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The analysis of groups of binary data can be achieved by logical based approaches. These approaches identify

subsets of relevant Boolean variables to characterize observations and may help the user to better understand
their properties. In logical analysis of data, given two groups of data, patterns of Boolean values are used to
discriminate observations in these groups. In this work, our purpose is to highlight that different techniques
may be used to compute these patterns. We present a new approach to compute prime patterns that do not
provide redundant information. Experiments are conducted on real biological data.

1 Introduction

Context

Logical analysis of data (LAD), introduced for the
first time by Peter Hammer (Hammer, 1986), is based
on combinatorial optimization techniques and on the
concept of partially defined Boolean functions. It may
be considered as an alternative to conventional sta-
tistical classification methods. LAD (Crama et al.,
1988) can be used in various application domains.
One of its purpose is the characterization of data by
means of patterns (and subsequently by logical for-
mulas). Given two sets of data (groups), these pat-
terns are indeed subsets of values that are present
in several observations of one set, while not being
present in the other set. Hence, patterns can be used to
identify common characteristics of observations be-
longing to the same group. The idea is to focus on
explicit justifications of groups of data, while clas-
sic classification approaches mainly focus on the con-
struction or the identification of these groups. More
precisely, the purposes of LAD are:

e to determine similarities within the same data set,

e to discriminate observations belonging to differ-
ent data sets.

e to deduce logical rules/formulas that explain data
sets.

As mentioned above, LAD focuses merely on ex-
planation when classification techniques allow the

user to build cluster and to assign groups to incoming
data. Many applications of logical data analysis have
been investigated in medicine (Reddy et al., 2008), in-
dustry (Mortada et al., 2012; Dupuis et al., 2012) or
economy (Hammer et al., 2012).

Example

Let us consider two groups (sets) of observations
P and N (respectively positive and negative observa-
tions) defined over a set 4 of Boolean variables. In
this example, we consider a set of 8 Boolean variables
(labeled from a to i) and 7 observations. Our purpose
is to compute a subset of A4 that may be used to ex-
plain/justify a priori the membership of observations
to their respective groups.

As mentioned above, contrary to classification ap-
proaches issued from machine learning techniques
(e.g., clustering algorithms), the purpose here is to
provide an explicit justification of the data instead of
an algorithm that assigns groups to data. Note that
we assume that the two groups are built by experts, or
using expert knowledge (this is thus definitely not a
classification nor a clustering problem).



Variables
Observ. | Groups alblcldle|Fglh
1 oj1rjojrfoj|1j1(o0
2 P 1{1]0]1]1]0]0]1
3 O|(1j1{0]1]0]0]1
4 170|101 |0]1]|1
5 N ojojo|1}j1{1}]0]0
6 1{1j0|1]0|1]0]1
7 ojoj1{o0f1]|0]1]|O0

In LAD methodology, a key concept consists in
identifying patterns of similar values in groups. For
instance, a = 0 and b = 1 is a pattern that is shared
by observations 1 and 3 in P and such that no ob-
servation in N is covered by this pattern. Therefore,
this pattern could be interpreted as a partial explana-
tion of the observations of group P. Among the sets
of patterns, one has to decide which compromise has
to be achieved between their size and their covering
(i.e., the number of observations having the pattern in
group P). Concerning the size of the patterns, some
properties have been exhibited in order to focus on
the most relevant ones. In particular, prime patterns
are patterns whose number of variables cannot be re-
duced unless they are not patterns anymore. Prime
patterns correspond to the simplicity requirement (in
terms of variables), while strong patterns correspond
to an evidential preference where a larger cover is pre-
ferred (we refer the reader to (Chikalov et al., 2013)
for a survey on LAD).

Alternatively, variables f and g can also be used to
generate a Boolean formula ¢ = (fAg) V (—f A—g),
which is true for observations in P (interpreted as
Boolean assignments on variables) and false for ob-
servations in N. Note that the variable b is not suf-
ficient to explain group P since observation 6 in N
has also this variable set to 1. ¢ is presented here
in disjunctive normal form. Note that such formula
could be convenient for users, either by minimizing
the number of variables (for instance, to simplify their
practical implementation in diagnosis routines) or by
minimizing the size of the formula (for instance, to
improve their readability). Such an approach focuses
on minimal characterizations in terms of number of
variables and can be extended to consider several
groups simultaneously (Chhel et al., 2012). In our
work, it is important to consider prime patterns (with-
out redundant variable) in order to minimize the num-
ber of variables, and to consider as many patterns as
possible in order to have a broader view to minimize
the size of the formula.

