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GAUGE THEORY FOR STRING ALGEBROIDS
MARIO GARCIA-FERNANDEZ, ROBERTO RUBIO, AND CARL TIPLER

ABSTRACT. We introduce a moment map picture for holomorphic string
algebroids where the Hamiltonian gauge action is described by means of
Morita equivalences, as suggested by higher gauge theory. The zero locus of
our moment map is given by the solutions of the Calabi system, a coupled
system of equations which provides a unifying framework for the classical
Calabi problem and the Hull-Strominger system. Our main results are con-
cerned with the geometry of the moduli space of solutions, and assume a
technical condition which is fulfilled in examples. We prove that the moduli
space carries a pseudo-Kéahler metric with Kéhler potential given by the
dilaton functional, a topological formula for the metric, and an infinitesimal
Donaldson-Uhlenbeck-Yau type theorem. Finally, we relate our topological
formula to a physical prediction for the gravitino mass in order to obtain a
new conjectural obstruction for the Hull-Strominger system.
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1. INTRODUCTION

Back to the work of Atiyah and Bott [7], the interaction of Yang-Mills theory
with symplectic geometry and, in particular, the idea of moment map, has had
an important impact in our understanding of the moduli theory for holomorphic
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government “Investissements d’Avenir” program ANR-11-LABX-0020-01 and ANR project
EMARKS No ANR-14-CE25-0010.
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vector bundles in algebraic geometry. The seed relation between stable bundles
on a Riemann surface and flat unitary connections observed in [7, B6], was
largely expanded with the Donaldson-Uhlenbeck-Yau Theorem [16] [41]. This
important result, initially conjectured by Hitchin and Kobayashi, establishes
a correspondence between the moduli space of solutions of the Hermite-Yang-
Mills equations and the moduli space of slope-stable bundles on a compact
Kéhler manifold. A key upshot is that certain moduli spaces in algebraic
geometry, constructed via Mumford’s theory of stability, are endowed with
natural symplectic structures.

Our main goal in the present work is to explore a new scenario where the
‘moment map picture’ arises tightly bound up with recent developments in
higher gauge theory. Inspired by the Atiyah and Bott construction, our start-
ing point is a class of holomorphic bundle-like objects on a compact complex
manifold X, known as string algebroids [24]. A string algebroid @ is a spe-
cial class of holomorphic Courant algebroid, which can be thought of as the
‘higher Atiyah algebroid’ of a holomorphic principal bundle for the (complex-
ified) string group [43]. In the case of our interest, the geometric content of
() comprises, in particular, a holomorphic principal G-bundle P over X with
vanishing first Pontryagin class p;(P) = 0 and a holomorphic extension

0—>T*X /Q /AP /O

of the holomorphic Atiyah algebroid Ap of P by the holomorphic cotangent
bundle. We assume G to be a complex reductive Lie group with a fixed sym-
metric bilinear form (,) on its Lie algebra.

In this work we shall study gauge theoretical aspects of holomorphic string
algebroids. For this, we start by developing basic aspects of the theory, such
as gauge symmetries and a Chern correspondence in our setting. Gauge sym-
metries are described in Theorem [3.14] where we construct a category whose
objects are string algebroids and whose morphisms are (isomorphism classes
of) Morita equivalences. Two string algebroids @), @' are Morita equivalent if
they can be obtained by reduction from the same complex string algebroid FE
(the analogous concept in the smooth category), which we represent by

Q+—QrL Qr — Q"

Morita equivalences should be thought of as ‘higher gauge symmetries’ (see
Remark B15) and the Picard group of self-equivalences plays the role of the
‘complex gauge group’.

The Chern correspondence (Lemmas 511 and [ZH) requires the study of a
notion of compact form for ) by means of real string algebroids

Er C E.

A compact form Er determines a reduction P, C P to a maximal compact
subgroup K C G (see Definition [5.4]). The Chern correspondence associates to
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each compact form on () a horizontal subspace
W C Eg,

which provides the analogue of the Chern connection in our context. In agree-
ment with structural properties of connections in higher gauge theory [25], 39],
any such W C Ep determines the classical Chern connection 6" of P, C P and
a real (1,1)-form w satisfying a structure equation (see Proposition [5.13)).

We move on to study the geometry of the infinite-dimensional space of hori-
zontal subspaces W on a fixed compact form Fg, whose associated (1, 1)-form
w is hermitian. Via the Chern correspondence, this space has a (possibly de-
generate) pseudo-Kahler structure for each choice of volume form p on X and
level ¢ € R. There is a global Kahler potential given by — log of the dilaton
functional My, that is,

— log M, := —log/ e_gf“%, (11)

X
where f, := % log(w™/n!u). In Proposition [[. 14 we prove that there is a natural
Hamiltonian action for a subgroup of Morita Picard preserving the compact
form, with zero locus for the moment map given by solutions of the coupled
equations

FA wnfl — O, FO,2 — O,

1.2
dle w1 =0,  ddw+ (FAF)=0. (1-2)

Here F' is the curvature of a connection in the principal K-bundle underlying
ER, which is determined by W C Eg.

