei → eaα, where feaαgN−1

α¼1 is an
arbitrarily chosen basis of the tangent plane at σa. This
fact follows from the fact that ga is an (N − 1)-dimensional
vector with components gaα ¼ ∇ha · eaα, which is obtained
from ∇ha by simply projecting it onto the tangent
plane. Similarly, Ha is an ðN − 1Þ × ðN − 1Þ matrix with
components

Ha
αβ ¼ eaα · ½∇2ha − ð∇ha · σaÞ1̂� · eaβ; ð20Þ

as it follows from imposing the spherical constraint with a
Lagrange multiplier [47]. For arbitrary ei, taking the
derivative of Eq. (17) and computing the expectation value,
we find

h∇ha · ei ¼ −
ffiffiffiffiffiffiffi
2N

p
rf0ðσa · w0Þðw0 · eÞ;

hð∇ha · eÞhbic ¼ pðσa · σbÞp−1ðe · σbÞ; ð21Þ

and

hð∇ha · e1Þð∇hb · e2Þic
¼ pðσa · σbÞp−1ðe1 · e2Þ
þ pðp − 1Þðσa · σbÞp−2ðe1 · σbÞðe2 · σaÞ; ð22Þ

where the subscript “c” indicates that the correlation
function is connected. The same computation for the
second derivatives gives

he1 ·∇2ha ·e2i¼−
ffiffiffiffiffiffiffi
2N

p
rf00ðσa ·w0Þðw0 ·e1Þðw0 ·e2Þ;

hðe1 ·∇2ha ·e2Þhbic¼pðp−1Þðσa ·σbÞp−2ðe1 ·σbÞðe2 ·σbÞ;

and

hðe1 · ∇2ha · e2Þðe3 · ∇2hb · e4Þic ¼
p!ðσa · σbÞp−4

ðp − 4Þ! ðe1 · σbÞðe2 · σbÞðe3 · σaÞðe4 · σaÞ

þ p!
ðp − 3Þ! ðσ

a · σbÞp−3ðe1 · e4Þðe2 · σbÞðe3 · σaÞ

þ p!
ðp − 3Þ! ðσ

a · σbÞp−3ðe2 · e4Þðe1 · σbÞðe3 · σaÞ

þ p!
ðp − 3Þ! ðσ

a · σbÞp−3ðe1 · e3Þðe2 · σbÞðe4 · σaÞ

þ p!
ðp − 3Þ! ðσ

a · σbÞp−3ðe2 · e3Þðe1 · σbÞðe4 · σaÞ

þ p!ðσa · σbÞp−2
ðp − 2Þ! ½ðe1 · e3Þðe2 · e4Þ þ ðe1 · e4Þðe2 · e3Þ�: ð23Þ

Finally, the correlations between Hessians and gradients
read

hðe1 ·∇2ha · e2Þð∇hb · e3Þic
¼ pðp− 1Þðp− 2Þðσa · σbÞp−3ðe1 · σbÞðe2 · σbÞðe3 · σaÞ
þ pðp− 1Þðσa · σbÞp−2ðe1 · e3Þðe2 · σbÞ
þ pðp− 1Þðσa · σbÞp−2ðe2 · e3Þðe1 · σbÞ: ð24Þ

Consider first the case of a single replica: Choosing ei →
eα½σ� to be vectors in the tangent plane, using Eq. (20) and
eα½σ� · σ ¼ 0, one sees that g½σ� is uncorrelated from H½σ�

and h½σ�; moreover, irrespective of the choice of the basis in
the tangent plane, the components of the gradient are
independent Gaussian variables with variance p, while the
Hessian is a GOEmatrix with variance pðp − 1Þ, shifted by
a random diagonal matrix.
For more than one replica, correlations arise because of

the nonzero overlaps between some directions eaα in the
tangent plane at σa and the other replicas σb. However, the
correlations of the components along directions that are
orthogonal to w0 and to all the σa hugely simplify. To
exploit this simplification, it is convenient to separate
the N-dimensional space embedding the sphere into the
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(nþ 1)-dimensional subspace S spanned by the vectors w0

and fσagna¼1 and its orthogonal complement S⊥. The
reference frame of the embedding space, which we denote
with fxigNi¼1, can be chosen in such a way that the last
(nþ 1) vectors xN−n…;xN are a linear combination of w0
and of all the σa, forming an orthonormal basis of S, while
the remaining N − n − 1 vectors x1;…;xN−n−1 generate
S⊥. Similarly, the basis vectors in the tangent planes eaα can
be chosen so that the last n vectors eaN−n;…; eaN−1, together
with the normal direction σa, are a basis for S, while the
remaining eaα with α < N − n generate S⊥. In particular,
these can be chosen equal for any a, as eaα ¼ δα;ixi for
i < N − n. With this choice, the covariances between the
first N − n − 1 components of the gradients do not depend
on the corresponding directions eaα and depend trivially on
the overlaps qab. The covariances between the last com-
ponents are instead more complicated functions of qab,
which depend explicitly on the choice of the basis in S.
Optimal choices for the basis can be made, to simplify the
calculations; we discuss an example in Appendix C.
Regardless of these choices, Eq. (18) can be rewritten in
terms of the overlaps alone, as

hN n
Nðϵ; q̄Þi ¼

Z Yn
a<b¼1

dQabVðQ̂; q̄ÞEðϵ; q̄; Q̂ÞpQ̂ð0; ϵÞ;

ð25Þ

where E and pQ̂ are the expectation value and the joint
distribution, respectively, in Eq. (18), now expressed as a
function of the overlap matrix Q̂ with components

Qab ¼ δab þ ð1 − δabÞqab; ð26Þ

while

VðQ̂; q̄Þ ¼
Z Yn

a¼1

dσaδðσa · w0 − q̄Þ
Y
a≤b

δðQab − σa · σbÞ

ð27Þ

is an entropic contribution. We determine the leading-order
term in N of each of the three contributions in Eq. (25)
for qab ≡ q and subsequently perform the integral with
the saddle-point method. To simplify the calculation, we
choose the bases xi and eaα so that only one vector has a
nonzero overlap with the special direction w0: This sim-
plification can be done by setting xN ¼ w0 (hence the name
north pole) and choosing eaN−1 to be the projection of w0 on

the tangent plane of σa, eaN−1 ¼ ðw0 − q̄σaÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
.

D. The phase-space factor: VðQ̂;q̄Þ
The term VðQ̂; q̄Þ is a phase-space factor, which

accounts for the multiplicity of configurations of replicas

satisfying the constraints on the overlap. Its large-N limit
can be obtained from the representation

VðQ̂; q̄Þ ¼
Z

∞

−∞

Y
a;i

dσai

Z Y
b≤c

dλbc
2π

Y
d

dμd
2π

evðQ̂;q̄;μ;Λ̂;σ⃗Þ;

where Λ̂ and Q̂ are n × n matrices in replica space with
elements Λab¼ð1þδabÞλab and Qab¼ð1−δabÞqab þ
δab, and vðQ̂; q̄; μ; Λ̂; σ⃗Þ ¼Pa≤b iλabðσa · σb − qabÞ þP

a iμaðσa · w0 − q̄Þ. Performing the Gaussian integrals
over the variables σai and μa, we get

VðQ̂; q̄Þ ¼ eoðNÞð2πÞNn=2

Z Y
a≤b

dλab
eð1=2ÞTr½ð−iΛ̂ÞQ̃�

ðdet½−iΛ̂�ÞN=2 ;

where Q̃ab ¼ Qab − q̄2. After rescaling −iΛ̂ → NΛ̂0, the
remaining integral can be computed with a saddle point
(which gives Λ0 ¼ Q̃−1), leading to

VðQ̂; q̄Þ ¼ exp

	
N
2
½n log

�
2πe
N

�
þ log det Q̃� þ oðNÞ



;

where within the RS ansatz

log det Q̃ ¼ n logð1 − qÞ þ log

�
1 − nq̄2 þ ðn − 1Þq

1 − q

�
:

To leading order in Nn, we find

VðQ̂; q̄Þ ¼ eðNn=2Þflog½2πeð1−qÞ=N�−½ðq̄2−qÞ=ð1−qÞ�gþoðNnÞ: ð28Þ

This contribution is dominated by q ¼ q̄2, which corre-
sponds to configurations in which the replicas are almost
independent with each other, correlated only through the
constraint on q̄ (indeed, it corresponds to replicas having
zero mutual overlap in the portion of phase space that is
orthogonal to the special direction w0). These configura-
tions are the most numerous and reproduce the phase-space
factor obtained in the annealed calculation (when n ¼ 1),
since in that caseZ

dσδðσ · w0 − q̄Þ ¼ eðN=2Þ½logð2πe=NÞþlogð1−q̄2Þ�þoðNÞ:

However, they are disfavored by the other terms in Eq. (25),
which depend nontrivially on q; the competition between
these terms leads to a more complicated global saddle-point
solution qSP.

E. Joint density of the gradients
and energies and pQ̂ð0;ϵÞ

We now determine the joint distribution pQ̂ð0; ϵÞ of
the ðN − 1Þnþ n components ðgaα; haÞ. This distribution
can be obtained from the joint distribution of the
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gradient components ∇hai ¼ ∇h½σa� · xi in the enlarged, N-
dimensional space, whose covariances read [see Eq. (22)]

Cab
ij ¼ pQp−1

ab δij þ pðp − 1ÞQp−2
ab σbi σ

a
j ð29Þ

and averages h∇hai i ¼ −δiN
ffiffiffiffiffiffiffi
2N

p
rf0kðq̄Þ. The joint density

of the ∇hai is thus

pðf∇hagna¼1Þ ¼
e−ð1=2Þ

P
n
a;b¼1

ð∇haSÞT ·½Ĉ−1�ab·ð∇hbSÞ

ð2πÞnN=2j det Ĉj1=2 ; ð30Þ

where

∇haS ¼ ∇ha þ
ffiffiffiffiffiffiffi
2N

p
rf0kðq̄ÞxN

and where ½Ĉ−1�ab is the ab block (in replica space) of the
inverse covariance matrix, of dimension N × N. Because of
our choice of the reference frame xi, each Ĉab is block
diagonal, Ĉab¼diagðÂab;B̂abÞ, where Âab is an ðN−n−1Þ×
ðN−n−1Þ block with components Âab

ij ¼ δij½pδab þ
pð1 − δabÞqp−1� giving the covariances between the
gradient components in S⊥, while B̂ab is an ðnþ 1Þ ×
ðnþ 1Þ block whose elements are the covariances of the
gradient components in S, which are explicit functions of
q and of σai . To leading order in N, this smaller block can
be neglected for the computation of the normalization,
and one gets

j det Ĉj ¼ exp

	
Nn

�
log½pð1 − qp−1Þ� þ qp−1

1 − qp−1

�

þ oðNnÞ


: ð31Þ

To get the statistics of the components on the tangent
planes, we consider the N-dimensional vectors g̃½σa�≡
g̃a ¼ ðga1; ga2;…; gaN−1; g̃

a
NÞ, whose first N − 1 components

are gaα ¼ ∇h½σa� · eaα, while the last component g̃N ½σa� ¼
g̃aN ¼ ∇h½σa� · σa equals

g̃aN ¼ ph½σa� þ
ffiffiffiffiffiffiffi
2N

p
r½pfkðq̄Þ − f0kðq̄Þq̄�; ð32Þ

and it is thus related to the value of the functional at the
point σa. The vectors ∇h½σa� and g̃a are related by a
unitary rotation: The joint density pQ̂ð0; ϵÞ of ðga; h½σa�Þ
evaluated at ð0; ffiffiffiffiffiffiffi

2N
p

ϵÞ is easily obtained from Eq. (30)
with a change of variables.
To determine Eq. (30), we introduce the Nn-dimensional

vectors ξ1 ¼ ðσ1;…; σnÞ and ξ2 ¼ ðw0;…;w0Þ (we remind
that we choose xN ¼ w0) so that

pQ̂ð0; ϵÞ ¼
e−NQðnÞ

p;k;rðϵ;q̄;qÞþoðNÞ

ð2πÞnN=2j det Ĉj1=2 ;

with

QðnÞ
p;k;rðϵ; q̄; qÞ ¼ u2ξ1 · Ĉ

−1 · ξ1 þ ½rf0kðq̄Þ�2ξ2 · Ĉ−1 · ξ2

þ rf0kðq̄Þuðξ1 · Ĉ−1 · ξ2 þ ξ2 · Ĉ
−1 · ξ1Þ

ð33Þ

and

u ¼ uðϵ; q̄Þ ¼ pϵþ r½pfkðq̄Þ − f0kðq̄Þq̄�: ð34Þ

Note that in Eq. (33) the matrix Ĉ−1 is contracted with the
vectors σa so that the quadratic form depends only on the
overlaps q and q̄. The exponent (33) can be explicitly
computed by noticing that the vectors ξ1 and ξ2, together
with the vector ξ3 ¼ ðPa≠1 σ

a;…;
P

a≠n σ
aÞ, form a

closed set under the action of the matrix Ĉ−1: The inversion
of the correlation matrix can be performed in the restricted
subspace spanned by these three vectors, and the matrix
elements of Ĉ−1 within this subspace suffice to get Eq. (33).
We refer to Appendix B for the details of this computation.
As a result, we obtain

QðnÞ
p;kðϵ; q̄; qÞ

¼ nr2q̄2k−2ð1 − q̄2Þ 1

p½1þ ðn − 1Þqp−1�

þ n

�
rq̄k

k
þ ϵ

�
2 qp − q2 − pqpð1 − qÞ½1þ ðn − 1Þq�

DðqÞ

þ 2nðn − 1Þrq̄k
�
rq̄k

k
þ ϵ

�
qpþ1ð1 − qÞ

DðqÞ

− nðn − 1Þr2q̄2k ð1 − qÞqp½1þ ðn − 1Þqp − pð1 − qÞ�
p½1þ ðn − 1Þqp−1�DðqÞ ;

ð35Þ

where DðqÞ is given in Eq. (12). In the limit of a single
replica n → 1, the quadratic form reduces to

Qð1Þ
p;kðϵ; q̄Þ ¼

�
ϵþ r

q̄k

k

�
2

þ 1

p

�
rq̄k−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

q �2
; ð36Þ

which is consistent with Eq. (21), as it reflects the
factorization of the distribution of the gradients and of
the rescaled energy fields: The first term in Eq. (36)
corresponds to the Gaussian weight of the energy func-
tional h½σa�, while the second accounts for the nonzero
average of the last component of the vector ga [here, we use
that eaN−1 ¼ ðxN − q̄σaÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
].

To leading order in n, setting QðnÞ
p;k ≡ nQp;k þOðn2Þ,

we obtain
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Qp;kðϵ; q̄; qÞ

¼ r2q̄2k

p
ð1 − qpÞq2

ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2

þ
�
rq̄k

k
þ ϵ

�
2 qp − q2 − pqpð1 − qÞ2
ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2

− 2rq̄k
�
rq̄k

k
þ ϵ

�
qpþ1ð1 − qÞ

ðqp − q2Þð1 − qpÞ − pqpð1 − qÞ2

þ r2q̄2k−2

pð1 − qp−1Þ ; ð37Þ

and combining (30), (31), and (37), we get

pQ̂ð0; ϵÞ ¼
e−ðNn=2Þ½ðqp−1=1−qp−1Þþ2Qp;k;rðϵ;q̄;qÞ�þoðNnÞ

½2πpð1 − qp−1Þ�Nn=2 : ð38Þ

This term is dominated by an energy-dependent value
of q ¼ qðϵ; q̄Þ. As we argue in the following section, to
leading order in N, the expectation value E turns out to be
independent on q, so that Eq. (38) is the term responsible
for shifting [48] the saddle-point solution away from the
value q ¼ q̄2 maximizing the phase-space term (28).