In our example, we consider only two possible
states for each variables, so we work on binary data.
However, in practice, this is not always the case. In
(Boros et al., 1997), “binarization” of data is intro-

duced, allowing to transform quantitative data into bi-
nary data. The basic idea of binarization is simple:
each real-valued data is associated to a threshold. The
binary value is 1 (respectively 0) if the real data is
above this threshold (respectively below). Since a sin-
gle threshold is too restrictive, it is important to study
several thresholds combinations. One of the problems
associated with binarization is therefore to find a min-
imal number of thresholds that would preserve most
of the information contained in a data set (Hammer
and Bonates, 2006; Boros et al., 1997).

Contributions

In this paper, we present a new algorithm that com-
putes the set of all prime patterns. Other algorithms
can be used to compute prime patterns, in particular
the algorithm presented in (Boros et al., 2000). How-
ever our algorithm, based on the detection of solutions
in logical characterization of data, is faster and works
on a more important set of variables. Moreover our al-
gorithm allows us to determine the coverage of each
patterns.

Organization

In Section 2 we recall the concepts of the logical anal-
ysis of data and the computation of prime patterns.
In Section 3 we recall the main concepts of logical
characterization of data. In Section 4, we present our
new algorithm. Finally, in Section 5 we compare the
performances of our algorithm with the algorithm of
(Boros et al., 2000) on different real instances (issued
from biology) and handmade instances.

2 Logical Analysis of Data

2.1 Terminology and notation

Let us recall the main concepts of logical analysis
of data (LAD) (Hammer et al., 2004; Hammer and
Bonates, 2006; Boros et al., 2011; Chikalov et al.,
2013). LAD is based on the notion of partially de-
fined Boolean functions.

Definition 1. A Boolean function f of n variables,
n € IN, is a function f : B" — BB, where B is the set
{0,1}.

Definition 2. A vector x € B" is a positive vector
(resp. negative vector) of the Boolean function f if
f(x) =1 (resp f(x) =0). T(f) (resp. F(f)) is the
set of positive vectors (resp. negative vectors) of the
Boolean function f.

In the rest of the paper, Boolean vectors corre-
spond to observations. The set of observations is de-
noted Q.



Definition 3. A partially defined Boolean function
(pdBf) on B" is a pair (P,N) such that P, N C B"
and PNN = 0.

In a pdBf, we consider two groups of observa-
tions: P (positive group) and N (negative group). A
literal is either a binary variable x; or its negation X;.
A term is a pdBf represented by a conjunction of dis-
tinct literals, such that a term does not contain a vari-
able and its negation.

Definition 4. Given: o%,6~ C {1,2,...,n}, ot N
6~ =0, a term t5+ 5 is a Boolean function whose
positive set T (t5+ - ) is of the form:

T(;G+,G,):{erB”\x,-:1Viecﬁ andxj:OVjE(f}

Aterm i5+ 5- can be represented by an elementary
conjunction, i.e., a Boolean expression of the form:

tc*,cr(x) = /\ xi) A ( /\ )
ieot jeo~

We say that a Boolean vector satisfies a term if it
has the same binary values as the term on the variables
of the term. The set of literals of a term # is Li¢(¢). The
degree of a term ¢ is the number of literals that appear
in this term, ie |Lit(z)].

Definition 5. A pattern of a pdBf (P,N) is a
term tg+ - such that |[PNT(tg+ )| > 0 and [N N
T(tc‘*',(s‘)‘ =0.

A pattern is therefore a term satisfied by at least
one positive vector (from P) and no negative vector
(from N). Of course, patterns are associated to the
positive group P. It is also possible to design patterns
associated to the negative group by considering the
pdBf (N, P) instead of the pdBf (P, N).