The equations (L.2)) were first found in [22] for £ = 1 in a holomorphic setting,
in relation to the critical locus of the dilaton functional M;. By Proposition
[[14 they can be regarded as a natural analogue of the Hermite-Yang-Mills
equations for string algebroids. Following [22], we will refer to (L2]) as the
Calabi system. These moment map equations provide a unifying framework for
the classical Calabi problem, which is recovered when K is trivial (see Section
[[2), and the Hull-Strominger system [31), 40]. For the latter, we assume that
X is a (non-necessarily Kéhler) Calabi-Yau threefold with holomorphic volume
form 2 and we take £ =1 and

n(n—1)

p=(-1)"z i"QAQ. (1.3)

To our knowledge, Corollary [[. I8 provides the first moment map interpretation
of the Hull-Strominger system in the mathematics literature (see [17, 21, 37]
for recent reviews covering this topic). As a matter of fact, this was our original
motivation when we initiated the present work.

Our main results, discussed briefly over the next section, are devoted to
the geometry of the moduli space of solutions of (L2). Assuming a technical
Condition [A] which is fulfilled in examples (see Section B4]), we shall prove
that the moduli space carries a (possibly degenerate) pseudo-Kéhler metric
with Kéhler potential (ILT]) (see Theorem B.8)), a topological formula for the
metric (see TheoremB.I3)), and an infinitesimal Donaldson-Uhlenbeck-Yau type
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Theorem (see Theorem [B.19). Interestingly, the non-degeneracy of the metric
is very sensitive to the level ¢ € R.

Main results. Throughout this section we fix a solution W of the Calabi sys-
tem (L2) on a compact form Eg. Via the Chern correspondence, W determines
a string algebroid () with underlying holomorphic principal G-bundle P. In
addition, W determines two cohomological quantities which play an important
role in the present paper, namely, a balanced class and an ‘Aeppli class of ()’
N 1 —Lf,, n—1 n—1n—1 o

b= m[e w ] € HBC (X, R), a= [ER] € 2A<Q,R) (14)
The space ¥ 4(Q,R) is constructed via Bott-Chern secondary characteristic
classes and is affine for a subspace of Hy'(X,R) (see Proposition B.8). For
the sake of clarity, we will assume throughout this introduction that G is
semisimple and the following cohomological conditions are satisfied

hiHX)=0,  RBY*(X)=0,  h%°adP)=0. (1.5)

The results in the paper are hence stronger and more precise than the presented
below. On the other hand, our main results assume Condition[Al In a nutshell,
this technical condition states that any element in the kernel of the linearization
of (L2) along the Aeppli class a determines an infinitesimal automorphism of
@ (see Remark B7)). This is very natural, as it typically follows for geometric
PDE with a moment map interpretation. In Proposition we discuss a
class of non-Kéahler examples of solutions of (L2) where Condition [Al applies,
obtained via deformation of a Kahler metric.

Our main theorem relies on a gauge fixing mechanism for infinitesimal vari-
ations (w,b,a) € Qg' ® Q2@ QY(P,) of the Calabi system (I2)), which requires
Condition [A] (see Proposition B.6]). To state the result, we use the decomposi-
tion w = Wy + (A,w)w/n into primitive and non-primitive parts with respect
to the hermitian form w. Denote by M, the moduli space of solutions of the
Calabi system (see Section BJ]). A precise statement is given in Theorem

Theorem 1.1. Assume Condition [Al and (LH). Then, the tangent space to
M, at [W] inherits a pseudo-Kdahler structure with (possibly degenerate) metric

¢ —2 ‘ , Lep, W
77 /X<a/\Ja>/\e =1

24 g2 Ly e, W
- b7 fo 2
a5 e

2—0(¢ n-—1 o 2y e, W

e /A ) /Ai)ffwwn 2

(1.6)

gﬁ(wa b) (l) =
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Ignoring topological issues, the significance of our main theorem is that the
‘smooth locus’ of the moduli space My inherits a (possibly degenerate) pseudo-
Kéhler metric g, with Ké&hler potential (ILI). An interesting upshot of our
formula for the moduli space metric is that along the ‘bundle directions’; given
formally by the first line in formula ([L6), the metric is conformal to the Atiyah-
Bott-Donaldson pseudo-Kéahler metric on the moduli space of Hermite-Yang-
Mills connections with fixed hermitian metric w (see [7, 16, 33]). Observe that
the signature depends on (, ). The conformal factor is given up to multiplicative
constants by the inverse of the ¢-dilaton functional M, in (LI]). This statement
must be handled very carefully, since the hermitian metric w in our picture
varies in a complicated way from point to point in the moduli space.

Motivated by this observation, in Theorem we study the structure of
the metric (IL6)) along the fibres of a natural map from M, to the moduli space
of holomorphic principal G-bundles, proving the following formula:

2M,

2-rf2-0,_ . L
9o = 20, <2MZ(Rea-b) —Rea-Reb+

(Ima-b)*>—Ima-Im b)
(1.7)

Here, b € Hjr'" ' (X) and a € HY'(X) are ‘complexified variations’ of the
Bott-Chern class and the Aeppli class of the solution in (L4]), obtained via
gauge fixing (see Lemma RI0). Formula (7)) shows that the moduli space
metric (I.6) is ‘semi-topological’, in the sense that fibre-wise it can be expressed
in terms of classical cohomological quantities.

When the structure group K is trivial, X is a Kéahler Calabi-Yau threefold
and we take the volume form as in (LL3]) and ¢ = 1, equation (L7) matches
Strominger’s formula for the special Kahler metric on the ‘complexified Kahler
moduli’ for X [13] Eq. (4.1)]. As a consequence of our framework, this classical
moduli space is recovered, along with its special Kahler metric, by pseudo-
Kahler reduction in Theorem [Tl As an application of (L), in Section 8.4 we
show that any stable vector bundle V' over X satisfying

a(V)=0, (V) =c(X)

determines a deformation of the moduli special Kahler geometry to an explicit
family of pseudo-Kéahler metrics (see also Example B2T]).