F. The expectation value of the product
of determinants E

The expectation value E in Eq. (25) is over the joint
distribution of the Hessian matrices Ha, conditioned on a
particular value of the gradients ga and field ha. Using the
identities (20) and (32), we get that the Hessians can be
written as

Ha
αβ ≡Ma

αβ þ θr;kðq̄Þðeaα · w0Þðeaβ · w0Þ − g̃aNδα;β: ð39Þ

Here, θr;kðq̄Þ ¼ −
ffiffiffiffiffiffiffi
2N

p
rf00kðq̄Þ ¼ −

ffiffiffiffiffiffiffi
2N

p
rf00kðq̄Þ is a deter-

ministic term, while Ma
αβ ≡ eaα ·∇2haps · eaβ and g̃aN are

random variables. When conditioning to ha ¼ ffiffiffiffiffiffiffi
2N

p
ϵ, the

random variable g̃aN becomes a deterministic function equal
to

ffiffiffiffiffiffiffi
2N

p
uðϵ; q̄Þ [see Eq. (34)] so that the conditional law of

Ha can be easily obtained from the one of the matricesMa.
In the following, we discuss the conditional law ofMa. We
denote with M̃a the random matrices obeying this law, and
similarly for H̃a.
As we show below, the exponential scaling of E is

determined by the leading-order term (in N) of the density
of states of the conditioned matrices H̃a=

ffiffiffiffi
N

p
. This term is

simply the density of states of M̃a=
ffiffiffiffi
N

p
, shifted by the

constant term
ffiffiffi
2

p
uðϵ; q̄Þ: Indeed, the term proportional to

θr;kðq̄Þ is a rank-1 perturbation that modifies the density of
states only to lower order in N and does not affect
the result for E to exponential accuracy in N. Notice,
however, that, despite this term being irrelevant in the
computation of the number of stationary points, it has to be

taken into account when discussing their stability; see
Sec. VG and Appendix D.

1. Conditional law of the Hessians

Consider first a single matrix Ma: Before conditioning
to the values of the gradients and energy functionals,
the distribution of each Ma is the one of a GOE
matrix, with independent entries with variance h½Ma

αβ�2i ¼
pðp − 1Þð1þ δαβÞ; see Eq. (23) (this result follows from
the fact that the vectors eai in the tangent plane are
orthogonal to σa). This distribution is modified by the
conditioning, as the entries of Ma are correlated to the
gradients and energies of all the other replicas. To deter-
mine this effect, we partition each ðN − 1Þ × ðN − 1Þ
matrix Ma into blocks:

Ma ¼
� Ma

0 Ma
1=2

ðMa
1=2ÞT Ma

1

�
; ð40Þ

where the larger block Ma
0 has dimension ðN − n − 1Þ ×

ðN − n − 1Þ and contains the components Ma
αβ along

directions α and β that both belong to the subspace S⊥,
Ma

1 is n × n and contains the components with both α and
β belonging to S, and Ma

1=2 contains the remaining, mixed
components. The same partitioning can be done for each
gradient vector gb ¼ ðgb

0;g
b
1Þ.

As we argue in Appendix C, the block structure (40) is
preserved when conditioning, meaning that correlations
between components in different blocks are not induced.
Moreover, from Eq. (24), it appears that the only compo-
nents that are affected by the conditioning are the ones in
the blocks Ma

1=2 and Ma
1 , which are correlated with the

vector gb
0 and with the vector gb

1 and the fields hb,
respectively. In particular, the conditioning induces corre-
lations between the components ofMa

1=2 that belong to the
same row and between all the components in the smaller
block Ma

1 . Similarly, nonzero averages are induced for the
components in the block Ma

1 . As a result, M̃a can be
written as

Ma ⟶
conditioning

M̃a ¼
�

Ma
0 M̃a

1=2

ðM̃a
1=2ÞT M̃a

1

�
; ð41Þ

where the blocks are independent with respect to each other
and the largest one Ma

0 has a GOE statistics, while the
others have correlated entries. Such correlated entries, since
their number is not OðN2Þ, do not impact the density of
eigenvalues of M̃a in the large-N limit, which is instead
dominated by the larger block and is thus a semicircle law;
see Appendix C. Since, as we argue in the following
subsection, the eigenvalue density is the only object needed
to compute the expectation value in Eq. (25) to leading
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order in N, it follows that the correlations induced by the
conditioning can be neglected to exponential accuracy.

2. Factorization of the expectation value
of the determinants

As follows from Eq. (23), the Hessian matrices asso-
ciated to different replicas are nontrivially correlated
among each other [49], both before and after the con-
ditioning. When computing the expectation value in
Eq. (25), however, the correlations between the Hessians
of different replicas can be neglected, since the expectation
value factorizes to leading order in N as we now explain.
Indeed, since the determinant is a linear statistics, the

expectation value can be expressed [50] as a functional
integral over the manifold of the eigenvalue densities
fρagna¼1 associated to the rescaled matrices H̃a=

ffiffiffiffi
N

p
, as

Eðq; q̄Þ ¼ NNn=2

Z Y
a

Dρa
eFNðfρagÞ

Z
eN
P

a

R
dλρaðλÞ log jλj;

ð42Þ

where Z ¼ R QaDρa exp½FNðfρagÞ� is a normalization.
The functional FNðfρagÞ couples the eigenvalue den-

sities of the different matrices. The crucial point is that the
leading-order term in FNðfρagÞ scales as N2, as follows
from the fact that the matrices H̃a are shifted GOE matrices
deformed by finite-rank perturbations. When computing
the functional integral (42) with a saddle point, the saddle-
point solutions ρasp are determined just by the minimization
of F . As such, they coincide with the marginals of the joint
distribution in the space of measures, since

hρðaÞi ¼ 1

Z

Z Y
a

DρðaÞeFNðfρðaÞgÞρðaÞ ¼ ρðaÞsp : ð43Þ

This result implies that, to leading order in N, the expect-
ation value of the product of determinants is just the
product of expectation values computed with the marginal
distribution of the matrices M̃a, properly shifted according
to Eq. (39). In turn, each expectation value can be computed
by means of the eigenvalue density of M̃a.

3. The GOE computation

Given these observations and given the symmetry
between replicas, the expectation in Eq. (42) reduces to

EðqÞ ¼ NNn=2 exp

	
Nn
Z

dλρspðλÞ log jλj þ oðNnÞ


;

ð44Þ

where ρspðλÞ is the eigenvalue density of the rescaled
matrices H̃=

ffiffiffiffi
N

p
, which coincides with the density of

M̃=
ffiffiffiffi
N

p
−

ffiffiffi
2

p
uðϵ; q̄Þ1̂. Given that the density of M̃=

ffiffiffiffi
N

p
is a semicircle law with support ½−2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðp − 1Þp
;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 1Þp �, one finds

ρspðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðp − 1Þ − ½λþ ffiffiffi

2
p

uðϵ; q̄Þ�2
q

2πpðp − 1Þ : ð45Þ

From here, it follows thatZ
dλρspðλÞ log jλj ¼

1

2
log½2pðp − 1Þ� þ I½βðϵ; q̄Þ�; ð46Þ

where IðyÞ ¼ Ið−yÞ ¼ R dμ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − μ2

p
log jμ − yj=π is given

in Sec. VA and βðϵ; q̄Þ in Eq. (11). The contribution of the
determinants in Eq. (25) thus reads

Eðq̄Þ ¼ eðNn=2ÞflogNþlog½2pðp−1Þ�þ2I½βðϵ;q̄Þ�gþoðNnÞ: ð47Þ

G. Threshold energy, isolated eigenvalue, and
complexity of the stable stationary points

The results obtained so far suffice to derive the explicit
expression for the quenched complexity, since combining
everything we get

hN n
Nðϵ; q̄Þi ¼ eðNn=2Þflog½2eðp−1Þ�þ2I½βðϵ;q̄Þ�gIðϵ; q̄Þ;

where

Iðϵ; q̄Þ ¼
Z

dq exp½−NnQ̃p;kðϵ; q̄; qÞ þ oðNnÞ�

has to be evaluated, in the limit of large N, at the saddle
point qSPðϵ; q̄Þ which maximizes Q̃p;k, as it is prescribed by
the replica method.
To conclude this analysis, it is necessary to address the

stability of the stationary points counted by the quenched
complexity. Indeed, when presenting the results of the
saddle-point calculation in the following section, we focus
only on those stationary points which are local minima,
meaning that we restrict to values of the parameters q̄; ϵ for
which the typical Hessian of the stationary points is positive
definite.
The density of eigenvalues of the Hessian at a typical

stationary point is the one of a random matrix obeying the
same law as the conditioned ones H̃, in the limit n → 0. As
a matter of fact, the information on the eigenvalue density
of the Hessian H½σ� is encoded in the resolvent function:

RσðzÞ≡ 1

N
Tr

�
z −

H½σ�ffiffiffiffi
N

p
�

−1
; ð48Þ

where N is here the dimension of the matrix and σ is
assumed to be a stationary point. The quantity (48) is a
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fluctuating variable even for a fixed realization of the
random field, as it changes from stationary point to
stationary point. To capture its typical behavior, we first
average it over all stationary points at given q̄; ϵ at a fixed
realization of the field and subsequently average of the
random field itself. This process leads to

RðzÞ≡
�

1

N ðϵ; q̄Þ
Z

dσRσðzÞδðg½σ�Þχðq̄; ϵÞ
�
; ð49Þ

where χðq̄; ϵÞ ¼ δðσ · w0 − q̄Þδðh½σ� − ffiffiffiffiffiffiffi
2N

p
ϵÞ enforces the

constraints on the overlap with the signal and on the energy
density. The above average can be performed by means of
the replica trick, using the identity x−1 ¼ limn→0xn−1.
Exploiting the replicated Kac-Rice formula, we get

RðzÞ ¼ lim
n→0

Z Yn
a¼1

dσaδðσa · w0 − q̄ÞF σ⃗ðϵ; zÞpσ⃗ð0; ϵÞ;

ð50Þ

where now

F σ⃗ðϵ; zÞ ¼
��Yn

a¼1

j detHaj
�
Rσ1ðzÞj

	
ha ¼ ffiffiffiffiffiffiffi

2N
p

ϵ;
ga ¼ 0 ∀ a


�
:

ð51Þ

Proceeding as before and using that the resolvent of the
Hessian at a stationary point σ1 is a function only of the
eigenvalue density ρ1ðλÞ, we find that Eq. (50) can be
evaluated with the same saddle-point calculation discussed
above, and

RðzÞ ¼ lim
n→0

Z
dλ

ρspðλÞ
z − λ

: ð52Þ

Here, as before, ρspðλÞ denotes the eigenvalue density of a

matrix distributed as H̃=
ffiffiffiffi
N

p
, which depends on the

parameters q̄ and ϵ as well as on the mutual overlap
between replicas, evaluated at its saddle-point value
qSPðϵ; q̄Þ. Therefore, to discuss the stability, one needs
to characterize in detail this density, in the limit n → 0.
Note that this computation is a quenched one, as it accounts
for the fluctuations between the various stationary points at
fixed q̄; ϵ. The annealed approximation would correspond
to averaging separately the numerator and the denominator
in Eq. (49) over the random field. This approximation does
not account for the correlations between the stationary
points, and it is reproduced by setting n ¼ 1 in the above
expression (instead of taking n → 0).
To leading order in N, the density of states of H̃=

ffiffiffiffi
N

p
is

dominated by the large GOE block, and it is therefore the
shifted semicircle in Eq. (45): Stationary points for which
part of the support of the semicircle lies in the negative

semiaxis have an extensive number ∼OðNÞ of unstable
directions in phase space. Since the location of the support
of Eq. (45) depends on the energy density ϵ, a threshold
energy can be defined, as the energy at which the support
touches zero:

ϵthðq̄; rÞ ¼ −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp − 1Þ

p

s
þ r

�
p
k
− 1

�
q̄k

p

!
: ð53Þ

For a fixed value of q̄ and of the parameters p, k, and r,
stationary points having energy larger than Eq. (53) have a
Hessian with extensively many negative eigenvalues and,
therefore, cannot be considered as trapping minima of the
energy landscape.
The semicircle law accounts for the continuous part of

the spectrum of the Hessian and does not give information
on possible isolated eigenvalues of H̃=

ffiffiffiffi
N

p
that may not

belong to the support of Eq. (45). Such eigenvalues
correspond to isolated poles of the resolvent RðzÞ; they
contribute to the density of states with subleading terms of
the order of N−1 and are thus irrelevant when computing
Eq. (47). However, if an isolated eigenvalue exists, it can
become smaller than zero at values of ϵ < ϵthðq̄Þ, leading to
the instability of the point σ along some direction in phase
space. For the matrices H̃, isolated eigenvalues can be
generated by the subset of entries that do not belong to the
large GOE block (as they are distributed with a different
average and variance, induced by the conditioning to the
gradients), as well as by the rank-1 perturbation propor-
tional to θr;kðq̄Þ in Eq. (39). As a matter of fact, for large
random matrices perturbed by low-rank operators, it is
known that, when the perturbation exceeds a critical
value, the extreme eigenvalues detach from the boundary
of the support of the density of states of the unperturbed
matrix. This transition is akin to the one proved in Ref. [51]
for the Wishart ensemble and known as the BBP transition,
and it has been shown to occur under quite general
conditions [52,53].
To inspect whether such a transition occurs in the case

under consideration, we need to characterize in more detail
the law of the matrices H̃=

ffiffiffiffi
N

p
. This characterization

requires us to explicitly compute the averages and cova-
riances of all the entries of H̃=

ffiffiffiffi
N

p
with respect to some

fixed basis in the subspace S; see the details in Appendix C.
This computation, in turn, allows us to derive a general
equation for the isolated poles of RðzÞ in the limit N → ∞;
see Appendix D.
As a result, we find that the isolated eigenvalues, if any,

are given in terms of the roots of a third-order equation
having coefficients that are functions of the parameters q̄
and ϵ and of the saddle-point value qSPðq̄; ϵÞ. Imposing the
minimal eigenvalue to be zero gives the boundary of
stability of the stationary points: For fixed r and q̄, it
defines a critical stability energy ϵstðq̄; rÞ such that the
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typical stationary points are local minima for ϵ < ϵstðq̄; rÞ,
are saddles of finite index for ϵstðq̄; rÞ < ϵ < ϵthðq̄; rÞ, and
are saddles of extensive index otherwise. In particular, for
the values of parameters that we inspect, we find that in the
regime ϵstðq̄; rÞ < ϵ < ϵthðq̄; rÞ there is one single isolated
eigenvalue that is negative, whose eigenvector has a finite
projection on the direction of w0; thus, this instability is an
instability toward the signal.
In summary, the complexity of the stable stationary

points is therefore given by Eq. (14), endowed with the
condition of the energy being smaller than the threshold
energy (53) or, when the isolated eigenvalue exists, of the
stability energy ϵstðq̄; rÞ.

H. Mapping between complexity at different k

Before presenting the results, we derive the mapping (16)
relating the complexity for different values of k.
Suppose that σ is a stationary point of the functional (17)

for a fixed k and for a given value of r ¼ rk (we now make
explicit the dependence on k and r writing hk;r½σ�), with
overlap q̄ and with energy density ϵ ¼ ϵk. Then, the point σ
is also a stationary point of the functional (17) with k ¼ 1,
provided that r ¼ reff1 is chosen so that

reff1 ðrk; q̄Þ ¼
f0kðq̄Þ
f01ðq̄Þ

rk: ð54Þ

In this case, σ has overlap q̄ with w0 and has energy density

ϵeff1 ðrk; ϵk; q̄Þ ¼ ϵk þ rk

�
fkðq̄Þ −

f0kðq̄Þ
f01ðq̄Þ

f1ðq̄Þ
�
: ð55Þ

Indeed, for σ to be a stationary point at a fixed k, it must
hold that ∇hk;rk · eα½σ� ¼ 0, which implies

∇hps½σ� · eα½σ� ¼
	
0 if α < N − 1;

rkf0kðq̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
if α ¼ N − 1;

where we exploited our choice of bases xN ¼ w0 and
eN−1½σ� ¼ ðxN − q̄σÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
. Moreover, hps½σ� ¼ ϵk þ

rkfkðq̄Þ, which, in turn, implies that ∇h1;r1 ½σ� · eα½σ� ¼ 0

for α < N − 1, while ∇h1;r1 ½σ� · eN−1½σ� ¼ ½rkf0kðq̄Þ−
r1f01ðq̄Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
. Thus, this is a stationary point for

k ¼ 1 if r1 is chosen as Eq. (54). In this case, it is easy
to check that its energy density equals Eq. (55). It follows
from this result that the knowledge of the curves (14) for
k ¼ 1 is sufficient to reconstruct the curves at any larger k,
via the mapping (16). We, however, remind that the
analysis of the instability of the stationary point induced
by the isolated eigenvalue is strongly dependent on k and,
thus, has to be performed separately for any case.