Definition 6. The coverage of a pattern p, denoted
Cov(p), is the set Cov(p) = PNT(p).

In other words, the coverage of a pattern p is the
set of positive Boolean vectors satisfying p.

Example 1. Back to introductory example:

Variables
Obs | Groups albcldle[Flalh
1 o110 1|01]1|0
2 P 1|\1|10|1|1|0|0|1
3 o|1|(1]0|1]0|0]1
4 110|101 |0|1]|1
5 N o|(o(o|1|1]|1|0]O
6 1101 |0]|1|0]1
7 o|(o(1l0|1]|0|1]0

p1 =aAband p» = f A g are two patterns covering
observations 1 and 3 for p) and 2 and 3 for p;.

There exist many possible patterns. Using the two
sets Lit(p) and Cov(p), we can define 2 types of par-
tial preorders on patterns: the simplicity preference
and the evidential preference.

Definition 7. The simplicity preference G, denoted
=o, IS a binary relation over a set of patterns ‘P such
that for a couple (p1,p2) € P?, we have p| = p2 if
and only if Lit(p1) C Lit(p>).

Definition 8. The evidential preference E, denoted
=z, is a binary relation over a set of patterns ‘P such
that for a couple (py,p2) € P2, we have py = py if
and only if Cov(pz) C Cov(p).

For a preference 3= ,; (t € {c,E}) and two pat-
terns p; and p;, we will note the double relation
P1 =n p2 and pa =x p1 by p1 =g pa.

In order to refine the comparison of patterns, we
will consider combinations of preferences.

Definition 9. Let two preferences ® and p on a set
of patterns ‘P, and let (p1,p>) € P2, the pattern p;
is preferred to the pattern py with respect to the lexi-
cographic refinement T|p, denoted pi zg)p p2, if and
only if p1 *=x p2 or p1 =g p2 and py =p pa.
Definition 10. Given a preference =5 on a set of
patterns ‘P, a pattern py € P is Pareto-optimal with
respect to T if and only if Bpy € P\{p1} such that
p2 = pi (i.e py =z p1 and ps % p1).

We can thus define types of Pareto-optimal pat-
terns, according to the preferences:

Preference | Pareto-optimal pattern
c Prime pattern
E Strong pattern
Elo Strong prime pattern

Note the following property demonstrated in
(Hammer et al., 2004).

Property 1. A pattern is pareto-optimal with respect
to ‘E|c if and only if it is strong and prime.

Example 2. Let’s take Example 1 to illustrate the dif-
ferent types of patterns:

o The pattern a/\d N\ e is a prime pattern because if
you remove a literal, it is no longer a pattern.

o The e A f A g pattern is a strong pattern because
there is no pattern covering the same observations
plus one.

o The f Ag pattern is both strong and prime. It is
therefore a strong prime pattern.

In (Boros et al., 2000), the notion of support sets
is used. A support set is a subset of variables such
that, by working only on the selected variables, all
positive Boolean vectors are different from negative
Boolean vectors. In other words, we are looking for a
set of variables that discriminate the whole group. A
set support is said to be irredundant if the removal of
any variable gives a set of variables that is no longer
a set support.



2.2 Patterns Generation

The problem of generating optimal patterns can be
solved by a linear program. In (Ryoo and Jang, 2009)
integer linear programs are proposed, allowing to gen-
erate different types of patterns, in particular strong
prime patterns. However, if the authors demonstrate
that an optimal solution of their linear program is a
Pareto-optimal pattern, the converse is not true. It is
therefore not possible to generate the set of all prime
patterns (or set of all strong prime patterns) by the
linear program presented in this article.

If the linear programming approach does not allow
us to generate all the optimal patterns, the algorithm
proposed in (Boros et al., 2000) will generate the set
of all prime patterns. Note also that in (Hammer et al.,
2004) are described algorithms transforming a pattern
into a prime pattern or strong pattern.