On a (non necessarily Kéhler) Calabi-Yau threefold (X, ), (23] is equiva-
lent to the Hull-Strominger system [31) [40] provided that £ = 1 and we take u
as in (L3)). For this interesting case, the physics of string theory predicts that
the fibre-wise moduli metric (L7) should be positive definite (see Conjecture
RI4 and Appendix [A.3]). This way, we obtain a physical prediction relating
the variations of the Aeppli classes and balanced classes of solutions.

Conjecture 1.2. If (X, P) admits a solution of the Hull-Strominger system,
then (L) is positive definite. In particular, the variations of the Aeppli and
balanced classes of nearby solutions must satisfy

: 1
Reda-Reb < —————(Red-b)> (1.8)
2 [x 1%
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Formula (L)) provides a potential obstruction to the existence of solutions
of the Hull-Strominger system around a given a solution. We expect this
phenomenon to be related to some obstruction to the global existence, which
goes beyond the slope stability of the bundle and the balanced property of the
manifold (cf. [45]). Tt would be interesting to obtain a physical explanation
for the inequality (LS.

Our last result can be regarded as an infinitesimal Donaldson-Uhlenbeck-
Yau type theorem, relating the moduli space of solutions of the Calabi system
with a Teichmiiller space for string algebroids (see Section B3]). A precise
formulation can be found in Theorem

Theorem 1.3. Assume Condition[Al and (LE). Then, the tangent to the mod-
uli space My at [W1] is canonically isomorphic to the tangent to the Teichmiiller
space for string algebroids at [Q)].

This strongly suggests that—if we shift our perspective and consider the
Calabi system as equations for a compact form on fixed Bott-Chern algebroid
@ along a fixed Aeppli class—the existence of solutions should be related to
a stability condition in the sense of Geometric Invariant Theory. This was
essentially the point of view taken in [22]. The precise relation with stability
in our context is still unclear, as the balanced class b € Hpg"" (X, R) of the
solution varies in the moduli space M. The conjectural stability condition
which characterizes the existence of solutions should be related to the integral of
the moment map, given by the dilaton functional M,. We speculate that there
is a relation between this new form of stability and the conjectural inequality
(LY). The global structure of the moduli space M, is also a mistery to us. An
important insight for future studies of this structure might be provided by the
moduli space metric in our Theorem [Ll

The moduli space of solutions of the Hull-Strominger system has been an
active topic of research over the last years, including a remarkable physical
construction of the moduli metric in [I4, B5] and a very recent symplectic
intepretation of the system in the physics literature [6] (see also [3] 5, 8, [15], 23]
and references therein). Our formula for the Kéhler potential (821]), with ¢ = 1,
shall be compared with [14, Eq. (1.3)], which puts forward the case ¢ = 0. The
Morita setting in Section [3] establishes an interesting parallelism with recent
developments in generalized Kéhler geometry [9], which were inspirational for
our work. It would be interesting to pursue further links between these two
frameworks in the future. )

Acknowledgments: The authors would like to thank Luis Alvarez-Cénsul,
Vestislav Apostolov, Jean-Michel Bismut, Marco Gualtieri, Nigel Hitchin, Fer-
nando Marchesano, Jock McOrist, Carlos Shahbazi and Martin Ziegler for help-
ful conversations.

2. STRING ALGEBROIDS AND LIFTINGS

2.1. Holomorphic string algebroids. Let X be a complex manifold of di-
mension n. A holomorphic Courant algebroid (@, (,),[,],7) over X consists
of a holomorphic vector bundle () — X, with sheaf of sections denoted also by
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@, together with a holomorphic non-degenerate symmetric bilinear form (),
a holomorphic vector bundle morphism 7 : ) — T'X, and a homomorphism of
sheaves of C-vector spaces

[]: Q®c@ — Q,

satisfying natural axioms, for sections u,v,w € ) and ¢ € Oy,

(D1): [u, [v,w]] = [[u, v], w] + [v, [u, w]],

(D2): m([u, v]) = [ (u), w(v)],

(D3): [u, pv] = m(u)(@)v + ¢lu, v],

(D4): m(u) (v, w) = ([u, v], w) + (v, [u, w]),

(D5): [u,v] + [v,u] = 27*d(u, v).

Given a holomorphic Courant algebroid ) over X with surjective anchor

map m, there is an associated holomorphic Lie algebroid

Ag = Q/(Ker)*.
Furthermore, the holomorphic subbundle
adg = Ker7/(Ker )™ C Ag

inherits the structure of a holomorphic bundle of quadratic Lie algebras.

Let G be a complex Lie group with Lie algebra g, and consider a bi-invariant
symmetric bilinear form (,) : g® g — C. Let p: P — X be a holomorphic
principal G-bundle over X. Consider the holomorphic Atiyah Lie algebroid
Ap := TP/G of P, with anchor map dp: Ap — TX and bracket induced by
the Lie bracket on T'P. The holomorphic bundle of Lie algebras Kerdp =
ad P C Ap fits into the short exact sequence of holomorphic Lie algebroids

0—adP — Ap —-TX — 0.

Definition 2.1. A string algebroid is a tuple (Q, P, p), where P is a holomor-
phic principal G-bundle over X, @) is a holomorphic Courant algebroid over X,
and p is a bracket-preserving morphism inducing a short exact sequence

00— T"X — Q —2 Ap —— 0, (2.1)

such that the induced map of holomorphic Lie algebroids p: Ag — Ap is an
isomorphism restricting to an isomorphism adg = (ad P, (, )).