I. The results of the Kac-Rice calculation

We are now ready to discuss concrete results. In the
following, we report the curves resulting from the compu-
tation of Eq. (14), focusing on the cases p ¼ 3 and p ¼ 4.
For each of the values of k that we consider, we find the

following general features: As long as r < rc (and, in most
cases, also for r > rc), there are values of q̄ and ϵ for which
the quenched complexity is positive and the typical Hessian
of the stationary points is positive definite, indicating the
presence of exponentially many local minima of the energy
functional. In particular, at fixed latitude q̄, this occurs over
a finite range of energies ϵ�ðq̄Þ ≤ ϵ ≤ ϵthðq̄Þ, with ϵthðq̄Þ
replaced by ϵstðq̄Þ whenever the isolated eigenvalue exists.
We find that Σp;kðϵ; q̄Þ is monotone increasing in this
energy range, implying that the most numerous stable
stationary points at a given q̄ are the ones at higher energy.
At the other extreme of the support ϵ�ðq̄Þ, the quenched
complexity vanishes, Σp;kðϵ�ðq̄Þ; q̄Þ ¼ 0.
We denote with ϵ�ðrÞ the absolute minimum of the

energies over all q̄ and with q�ðrÞ the corresponding
latitude; these values coincide with the ones found solving
the RSB equations in Sec. IV B. We use the notation
q̄numðrÞ for the latitude where the largest number of
stationary points is found, for any fixed r.
At the transition point rc and at the latitude q̄c given

in Eq. (13), the support of the positive part of the com-
plexity shrinks to a single point ϵ� ¼ ϵth ¼ ϵc, where
Σp;kðϵc; q̄cÞ ¼ 0. Moreover, the whole complexity curve
at this latitude coincides with the annealed one, Eq. (13).
The same remains true for larger r: The annealed complex-
ity is exactly zero at values of q̄� and ϵ� which coincide
with the solution of the RS limit of the saddle point
equations in Sec. IV B and which give the latitude and
energy of an isolated minimum of the energy landscape.
For k > 1 and for some values of r, beyond this isolated
minimum there is a residual band containing exponentially
many local minima, at smaller overlap q̄ with the signal.
In the following, we present in more detail the results for

each of the cases presented qualitatively in Sec. III.

1. Case I

Instances of the complexity curves Σp;kðϵ; q̄Þ in the case
k ¼ 1, f1ðxÞ ¼ x are given in Fig. 6, for p ¼ 3 and fixed
r < rc. The curves are obtained by solving numerically the
saddle-point equations for q for each value of the param-
eters q̄ and ϵ. For k ¼ 1, we find that there is no isolated
eigenvalue exiting the bulk of the semicircle: Thus, for each
q̄, the maximal energy where stable stationary points are
found is ϵthðq̄Þ, which is marked with the squares in Fig. 6.
The curves show the following trend: Below a minimum

value q̄m, the complexity is positive only for the states
which have energy above the threshold and are therefore
unstable. At q̄m, the equality ϵ�ðq̄m; rÞ ¼ ϵthðq̄m; rÞ holds,
meaning that at this latitude there are only marginally stable
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(and unstable) stationary points. For larger latitudes, as q̄
increases, the energy interval in which the complexity is
positive (and the points are stable) gets wider and moves
toward smaller energies, until the maximal width is reached
at q̄num. At larger q̄, the energy interval starts shrinking, and
the minimal energies ϵ�ðq̄Þ decrease until the absolute
minimum is reached at q̄�; for q̄ > q̄�, the trend is reversed,
and ϵ�ðq̄Þ starts increasing, until it collapses to ϵthðq̄Þ at q̄M.
Analogous results are obtained for different values of r
below rc, as well as for p ¼ 4.
In Fig. 7, we plot the bands q̄mðrÞ ≤ q̄ ≤ q̄MðrÞ con-

taining exponentially many local minima, as a function of
r. These bands correspond to the red ones plotted picto-
rially in Fig. 1. For each of the q̄ within the bands, the
quenched complexity behaves as in Fig. 6. As r increases,
the bands get wider and subsequently shrink and collapse to
q̄c at r ¼ rcðpÞ, corresponding to the black points in the
figures. Here, the minimum becomes unique, and it is
marginally stable. This landscape phase transition at rc is
signaled by the fact that the saddle-point solution qSP
converges to 1, meaning that all the replicas coincide and
that the quenched complexity becomes equal to the
annealed one. This result corresponds to the recovery of
the RS symmetry in the replica calculation of Sec. IV B.

2. Case II

According to the analysis of Sec. IVand of Ref. [30], for
k ¼ 2, f2ðxÞ ¼ x2=2, the minima of the energy landscape
undergo a second-order transition at r¼ r2ND<rc. The tran-
sition marks the boundary between two different behaviors
of the complexity curves (see Fig. 8): For r < r2ND, the
energy interval containing exponentially many states is
maximally large at the equator, where both the deepest
and the most numerous states lie. For r2ND < r < rc,

instead, the most numerous states remain at the equator
and have ϵ ¼ ϵth, but the deepest states move toward a
higher overlap q̄� > 0 with the signal. At r2ND, the states of
minimal energy ϵ�ðrÞ detach from the equator, moving
toward larger latitudes. The features of the bottom of the
landscape [that is, the spectrum of the minimal energies
ϵ�ðq̄; rÞ, the thermodynamic energies ϵ�ðrÞ, and the value of
r2ND] can all be obtained from the corresponding k ¼ 1
curves ϵ�1ðq̄; r1Þ satisfying Σp;1½ϵ�1ðq̄; r1Þ; q̄; r1� ¼ 0, as we
discuss in more detail in Appendix E.
Consider now the other transition in the energy land-

scape, which occurs when the strip containing exponen-
tially many stationary points splits into three different
bands (in the following, we restrict to positive values
of q̄: Because of the symmetry, the landscape at negative
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FIG. 7. The red strips denote the latitudes where exponentially
many stationary points are found, with energy smaller than the
threshold energy. The points along the boundary lines are
obtained numerically, while the continuous curves are interpo-
lations. The yellow squares are the latitudes of the deepest
minima, and the blue triangles the ones of the most numerous
states. The bands collapse at rc ¼

ffiffiffiffiffiffiffiffi
3=2

p
≈ 1.22 for p ¼ 3, and

rc ¼ 2 for p ¼ 4, marked by the black points in the figures. The
corresponding value of q̄ is q̄c ≈ 0.71 for p ¼ 3 and q̄c ≈ 0.82
for p ¼ 4.

FIG. 6. Complexity curves Σ3;1ðϵ; q̄Þ as a function of the energy
density ϵ, for r ≈ 0.21 and different values of q̄. The squares
denote the threshold energy ϵthðq̄Þ: The points having this energy
are the most numerous stable stationary points at the latitude q̄.
The most numerous stable states are at q̄num ≈ 0.16, while the
ones with smallest energy are at q̄� ≈ 0.26. The minimal and
maximal latitude are q̄m ≈ 0.01 and q̄M ≈ 0.304, respectively.
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overlap is specular to the one at positive overlap). The strip
containing the stationary points for k ¼ 2 can be identified
by exploiting again the mapping (16), with the caveat that
the stationary points so determined are stable only in the
sense of the threshold, and the analysis of the sign of the
isolated eigenvalue has to be performed separately. We give
the details of the mapping in Appendix E. The resulting
bands are shown in Fig. 9, where one sees that they split at
r ≈ 1.55 for p ¼ 3 and r ≈ 2.05 for p ¼ 4. For r larger than
this splitting point, the band closer to the north pole, which
is the one containing the deepest minima, shrinks until it

collapses to a single state at the RS transition, while the
band enclosing the equator, which is the one containing the
most numerous minima, shrinks to zero only asymptoti-
cally (which corresponds to the dashed lines in Fig. 9). This
result implies that, for any value of r, there is a strip of finite
width and small overlap q̄ with the signal, containing
exponentially many stationary point with energy smaller
than the threshold. To conclude the analysis of the land-
scape, it is necessary to investigate the possible instability
of these points due to the presence of a negative, isolated
eigenvalue.
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FIG. 8. Complexity curves Σ3;2ðϵ; q̄Þ as a function of the energy density ϵ, for different values of q̄ and r < rc. The squares along the
curves mark the threshold energy ϵthðq̄Þ. (a) For r ≈ 0.35 < r2ND, the minimal and maximal latitude are q̄M ¼ −q̄m ≈ 0.22, and both the
most numerous stable states and the deepest ones are at the equator, q̄num ¼ 0 ¼ q̄�. (b) For r2ND < r ¼ ffiffiffi

2
p

< rc, the minimal and
maximal latitude are q̄M ¼ −q̄m ≈ 0.5773. The most numerous stable states are at the equator, q̄num ¼ 0, while the deepest ones are
at q̄� ≈ 0.5771.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

r

q
r

k

qM r

qm r

q r

(a)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

r

q
r

k 2, p 4

qM r

qm r

q r

(b)

2, p 3

FIG. 9. The red strip denotes the interval q̄mðrÞ ≤ q̄ ≤ q̄MðrÞ containing exponentially many stable stationary points (only positive
values of q̄ are represented, given the symmetry in q̄ → −q̄). The yellow points indicate the latitudes q̄�ðrÞ of the deepest minima, which
detach from q̄ ¼ 0 at r ¼ r2ND (r2ND ≈ 0.73 for p ¼ 3 and r2ND ≈ 0.62 for p ¼ 4). At a higher value of r (≈1.55 for p ¼ 3 and ≈2.05
for p ¼ 4), the band of states splits into two. The resulting smaller band at high overlap collapses to the RS solution at rc ≈ 1.73 for
p ¼ 3 and rc ≈ 2.45 for p ¼ 4 (black point in the figure). The larger band enclosing the equator shrinks for increasing r, and it
disappears at r ≈ 2.06 for p ¼ 3 and r ≈ 3.21 for p ¼ 4. The dashed line is the boundary of the band computed without accounting for
the isolated eigenvalue: States below this line but outside the colored band have energy smaller than the threshold energy but are unstable
because of the isolated eigenvalue.
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For k ¼ 2, the isolated eigenvalue exists only for
sufficiently large r, and it renders unstable, for each q̄
for which it exists, the stationary points at higher energy
ϵstðq̄; rÞ < ϵ < ϵthðq̄; rÞ. We refer to Appendix E for a more
detailed analysis of this instability and report here only its
main consequences. First, if this instability is accounted for,
we find that for r > rc the most numerous nonunstable
points are still at q̄ ¼ 0 but are no longer marginally stable.
Rather, they have an energy ϵstð0; rÞ smaller than the
threshold energy and have one flat direction in their
Hessian, corresponding to the isolated eigenvalue being
zero. For general q̄, as r increases, ϵstðq̄; rÞ decreases, until
it becomes smaller than the lower bound ϵ�ðq̄; rÞ, implying
that all the points at the given latitude are unstable because
of a single negative eigenvalue (see Fig. 17 in Appendix E).
This situation happens first for the larger values of q̄
belonging to the band: Thus, the band of those stationary
points gets narrower around the equator, from above. At a
finite value of r (r ≈ 2.06 for p ¼ 3 and r ≈ 3.21 for
p ¼ 4), also the last stationary points at the equator become
unstable (this value of r can be computed within the
annealed approximation; see the comments at the end
of Appendix D). For larger r, there is a unique stable
minimum that is the minimum of the annealed complexity.

3. Case III

In this case, the transition at the bottom of the energy
landscape is of first order. What distinguishes the two
options presented in Sec. III is whether this thermodynamic
transition occurs before or after the band of stationary
points separates into two distinct strips and the strip at
larger overlap q̄ undergoes the RS transition.
The first case (option B) is realized, for instance, for

k ¼ 3, p ¼ 4. In this case, the curves Σp;kðϵ; q̄Þ behave in

the following way: For small r, they are monotone
decreasing for increasing q̄ [they look like their k ¼ 2
counterpart in Fig. 8(a)] so that both the deepest and the
most numerous states are at the equator. At a spinodal
point r1SP ≈ 2.01, a local minimum in ϵ�ðq̄Þ appears at a
latitude q̄�2ðrÞ > 0 so that for r > r1SP the curves are no
longer monotone; see Fig. 10(a). The absolute minima
remain, however, at the equator, q̄� ¼ 0. The latitude q̄�2 of
the second minimum increases with r, and its energy
decreases; at the first-order transition r1ST, its energy
become smaller than the energy of the minima at the
equator (that is, the ground states of the unperturbed p-spin
model), and q̄� jumps discontinuously from zero to a finite
value q̄�2ðr1STÞ; see Fig. 10(b).
The value of r1SP, the latitudes of the second minima

q̄�2ðrÞ, and the corresponding energies can be obtained via
the mapping from the curves at k ¼ 1, as we discuss in
Appendix E. The bands of latitudes corresponding to
positive complexities below the threshold energy can also
be obtained from k ¼ 1, in a way analogous to the one
discussed in Appendix E for k ¼ 2. A major difference with
respect to case II concerns the effect of the isolated
eigenvalue, since for k ≥ 3 the states at the equator are
not destabilized by it (see the details in Appendix E). Thus,
in this case the threshold states of the unperturbed p-spin
model are the most numerous stable minima, for any r. This
case is summarized in Fig. 11(b).
Finally, we consider the case k ¼ 3, p ¼ 3, which

realizes option A of Sec. III. In this case, we find that
r1SP ¼ rc. The curves Σp;kðϵ; q̄Þ behave similarly to the
ones in Fig. 8(a) for any r < rc ≈ 2.45. As r approaches rc
from below, the band of stationary points rapidly grows,
and at rc it reaches its maximal width, incorporating q̄c
[i.e., q̄MðrcÞ ¼ q̄c]. Exactly at this latitude q̄c, the saddle
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FIG. 10. Complexity curves Σ4;3ðϵ; q̄Þ as a function of the energy density ϵ, for positive values of q̄ and r < rc. The squares along the
curves mark the threshold energy ϵthðq̄Þ. (a) For r ≈ 2.2 < r1ST, both the most numerous stable states and the deepest ones are at the
equator, q̄num ¼ 0 ¼ q̄�. The minimal energy ϵ�ðq̄Þ at which the complexity crosses zero is nonmonotonic and has a second minimum at
q̄�2 ¼ 0.584. The maximal latitude is q̄M ≈ 0.597. (b) For r ≈ 2.263 > r1ST, the most numerous stable states are at the equator, q̄num ¼ 0,
while the deepest ones are at q̄� ≈ 0.609. The maximal latitude is q̄M ≈ 0.617.
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point qSP ¼ 1 reaches one, and the quenched complexity
becomes equal to the annealed one, having positive support
for a single value of the energy density ϵc. The curve of
minimal energies ϵ�ðq̄Þ has a minimum at q̄ ¼ 0, and it is
flat at q̄c, where it intersects the threshold energy ϵth (which
for p ¼ k is independent of q̄ and r and equals the
threshold of the unperturbed p-spin model). Therefore,
the second minimum of ϵ�ðq̄Þ appears exactly at rc, and at
this point it coincides with the RS solution. At larger values
of r, the minimum of the annealed complexity is isolated (it
departs from the band containing all the other minima) and
becomes energetically favorable at r1ST ≈ 2.56. The band at
small overlap shrinks asymptotically around the equator.
Thus, in this case the band of minima is connected up to rc,
and it splits exactly at the critical point; see Fig. 11(b). The
analysis of the isolated eigenvalue shows that, for large
enough r, the eigenvalue renders unstable the points at
higher overlap in the strip enclosing the equator, but it does
not affect the most numerous, marginally stable states at the
equator nor the minimum of the annealed complexity,
which is stable for any r > rc.