2.2.1 Prime patterns generation

Concerning the generation of prime patterns, the al-
gorithm in (Boros et al., 2000) proposes the gener-
ation of all prime patterns less than or equal to a de-
gree D. By choosing the highest degree D,y of prime
patterns, we can generate all of them, but we do not
know how to compute this degree without generating
the set of patterns. We choose an upper bound to D,;;,,
to be certain of our results. By choosing D = n,i.e.
the number of variables, we insure that D > D,,,,, and
thus, the algorithm will return the set of prime pat-
terns.

Boros’s algorithm first generates prime patterns of
degree 1, then 2 and so on up to degree D. In step
1, the algorithm tests all the terms of degree 1 and
classifies them according to their interest. All terms
that are patterns will be in a set P, and in a set C; the
terms of size 1 covering positive and negative obser-
vations. In the following steps (E) we will only con-
sider the terms of the set Cr_, terms of degree E — 1,
for which we try to add a literal to transform it into a
term of degree E. If this term is a pattern, it joins the
set P and if it still covers both positive and negative
observations, it joins the set Cg. Once the step E = D
has been completed, we will have the set P which will
contain all prime patterns of degree less than or equal
to D.

Algorithm 1 presents the pseudo-code of this al-
gorithm.

Since we test all the combinations, we are certain
to generate the set of prime patterns. In addition, to be
generated, a term must be in the set P and thus check
the conditions to be a pattern. As before being in the
set P, the term was in a set (;, if we remove a literal,
the term is no longer a pattern. The set P therefore

ALGORITHM 1. Computation of all prime pat-
terns from (Boros et al., 2000) (PPC_1)
Data: D the maximum degree of patterns that
will be generated.
Result: Pp the set of prime patterns smaller
than or equal to D.

Po=0

/IC; is the set of terms of degree i that can
become patterns, which cover both positive
and negative observations.

Co = {0}
fori=1t0 Ddo
Pi=PFi
C;i=0

forallt € C;_| do
p=maximum index of variables in ¢
fors=p+1tondo
forall / € {x,,%;} do
T=tNI
for j=1ti—1do
' = T with the j-th variable
removed
ift' ¢ C;_| then
| goto¢
end
end
if T covers a positive vector but
no negative vector then
| Pi=PRU{T}
end
if T covers both a positive and
a negative vector then
‘ C,=CU {T}
end

¢

end
end

end
end
return Pp

contains all prime patterns and contains only prime
patterns.

Note that, for an instance with x observations and n
variables, the complexity is :

n!

M (2
O™ mx QX fa Ty,

+x))

(3" is the number of terms that can be created with

n variables and 2" L3 x WLHJ)' is the maximal
KEN 317

number of prime patterns).



3 Multiple Characterization of Data

Multiple characterization of data is an extension
of logical analysis of data where several groups of
data are considered. The goal is to compute a set
of variables, called solution, sufficient to discriminate
each group of data from the others, simultaneously.

3.1 Presentation

As in LAD, multiple characterization of data (Chhel
et al., 2012) aims to discriminate observations from
different groups. The objective is to determine a set
of variables discriminating all groups simultaneously.
This approach is similar to support sets computation
but the number of groups may be larger than 2.

Example 3. Let us consider again introductory ex-
ample with more than two groups:

Variables
Obs | Groups aTbcldle[Flalh
1 o110 1|0(1]|1|0
2 1 1|V1|10|1|1|0|0|1
3 o|1(1]0|1]0|0]1
4 5 110|101 |0|1]|1
5 o|(o(o|1|1]|1|0]O
6 3 111101 |0|1|0]1
7 ojo|1]0|1|0]|1|0

The variables a and b are not sufficient to discrimi-
nate groups 2 and 3 because the observation 2 is sim-
ilar to the observation 6 on these variables. However,
the variables a,b and f discriminate the 3 groups at
the same time because no observations are identical
on these 3 variables.

It is important to note that multiple characteriza-
tion of data is different from feature selection since
it does not focus on the most statistically informative
variables, but rather on a combination of variables that
exactly discriminates the groups.

3.2 Terminology and Notations

We use here the notations and formalization proposed
in (Chambon et al., 2015). The observations belong-
ing to Q are expressed on Boolean variables belong-
ing to the set 4. These observations are divided
into several groups belonging to the set of groups G.
These data are represented by a matrix D =.