We are interested in the classification of these objects up to isomorphism, as
given in the following definition.

Definition 2.2 ([24]). A morphism from (Q, P, p) to (@', P’,p/) is a pair
(p,9), where p: Q — @' is a morphism of holomorphic Courant algebroids
and g: P — P’ is a homomorphism of holomorphic principal bundles covering
the identity on X, such that the following diagram is commutative.

00— T*X —Q —25 Ap —— 0,

L

0 T*X Q —2 Ap 0.
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We say that (Q, P, p) is isomorphic to (@', P’,p') if there exists a morphism
(¢, g) such that ¢ and g are isomorphisms.

To recall the basic classification result that we need, we introduce now some
notation which will be used in the rest of the paper. Given a holomorphic
principal G-bundle P over X, denote by Ap the space of connections 6 on the
underlying smooth bundle P whose curvature Fy satisfies Fg0 2 = 0 and whose
(0, 1)-part induces P. Given 6 € Ap, the Chern-Simons three-form C'S(0) is a
G-invariant complex differential form of degree three on the total space of P

defined by
CS(6) =~ (0 A 10,6)) + (Fy £ 6) € O2(P),

which satisfies
dCS(0) = (Fy N\ Fy).

Proposition 2.3 ([24], Prop. 2.8). The isomorphism classes of string alge-
broids are in one-to-one correspondence with the set

HYS)={(P,H,0): (H,0) € B** 0 Q> x Ap | dH + (Fy N Fy) =0}/ ~,

where (P,H,0) ~ (P',H',¢") if there exists an isomorphism g: P — P’ of
holomorphic principal G-bundles and, for some B € Q%9,

H' = H+CS(g0) — CS(®) — d{gd A 0') + dB. (2.2)

Remark 2.4. The notation H'(S) comes from the fact that the isomorphism
classes can be understood as the first cohomology of a certain sheaf S (see [24],
Sec. 3.1] for more details). Implicitly, we shall use a smooth version of this
sheaf (and its first cohomology) in Proposition 2111

Remark 2.5. Recall that given a pair of connections 6, 8’ on a smooth principal
G-bundle P over X, there is an equality (see e.g. [24])

CS(O) — CS(6) — dif A 6) = 2(a, Fy) + (a, da) + %(a, la,a]) € OF

where a = 0’ — 0 is a smooth 1-form with values in the adjoint bundle of P. By
an abuse of notation, we omit the pullback of the right-hand side to the total
space of P.

2.2. Liftings. Our next goal is to understand string algebroids in terms of
smooth data. For this, we will extend the lifting plus reduction method intro-
duced in [27]. Our construction can be regarded as a higher analogue of the
well-known construction of holomorphic vector bundles in terms of Dolbeault
operators.

Let X be a complex manifold. We denote by X the underlying smooth
manifold. A smooth complex Courant algebroid (E, (,),[,], 7) over X consists
of a smooth complex vector bundle £ — X together with a smooth non-
degenerate symmetric bilinear form (,), a smooth vector bundle morphism
m:FE — TX ®C and a bracket [,] on smooth sections satisfying the same
axioms (D1)-(D5) as a holomorphic Courant algebroid (see Section [2.).
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We fix the data G, g, (,) as in the previous section. Let P be a smooth
principal G-bundle over X with vanishing first Pontryagin class

pi(P)=0¢c HYX,C).

We consider the Atiyah Lie algebroid Ap, fitting into the short exact sequence
of smooth complex Lie algebroids

0—sadP —>Ap—>TX®C—0, (2.3)

where T X ® C denotes the complexified smooth tangent bundle of X. Recall
that Ap is defined as the quotient of the complexification of the real Atiyah
algebroid of P, regarded as a principal bundle with real structure group, by
the ideal ad P%!, whereby ad P = ad P in (2.3).

Definition 2.6. A complex string algebroid is a tuple (E, P, p.), where P is a
smooth principal G-bundle over X, the bundle FE is a smooth complex Courant
algebroid over X, and p. is a bracket-preserving morphism inducing a short
exact sequence

00— T*X®C E—5 Ap 0,

such that the induced map of complex Lie algebroids p.: Ap — Ap is an
isomorphism restricting to an isomorphism adg = (ad P, (,)).

Here, the notion of morphism is analogous to Definition 2.2 and it is there-
fore omitted. The basic device to produce a string algebroid out of a complex
string algebroid is provided by the following definition.

Definition 2.7. Given (E, P, p.) a complex string algebroid, a lifting of 7% X
to E is an isotropic, involutive subbundle L C E mapping isomorphically to
T%'X under 7: £ - TX @ C.

Our next result shows how to obtain a string algebroid for any lifting L C E.

Proposition 2.8. Let (E, P, p.) be a complex string algebroid. Then, a lifting
L C E of T*'X determines a string algebroid (Qr, Pr, pr), with

QL=L"/L
where L+ denotes the orthogonal complement of L C E.