VI. COMPARISON BETWEEN KAC-RICE
AND REPLICA METHODS

As pointed out in the previous section, the informa-
tion on the thermodynamics provided by the replica
calculation is fully recovered from the Kac-Rice results,
by analyzing the spectrum of minima ϵ�ðq̄; rÞ satisfying
Σp;k½ϵ�ðq̄; rÞ; q̄; r� ¼ 0. As first pointed out in Ref. [23], the
thermodynamical replica method can also be used to obtain
information on the number of critical points. In this section,

by comparing the predictions of the two calculation
schemes concerning the configurational entropy, i.e., the
complexity of the most numerous stationary points ΣcðϵÞ,
we show that the thermodynamical replica method is not
able to reproduce the full Kac-Rice results and leads to
partially incorrect predictions. This discrepancy is an
important point, since, although the method could be
probably amended, its present form which is often used
for the purpose of computing the configurational entropy
fails for the models we consider. We highlight below the
two different reasons for failure.
The replica formalism allows one to sample local

minima at an energy higher than the equilibrium one by
not imposing the saddle-point condition on βm [the third
among Eqs. (3)] and using m as a parameter, which plays
the role of an effective inverse temperature. By lowering m
(βm in the T ¼ 0 case), the remaining saddle-point equa-
tions describe the macroscopic features of the most
numerous local minima at an energy higher than the
ground state. In particular, the expression contained in
the disregarded saddle-point equation (3) gives the corre-
sponding intensive log multiplicity of these minima, i.e.,
their configurational entropy Sc:

Sc ¼ −
β2m2ð1 − qp0 Þ

4
−
1

2
log

�
βð1 − q1Þ

βð1 − q1Þ þ βmð1 − q0Þ
�

þ β2m2ð1 − q0Þðq0 − q̄2Þ
2½βð1 − q1Þ þ βmð1 − q0Þ�2

−
βmð1 − q0Þ

2½βð1 − q1Þ þ βmð1 − q0Þ�
: ð56Þ
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FIG. 11. The red strips denote the interval q̄mðrÞ ≤ q̄ ≤ q̄MðrÞ containing exponentially many stable stationary points. The dashed
lines are the boundary of the band computed without accounting for the isolated eigenvalue (i.e., states below this line that do not belong
to the red strip have an energy smaller than the threshold energy but are unstable due to the isolated eigenvalue). The yellow squares
indicate the latitudes q̄�ðrÞ of the deepest minima. The most numerous minima are always at the equator and are marginally stable.
(a) For p ¼ 3 ¼ k, the RS transition occurs at rc ≈ 2.449 (black point in the figure). For r ≥ rc, the isolated eigenvalue renders unstable
some stationary points with an energy below the threshold. At r1ST ¼ 2.56, the deepest minimum in the landscape becomes the isolated
minimum at high overlap with the signal. (b) For k ¼ 3, p ¼ 4, at r ≈ 2.89 the band splits into two, and at rc ¼ 3 (black point in the
figure) the strip at the larger overlap undergoes the RS transition. The deepest minima detach from q̄ ¼ 0 at r1ST ≈ 2.26.
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The stability of the metastable minima, whose multiplicity
is accounted for by Eq. (56), is checked by analyzing the
stability with respect to fluctuations in the overlap matrix
Qab; see Appendix F.
The entropy Sc can then be compared with the Kac-Rice

complexity of the most numerous stationary points. The
latter is obtained, for each energy density ϵ, as the
maximum of the curves Σp;kðϵ; q̄Þ over those latitudes q̄
that correspond to stationary points that are stable at the
energy ϵ.
We find that there are regimes in which the two

calculations are not equivalent, with the replica calculation
failing to identify part of the complexity curve resulting
from Kac-Rice. As an illustrative case, we consider the
parameters k ¼ 2 and p ¼ 4.
For r < rc, the stability of the stationary points at fixed

latitude is determined only by the bulk of the eigenvalues
density of the Hessian, since no isolated eigenvalue is
present. Therefore, the constrained maximization of the
Kac-Rice complexities reads

ΣcðϵÞ ¼ max
q̄∶ϵ≤ϵthðq̄Þ

Σp;kðϵ; q̄Þ: ð57Þ

As long as r < r2ND, at fixed ϵ the curves Σðϵ; q̄Þ are
monotone decreasing in q̄, with a maximum at q̄ ¼ 0. In
this case, ΣcðϵÞ coincides with the complexity of the
stationary points at the equator, and the quantity (56)
reproduces it. For r2ND < r < rc, the two complexity
curves coincide only in the lowest part of the energy
domain (see Fig. 12 for a comparison between the curves

obtained with the two methods for r ¼ 0.9). More pre-
cisely, the curves coincide for the energies ϵ for which
the maximum in Eq. (57) is attained inside the interval,
at a q̄s satisfying ϵ < ϵthðq̄sÞ. This condition means that the
most numerous states at these energies have Hessian
gapped away from zero and are at latitudes satisfying
∂Σp;kðϵ; q̄sÞ=∂q̄ ¼ 0. In this case, q̄s coincides with
the value of q̄ selected by the saddle-point equations of
the replica calculation (see Sec. IV B), and we recover
ScðϵÞ ¼ ΣcðϵÞ.
In the second part of the curve, instead, the maximum

is attained at the boundary of the interval, at latitudes q̄s
such that ϵ ¼ ϵthðq̄sÞ. This part of the curve ΣcðϵÞ is thus
contributed by points that are marginally stable and which
do not fulfill the stationarity condition ∂Σp;kðϵ; q̄Þ=∂q̄ ¼ 0.
This piece of the curve is not recovered by the replica
scheme; rather, in this energy regime, the replica solution
corresponding to saddle-point values q̄ ≠ 0 results in a
different entropy curve (the black-dashed line in the inset in
Fig. 13) that has to be disregarded, being unstable with
respect to the replicon criterion recalled in Appendix F. On
the other hand, the dashed blue line in the figure corre-
sponds to q̄ ¼ 0, which is always a solution of the saddle-
point equations in the replica calculation, that coincides
with the Kac-Rice curve only for the highest energies.
Thus, the replica result is inconsistent with the Kac-Rice
one at intermediate energy densities. As r increases toward
rc, the interval of energies in which the two curves coincide
shrinks so that the replica calculation allows one to recover
only a very small portion of the configurational entropy
obtained via Kac-Rice, the part of the curve contributed
by strictly stable points. The situation outlined above
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FIG. 12. Comparison between the configurational entropies
ScðϵÞ and ΣcðϵÞ obtained with the replica and Kac-Rice calcu-
lation, respectively. The two curves coincide below ϵ ≈ −1.245
(blue point), which is the energy at which the replica solution
with q̄ ≠ 0 becomes unstable. For higher energies, the curve
computed with replicas is contributed by the states at q̄ ¼ 0
(which are a solution of the replica equations for every energy
density), while the Kac-Rice curve is contributed by marginally
stable states whose q̄ does not satisfy the stationarity condition of
the replica action.

FIG. 13. Comparison between the q̄s that maximize the Kac-
Rice complexities at a fixed energy density and the q̄SP that solve
the saddle-point equations for the replica action at fixed βm (for
k ¼ 2, p ¼ 4, and r ¼ 0.9). Above ϵ ≈ −1.245, the solution of
the replica saddle-point equations with q̄ ≠ 0 corresponds to
unstable states (black dotted curve). (Inset) Enlarged comparison
between ΣcðϵÞ (red line) and the unstable part of ScðϵÞ resulting
from the replica calculation (dashed black line), corresponding to
a negative value of the replicon eigenvalue.
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highlights the first way in which the replica method can
fail: The correct result is recovered only when the largest
contribution to the configurational entropy at a fixed energy
is given by a q̄ such that ∂Σp;kðϵ; q̄Þ=∂q̄ ¼ 0. The reason is
that the configurations taken into account by the replica
method if ∂Σp;kðϵ; q̄Þ=∂q̄ ≠ 0 do not correspond to true
minima, since they have a nonzero gradient in the north-
pole direction. We remark that this discrepancy occurs also
for other values of k, including the case of the p spin in a
field (k ¼ 1): In Fig. 14, we reproduce the complexity
curves already shown in Fig. 6, together with ΣcðϵÞ. Also in
this case, the replica analysis reproduces only the part of
ΣcðϵÞ that is contributed by stable minima and not the part
contributed by marginally stable states (in red in the figure).
The same problem holds when considering the formalism
of Ref. [39], which is, in fact, fully equivalent to the
thermodynamic one discussed in this section. It is possible
that a different saddle point than the one considered in
Ref. [39] could cure this deficiency.
Let us now focus on the other way in which the usual

replica method to compute the configurational entropy can
fail. For r > rc (but smaller than the value of r at which the
landscape becomes completely convex), for the smaller
energies ϵ, the curves Σðϵ; q̄Þ are nonmonotonic in q̄, with a
local minimum at q̄ ¼ 0 and a global maximum at a latitude
q̄ > 0 (see the inset in Fig. 15), while at larger energies the
minimum at the equator becomes the maximum of the
curve. Therefore, at small energies, ΣcðϵÞ is contributed by
the points at the latitudes q̄ > 0 of the maximum. The
replica calculation reproduces nevertheless only the com-
plexity at q̄ ¼ 0, even when there is a full spectrum of more
numerous (stable) points at a higher overlap with the signal

(see Fig. 15 for the case r ¼ 3). The reason for this is that,
precisely at the latitude where the complexity has a
maximum, the isolated eigenvalue of the Hessian is exactly
equal to zero. Thus, the lower-energy part of the curve
ΣcðϵÞ obtained from Kac-Rice is contributed by stationary
points that have the Hessian with a single zero mode, which
are known to be not captured by the standard replica
calculation [24–26,54]. The physical reason is that these
stationary points do not correspond to the zero-temperature
limit of stable states. In fact, as shown in Ref. [55], they
correspond to minima characterized by finite barriers. This
situation has been already found in the computation of the
multiplicity of TAP solutions in mixed models [24] and
in models exhibiting a full replica symmetry-breaking
phase [25,26].

VII. ON THE SPIKED-TENSOR CASE

As we have previously remarked, the Hamiltonian
Hp;kðrÞ in the case k ¼ p is related to the spiked-tensor
model [32], i.e., to the inference problem of detecting a
low-rank, additive perturbation of a symmetric Gaussian
tensor, which has attracted a lot of attention recently.
In this section, we specifically present our analysis on

this system, focusing on the case k ¼ p ≥ 3 for concrete
results. Some of these observations are already stated in
Refs. [32–35]. We also discuss which properties the
annealed computation [15] cannot capture.

FIG. 14. The colored lines are the curves Σ3;1ðϵ; q̄Þ for different
values of q̄. The squares along the curves mark the threshold
energy ϵthðq̄Þ delimiting the part of the complexity curves that
corresponds to local minima. The thick dotted curve corresponds
to ΣcðϵÞ defined in Eq. (57): The black part is contributed by local
minima, while the red part is contributed by points that are
marginally stable. The replica equations reproduce only the black
part of the curve, up to the energy corresponding to the black
cross in the figure, corresponding to marginally stable points.

FIG. 15. Comparison between the complexity of the most
numerous states at a fixed energy computed with the replica
and Kac-Rice calculation, respectively. The two curves coincide
above ϵ ≈ −1.255, where the curves are contributed by points at
q̄ ¼ 0. At lower energy densities, the replica equations reproduce
the complexity of the points at q̄ ¼ 0, while from the Kac-Rice
calculation it emerges that there are more numerous stable points
at higher overlap q̄ > 0, among which the most numerous ones
have an Hessian with a single zero mode. Their complexity is
given by the red curve. (Inset) Complexity as a function of the
latitude q̄ for a fixed value of energy ϵ ¼ −1.266. The curve has a
maximum at q̄ ≈ 0.18, where the isolated eigenvalue of the
Hessian is exactly zero. The points at larger latitudes are saddles
of index one.
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The inference task in the spiked-tensor problem consists
in reconstructing the unknown vector v0 from the obser-
vation of a random p tensor with components

Wi1;…;ip ¼ p!Ji1;…;ip −
r
p
ðv0Þi1 � � � ðv0Þip ; ð58Þ

where the random couplings Ji1;…;ip , symmetric with
respect to a permutation of the indices, correspond to
the noise and v0 (the signal) is generated at random from a
spherical prior distribution. In particular, one is interested
in identifying the strong detection threshold [34], i.e.,
the critical signal-to-noise ratio below which the spiked
model is statistically indistinguishable from the unspiked
one with r ¼ 0, and the detection threshold, above which
an estimator ŝ of the signal having a finite overlap with v0
in the limit N → ∞ exists (for a precise definition of
statistical indistinguishability, see Ref. [34]). In the matrix
case p ¼ 2, the two thresholds coincide [56–58]. They are
given by the signal-to-noise ratio at which the smallest
eigenvalue of the matrix pops out from the semicircle; the
corresponding eigenvector is correlated with the signal. In
the tensor case, rigorous bounds on both thresholds are
given in Refs. [32,34,57], while the sharp threshold given
by the minimal mean-squared error estimator is determined
in Ref. [33].
The connection with the analysis presented above

emerges when considering the maximum-likelihood esti-
mator ŝML of v0 [32]. It is immediate to see that this
estimator corresponds to the vector that maximizes the
injective norm of the tensor:

ŝML ¼ argmax
s∶jjsjj2¼N

hW; s⊗pi; ð59Þ

where h·; ·i denotes the tensor product. This estimator
coincides, up to a global sign flip of the energy functional
Hp;kðrÞ, with its absolute minimum; therefore, a reliable
estimate of the signal by means of ŝML is possible whenever
the global minimum of the landscape acquires a nonzero
overlap with the special direction of the signal, i.e.,
whenever r ≥ r1ST. The thermodynamic transition thus
gives (in general) an upper bound to the detection thresh-
old. On the other hand, the performance of algorithms [32]
aiming at reconstructing the signal is expected to depend on
the full structure of metastable states, encoded in the
complexity.
The analyses presented in the previous sections and in

Refs. [32–35] lead to the following picture for the spiked-
tensor model (p ¼ k ≥ 3):

(i) The spinodal point r1SP, where a high-overlap
metastable minimum appears in the curve ϵ�ðq̄Þ
(or, equivalently, where a second solution appears
for the replicas equations), is exactly equal to the
point rcðpÞ where the trivialization of the portion of
the landscape at high overlap with the signal occurs.

Moreover, there is no splitting of the band of minima
for r < rc. This result implies that the portion of the
landscape close to the high-overlap minimum is not
rugged for all r’s such that the high-overlap mini-
mum exists, and no intermediate phase with meta-
stability at high overlap with the signal is present.

(ii) The transition points rc and r1ST are related, re-
spectively, to the dynamical and statical transition
temperatures (βd and βs) of the pure spherical p-spin
model; more precisely,

rc ¼
p
2
βd; r1ST ¼ p

2
βs: ð60Þ

(iii) For r1SP ≤ r ≤ r1ST and for most energy densities ϵ,
the complexity is nonmonotonic in the overlap q̄;
however, for any ϵ, the most numerous minima are
found to be orthogonal to the signal, at q̄ ¼ 0.

The equality r1SP ¼ rc is shown in Appendix E. It implies
that for p ¼ k the thermodynamic transition always occurs
when the high-overlap part of the energy landscape is
convex. This fact allows for the annealed Kac-Rice com-
putation [15] to correctly capture the transition value rc,
although quenched and annealed complexity do not
coincide for r < rc. For other models, such as p ¼ 3, k ¼
4 for which the landscape is rugged close to the global high-
overlap minimum at r1ST, this situation is no longer the
case, and the quenched computation is needed to also
correctly describe the transition.
The first identity in Eq. (60) can be read explicitly from

Eq. (5). The second identity is naturally true for Bayes
optimal estimates [33], as it holds in general along the
Nishimori line [which corresponds to the line, in the ðr; βÞ
phase diagram, where β ¼ 2r=p]. The fact that the same
detection threshold is found with the maximum-likelihood
estimator follows from the properties of the thermodynamic
phase diagram [30], where the first-order transition line
appears to be independent of the temperature, thus imply-
ing that the same r1ST found on the Nishimori line is
recovered at T ¼ 0 (note, however, that this feature is a
peculiarity of the spherical case and does not hold in
general [33]). Property (iii) implies that the quenched
complexity ΣcðϵÞ is identical for the spiked and the
unspiked models for rSP ≤ r ≤ r1ST, which is consistent
with the strong detection threshold being at r1ST.
Given the structure of the energy landscape, we expect

that, for all r not diverging with N, physical dynamics
starting from random initial conditions behaves as in the
unspiked model; i.e., the system remains stuck in the
vicinity of the most numerous, marginally stable states
that lie at the equator q̄ ¼ 0, thus being unable to recover
any information on the signal. The approximate message-
passing algorithm is known to fail as well [33]. On the other
hand, for r > r1ST the dynamics with a warm start should
converge to the global minimum of the energy landscapes
over timescales of Oð1Þ, due to the smoothness of the
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landscape in its vicinity [59]. Polynomial-time algorithms
are instead known to succeed for r scaling as Nðp−2Þ=4; see
Ref. [32] and references therein.
Finally, it is proven in Ref. [35] that, for the Ising spiked

tensor defined on the hypercube (si ¼ �1), the strong
detection and detection threshold coincide, both being
equal to the threshold given by the minimal mean-square
error estimator [33]. The proof relies on the bound (for
large N) of the fluctuations of the free energy of the Ising
p-spin model around its average value, in the high-T phase.
A similar bound should hold for the spherical case, since
the variance of the intensive free energy is found to be of
the order of 1=N by the replica method [the variance can be
directly obtained using the RS approximation to compute
the Oðn2Þ term of the replicated free energy [3] ]. In
consequence, we expect that this argument can be extended
to the spherical case, thus implying that both thresholds are
given by the maximum-likelihood estimator.