Definition 11. An instance of the Multiple Character-
ization Problem (MCP) is a quadruplet (Q,4,D,G)
defined by a set of Q observations whose elements are
expressed on a set of variables A , and are represented
by a matrix of Boolean data D\q|«| 4 and a function

G:Q — G, such that G(0) is the group to which the
observation o € Q belongs.

The data matrix is defined as follows:

o The value Do, a] represents the presence/absence
of the variable a for the observation o.

e A line Dlo,.] represents the Boolean vector of
presence/absence of the different variables for the
observation o.

e A column DJ.,d] represents the Boolean vector of
presence/absence of the variable a in all observa-
tion.

Thus, two observations 0,0’ € Q can be rep-
resented by the same Boolean vector (so Dlo,.] =
Dl[0',.]) and yet be considered as two distinct obser-
vations.

In the following we are only interested in satisfi-
able MCP, i.e. such that D does not contain two iden-
tical observations in two different groups (generaliza-
tion of the notion of support set to multiple groups).

Property 2. A MCP instance (Q,4,D,G) is satisfi-
able iff: $(0,0") € Q2 such that D]o,.] = D[0',.] and
Glo) # G(o)

Definition 12. Let A C 4, DA is the data matrix re-
duced to the subset of variables A.

We now introduce the concept of MCP solution.

Definition 13. Given an instance (Q,4,D,G), a sub-
set of variables S C A is a solution if and only if
Y(0,0") € Q%,G(0) # G(0') = D5[o,.] # DS[0', .].

In this case, the matrix DS is called a solution matrix.

In other words, S is a solution if two observations,
coming from two different groups, are different on at
least one variable a € S.

Note that in the particular case where we only have
two groups, a MCP solution is a support set (see Sec-
tion 2.1).

An instance of the MCP may have several solu-
tions of different sizes. It is therefore important to
define an ordering on solutions in order to compare
and classify them. In particular, for a given solution
S, adding a variable generates a new solution §' D S.
In this case we say that S’ is dominated by S.

Definition 14. A solution S is non-dominated iff
Vs € S, 3(0,0') € Q2 such that G(o) # G(0') and
D\IHo, | =D\, ] (i.e. S\{s} is not a solution).

The search for non-dominated solutions thus
makes it possible to avoid searching for redundant in-
formation while limiting the number of solutions.

Among these solutions, we are interested in com-
puting solutions of minimal size with regards to their
variables.



Definition 15. A solution S is minimal iff 1S’ with
IS'| < |8 s.t. §" is a solution.

According to our notion of dominance between
solutions, a minimal solution in not dominated by
any other solutions. Intuitively, a minimal (non dom-
inated) solution cannot be reduced unless two identi-
cal lines appear in two different groups (and conse-
quently the reduced set of variables is not a solution).

As already mentioned, a solution of the MCP is
a generalization of the notion of support set. A non-
dominated solution is thus a generalization of an ir-
redundant support set. Note that the union of irre-
dundant support sets for each couple of groups is not
necessary a non-dominated solution.

3.3 Converting Characterization
Requirements into Constraints

The minimum multiple characterization problem can
be formulated as a linear program (Chhel et al., 2013;
Boros et al., 2000). In fact, finding solutions corre-
spond here to a set covering problem. Given an in-
stance (Q, 4, D, G), let us consider the following 0/1
linear program.

14|
min : Zy,-

i=1
st
c.y'z1

Ye {07 1}‘ﬂ|7Y = [y1a~'-7y|ﬂ\]

where Y is a Boolean vector that encodes the pres-
ence/absence of the set of variables in the solution. C
is a matrix that defines the constraints that must be
satisfied in order to insure that Y is a solution. Let
us denote @ the set of all pairs (0,0') € Q? such that
G(0) # G(0'). For each pair of observations (0,0")
that do not belong to the same group, defined by an
element of ®, one must insure that the value of at
least one variable differ from o to o’. This will be
insured by the inequality constraint involving the 1
vector (here a vector of dimension |@®| that contains
only 1 values).