Proof. We will follow closely [27, App. A]. Consider the reduction of FE by L,
given by the orthogonal bundle L+ /L. Arguing as in [12, Thm. 3.3], we obtain
that @) inherits the structure of a smooth Courant algebroid over X, with
surjective C-linear anchor map
To,: Qr = THX 2 TX
[e] = 7(e),

for m the anchor map of E. Furthermore, (J; has a natural structure of holo-
morphic vector bundle given by the Dolbeault operator

obe = [s(V),é mod L,

where V' € T(T%X), ¢ € ['(L*) is any lift of [e] € T'(Qr) to L*, and
s = W"le T%'X — L. By construction, this endows @Q; with a canonical
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structure of holomorphic transitive Courant algebroid over X. To endow @)y,
with the structure of a string algebroid, we note that the image of pr := pp)p1
is an involutive subbundle of Ap. This determines uniquely a G-invariant (in-
tegrable) almost complex structure on P, such that TV"°P/G = Im p; and
the induced map Ag, — T'YP/G is an isomorphism of holomorphic Lie alge-
broids. O

In the following lemma we observe that every string algebroid comes from
reduction.

Lemma 2.9. Let (Q, P, p) be a string algebroid.

i) There is a structure of complex string algebroid with lifting on
Eo=QaT"X o (T"X)", L=T1%X,

such that, for any e,q € T(Q), V,W € T(T"'X), £, n € Q% the anchor
map, the pairing, the bracket, and the bracket-preserving map are given
respectively by

e+ V+&) :=n(e)+V,

(e+V+E&e+V+E = (e,e) +&(V),

e+ V +Eq+W 40 :=le,q +0%q—0%e+[V,W] + Lyn — iwde,
ple +V +£) = ple) + 'V,

where 8% denotes the partial connection on P determined by the holomor-
phic principal bundle P.

it) The reduced string algebroid Qp, is canonically isomorphic to Q via the
map induced by the natural projection L+ = Q & T™"'X — Q.

Proof. A direct proof of 7) follows by a laborious but straightforward check
using the axioms in Definition 2] and it is omitted (see Remark 210 and
Remark 2.14] below for an alternative, shorter proof). Part ii) follows easily
from Proposition 2.8 O

Remark 2.10. The construction of Eg in Lemma boils down to the fact
that Q forms a matched pair with the standard Courant structure on T%'X @
(TO1X)* (cf. 26, 27]).

To finish this section, we recall the classification of complex string algebroids.
This will be useful for some of the calculations in Section @l Given a smooth
principal G-bundle, we denote by Ap the space of connections on P.

Proposition 2.11 ([24], App. A). The isomorphism classes of complex string
algebroids are in one-to-one correspondence with the set

HY(S)={(P,H,.,0.) : (H,0.) € Q. x Ap | dH. + (Fy, N Fp,) =0}/ ~, (2.4)
where (P, H,,0.) ~ (P', H.,0.) if there exists an isomorphism g: P — P’ of

c)rc

smooth principal G-bundles and [2.2)) is satisfied for some B € QZ.
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2.3. Explicit models. We describe now concrete models for string algebroids,
either in the holomorphic or smooth categories, which will be used throughout
the paper. We refer to [24, Prop. 2.4] for the fact that the model in the next
definition satisfies the axioms in Definition 211 .

Definition 2.12. For any triple (P, H, ) as in Proposition 2.3, we denote by
Q=T"X@adP& (T"°X)*
the string algebroid with Dolbeault operator
Oo(V +r+&) =0V +ivF," +r + 06 +ivH> + 2)F,)" 1),
non-degenerate symmetric bilinear form, or pairing,
(VA+r+&V4r+8o=EV)+ (),
bracket on Og,,
VAr+&Wtt+nlo=[V,W] = F°(V.W) + )t — dfyr
+iyOn + 0(n(V)) — i€ + iyiy H>,
+ 200, t) + 20y ;0 1) — 2(iw F3 0, ),

anchor map 7o (V +r+¢£) = V, and bracket-preserving map po(V+r+§&) = V+r,
where we use the connection 0 to identify Ap = T'9X @ ad P.

We turn next to the the case of complex string algebroids. Since this case
has not been considered previously in the literature, we give a few more details
of the construction. Given a triple (P, H.,0.) as in Proposition 211} we can
associate a complex string algebroid as follows: consider the smooth complex
vector bundle

Ey=TX®C)@adP @ (IT"X ®C)
with the C-valued pairing
(V+r+&,V+r+& =EV)+(rr) (2.5)
and anchor map 7(V +r + &) = V. Endowed with the bracket
V4r+&WHt+nl=[V,W]|— Fp(V,W) +dist — dicr — [r,1]
+ Lyn —iwdé + iyiw H. (2.6)
+ 2(d%r, t) + 2(iy Fy,, t) — 2(iw Fp,, 1),

the bundle Ey becomes a smooth complex Courant algebroid (the Jacobi iden-
tity for the bracket is equivalent to the four-form equation in (24))). The

~Y

connection 6. gives a splitting of the Atiyah sequence (23], so that Ap =
(TX ®C) & ad P, and in this splitting the Lie bracket on sections of Ap is

[V +r, W+t = [V,W] = Fp (V,W) + dst — djgr — [r,1].
Then, one can readily check that
po(V+r+&=V+r (2.7)

defines a structure of complex string algebroid (P, Ey, p), in the sense of Defi-
nition [2.6] where we again use 0. to identify Ap = (TX ® C) & ad P.
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Definition 2.13. For any triple (P, H,,0.) as in (2.4]), we denote by
Ec=(TX®C)dadP® (T"X ®C)

the complex string algebroid described by the pairing (2.5), the bracket (2.6]),

and the bracket-preserving map (2.7]).