VIII. DISCUSSION AND CONCLUSION

We have analyzed the evolution of an archetypical model
of high-dimensional landscapes generated by an energy
function in which random fluctuations compete with a
deterministic contribution favoring a single minimum. For
entropic reasons, the overall majority of the minima created
by the randomness lie in a region different from the one
favored by the deterministic contribution. By increasing the
strength of the deterministic contribution, and depending
on the form of the latter, different behaviors and geometric
phase transitions, that we have classified and thoroughly
analyzed, can take place. As discussed in the introduction,
our results provide guidelines for current problems in
several different fields and a full analysis of the energy
landscape of the spiked-tensor model which recently
attracted a lot of attention [15,32–35]. In particular, our
analysis is useful to understand how the dynamics governed
by gradient descent (and stochastic versions of it) proceed
in such landscapes. The region of bad and numerous local
minima that we called the equator is a trap for the
dynamics. Only in the case of a sufficiently warm start,
i.e., if the initial condition of the dynamics has a finite
overlap with the special direction v0 selected by the
deterministic contribution, can the system end up close
to v0, although not necessarily in the global minimum,
since many additional good local minima can be present.
The other main contribution of our work is methodo-

logical. We have developed a framework based on the
Kac-Rice method that allows us to compute the quenched
complexity, opening the way to a full analysis of random
landscapes in many different contexts. We have shown
that it is superior to previous frameworks used in the
literature. Indeed, the usual replica method fails in some
cases, as demonstrated in this work, whereas the super-
symmetry one is in comparison quite obscure. Instead, the
Kac-Rice formalism we developed is free of ambiguities,

straightforward although complex, and likely to be trans-
formed in a rigorous formalism in a not-too-distant future.
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APPENDIX A: DETAILS ON THE REPLICA
CALCULATION

In this Appendix, we provide some additional details on
the replica analysis presented in Sec. IV.
At finite β, the replicated action S evaluated within the

1RSB ansatz for the overlap matrix Qab reads

S1RSB ¼ β2

4
½1 − qp1 þmðqp1 − qp0 Þ� þ rβfkðq̄Þ

þ 1

2
logð1 − q1Þ þ

1

2m
log

�
1 − q1 þmðq1 − q0Þ

1 − q1

�

þ 1

2

q0 − q̄2

1 − q1 þmðq1 − q0Þ
: ðA1Þ

The saddle-point equations for the four parameters q1, q0,
m, and q̄ equal

β2p
2

qp−11 ¼ 1

m

�
1

1 − q1
−

1

1 − q1 þmðq1 − q0Þ
�

þ q0 − q̄2

½1 − q1 þmðq1 − q0Þ�2
;

β2p
2

qp−10 ¼ q0 − q̄2

½1 − q1 þmðq1 − q0Þ�2
;
β2

2
ðqp1 − qp0 Þ

þ 1

m2
log

�
1 − q1

1 − q1 þmðq1 − q0Þ
�

þ 1

m
q1 − q0

1 − q1 þmðq1 − q0Þ

−
ðq1 − q0Þðq0 − q̄2Þ

½1 − q1 þmðq1 − q0Þ�2
¼ 0;

and

q̄ ¼ rβ½1 − q1 þmðq1 − q0Þ�f0kðq̄Þ: ðA2Þ

In the zero-temperature limit β → ∞, the variables of the
order of one are βð1 − q1Þ and βm. Performing this limit in
the above equations, one recovers the expressions given in
the main text.
The expansion of the saddle-point equations in q1 − q0

gives rise to four different equations; three of them are
useful to get the variables q̄, q0 ¼ q1 ¼ q, and m at the
continuous transition between 1RSB structure to RS
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structure of the high-overlap phase. The fourth equation
fixes the position of the continuous transition line on the
phase diagram T, r; i.e., for a given T, it gives the
corresponding rcðTÞ. At zero temperature, when expressed
in terms of βð1 − qÞ, βm, and q̄, the equations read as
follows:

q̄ ¼ rf0kðq̄Þβð1 − qÞ; ðA3Þ

q̄2 ¼ p − 2

p − 1
; ðA4Þ

pðp − 1Þ
2

¼ 1

β2ð1 − qÞ2 ; ðA5Þ

and

βm ¼ p − 2

2
βð1 − qÞ: ðA6Þ

Their solution gives the generic expression for rc and q̄c
reported in the main text, Eqs. (5) and (6).

APPENDIX B: COMPUTATION OF THE
QUADRATIC FORM EQ. (33)

In this Appendix, we provide some details on the com-
putation of the inverse correlation matrix Ĉ−1 in Eq. (33).
As pointed out in the main text, for the purpose of

computing the quadratic form (33), it suffices to invert Ĉ
within the subspace spanned by the Nn-dimensional
vectors ξ1, ξ2, and ξ3, which is closed under the action
of Ĉ. For convenience, we separate the matrix Ĉ into its
diagonal and off-diagonal parts in replica space, Ĉ ¼
pðD̂þ ÔÞ with

Dab
ij ¼ δab½δij þ ðp − 1Þσai σaj �;

Oab
ij ¼ ð1 − δabÞ½δijqp−1 þ ðp − 1Þqp−2σbi σaj �: ðB1Þ

It holds that Ĉ−1 ¼ p−1D̂−1ð1̂þ ÔD̂−1Þ−1, with ½D̂−1�abij ¼
δab½δij − ðp − 1Þp−1σai σ

a
j �. The operator 1̂þ ÔD̂−1 acts on

the chosen vectors as follows:

ð1̂þ ÔD̂−1Þξ1 ¼ ξ1 þ qp−1ξ3;

ð1̂þ ÔD̂−1Þξ2 ¼ ½1þ ðn − 1Þqp−1�ξ2
þ ðp − 1Þð1 − qÞq̄qp−2ξ3;

ð1̂þ ÔD̂−1Þξ3 ¼ ðn − 1Þqp−1ξ1 þ (1þ qp−2½ðp − 1Þ
× ð1 − ðn − 1Þq2Þ þ ðn − 2Þpq�)ξ3:

ðB2Þ

Given that D̂−1ξ1 ¼ p−1ξ1 and D̂
−1ξ2¼ ξ2− q̄ðp−1Þp−1ξ1,

the quadratic form (33) can be straightforwardly rewritten
in terms of matrix elements of the operator Ŷ ≡ ð1̂þ
ÔD̂−1Þ−1. To invert this operator, we introduce an ortho-
normal basis of the subspace spanned by the vectors ξi:

v1 ¼
ξ1ffiffiffi
n

p ;

v2 ¼
ξ2 − q̄ξ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1 − q̄2Þ

p ;

v3 ¼
ðn − 1Þðq̄2 − qÞξ1 − ðn − 1Þq̄ð1 − qÞξ2 þ ð1 − q̄2Þξ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − q̄2ÞA
p ;

ðB3Þ

with A ¼ nðn − 1Þð1 − qÞ½1 − nq̄2 þ ðn − 1Þq�, and we
write Yij ¼ vi · Ŷ · vj. In this basis, using fkðq̄Þ ¼ q̄k=k
and uðϵÞ ¼ pϵþ rðp=k − 1Þq̄k, we obtain for Eq. (33)

QðnÞ
p;k;rðϵ; q̄; qÞ ¼ n

�
xþ r

q̄k

k

�
2

Y11

þ nrq̄k−1
ffiffiffiffiffiffiffiffiffiffiffiffi
1− q̄2

q �
xþ r

q̄k

k

��
Y12

p
þ Y21

�

þ n
ð1− q̄2Þr2q̄2k−2

p
Y22: ðB4Þ

Using Eqs. (B2) and (B3), we find that the operator
ð1̂þ ÔD̂−1Þ acts on the basis vi as follows:

ð1̂þ ÔD̂−1Þ ¼

0
BBBBBB@

1þ ðn − 1Þqp −p ðn−1Þq̄ðq−1Þqp−1ffiffiffiffiffiffiffiffi
1−q̄2

p pqp−1
ffiffiffiffiffiffiffiffiffiffiffiffi

A
nð1−q̄2Þ

q
− ðn−1Þq̄ðq−1Þqp−1ffiffiffiffiffiffiffiffi

1−q̄2
p 1 − ðn−1Þqp−2f½pðq−1Þ2−1�q̄2þqg

q̄2−1 q̄qp−2
ffiffiffi
A
n

q
pð1−qÞ−1

1−q̄2

qp−1
ffiffiffiffiffiffiffiffiffiffiffiffi

A
nð1−q̄2Þ

q
q̄qp−2

ffiffiffi
A
n

q
pð1−qÞ−1

1−q̄2 1 − qp−2f1−q̄2½nð1−qÞþq�−pð1−qÞ½1−nq̄2þðn−1Þq�g
1−q̄2

1
CCCCCCA
; ðB5Þ
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while the relevant matrix elements of its inverse are

Y11 ¼
qpfpðq − 1Þ½ðn − 1Þqþ 1� þ 1g − q2

DðqÞ ;

Y12 ¼
ðn − 1Þpð1 − qÞq̄qpþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q̄2
p

DðqÞ
¼ pY21;

and

Y22 ¼
1

1þ ðn − 1Þqp−1

−
ðn − 1Þð1 − qÞqpþ2½1þ ðn − 1Þqp − pð1 − qÞ�

ð1 − q̄2Þ½1þ ðn − 1Þqp−1�DðqÞ
with DðqÞ given in Eq. (12). The result (35) is recovered
substituting these expressions into Eq. (B4).

APPENDIX C: CONDITIONAL DISTRIBUTION
OF HESSIANS

In this Appendix, we analyze the structure of the
ðN − 1Þn × ðN − 1Þn covariance matrix of the Hessian
components Ha

αβ, conditioned to the gradients and energy

fields of all the n replicas. We remind that, given Eq. (39),
the Hessians can be written as

H¼Mþθr;kðq̄Þ
X
α;β

ðeα ·w0Þðeβ ·w0ÞeαeTβ −
ffiffiffiffiffiffiffi
2N

p
uðϵ;q̄Þ1̂;

ðC1Þ
where Ma denotes the p-spin part of the Hessian. We
compute the conditional law of Ma and denote with M̃a

the random matrix obeying this law (and similarly for H̃a
αβ).

Since the last two terms in Eq. (C1) are deterministic, the
covariance matrix of H̃a is the same as the one of M̃a,
while the averages of the components are shifted by the
deterministic terms.
We show that, for each a, the matrices M̃a are perturbed

GOE matrices; in particular, each M̃a=
ffiffiffiffi
N

p
can be written

as a sum of a stochastic matrix Sa with zero average, and a
deterministic matrix Da:

M̃affiffiffiffi
N

p ¼ Saffiffiffiffi
N

p þDa: ðC2Þ

The stochastic part Sa has the block structure:

0
BBBBBBBBBBBBBBB@

m11 m12 � � � � � � m1M n1Mþ1 � � � n1N−1

m21 m22 � � � � � � m2M n2Mþ1 � � � n2N−1

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
mM1 mM2 � � � � � � mMM nMMþ1 � � � nMN−1

nMþ11 nMþ12 � � � � � � nMþ1M qMþ1Mþ1 � � � qMþ1N−1

� � � � � � � � � � � � � � � � � � � � � � � �
nN−11 nN−12 � � � � � � nN−1M qN−3Mþ1 � � � qN−1N−1

1
CCCCCCCCCCCCCCCA

; ðC3Þ

where (i) the larger diagonal block has size M ×M ¼
ðN − n − 1Þ × ðN − n − 1Þ and it is made of elements mαβ

that are independent with variance σ2 ¼ pðp − 1Þ, (ii) for a
generic choice of basis in the subspace S, only the elements
nαβ belonging to the same row are correlated, and (iii) the
smaller diagonal block has size n × n and its elements qαβ
are all mutually correlated. The deterministic matrix Da is
zero everywhere, except in the small n × n block. From this
structure, it follows that the reduced density of eigenvalues
of M̃a=

ffiffiffiffi
N

p
is, to leading order in N, the one of a GOE

matrix with σ2 ¼ pðp − 1Þ, since the fraction of entries
having a modified variance and average is vanishing in the
large-N limit. This information suffices to perform the
quenched calculation given in the main text, as only the
density of eigenvalues is needed to compute the quenched
complexity to leading order in N.

We remark that the partitioning of M̃a into blocks and
properties (i)–(iii) follow solely from the separation of the
coordinates into the subspaces S⊥ and S and are indepen-
dent on the choice of the basis in both S⊥ and S. The
covariances of the elements nαβ and qα;β instead depend on
the choice of the basis in S: In particular, for a particular
choice of the basis that we discuss in the following, the
elements nαβ are uncorrelated with each other, with
variances that differ from the ones of the mαβ. As a first
step, we discuss how the general structure (C2) is
recovered.

1. Block structure of the conditioned Hessian

To compute the averages and covariances of the com-
ponents M̃a

αβ, we group all the independent components of

COMPLEX ENERGY LANDSCAPES IN SPIKED-TENSOR … PHYS. REV. X 9, 011003 (2019)

011003-29



the unconditioned matrices Ma into an nNðN þ 1Þ=2-
dimensional vector M ¼ ðM0;M1=2;M1Þ, where Mγ ¼
ðM1

γ ;…;Mn
γ Þ for γ ∈ f0; 1=2; 1g,

Ma
0 ¼ ðMa

11;M
a
22;…;Ma

MM;M
a
12;…;…;Ma

M−1MÞ;
Ma

1=2 ¼ ðMa
1Mþ1;M

a
1Mþ2;…;…;…;Ma

MN−1Þ;
Ma

1 ¼ ðMa
Mþ1Mþ1;…;Ma

N−1N−1;M
a
Mþ1Mþ2;…Þ;

and M ≡ N − n − 1. The vectors M0, M1, and M1=2 have
dimension nMðM þ 1Þ=2, n2ðnþ 1Þ=2, and n2M, res-
pectively. They group the Hessian coordinates along
directions that belong both to S⊥, or both to S, or one
to each subspace, respectively. This decomposition reflects
the one in Eq. (40), except that now we consider all the n
replicas. Analogously, we define the nN-dimensional
vector g̃ ¼ ðg̃0; g̃1Þ, with g̃γ ¼ ðg̃1

γ ;…; g̃n
γ Þ, and

g̃a
0 ¼ ðga1;…; gaMÞ;

g̃a
1 ¼ ðgaMþ1;…; gaN−1; g̃

a
NÞ:

We recall that g̃aN ¼ ∇ha · σa ¼ pha þ ffiffiffiffiffiffiffi
2N

p
r½pfkðq̄Þ−

f0kðq̄Þq̄�, and thus, for any fixed q̄, conditioning to ha ¼ffiffiffiffiffiffiffi
2N

p
ϵ is equivalent to conditioning to g̃aN ¼ ffiffiffiffiffiffiffi

2N
p fpϵþ

r½pfkðq̄Þ − f0kðq̄Þq̄�g ¼ ffiffiffiffiffiffiffi
2N

p
uðϵ; q̄Þ.