More formally, C is a Boolean matrix of size |®| x
|4| define as:

e Each line is numbered by a couple of observations
(0,0') € Q7% such that G(0) # G(0') ((0,0') € ®).

e Each column represents indeed a variable.

e C[(0,0'),a] = 1if D[o,c] # D|[d,c], C[(0,0"),a] =
0 otherwise.

e We denote C[(0,0'),.] the Boolean vector rep-
resenting the differences between observations

o and o' on each variable. This Boolean vec-
tor is called constraint since one variable a such
Cl(0,0'),a] = 1 must be selected in order to in-
sure that no identical observations can be found
in different groups .

3.4 Computation of all Non-dominated
Solutions

In (Chambon et al., 2015), Algorithm 2 is presented
in order to compute the set of all non-dominated so-
lutions according to Definition 14.

The idea is thus to select variables a such that
there exists a couple of observations (0,0’) € @' sat-
isfying C[(0,0"),a] = 1 in the constraint matrix C and
Cl(0,0'),d'] = 0 for any variable a’ # a.

ALGORITHM 2. Non-Dominated Solutions:
NDS
Data: C: Constraints matrix of size |®| x | 4.
Result: Sol: Non-dominated solutions set.
Sol = {0}
fori =11 |0|do
//Build a subset of solutions ND;
ND; =0
forall j € 4 s.t. C[6;,j]=1do
forall S € So/\ND; do
if j € S then
| ND;=ND;U{S}
end
end
end
//Build a subset of solutions E'S;
ES;=0
forall j € 4 s.t. C[0;,j]=1do
forall S € Sol\ND; do
if 7S’ € ND; s.t. ' C SU{j} then
| ESi=ES;U{SU{j}}
end
end
end
Sol =ND; UES;

end
return Sol;

Algorithm 2 builds incrementally the set Sol of
non-dominated solutions. Each element of ® =
{61,02,...,8/¢} is a constraint that must be satisfied.
At each iteration, the solutions are updated in order
to satisfy the constraint 6;. The main idea consists in

IRemind that @ is a set of couples of observations de-
fined in 3.3 for indexing lines of the constraint matrix C.



distinguishing solutions that already satisfy this con-
straint (they are put in a set of non dominated solu-
tions ND;) and solutions that need to be modified in
order to satisfy the constraint, (they belong to the set
ES;). Note that the modification of these latest solu-
tions is performed by adding one variable while main-
taining the non-domination property.

This algorithm is related to the Berge’s algorithm
(Berge, 1984) that may be used for computing hitting
sets. Berge’s algorithm consists in incrementing the
solution at each iteration with an element of the con-
straint, and to compare pairs of solutions to remove
dominated solution. Algorithm 2 avoid constructing
dominated solutions.

Note that, as the algorithm builds incrementally
the set of non-dominated solutions. We can use a
maximal bound B for computing only non-dominated
solutions with a number of variables smaller than this
bound. Given a bound B, Algorithm 2 can be modi-
fied when updating ES; as ES; = ES;U{SU{j}}. This
update can be performed only if Vs € ES;, |s| < B in
order to improve the performance of the algorithm.

4 Computation of Prime Patterns
and Group Covers

We propose now a new algorithm that uses the
computation of all non dominated solutions of the
MCEP problem in order to compute prime patterns.

In LAD, the aim is to find a pattern that covers a
maximum number of observations of P, such as no
observation of N contains this pattern. From MCP
point of view, the notion of solution is rather different.
Given a solution S of a MCP instance (Q, 4, D, G) de-
fined as above, the variables of S do not generally cor-
respond to a pattern for the observations in P, unless
all observations are identical on S. In this case a so-
lution of the MCP obviously coincides with a prime
pattern in terms of variables.

In particular, if |P| = 1, the set of all solutions of
the MCP coincides in terms of variables with the set
of all prime patterns that cover the only observation in
P, because in both cases no variable can be removed.

Given a non-dominated solution S of the MCP
(computed by previously mentioned algorithms for
instance), it is easy to transform an observation o of
the group P into prime pattern p. Each variable a of S
appears positively (resp. negatively) in p if D[o,a] = 1
(resp. D[o,a] =0).

The following simple procedure (algorithm 3)
transforms a non-dominated solution of MCP, consid-
ering only one observation x € P into a prime pattern.