Remark 2.14. By using the explicit models )y and Ej in Definition 2.12] and
Definition 2.13, combined with Propositions and ZI1] one can obtain a
short proof of Lemma 2.9

We next obtain explicit characterizations of liftings of 7%'X in terms of
differential forms. Given (7, ) € Q% @ Q'(ad P) we can define an orthogonal
automorphism (v, ) of Ey by (see [24])

(v, B)(V+r+&) =V +ivB+r+ivy— (ivB, B) —2(8,r) +&. (2.8)

Lemma 2.15. Let Ey be the complex string algebroid determined by a triple
(P, H,.,#0.), as in Definition[2.13. There is a one-to-one correspondence between
liftings of T®'X to Ey and elements

(’Y, 6) c Ql,l+0,2 D QO,I(adB)
satisfying
1 )1,2+0,3

(He+dy =208, Fo.) — (8, d"8) - 5 (8,15, 8)

_ 1
Fp?+0"B+ 5[5, Bl =0.

=0,
(2.9)

More precisely, given (v, 3) satisfying (2.9), the lifting is
L={(—y,-8)(V"), V* e T* X}, (2.10)

and, conversely, any lifting is uniquely expressed in this way.

Proof. An isotropic subbundle L C Ey mapping isomorphically to 7%' X under
7 is necessarily of the form (ZI0) for a suitable (7, 3) € Q41192 @ Ql(ad P)
(see [20, Sec. 3.1]). Observe that, for any VO € TO1 X

(=7 =B) (V) = (=7, =B)(V*),
where 8 = % and v = 5 + (Bo’l A BLO), and the pair
(7, B) € QM1+02 g 001 (ad P)
is uniquely determined by L. By the proof of [23, Prop. 4.3] we have

(v, D=, =B)- (=7, =B)Joc,rre = [ “o.+8,1 (2.11)
where [-,]p. ¢, denotes the Dorfman bracket (2.6) and
HY = Hotdy = 2{0, Fo) — {6,d0) ~ S8, 10.6). (212)

Then, by formula (2.6]) for the bracket, L is involutive if and only if
= 1
Folip =Ty +0"B+ 516.81 =0, (H)"*%% =0, (2.13)

and the proof follows. O
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We describe now the isomorphism class of the reduced string algebroid in
Proposition 2.8], in terms of the explicit model in the previous lemma.

Proposition 2.16. Let Ey be the complex string algebroid determined by a
triple (P, H,,0,), as in Definition 213 If L = (—v,—B)T*' X, as in (Z10),
then the isomorphism class of (Qr, Pr, pr) is (see Proposition[2.3)

(P, HYO™ + oy — 2(8, FY°), 6.+ B)] € H'(S), (2.14)
where Pr, denotes P endowed with the holomophic structure 69! + f3.

Proof. By the second equation in (2.9) it follows that %!+ induces a structure
of holomorphic principal bundle on P, called P;. Now, we have

LY ={(—, =B (W +t+n"") | WeTX®C, tcadP, n*°c (T"°X)*}
and therefore there is a smooth bundle isomorphism
Qr—TX @adP o (THX)*
(=7, =B)YW +t+ ") = W0 4+t 4+ ' (2.15)

Let us now express the holomorphic Courant structure in terms of (ZI3).
Firstly, note that (see (Z11))

(1 (=7, =B) V), (=, =B)Y WY+t + 1)
= Dyoa W0 — Fy (VO WH0) 4 0%,

+ Oyvoun™? +ivoriyro H, + 2(iyonr Fy , t),
where H! is as in (212) and ¢, = 6. + B. Since L is involutive, we have
(H/)V203 = 0 (see (ZI3)), and

O (W0t + ") = OW™O +iyo Fy ' + 0%t
+ "0 iy (HEY) + 2(F 1),
Therefore, using the connection ¢, to identify
Ap, =T’X ®ad P
it follows that
pr: Qr — Ap,
(=7, =B W+t + 0 0)] = WHE 4
is holomorphic, and hence @), is a string algebroid. To finish, arguing as for
the Dolbeault operator, we notice that, in terms of (ZIH]), the bracket of @,
is given by
VA r+& W+t +n] = [V,W] = Fy (V,W) + %t — 8ber — [, 1]
+ (iyn) + iyOn — iwOE + iyiy H>°
+ 2(0%r, t) + 2(iv Fy° t) — 2(iw Fy,°, ),
for V 4+ r + & W + t + n holomorphic sections of T"°X @ ad P @ (TH°X)*.

Then, by [24, Prop. 2.4] it follows that the isomorphism class of (Qp, Pr, pr)
is (2.14)), as claimed. O
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3. MORITA EQUIVALENCE

3.1. Definition and basic properties. We introduce now our notion of
Morita equivalence for string algebroids over a fixed complex manifold X. We
follow the notation in Proposition 2.8l For simplicity, when it is clear from
the context, we will denote a complex string algebroid (E, P, p.) (resp. string
algebroid (@, P, p)) over X simply by E (resp. @)). We fix the structure group
of all our principal bundles (either smooth or holomorphic) to be a complex
Lie group G.

Definition 3.1. A Morita equivalence between a pair of string algebroids @)
and @’ is given by a complex string algebroid E, a pair of liftings L ¢ £ D L'
of T%' X and string algebroid isomorphisms 1, ', fitting in a diagram

w )4 X w/ ,
Q+—0Qr Qr — Q'

where the discontinuous arrows refer to the partial maps
Lt = QL =L"/L, L = Qp=1L"/L
The set of Morita equivalences between @) and @' will be denoted by Hom(Q, @').

Our goal in this section is to characterize when Hom(Q, Q") # () for any
given pair of string algebroids. It will be helpful to study the triples (E, L, ),
consisting of a reduction and an isomorphism, thought of as ‘half of a Morita
equivalence’.