Before conditioning, the covariance matrices ofM and g̃
have a diagonal structure in this decomposition:

Σ̂MM ¼

0
BB@

Σ̂0
MM 0 0

0 Σ̂1=2
MM 0

0 0 Σ̂1
MM

1
CCA

and

Σ̂g̃ g̃ ¼
� Σ̂0

g̃ g̃ 0

0 Σ̂1
g̃ g̃

�

as follows from Eqs. (23) and (22). Thus, before con-
ditioning, the correlations between Hessians of different
replicas preserve the block structure (40), in the sense that
the components in the block Ma

γ of the replica a are
correlated only with the component in the correspondent
block Mb

γ of the other replicas b. The conditioning to g̃
preserves the diagonal form of the covariance matrix as
well: Indeed, the covariances between M and g̃ [see
Eq. (24)] are of the form

Σ̂Mg̃ ¼

0
BB@

0 0

Σ̂
1
2
0

Mg̃ 0

0 Σ11
Mg̃

1
CCA

so that the conditional covariances read

Σ̂Mjg̃ ¼

0
BBB@

Σ̂0
MM 0 0

0 Σ̂1=2
MM − Σ̂

1
2
0

Mg̃ðΣ̂−1
g̃ g̃Þ00Σ̂01

2

g̃M 0

0 0 Σ̂1
MM − Σ̂11

Mg̃ðΣ̂−1
g̃ g̃Þ11Σ̂11

g̃M

1
CCCA: ðC4Þ

As claimed in the main text, the covariances of the largest
blocks Ma

0 are left untouched by the conditioning so that
the components of this block form a GOE matrix with
variance σ2 ¼ pðp − 1Þ.
We now analyze the structure of Σ̂1=2

Mjg̃, to show that, for
generic choices of the basis in the tangent planes, corre-
lations are induced in the blocks Ma

1=2 only between
elements belonging to the same line. One has

ðΣ̂1=2
MMÞabαγ;βδ ¼ hMa

αγMb
βδic ¼ δαβSabγδ ;

where Sab is a block of size n × n, equal for every α, with
components

Sabγδ ¼ pðp − 1Þðp − 2Þqp−3ðeaγ · σbÞðebδ · σaÞ
þ pðp − 1ÞQp−2

ab ðeaγ · ebδÞ ðC5Þ

and with Qab ¼ δab þ ð1 − δabÞq. Moreover,

ðΣ̂1
2
0

Mg̃Þ
ab

αγ;β
¼ hMa

αγgbβic ¼ δαβpðp − 1Þqp−2ðeaγ · σbÞ:
ðC6Þ

Finally,

ðΣ̂0
g̃ g̃Þ−1 ¼

1

p

0
BBB@

α01̂ α11̂ � � � α11̂

α11̂ α01̂ � � � � � �
� � � � � � � � � � � �
α11̂ α11̂ � � � α01̂

1
CCCA;

where the identity matrices have dimension M ×M,
and
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α0 ¼
qþ ðn − 2Þqp

ð1 − qp−1Þ½qþ ðn − 1Þqp� ;

α1 ¼ −
qp

ð1 − qp−1Þ½qþ ðn − 1Þqp� : ðC7Þ

Doing the matrix multiplication, we find

ðΣ̂1=2
Mjg̃Þabαγ;βδ ¼ δαβpðp − 1ÞQp−2

ab ðeaγ · ebδÞ
þ δαβpðp − 1Þðp − 2Þqp−3ðeaγ · σbÞðσa · ebδÞ

− δαβ
pðp − 1Þ2q2p−4

1 − qp−1
X

cð≠a;bÞ
ðeaγ · σcÞðebδ · σcÞ

− δαβpðp − 1Þ2α1q2p−4
×
X
cð≠aÞ

X
dð≠bÞ

ðeaγ · σcÞðebδ · σdÞ; ðC8Þ

for γ; δ ¼ M þ 1;…; N − 1. Therefore, correlations arise
only between elementsHa

αβ andH
b
αγ , where α is a direction

in S⊥ while γ and δ are directions is S. For arbitrary n, the
conditioning does not induce any nonzero average for these
components, since such averages are proportional to the
elements of g̃a

0 , which are all set to zero.
We now come to the n × n blocks Ma

1 . From Eq. (C4),
one sees that the conditional covariance matrix of these
components is, in general, a dense matrix, meaning that
all components are correlated with each other. Furthermore,
the conditioning induces nonzero averages for these com-
ponents. We denote with μ1Mjg̃ the n

2ðnþ 1Þ=2-dimensional
vector whose components are the conditional averages
hM̃a

γδi of the elements in M1. We also introduce the
(nþ 1)-dimensional vectors τa ¼ ðσaN−n;…; σaNÞ collecting
the (nþ 1) nonzero components of the σa, and τ0 ¼
ð0;…; 1Þ, as well as the nðnþ 1Þ-dimensional vectors
χ 1 ¼ ðτ1;…; τnÞ, χ 2 ¼ ðτ0;…; τ0Þ, and χ 3 ¼ ðPa≠1τ

a;…;P
a≠nτ

aÞ. With this notation, it holds that

μ1Mjg̃ ¼ Σ1
Mg̃ðΣ−1

g̃ g̃Þ1½
ffiffiffiffiffiffiffi
2N

p
uðϵ; q̄Þχ 2 − hg̃i�; ðC9Þ

where the second term arises because of the signal that
induces nonzero averages to the components of g̃.

This vector can be determined with the same strategy
exploited in Sec. V E. In fact, Eq. (C9) can be reexpressed
in terms of the inverse correlation matrix Ĉ−1 of the
N-dimensional vectors ∇ha, or, more precisely, of its
nðnþ 1Þ × nðnþ 1Þ block associated to the last nþ 1
components for each replica. We introduce the nðnþ 1Þ ×
nðnþ 1Þ rotation matrix:

R̂ ¼

0
BBB@

R̂1 0 0 0

0 R̂2 0 0

� � � � � � � � � � � �
0 0 0 R̂n

1
CCCA; ðC10Þ

where each block R̂a is ðnþ 1Þ × ðnþ 1Þ dimensional,
with columns given by the nonzero components of the
vectors eaMþ1; e

a
Mþ2;…; σa. Then ðΣ−1

g̃ g̃Þ1 ¼ R̂TðΣ−1
GGÞ1R̂,

where Σ−1
GG is the inverse correlation matrix of the

nðn − 1Þ-dimensional vector G ¼ ð∇h1N−n;…∇h1N;…;…;
∇hnN−n;…;∇hnNÞ. Moreover, hg̃i ¼ −

ffiffiffiffiffiffiffi
2N

p
rf0kðq̄ÞR̂Tχ 2,

and R̂Tχ 2 ¼ χ 1. Thus,

μ1Mjg̃ffiffiffiffiffiffiffi
2N

p ¼ Σ1
Mg̃R̂

TðΣ−1
GGÞ1½uðϵ; q̄Þχ 1 þ rf0kðq̄Þχ 2�: ðC11Þ

Now, the vectors ðΣ−1
GGÞ1χ i can be obtained from the vectors

Ĉ−1ξi by projecting out the components in S⊥. Using the
results of Appendix B, applying the rotation, and con-
tracting with the matrix Σ1

Mg̃, we obtain

hM̃a
γδiffiffiffiffiffiffiffi
2N

p ¼ ζ1
X
b≠a

ðσb · eaγ Þðσb · eaδÞ

þ ζ2

�
ðw0 · eaγ Þ

X
b≠a

σb · eaδ þ ðw0 · eaδÞ
X
bð≠aÞ

σb · eaγ

�

þ ζ3
X
bð≠aÞ

σb · eaγ
X
cð≠aÞ

σc · eaδ ; ðC12Þ

where ζi ¼ ζiðn; ϵ; q̄; q; rÞ are linear combinations of the
matrix elements Yij and read

ζ1 ¼
ðp − 1Þf1þ qp−2½1þ 2ðn − 1Þq�guðϵ; q̄Þ

pð1 − qÞ½1þ ðn − 1Þq� − ð1 − q2−pÞ½1þ ðn − 1Þqp� þ
ðp − 1Þq̄½ðp − 2Þq − ðp − 1Þq2 þ qp�rf0kðq̄Þ

q2fpð1 − qÞ½1þ ðn − 1Þq� − ð1 − q2−pÞ½1þ ðn − 1Þqp�g ;

ζ2 ¼
ðp − 1Þqp−1
qþ ðn − 1Þqp rf

0
kðq̄Þ;

ζ3 ¼
−2ðp − 1Þqp−1uðϵ; q̄Þ

pð1 − qÞ½1þ ðn − 1Þq� − ð1 − q2−pÞ½1þ ðn − 1Þqp� þ
2ðp − 1Þ2q̄ð1 − qÞqp−1rf0kðq̄Þ=f½1þ ðn − 1Þqp�g

pð1 − qÞ½1þ ðn − 1Þq� − ð1 − q2−pÞ½1þ ðn − 1Þqp� :
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2. Explicit covariances in a given basis

As we have previously remarked, the structure of
Eqs. (C8) and (C12) is a sole consequence of the separation
of the subspaces S and S⊥, and it is independent on the
choice of the basis in S⊥ (provided the same choice is made
for each tangent plane). Therefore, the correlations and
averages depend explicitly only on the last n basis vectors
in each tangent plane (having α ¼ M þ 1;…; N − 1),
which are the ones having nonzero projections on the
subspace S. We now discuss two possible choices of these
basis vectors that strongly simplify the covariances (C8) of
the single-replica matrix M̃a.
The first possibility is to choose the basis in such a way

that (i) eaN−1 is the projection on the tangent plane at σa of
the special vector w0, (ii) eaN−2 is the projection on the
tangent plane at σa of the vector

P
b≠a σ

b, made orthogonal
to eaN−1, and (iii) the remaining n − 2 basis vectors are of
the form σb1 þ σb2 þ � � � σbk − kσbkþ1 for nonrepeating
indices bi ≠ a. For a ¼ 1, this choice leads to

e1Mþk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1Þkð1 − qÞp �Xkþ1

b¼2

σb − kσkþ2

�

for 1 ≤ k ≤ n − 2, while

e1N−2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1 − q̄2Þ

A

r Xn
b¼2

σb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1 − q̄2Þ

A

r
ðn − 1Þqσ1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Að1 − q̄2Þ

r
ðn − 1Þq̄ð1 − qÞðw0 − q̄σ1Þ

with A ¼ nðn − 1Þð1 − qÞ½1 − nq̄2 þ ðn − 1Þq�, and

e1N−1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q̄2
p ðw0 − q̄σ1Þ:

It can be checked that these vectors, together with σ1, form
an orthonormal basis of the subspace S. Analogous choices
can be made for any replica a.
Plugging these vectors into Eq. (C8) with a ¼ b, we find

that for any γ ¼ M þ 1;…; N − 3 it holds that
P

cð≠aÞðeaγ ·
σcÞðeaδ · σcÞ ¼ δγδð1 − qÞ and

P
cð≠aÞðeaγ · σcÞ ¼ 0. This

result implies that the components Ma
αγ for α ≤ M and

M þ 1 ≤ γ ≤ N − 3 are uncorrelated with each other and
have a modified variance with respect to the one of the
larger block, given by

σ2γ ≡ h½M̃a
αγ�2ic ¼ pðp − 1Þ

�
1 −

ðp − 1Þq2p−4ð1 − qÞ
1 − qp−1

�
:

ðC13Þ

The components M̃a
αN−2 and M̃

a
αN−1 are instead correlated,

since for b ≠ a it holds that eaN−1 · σ
b ¼ q̄ð1 − qÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̄2

p
and eaN−2 · σ

b ¼ fð1 − qÞ½1 − nq̄2 þ ðn − 1Þq�=
ðn − 1Þð1 − q̄2Þg1=2, implying

Σ12 ≡
� h½M̃a

αN−2�2ic hM̃a
αN−2M̃

a
αN−1ic

hM̃a
αN−2M̃

a
αN−1ic h½M̃a

αN−1�2ic

�

¼
�
σ222 σ212
σ212 σ211

�
; ðC14Þ

with

σ222
pðp − 1Þ ¼ 1 −

ðp − 1Þq2p−4ð1 − qÞ½1 − nq̄2 þ ðn − 1Þq�
ð1 − q̄2Þð1 − qp−1Þ½1þ ðn − 1Þqp−1� ;

σ211
pðp − 1Þ ¼ 1 −

ðn − 1Þðp − 1Þq2p−4q̄2ð1 − qÞ2
ð1 − q̄2Þð1 − qp−1Þ½1þ ðn − 1Þqp−1� ;

σ212
pðp − 1Þ ¼ −

ðp − 1Þq2p−4q̄ð1 − qÞ ffiffiffiffiffiffiffiffiffi
A=n

p
ð1 − q̄2Þð1 − qp−1Þ½1þ ðn − 1Þqp−1� :

Thus, with this choice of basis in S, the pair of elements in
Ma

1=2 belonging to the same row and to the last two
columns are correlated with each other, and other than that
all elements are independent, with variances that depend on
the column to which they belong.
For what concerns the averages (C12), we find that in

this basis, for γ ¼ M þ 1;…; N − 3, it holds that

hM̃a
γδiffiffiffiffi
N

p ¼ δγδ
ffiffiffi
2

p
ð1 − qÞζ1ðϵ; q̄; q; rÞ; ðC15Þ

while

M12 ≡ 1ffiffiffiffi
N

p
� hM̃a

N−2N−2i hM̃a
N−2N−1i

hM̃a
N−2N−1i hM̃a

N−1N−1i

�
¼
�
μ22 μ12

μ12 μ11

�
;

with the functions μij ¼ μijðn; ϵ; q̄; q; rÞ being a linear
combination of the ζi.
For n → 1, one can check that the equality

μ22ð1; ϵ; q̄; q; rÞ ¼ ð1 − qÞζ1ð1; ϵ; q̄; q; rÞ holds, while
μ11ð1; ϵ; q̄; q; rÞ ¼ 0 ¼ μ12ð1; ϵ; q̄; q; rÞ. Thus, in this limit
there are ðn − 1Þ → 0 columns having an equal, nonzero
average. Similarly, σ22 → σγ , while σ211 ¼ pðp − 1Þ and
σ12 ¼ 0. Therefore, the GOE structure of the unconditioned
matrix is recovered, since the number of columns with
different averages and variance σ2γ is (n − 1) and goes to
zero. In this way the annealed limit is recovered.
This choice of basis in S is such that there is a unique

vector in each tangent plane, eaN−1, having a nonzero
overlap with the direction of the signal w0. An alternative
choice can be made, for instance, to have the mutual
independence of the matrix elements M̃a

αN−2 and M̃a
αN−1

for α ≤ M. To this aim, it is sufficient to choose as basis
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vectors the linear combinations of the vectors e1N−2; e
1
N−1

that diagonalize the matrix (C14). This is given by

e0N−2 ¼
1ffiffiffiffiffiffiffiffiffi
zN−2

p
�X

b≠a
σb − qðn − 1Þσa

�
;

e0N−1 ¼
1ffiffiffiffiffiffiffiffiffi
zN−1

p
�
−q̄
Xn
b¼1

σb þ ½1þ ðn − 1Þq�w0

�
; ðC16Þ

with zN−2 ¼ ðn − 1Þð1 − qÞ½1þ ðn − 1Þq� and zN−1 ¼
½1 − nq̄2 þ ðn − 1Þq�½1þ ðn − 1Þq�. In this new basis,

Σ12 →

�
σ̃2γ 0

0 pðp − 1Þ

�
ðC17Þ

with

σ̃2γ
pðp − 1Þ ¼ 1 −

ðp − 1Þð1 − qÞ½1þ ðn − 1Þq�q2p−2
ðq − qpÞ½qþ ðn − 1Þqp� ;

ðC18Þ

meaning that the components of the last two columns of
M̃=

ffiffiffiffi
N

p
are now independent with variance σ̃2γ and

pðp − 1Þ, respectively (the fact that the variance along
the direction e0N−1 is equal to the unconditioned one stems
from the fact that e0N−1 is orthogonal to any σa). Note
that, in the eigenstates basis, the covariances depend only
on the overlap q and are independent on q̄: This inde-
pendence is natural to expect, since the fluctuating part of
the Hamiltonian is the p-spin part that is blind to the special
direction w0. The information on the signal is carried by the
deterministic part, which in the rotated basis reads

M12 →

�
μ̃22 μ̃12

μ̃12 μ̃11

�

¼
�
uðϵ; q̄Það1Þ22 þ rf0kðq̄Það2Þ22 rf0kðq̄Þa12

rf0kðq̄Þa12 0

�
;

with

að1Þ22

p − 1
¼

ffiffiffi
2

p ð1 − qÞ½1þ ðn − 1Þq�ð1 − qp−2Þ
pð1 − qÞ½1þ ðn − 1Þq� − ð1 − q2−pÞ½1þ ðn − 1Þqp� ;

að2Þ22

p − 1
¼

ffiffiffi
2

p
q̄ð1 − qÞqp−2 × 2q − ½1 − ðn − 1Þq�fqp þ q½pð1 − qÞ þ q�g

ðn − 1Þq2p þ qpf1 − pð1 − qÞ½1þ ðn − 1Þq� − ðn − 1Þq2g − q2
;

a12
p − 1

¼
ffiffiffiffiffiffiffiffiffiffiffi
2A=n

p
qp þ ðn − 1Þq : ðC19Þ

In summary, with this second choice of basis vectors in S, we find that the decomposition (C2) holds, with a deterministic
matrix Da equal to