ALGORITHM 3. Pattern_Transformation
Data: s: non-dominated solution of the MCP;
x: the only observation in the group P.
Result: p: prime pattern.

pos=10
neg =10
forall a € s do
if x, = 1 then
| pos=posU{a}
end
else
| neg=negU{a}
end
end
p= (/\iEposxi) A (/\jeneg _'xj)
return p;

For each observation, we can generate all prime
patterns that cover this observation. If we generate all
prime patterns for all observations, we generate prime
patterns p, and determine Cov(p) for each one.

Algorithm 4 returns the set Pat of all prime pat-
terns, and the set Cov of coverage of all patterns
p € Pat. Cov is a set of elements V,,, Vp € Pat. Each
element V), is a set of all observations covered by p.
Note that it is not necessary to compute the set Cov to
generate the set Par. Hence, each step that involves
the set Cov can be removed.

All algorithms that can compute the set of all
non-dominated solutions (like algorithm NDS) can be
used to determine the set Sol. Note that since we are
working on one group against all the others, we can
also use an algorithm that computes all the irredun-
dant support sets. However, the algorithms presented
in (Boros et al., 2000) only allow to compute a subset
of these irredundant support sets.

Note that Algorithm NDS (Chambon et al., 2015)
can also generate solutions of smaller size than a
given bound B. Given a bound B, we can only gener-
ate prime patterns with a size inferior to B.

Also note, if we use the algorithm NDS for com-
puting the set Sol, for an instance with x observations
and n variables the complexity is :

n! n!
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(L%J‘(nniiL%J)‘ is the maximal number of non-
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dominated solutions)

Now, using the set Cov we can run Algorithm 5
to compute only strong prime patterns. From the set
of all covers, we can compute the subset of strong
patterns among prime patterns.



ALGORITHM 4. Prime Patterns Computation
(PPC_2)

Data: D: matrix of data, with two groups
{PN}.

Result: Pat: set of all prime patterns

Result: Cov: set of covers of each prime

pattern.

Pat =0

Cov=10

forall o € P do

Generate the constraint matrix C, as if o
was the only one observation in P

Sol={set of all non dominated solutions for
C,}

forall s € Sol do

p=Transformation_Pattern(s,o)

if p ¢ Pat then

Pat = PatU{p}

//Create a new element V), of Cov
which will be a set of observations
covered by p.

Vp ={o}

Cov=CovU{V,}

end

else

IV, is already in Cov; update
vV, =V,U{o}

end
end

end
return Pat and Cov;

ALGORITHM 5. Strong Prime Patterns Com-
putation

Data: Cov: set of coverage of each prime
pattern.
Pat: set of all prime patterns
Result: SPP: set of all strong prime patterns.
SPP =10
forall p € Pat do
if Ap’ € Pat s.t. Cov(p) C Cov(p') then
| SPP=SPPU{p}
end
end
return SPP;

S Experiments

The main purpose of our experiments is to com-
pare the performance of our new algorithm PPC_2 to
the algorithm PPC_1 for computing sets of prime pat-
terns.

PPC_2 (Algorithm 4) uses the principles presented
in Section 4, encoded in C++ with data structures and
operators from the library boost>.

PPC_1 has been recalled in Section 2.2.1. Note
that the source code of this algorithm presented in
(Chikalov et al., 2013) was not available. It has been
implemented in C++ using the same data structures
and operators from the library boost

Experiments have been run on a computer with
Intel Core i7-4910MQ CPU (8x2.90 GHz), 31.3 GB
RAM.