Definition 3.2. Let ) be a string algebroid. A Morita brick for @) is a tuple
(E, L,%), given by a complex string algebroid F, a lifting L C E of T%'X and
a string algebroid isomorphism ¥: Q) — Q.

Remark 3.3. Actually, a Morita brick (E, L, ) can be seen as a Morita equiva-
lence of () with itself of the form (¢, L, E, L, ). However, it is helpful to single
out these objects in order to develop the theory.

By Lemma[2.9] there always exists a Morita brick for a given string algebroid
@, given by

E = E, L=T%"X, Y = 1dg. (3.1)

Here Idg denotes the isomorphism @, := L*/L — @ induced by the natural
projection L+ = Q @ T%*'X — . Furthermore, as we will see shortly, this is
essentially the unique Morita brick, up to the right notion of isomorphism.

To introduce the following definition, observe that given pairs (F, L) and
(E', L"), an isomorphism

f+E—E  such that f(L)y=1
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induces, upon restriction to L, an isomorphism f: Q; — Qr and a commu-
tative diagram

E--3Qp (3.2)
|
E—->Qu.

Definition 3.4. We say that two Morita bricks (E, L, ), (E’, L',¢') for the
same string algebroid ) are isomorphic if there exists an isomorphism f : £ —
E' such that f(L) = L', thus inducing an isomorphism f : Q, — Qp/, and
¢ =’ o f. That is, the following diagram commutes

f\>L
J o,

S /
Qu "

In the following result, we observe that there is a natural forgetful map
from the set of isomorphism classes of string algebroids H'(S) to the set of
isomorphism classes of complex string algebroids H'(S) (see Proposition
and Proposition 2IT]). This provides a lift of the map which sends a holomor-
phic principal G-bundle P to the underlying smooth principal bundle P (see
Remark [3.6]).

Q.

Lemma 3.5. Using the notation in LemmalZ.9, there is a well-defined map

s: HY(S) — HY(S)
[Q] — [Eq]. (3.3)

Proof. Given an isomorphism f: ) — @', we can define an induced isomor-
phism of complex string algebroids

i = f P IdTO,IX ©® Id(TOJX)* : EQ - EQ/'
l

Remark 3.6. Alternatively, relying on the classification in Proposition and
Proposition 2.11], we can also write ([B.3)) as

S([(P, H, 0)]) = [(B’ H, 0)]’
where P denotes the smooth complex principal G-bundle underlying P.

We are now ready to prove the uniqueness of Morita bricks up to (unique)
isomorphism.
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Lemma 3.7. Let Q) be a string algebroid. Given a Morita brick (E, L, ) for
Q, there exists a unique isomorphism

B (3.4)

fl "Q
EQ\ f

to the Morita brick (Eqg, T®'X,1dg) in (B1). Consequently, any Morita brick
(E, L,¢) for Q satisfies, for the map s in ([B.3]),

[E] = 5(Q)) € H(S).

L v
\Q.

Proof. The isotropic splitting L. C E gives a decomposition of F into L', which
contains L, and (T%'X)* C E. Combining this with L = T%' X the definition
of @ and 9, we get

E=L"+(T"X)" 2 Qp+T™X + (I X)" =, Q+T™X + (T X)" = Eq.

This is an isomorphism of Courant algebroids with the Courant algebroid struc-
ture given in Lemma 29 This isomorphism tautologically sends L to T%'X,
and induces a map from @, to Q which makes the diagram [3.4] commutative.

The uniqueness follows from the fact that the first isomorphism above is the
only one that sends L to 7% X via projection, and the second one is the only
one satisfying ¢ = Idg o f. Finally, the last statement follows from the fact
that [E] = [Eg| = s([Q]), as defined in Lemma 3.5 O

With the previous result at hand, we can now decide whether there ex-
ists a Morita equivalence between any two string algebroids. The condition
Hom(Q, Q') # 0 holds, precisely, when @ and @’ can be reduced from the
same complex string algebroid (up to isomorphism).

Proposition 3.8. Let Q and Q' be string algebroids. Then, Hom(Q, Q') # 0
if and only if

s([Q)) = s([Q) € HY(S). (3.5)
Proof. A Morita equivalence contains Morita bricks for Q and @', so by Lemma
B the existence of A € Hom(Q, Q') implies (8.5). Conversely, if (3.5) holds,

take Morita bricks (£, L1, 1) and (E], L', ), which exist by Lemma [2.9] and
any isomorphism f : Fy — Ef, the tuple

(% © fﬁlvi([’l)v Eiu L/7 1/11)
is a Morita equivalence between ) and @’. O
3.2. The Morita category. Building on Lemma 3.7, we show next that a

pair of Morita bricks for ) admit a unique isomorphism, which we will use for
the definition of the composition of Morita equivalences.
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Lemma 3.9. Let Q be a string algebroid and a pair of Morita bricks (Ey, Ly, 1)
and (Ey, Ly, ) for Q. Then, there exists a unique isomorphism f: Ey — FE
such that f(Ly) = Ly making the following diagram commutative

b

AN f s

N %4
Y1 P2
Qr, — Q+—Qr,

Proof. The statement follows as a direct consequence of Lemma 3.7, with the
isomorphism given by i;l o f, in the following diagram:

(3.6)

O
We are now ready to define the composition law on Morita equivalences.
Definition 3.10. The composition law for Morita equivalences
Hom(Q, Q') x Hom(Q', Q") — Hom(Q, Q")
is defined by
(W1, Ly, By, Ly, 0) o (W, Ly, Ba, L, 04) = (y o f71, f(L1), Ea, Ly, 4)

where f: Ey — Ej is the unique isomorphism such that f(L}) = Lj given in
Lemma [3.9, which we call composing isomorphism, whereas f: Qr, — Q)
is the induced isomorphism.