Da ¼

0
BBBBBBBBBBBBBBBBBBBBB@

0 0 � � � � � � 0 0 � � � � � � � � � 0

0 0 � � � � � � 0 0 � � � � � � � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � � � � 0 0 � � � � � � � � � 0

0 0 � � � � � � 0 μγ 0 � � � � � � 0

� � � � � � � � � � � � � � � 0 μγ � � � � � � 0

0 0 � � � � � � 0 0 � � � μγ � � � 0

0 0 � � � � � � 0 0 � � � � � � μ̃22 μ̃12

0 0 � � � � � � 0 0 � � � � � � μ̃12 μ̃11

1
CCCCCCCCCCCCCCCCCCCCCA

ðC20Þ

and a stochastic matrix Sa having the block structure (C3) with (i) mαβ Gaussian iid with variance σ2 ¼ pðp − 1Þ,
(ii) nik Gaussian iid with variances σ2γ , σ̃2γ , and σ2 for k ¼ M þ 1;…; N − 3, k ¼ N − 2, and k ¼ N − 1, respectively,
(iii) qij Gaussian, in general mutually correlated. We do not determine their covariances, since, as we argue in
Appendix D, their expression is not necessary to characterize the lowest-order corrections to the density of states of the
matrices H̃a.
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Finally, we point out that, with this second choice of
basis, the term deriving from the rank-1 perturbation in
Eq. (C1) is no longer diagonal. For later convenience, we
define the constants:

μ̄ij ¼ μ̃ij − r
ffiffiffi
2

p
f00kðq̄Þðe0N−i · w0Þðe0N−j · w0Þ: ðC21Þ

APPENDIX D: ISOLATED EIGENVALUES OF
THE CONDITIONED HESSIANS

In this Appendix, we derive the equations satisfied by the
isolated eigenvalues of the conditioned Hessian matrices H̃,
whenever they exist. We focus on the spectrum of the
centered matrix A defined by

H̃ffiffiffiffi
N

p ≡A −
ffiffiffi
2

p
uðϵ; q̄Þ1̂; ðD1Þ

and having itself the block structure

A ¼
� A0 A1=2

AT
1=2 A1

�
; ðD2Þ

where the largest ðN − 1 − nÞ × ðN − 1 − nÞ block A0 is a
GOE with σ2 ¼ pðp − 1Þ and A1=2 and A1 have the
statistics described in Appendix C. In particular, we choose
the basis in the subspace S to be equal to the second one
discussed in Appendix C.
In the large-N limit, the bulk of the density of eigen-

values ofA is controlled by the largest block A0 and is thus
a centered semicircle. We aim at determining the poles of
the resolvent of Eq. (D2) that lie on the real axis outside the
support of the semicircle, meaning that they are smaller
than −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 1Þp

. From the block structure of A, it
follows that the trace of ðz −AÞ−1 has two contributions,
one coming from the largest ðN − 1 − nÞ × ðN − 1 − nÞ
block and one given by the small n × n block. We focus on
this second contribution, since the corresponding matrix
elements lie in the subspace S and have therefore a nonzero
overlap with the signal w0. The poles of the part of the
resolvent coming from this block correspond to isolated
eigenvalues having an eigenvector with a nonzero compo-
nent in the direction of the signal.
The quantity to determine is thus the poles of

hTrf1=N ·DðzÞgi, where

DðzÞ≡ z1̂ − A1 − AT
1=2ðz1̂ − A0Þ−1A1=2 ðD3Þ

and where now the average is over the distribution of the
entries of the matrix A. To compute these poles, we exploit
the fact that in the large N limit�

Tr

	
1

NDðzÞ

�

¼ Tr

	
1

NhDðzÞi


: ðD4Þ

This can be shown by setting D ¼ hDi þ δD and making
use of the expansion

D−1 ¼ 1

hDi −
1

hDi δD
1

hDi þ
1

hDi δD
1

hDi δD
1

hDi þ � � � :

ðD5Þ
Taking the average of the trace, we find that the corrections
to the leading-order term in Eq. (D4) are given byX

ijklm

hDi−1ij hDi−1kl hDi−1mihδDjkδDlmi; ðD6Þ

where the sum is over indices taking n distinct values. The
fluctuating part δD of Eq. (D3) is contributed by two
independent terms: The first one is made by the fluctuating
components qij=

ffiffiffiffi
N

p
of the block A1, while the second term

is made by the fluctuating part of

X ≡ AT
1=2ðz1̂ − A0Þ−1A1=2 ¼ hXi þ δX ðD7Þ

around its mean value. Since the covariances of the qij are
Oð1Þ, the first term contributes to the sum (D6) with
Oð1=NÞ. We now consider the contribution of the second
term. For large N,

h½AT
1=2ðz1̂ − A0Þ−1A1=2�iji ¼ GσðzÞ

P
αhniαnαji
N

; ðD8Þ

where

GσðzÞ ¼
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4σ2

p

2σ2
ðD9Þ

is the resolvent of a GOE matrix with variance σ2, while,
given the results of Appendix C, we have

P
αhniαnαji
N

¼ δij

8>><
>>:

σ2γ if N − n ≤ i ≤ N − 3;

σ̃2γ if i ¼ N − 2;

σ2 if i ¼ N − 1:

ðD10Þ

Then,

hδXjkδXlmi ¼
Cð1Þ
jklm

N2

X
αγ

cov

��
1

z − A0

�
αα

;

�
1

z − A0

�
γγ

�

þ Cð2Þ
jklm

N2

X
αγ

��
1

z − A0

�
2

αγ

�
; ðD11Þ

where the constants are ofOð1Þ in N. Thus, the behavior in
N of this second contribution is controlled by the decay of
the covariances of the matrix elements of the resolvent of a
GOE matrix; since the latter go to zero with N as can be
readily checked in perturbation theory, it follows that this is
a subleading correction to the leading term in Eq. (D4).
Therefore, in the large-N limit,
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hDðzÞi ¼

0
BBBBBB@

d 0 0 � � � � � �
0 d 0 � � � � � �
0 � � � d � � � � � �
� � � � � � � � � z − μ̄22 − σ̃2γGσðzÞ −μ̄12
� � � � � � � � � −μ̄12 z − μ̄11 − σ2GσðzÞ

1
CCCCCCA
; ðD12Þ

with d ¼ z − μγ − σ2γGσðzÞ.
The poles of the rhs of Eq. (D4) can be found as zeros of

the determinant of hDðzÞi and are therefore solutions of

½z − μγ − σ2γGσðzÞ�n−2ΠnðzÞ ¼ 0; ðD13Þ

with

ΠnðzÞ ¼ det

	�
z− μ̄22 − σ̃2γGσðzÞ −μ̄12

−μ̄12 z− μ̄11 − σ2GσðzÞ

�

:

ðD14Þ

In the following, we focus on the solutions of ΠnðzÞ ¼ 0,
since the corresponding eigenvectors have a nonzero com-
ponent with the signal. Before doing that, it is instructive to
consider the stability criterion which is obtained within the
annealed approximation: Besides giving some indications
on what happens qualitatively also in the quenched case, it
turns out to be the right criterion for the stationary points
that are at the equator, q̄ ¼ 0.

1. Isolated eigenvalue: Annealed approximation

As stated in the main text, the annealed approximation is
obtained by setting n ¼ 1. In this case, since μ̄12 → 0,
μ̄22 → μγ, and σ̃2γ → σ2γ , and given that μ̄11 → μ ¼
−
ffiffiffi
2

p
rf00kðq̄Þð1 − q̄2Þ, one is left with the equation

z − μ − σ2GσðzÞ ¼ 0: ðD15Þ

Substituting Eq. (D9) into Eq. (D15), we get

z
2
− μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4σ2

p

2
: ðD16Þ

Taking the square of the resulting equation leads to the
solution

z ¼ −
ffiffiffi
2

p
rf00kðq̄Þð1 − q̄2Þ − pðp − 1Þffiffiffi

2
p

rf00kðq̄Þð1 − q̄2Þ : ðD17Þ

This solution is defined for arbitrary values of μ; however, it
has to be considered only whenever it leads to a lhs of
Eq. (D16) that is positive. This condition holds provided
that μ < −σ, as one easily finds by substitution. Solving for
r, one finds that this corresponds to

r ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 1Þ

2

r
1

ðk − 1Þq̄k−2ð1 − q̄2Þ : ðD18Þ

In particular, this condition implies that for k ¼ 1 there is
no solution (i.e., no isolated eigenvalue exists), as well as
for k ≥ 3 and q̄ ¼ 0. We find that this statement remains
true also within the quenched calculation.
The result (D17) is consistent with the fact that, for

n ¼ 1, the conditioned Hessian coincides with the non-
conditioned one [modulo the shift by

ffiffiffiffiffiffiffi
2N

p
uðϵ; q̄Þ], and

therefore it reduces to a GOE matrix perturbed with a
rank-1 perturbation with a negative eigenvalue equal to μ.
Equation (D17) follows then from a general result holding
for matrices of the form M̂ ¼ M̂0 þ RðμÞ, where M̂0 is a
random matrix with eigenvalue density ρðλÞ with compact
support in ½a; b� and RðμÞ is a rank-1 perturbation with
negative eigenvalue μ. In this case, it is known [52,53] that
an isolated eigenvalue exists whenever μ < 1=G0ða−Þ,
where

G0ðzÞ ¼
Z

ρðλÞ
z − λ

dλ ðD19Þ

is the resolvent associated to the unperturbed random
matrix, and it equals zðμÞ ¼ G−1

0 ð1=μÞ, where G−1
0 ð·Þ is

the functional inverse of G0ð·Þ. Applying this result to the
GOE case [60], one recovers Eq. (D17).
We point out that the eigenvalue of the full Hessian

H̃=
ffiffiffiffi
N

p
is obtained through an additional shift by the factorffiffiffi

2
p

uðϵ; q̄Þ. For fixed q̄, one finds that the latter vanishes at a
value of energy given by

ϵðannÞst ðq̄; rÞ≡ 1ffiffiffi
2

p
p

�
μþ pðp − 1Þ

μ
−
�
p
k
− 1

�
rq̄k
�
:

ðD20Þ

This condition can be recovered within the replica frame-
work, in the RS setting; see Eq. (F6).

2. Isolated eigenvalue: Quenched calculation

We now perform the quenched calculation of the isolated
eigenvalue, which accounts for the correlations between
minima at a fixed, quenched realization of the random
Gaussian field. This calculation requires one to determine
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the zeros ofΠnðzÞ in the limit n → 0, which are solutions of
the equation

½z − μ̄22 − σ̃2γGσðzÞ�½z − μ̄11 − σ2GσðzÞ� − μ̄212 ¼ 0; ðD21Þ

where all the functions appearing in Eq. (D21) are
evaluated at n ¼ 0. Substituting Eq. (D9) into Eq. (D21),
we obtain the equation

z2

2
þ z

�
−ðμ̄11þ μ̄22Þþ

σ̃2γ μ̄11
2σ2

þ μ̄22
2

�
þðμ̄22μ̄11 − μ̄212 − σ̃2γÞ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4σ2

p

2σ2
ð−σ2zþ σ2μ̄22þ σ̃2γ μ̄11Þ: ðD22Þ

Taking the square of this equation and rearranging the
components, we find the third-order equation

F3z3 þ F2z2 þ F1zþ F0 ¼ 0; ðD23Þ

with coefficients

F3 ¼ −μ̄11
�
1 −

σ̃2γ
σ2

�
;

F2 ¼
�
1 −

σ̃2γ
σ2

�
½μ̄211 þ μ̄22μ̄11 þ σ2� þ μ̄11μ̄22 − μ̄212;

F1 ¼ −2ðμ̄22μ̄11 − μ̄221Þ
�
μ̄22 þ μ̄11 −

1

2

�
σ̃2γ
σ2

μ̄11 þ μ̄22

��

−
�
1 −

σ̃2γ
σ2

�
σ2μ̄22 − σ2

�
μ̄22 þ

σ̃4γ
σ4

μ̄11

�
;

F0 ¼ ðμ̄22μ̄11 − μ̄212 − σ̃2γÞ2 þ σ2
�
μ̄22 þ

σ̃2γ
σ2

μ̄11

�
2

: ðD24Þ

Note that, for k ¼ 1, μ̄11 ¼ 0, and thus Eq. (D23) reduces to
a second-order equation. For k > 1, Eq. (D23) has three
solutions: For the values of parameters that we are con-
sidering, we find that at most one out of these three
solutions is real and, for some values of parameters,
exits the support of the semicircle. We denote this solution
with zI . To determine its domain of existence, we require
consistence with Eq. (D22); i.e., we ask that, when
evaluated at z ¼ zI, the rhs of Eq. (D22) has a sign that
is opposite to the sign of the expression −σ2zI þ σ2μ̄22 þ
σ̃2γ μ̄11. This condition has to be imposed separately, since
Eq. (D23) is obtained from Eq. (D22) by taking a square,
and thus it is insensitive to the sign in front of the square
root in the definition of the resolvent (D9) (it is a
generalization to the quenched case of the condition μ <
−σ found in the annealed approximation). For those zI that
meet this condition, the eigenvalue of the full Hessian
H̃=

ffiffiffiffi
N

p
is given by zI −

ffiffiffi
2

p
uðϵ; q̄Þ: Imposing this expres-

sion to be zero gives the critical energy ϵstðq̄; rÞ discussed
in the main text.

The quenched calculation of the isolated eigenvalue
gives results that are, in general, quantitatively different
(although qualitatively very similar) with respect to the
annealed one. The annealed limit is exact only at the
equator q̄ ¼ 0, since in this case qSPðϵ; 0Þ ¼ 0 and, thus,
the equation ΠnðzÞ ¼ 0 reduces to Eq. (D15). In this case,
one finds that no eigenvalue exists for k ¼ 1 and k ≥ 3,
since the denominator in Eq. (D18) vanishes, while it exists
for r ≥ rc for k ¼ 2.

APPENDIX E: KAC-RICE CALCULATION:
ADDITIONAL RESULTS

This Appendix contains some additional results related
to the content of Sec. V I: We discuss how the mapping (16)
is exploited to derive the bands in Figs. 9 and 11, comment
on some implications on the thermodynamical transitions,
and provide some details on the isolated eigenvalue of the
Hessian of the stationary points.
For k ¼ 1, the band containing the stable stationary

points is delimited by the curves q̄mðrÞ and q̄MðrÞ plotted in
Fig. 7. To determine the analogous curves for k ¼ 2 (and
fixed r), it is sufficient to consider the functions q̄ →
q̄mðreff1 Þ and q̄ → q̄Mðreff1 Þ, with reff1 ðr; q̄Þ ¼ rq̄. Indeed, the
latitudes q̄ satisfying q̄mðreff1 Þ ≤ q̄ ≤ q̄Mðreff1 Þ are such that
the complexity Σp;2ðϵ; q̄Þ is positive over a finite energy
interval. In Fig. 16, we give an example of this mapping for
different values of r: For the smaller r, there is a connected
strip containing exponentially many stationary points,
which encloses the equator. For the intermediate r, the
strip is instead separated into a larger band enclosing to the
equator and a thinner one at larger overlap q̄ (the thinner
band at the larger overlap has its counterpart at the negative
overlap). The landscape phase transition in which the band
splits into disconnected components occurs between these
values of r. The largest r in Fig. 16 corresponds to r > rc;
in this case, the band of states enclosing the equator shrinks
but it is still finite, while the strip closer to the north pole
collapses to a single state. The bands at k ¼ 3 can be
obtained with an analogous procedure, using reff1 ¼ rq̄2. In
the same figure, we show the case p ¼ 3 and r ¼ rc ¼

ffiffiffi
6

p
,

to illustrate that at the critical point there is a unique
connected band containing the equator, with maximal
latitude q̄MðrcÞ ¼ q̄c. We now reexamine the thermody-
namic properties of the system at k > 1 and clarify how
they can be deduced from the case k ¼ 1. Consider the
k ¼ 1 curves ϵ�1ðq̄; r1Þ satisfying Σp;1½ϵ�1ðq̄; r1Þ; q̄; r1� ¼ 0.
For k > 1 and fixed r, it follows from Eq. (16) that
Σp;k½ϵ�kðq̄; rÞ; q̄; r� ¼ 0 with ϵ�kðq̄; rÞ ¼ ϵ�1ðq̄; rq̄k−1Þ þ
rð1 − 1=kÞq̄k. This result allows one to reconstruct the
full spectrum on minima ϵ�kðq̄; rÞ from its k ¼ 1 counter-
part; the minimization of this function over q̄ gives the
thermodynamic energy ϵ�kðrÞ and the corresponding lat-
itudes q̄�kðrÞ plotted as yellow squares in Figs. 9 and 11. It
happens that the latitudes q̄�kðrÞ, whenever they are not
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equal to zero, coincide with the image under the mapping
(16) of the corresponding ones q̄�1 at k ¼ 1, i.e., q̄�kðrÞ ¼
q̄�1ðr̃1Þ, where r̃1 ¼ r̃1ðrÞ solves r̃1 − r½q̄�1ðr̃1Þ�k−1 ¼ 0. The
fact that q̄�ðr̃1Þ are stationary points of ϵ�kðq̄; rÞ is easily
checked, as the derivative