5.1 Data Instances

We consider several sets of observations issued from
different case studies.

e Random is a random instance built with only one
observation in the positive group, and random
value in {0,1}. This instance is used as a ba-
sic test case. The group P is restricted to only 1
value since otherwise it would have been difficult
to identify common patterns for several randomly
generated observations.

e Instances ral00_phv, ralO0_phy, ralsto, ra_phv,
ra_phy, ra_repl, rarep2 and rch8 are matrices
built from biological data that correspond to bac-
terial strains. Each observation is a bacterial strain
and variables are genes (housekeeping gene, re-
sistance gene or specific effectors). These bac-
teria are responsible of serious plant diseases.
Therefore it is important to be able to identify
precisely different groups of bacteria using a re-
stricted set of variables and to identify common
gene profiles. Such identification are very help-
ful for building simple and cheap diagnosis rou-
tines (Boureau et al., 2013). The original files
are available’. Initially, several groups are con-
sidered in these instances. Therefore, we have
considered the first group of bacteria as the pos-
itive group and the union of the other groups as
the negative group. Note that similar results have
been obtained when considering others groups as
positive group.

e Instances voter* are also binary data used as
benchmarks for classification purpose. Note that
these instances have missing data and have been
completed randomly.

e Instances cr60, osl and rell are datasets corre-
sponding to patients suffering from leukemia. Ob-

Zhttp://www.boost.org/doc/libs/1 36_0/libs/dynamic_bitset
/dynamic_bitset.html

3http://www.info.univ-angers.fr/"gh/Idas/Ccd/ce_f.php

“http://tunedit.org/repo/UCI/vote.arff



servations correspond to specific mutated variants
of genes that are suspected to play a role in the
disease. Here the goal is to find genes that could
help to improve prognosis and to select the most
suitable treatments according to the patients pro-
files.

The instances are described in Table 1 with their
number of observations, number of observations in
the positive group (the negative group is of course the
complement) and the maximal number of variables.
For each instance, we consider consider different val-
ues x of variables in order to evaluate the performance
of the algorithms with regards to this number of vari-
ables.

Instances | Obs | Positive group size | Var
Random 20 1 35
ral00_phv | 100 21 50
ral00_phy | 105 31 51
ralsto 73 27 23
ra_phv 108 22 70
ra_phy 112 31 73
ra_repl 112 38 155
ra_rep2 112 37 73
rch8 132 5 37
vote_r 435 168 16
cr60 289 58 14
os1 289 224 14
rell 259 200 14

Table 1: Characteristics of the instances

5.2 Results

Table 2 provides the results obtained on the instances
for computing the set of prime patterns. The first col-
umn corresponds to the name of the instance, with the
number x of used variables (remind that we consider
different sizes for each the instances). The second col-
umn corresponds to the number of prime patterns for
each instance. Next two columns are execution time
(in seconds) for our algorithm PPC_2 (Algorithm 4),
and execution time (in seconds) for PPC_1 (Algorithm
1). The last two columns correspond to the maximal
size of the computed patterns (in terms of number of
variables) and the execution time of PPC_1 used with
an initial bound equal to this maximal size. Of course,
when using this bound we get the same results but
PPC_1 is faster since it may stop earlier. Note that in
practice the value of the bound is not known until the
set of prime patterns has been computed. Running
time is limited to 24 hours. “-” corresponds to execu-
tion times greater than this limit.

The execution time of PPC_1 increases as the number
of observations increases and especially as the num-

ber of variables increases. PPC_2 is less sensitive to
the number of observations. Nevertheless its compu-
tation time also increases according to the number of
variables.

Let us remark that PPC_1 is able to compute all
prime patterns for instance Random(35) in three days.
Nevertheless, one week is not enough for the instance
rch8(37). PPC_2 is able to compute all prime patterns
for instance ra_rep2(65) in a bit more than one hour
while PPC_1 is not able to solve the same instance with
only 20 variables.

In PPC_1, the number of iterations is related to the
number of variables. We observe in the last column
that if a good bound is available (equal to the size
of the largest prime pattern), prime patterns can be
computed more efficiently. Nevertheless, execution
time is still high compared to PPC_2. Moreover, it
requires to know the size of the largest pattern.

6 Conclusion

In this paper we have defined a new algorithm to
generate complete sets of prime patterns and strong
prime patterns in LAD context. Compared to the state
of the art algorithms for these problems, our algorithm
is now able to handle larger data sets. The main idea
of its resolution process is to use an extension of the
LAD (multiple characterization of data) in order to
first compute the non dominated solutions and finally
obtain all the prime and strong prime patterns. Exper-
iments show the efficiency of our algorithm in term of
running times and instance sizes.
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