∂ϵ�kðq̄; rÞ
∂q̄ ¼

�∂ϵ�1
∂q̄ þ ∂ϵ�1

∂r rq̄k−2 þ rq̄k−1
�

equals zero at q̄ ¼ q̄�ðr̃1Þ, since
∂ϵ�1½q̄�1ðr1Þ; r1�

∂q̄ ¼ 0;
∂ϵ�1
∂r ½q̄�ðr̃1Þ; r̃1� ¼ −q̄�ðr̃1Þ:

The second equality follows from the fact that ϵ�kðq̄; rÞ ¼
Eðq̄Þ − rq̄k=k with Eðq̄Þ the energy of the deepest states of
the p-spin Hamiltonian at fixed overlap q̄ with the north
pole; see Sec. IV. We now characterize both r2ND and the
spinodal point r1SP in terms of the function q̄�1ðr1Þ or, more
precisely, of its inverse r�1ðq̄Þ. Notice that, since q̄�1ðr1Þ is

defined by the condition ∂ϵ�1ðq̄�; r1Þ=∂q̄ ¼ 0, it holds
that r�1ðq̄Þ ¼ ∂Eðq̄Þ=∂q̄.
For general k, we define the function rkðq̄Þ≡

r�1ðq̄Þ=q̄k−1, which associates to each q̄ the value of rk
for which q̄�kðrkÞ ¼ q̄, i.e., for which q̄ is the latitude of the
deepest minimum. For k ¼ 2, r2ðq̄Þ is monotone increasing
and takes a finite minimum value at q̄ ¼ 0, which is
precisely r2ND [61]. For smaller r, q̄�2ðrÞ is frozen to 0,
and the corresponding energy ϵ�ðrÞ is frozen to the ground-
state energy of the p-spin model with r ¼ 0.
For k ¼ 3 and larger, the function rkðq̄Þ is nonmonotone,

and two latitudes are associated to each fixed, large enough
r: The largest of these latitudes is the one of the local
minimum q̄�2ðrÞ > 0 of ϵ�3ðq̄; rÞ, while the smaller is the one
of the local maximum. The function rkðq̄Þ has a minimum
at a point q̄SP, defined by

drkðq̄Þ
dq̄

¼ 0 → q̄
dr�1ðq̄Þ
dq̄

− ðk − 1Þr�1ðq̄Þ ¼ 0: ðE1Þ
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FIG. 16. The blue curves are the functions q̄mðrÞ and q̄MðrÞ of Fig. 7, plotted as a function of reff1 ðr; q̄Þ ¼ rq̄ for k ¼ 2 and
reff1 ðr; q̄Þ ¼ rq̄2 for k ¼ 3. The green curve is a line with slope 1. The values of q̄ for which the straight line lies within the colored bands
give the latitudes at which exponentially many stationary points are found. (a)–(c) Plots for k ¼ 2 and p ¼ 3 and fixed values of r. The
intersection points between the green line and the blue curves define the boundaries q̄mðrÞ; q̄MðrÞ of the bands in Fig. 9. (d) Plot for
k ¼ 3 ¼ p and r ¼ rc. The straight line lies within the colored bands for all q̄ ≤ q̄c ≈ 0.71.
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At this point, the local maximum and minimum merge,
and thus rkðq̄SPÞ ¼ r1SP. For general k, it holds that
r1SP ¼ rc whenever p ¼ k [see, for instance, Fig. 11(b)].
This equality can be seen in the following way: for q̄ ≥ q̄c,
the function ϵ�1ðq̄; rÞ is obtained from the annealed com-
plexity or, equivalently, from the solution of the RS
equation in Sec. IV. This solution gives ϵ�1ðq̄; rÞ ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − q̄2Þ=2

p
− rq̄, and minimizing and solving for r

we get r�1ðq̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=½2ð1 − q̄2Þ�

p
q̄ for q̄ > q̄c. The solu-

tion of Eq. (E1) then reads

q̄SP ¼
ffiffiffiffiffiffiffiffiffiffiffi
k − 2

k − 1

r
; ðE2Þ

which is consistent (i.e., larger than q̄c) for k > p. In
this case,

r1SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðk − 2Þ

2

r
f0k

�
k − 2

k − 1

�
−1

for k ≥ p: ðE3Þ

At k ¼ p, one recovers q̄SP ¼ q̄c and r1SP ¼ rc; see
Eqs. (5) and (6). For k < p, r�1ðq̄Þ has to be computed
using the solutions to the RSB equations.
We now discuss how the bands of minima are modified

when accounting for the instability due to the isolated
eigenvalue of the Hessians, focusing on the cases k ¼ 2 and
p ¼ 3 and k ¼ 3 ¼ p.
For k ¼ 2, we find that for r≳ rc the first stationary

points that are affected by the eigenvalue are the ones at
smaller overlap q̄: Among them, the isolated eigenvalue

renders unstable the ones at higher energy; see Fig. 17(a).
Therefore, its effect is to diminish from above the width of
the energy interval in which stable points are found. As r
increases, the instability propagates to the largest latitudes
q̄, until eventually for these larger latitudes the energy
ϵstðq̄; rÞ becomes smaller than ϵ�ðq̄; rÞ [see Fig. 17(b)]; at
these intermediate values of r, there are still stable sta-
tionary points at small overlap q̄ and energy strictly smaller
than the threshold, while the ones at a larger overlap are all
unstable, irrespective of their energy. The band is thus
narrowed. The last points that become unstable are the ones
at the equator; the instability of these points can be
computed within the annealed approximation, as illustrated
in Appendix D. Note that in both the cases considered in
Fig. 17, since r > rc, the deepest minimum in the land-
scape is not in the band, but it is rather the minimum of the
annealed complexity, which is stable as its energy density is
below the threshold.
For k ¼ 3 ¼ p, the isolated eigenvalue appears at r ¼ rc

[see Fig. 18(a)]. At the critical point q̄c, all the energies ϵst,
ϵth, and ϵ� coincide and coincide with the energy ϵc:
Exactly at this latitude, the annealed complexity is equal to
zero at ϵc and negative otherwise. The corresponding
stationary point is marginally stable, with the minimal
eigenvalue of the Hessian being right at the lower boundary
of the support of the semicircle, which is at zero. For larger
r, the band close to the equator becomes affected by the
instability due to the eigenvalue [see Fig. 18(b)]. In
particular, within the numerical accuracy, we find that
ϵstðq̄Þ intercepts ϵ�ðq̄Þ at a latitude q̄M that corresponds to
the local minimum of ϵ�ðq̄Þ, meaning that exactly at the
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FIG. 17. Comparison between the energies ϵstðq̄Þ, ϵthðq̄Þ, and ϵ�ðq̄Þ for k ¼ 2 and two values of r > rc. The orange points are obtained
from the direct solution of the saddle-point equation for k ¼ 2, the black squares exploiting the mapping from k ¼ 1. The intersection
points between ϵth and ϵ� correspond to the dashed lines in Fig. 9, the ones between ϵst and ϵ� to the solid lines. The yellow strip
identifies the energies of the stable stationary points. (a) For r ¼ 1.84 and ϵ < ϵth, the isolated eigenvalue renders unstable the higher-
energy points at q̄ < 0.26, while it does not exist for the larger latitudes 0.26 < q̄ < 0.27 ≈ q̄M. (b) For r ¼ 1.98 and ϵ < ϵth, the
stationary points in the interval q̄M ≈ 0.19 < q̄ < 0.23 are all unstable irrespective of their energies, while for the smaller latitudes only
the points at higher energy are unstable. For these values of r, the absolute minima of the energy landscape (not in the figure) are at
q̄� ≈ 0.746 for r ¼ 1.84 and q̄� ≈ 0.786 for r ¼ 1.98 and have energy density ϵ� ≈ −1.327 and ϵ� ≈ −1.369, respectively.
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local minimum the isolated eigenvalue is equal to zero [62].
On the other hand, the isolated minimum of the annealed
complexity at a higher overlap is always stable.
We conclude this Appendix with a comparison between

the quenched complexity and the annealed one in Eq. (13).
As already pointed out, the two quantities differ for all
values of q̄ ≠ 0 whenever r < rc (for r > rc, the same
remains true for the band of complexity close to the
equator, while the values of q̄� and ϵ� are correctly captured
by the annealed approximation).
In Fig. 19(a), we compare the quenched and annealed

results for k ¼ 2, p ¼ 3, and a value of the signal-to-noise

ratio very close to the one at which the band of minima
close to the equator splits into two [see Fig. 9(a)]. The curve
obtained within the annealed approximation gives an
upper bound to the quenched complexity, as it should.
In Fig. 19(b), we show the relative error:

Δðϵ; q̄; rÞ ¼ ΣðannÞ
p;k ðϵ; q̄; rÞ − Σp;kðϵ; q̄; rÞ

Σp;kðϵ; q̄; rÞ
ðE4Þ

evaluated at ϵ ¼ ϵthðq̄; rÞ for different values of q̄; while the
error remains small close to q̄ ¼ 0, it becomes of the order

FIG. 19. (a) Comparison between the complexity evaluated within the annealed approximation (light green line) and the quenched
complexity (dark green line) for a particular value of q̄ ¼ 0.45. (b) Relative error given by Eq. (E4), evaluated at ϵ ¼ ϵthðq̄; rÞ.
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FIG. 18. Comparison between the energies ϵstðq̄Þ, ϵthðq̄Þ, and ϵ�ðq̄Þ for k ¼ 3 ¼ p. The orange points are obtained from the solution of
the saddle-point equations for k ¼ 3, and the black squares are obtained exploiting the mapping from k ¼ 1. The intersection points
between ϵth and ϵ� correspond to the dashed lines in Fig. 11, while the intersection between ϵst and ϵ� gives q̄M. The yellow strip
identifies the energies of the stable stationary points. (a) Exactly at r ¼ rc, all states at the latitudes q̄m < q̄ < q̄c ¼ 0.707 are stable. The
isolated eigenvalue exists only for the states q ¼ q̄c, which are at their threshold energy (the eigenvalue is attached to the lower edge of
the semicircle, that touches zero for the points at this latitude). (b) For r ≈ 2.62 > rc, some of the stationary points in the interval
0.415≲ q̄ < q̄M ≈ 0.49 are unstable because of the eigenvalue (the ones at higher energy). The stationary points in the interval
q̄M < q̄ < 0.6 are all unstable irrespective of their energies. For this value of r, the deepest stable minimum (not in the figure) is the
isolated one at q̄� ≈ 0.88.
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of 60% for intermediate values of the overlap. Similar
results are obtained for other values of the parameters p
and k.
The fact that quenched and annealed complexity remain

strictly different as N → ∞ implies that the distribution of
the variable N Nðϵ; q̄Þ does not concentrate asymptotically
around its average value. In this circumstance, simple
bounds to the fluctuations of N Nðϵ; q̄Þ derived via the
second moment method turn out to be powerless. Indeed,
one can easily show that the ratio

hN 2
Nðϵ; q̄Þi

hN Nðϵ; q̄Þi2
¼ expfNϕðϵ; q̄Þ þ oðNÞg ðE5Þ

is not ofOð1Þ for q̄ ≠ 0 (at variance with the q̄ ¼ 0 case, in
which the two quantities coincide at the exponential scale
as proved in Ref. [13]); instead, the function ϕ remains
strictly positive as N → ∞. This result can be shown
solving the saddle-point equation for q for the action

Sð2Þ
p;k with n ¼ 2; see Eq. (10). As a consequence of this

asymptotic discrepancy, bounds of the form

P

	



 N N

hN Ni
− 1





 > z



≤
hN 2

Ni − hN Ni2
z2hN Ni2

ðE6Þ

are not informative. Figure 20 shows an instance of the
function ϕðϵ; q̄Þ, which around q̄ ¼ 0 is rather flat but
strictly positive.

APPENDIX F: STABILITY OF METASTABLE
MINIMA FOUND WITH REPLICAS

The stability of the metastable minima [counted by
Eq. (56)] with respect to fluctuations in the structure of
the overlap matrixQab is probed by the replicon eigenvalue
of the matrix Mαβ;γδ ¼ ∂2ðnS½Qα;β�Þ=∂Qαβ∂Qγδ, evaluated
at the saddle point. This eigenvalue can be determined from

the mðm − 1Þ ×mðm − 1Þ block Mab;cd of Mαβ;γδ, which
corresponds to indices a, b, c, d of replicas belonging to the
same group with mutual overlap qab ¼ q1. The latter is
given by

Mab;cd ¼ −
β2

2
pðp − 1Þqp−2ab ðδacδbd þ δadδbcÞ

þQ−1
acQ−1

bd þQ−1
adQ

−1
bc ; ðF1Þ

where Q−1 is the inverse of the overlap matrix. When
evaluated at the saddle point and for n → 0, it has the
structure [3]

Mab;cd ¼ M1

δacδbd þ δadδbc
2

þM2

δac þ δbd þ δad þ δbc
4

þM3; ðF2Þ

with

M1 ¼ −β2pðp − 1Þqp−21 þ 2

�
1

1 − q1

�
2

;

M2 ¼
4

ð1 − q1Þ2
mðq0 − q1Þ2 þ ð1 − q1Þðq1 − q̄2Þ

½1 − q1 þmðq1 − q0Þ�2
;

M3 ¼
2

ð1 − q1Þ2
�
mðq0 − q1Þ2 þ ð1 − q1Þðq1 − q̄2Þ

½1 − q1 þmðq1 − q0Þ�2
�
2

:

ðF3Þ

The replicon eigenvalue is given by M1 and vanishes
whenever

1

βð1 − q1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 1Þ

2

r
: ðF4Þ

The stability condition obtained in the annealed approxi-
mation [see Eq. (D19) and below] can be recovered within
the replica setting, in the RS framework. It indeed corre-
sponds to the vanishing of the longitudinal eigenvalue and
is obtained by setting to zero the eigenvalues of the matrix
of second derivatives [with respect to the order parameters
q̄ and βð1 − q1Þ] of the replica-symmetric limit of the
action, which is given by

SRS
β

¼ p
4
βð1 − qÞ þ rfkðq̄Þ þ

1

2

1 − q̄2

βð1 − qÞ :

The matrix of second derivatives reads

0
B@ rf00kðq̄Þ − 1

βð1−q1Þ
q̄

½βð1−q1Þ�2
q̄

½βð1−q1Þ�2
1−q̄2

½βð1−q1Þ�3

1
CA ðF5Þ

and has two eigenvalues that both vanish whenever

FIG. 20. Plot of the function ϕðϵ; q̄Þ defined in Eq. (E5),
controlling the asymptotics of the ratio between the first two
moments of N Nðϵ; q̄Þ.
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rf00kðq̄Þð1 − q̄2Þ ¼ 1

βð1 − q1Þ
: ðF6Þ

This criterion can be rewritten in terms of the resolvent
GðzÞ associated to the Hessian of the p-spin Hamiltonian in
the absence of the signal (at r ¼ 0), since βð1 − q1Þ is the
spin susceptibility of the p-spin model, which is related
to the inverse of the Hessian matrix. More precisely,
βð1 − q1Þ ¼ −Gð0Þ so that the condition in Eq. (F6) is
equivalent to rf00kðq̄Þð1 − q̄2Þ ¼ −1=Gð0Þ. This equality is
precisely the condition of a vanishing eigenvalue obtained
in the annealed Kac-Rice calculation, as it equals zðμÞ ¼ 0

where zðμÞ ¼ G−1ð1=μÞ and μ ¼ −rf00kðq̄Þð1 − q̄2Þ. As
remarked in Appendix D, this condition is exact at the
equator q̄ ¼ 0; in particular, it allows one to obtain
the value of r where the equator band disappears in the
case k ¼ 2.
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