In the following result we check that the composition law is associative.
Lemma 3.11. For A; € Hom(Q, Q’'), As € Hom(Q', Q"), A3 € Hom(Q", Q"),
(A1 oAy) oAz =Aj0(AyoAs).

Proof. We set the notation
Ay = (Y1, Ly, By, LY, o)),
Ay = (1, Ly, En, Ly, 43), (3.7)
Ag = (V5, Ly, Es, Ly, ¢5).
On the one hand,
(AfoAg)o A3 = (w,i% o f (L), Es, L3 3"
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where 1) = ¢y o (faz 0 f12)”" and

i122 El —>E2, i232 E2—>E3,
are uniquely determined by

i12<L/1) = Ll27 ng(Lg) = Lg
and the corresponding diagram (3.6). On the other hand
Al © (A2 © A3) = (1/;7z13([’1)7 E37 Lg,7 ;/7,”)
where ¢) = 9, o fl_gl and
il?,: E, — Ej,
is uniquely determined by
L (L) = [o,(L3)

and the diagram (3.6]). Since

i23 © i12(L/1) = igg(LIQ) = ilg(Lll)7
we have f 03 © f b= f 3 and hence the composition is associative. l
Remark 3.12. A Morita equivalence of the form (Idg, T™'X, Eq, T%'X,1dg)
provides a left identity for the product, as

(Idg, T*'X, Eq, T*'X,1dg) 0 Ay = (¢ o 71, f(L1), Ba, Ly, 45) = Ay (3.8)

where f: Eg — E, is uniquely determined by f(7%'X) = L} and the condition

Idg = o f. However, it is not unique (we could replace Eg by Ey, for instance)
and does not provide a right inverse, which does not exist.

In order to overcome the shortcomings of Definition mentioned in Re-
mark B.12] we pass to the quotient by introducing the following notion of iso-
morphism. Our construction shall be compared with the algebraic definition
of Morita equivalence for bimodules.

Definition 3.13. Let @Q and @’ be string algebroids. Given Morita equiva-
lences, for j =1, 2,

A] = (1/}]7 L]7 EJ7 L;7 ’l/};> S HOHl(Qu Ql>7
an isomorphism between A; and As is an isomorphism of complex string alge-

broids
i: E1 — EQ,

such that f(Li) = Ly and f(L}) = L5, inducing a commutative diagram

L~ Y
)w/ Qr, li Quy
J/f _ Es - Jf
)< - ~ >k //

QL Qu, "

Q



GAUGE THEORY FOR STRING ALGEBROIDS 19

Whenever there exists such an isomorphism we will say that A; and Ay are
isomorphic, and denote it by A; = As. The set of isomorphism classes of
Morita equivalences between () and @' will be denoted by Hom(Q, Q').

We are now ready to prove the main result of this section, which gives
the structural properties for the composition law ([B.I0) after passing to the
quotient. We express this in standard categorical language.

Theorem 3.14. There exists a groupoid whose objects are string algebroids
@, and whose morphisms are isomorphism classes of Morita equivalences. In
particular, the composition law

Hom(Q, Q') x Hom((', Q") - Hom(Q, Q") (3.9)

1s defined by
[A1] o [Ag] = [A1 0 Ay

and we have

i) for [M] € Hom(Q,Q'), [As] € Hom(Q',Q"), [As] € Hom(Q",Q"),
([A1] o [Aa]) o [As] = [A1] o ([A2] o [As]),
i) the identity morphism 1d% € Hom(Q, Q) is
1d9 = [(Idg, T™' X, Eq, T*' X, 1dg)],
where Eq is defined as in Lemma[Z2.9.

Proof. We first check that (3.9) is well defined. With the notation of (3.7),
let Ay o Ay be defined via the composing isomorphism f  from Lemma B9
Consider different representatives gA; and hA,, as in Definition [3 The
composing isomorphism for the composition gA; o hA, is then ho f 1299~ 1 and
A1 o Ay is isomorphic to gA; o hA, via h.

Associativity, that is, ;), follows directly from Lemma B.IIl As for ii), we
have from (38) that Id€ is a left identity. We see that Id® is a right identity:
let f be the composing isomorphism for Id° o A,. We have that ifl is the
composing isomorphism for A, oId?, so AyoId? is isomorphic to A, via S, that
is

[1d9) o [Ag] = [Ao] 0 [1d%] = [As].

Finally, the fact that our category is a grupoid follows from

[, L, B, L' 9] = (', L', E, L, ¢)].
U

Remark 3.15. We expect that the previous result can be strengthened by prov-
ing that there exists a 2-category, whose objects are string algebroids (), whose
1-morphisms are the Morita equivalences A, and whose 2-morphisms are iso-
morphisms of Morita equivalences, in the sense of Definition Checking
the details goes beyond the scope of the present work.
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4. HAMILTONIAN MORITA PICARD

4.1. The Morita Picard. Let (Q, P, p) be a string algebroid with complex
structure group G over a complex manifold X. As usual, (@, P, p) will be
denoted simply by ). Let P be the smooth G-bundle underlying P, and let Gp
be the corresponding gauge group. In this section we study the Morita Picard
of @, that is, the group of automorphisms of () in the groupoid constructed in

Theorem [3.14],
Pic(Q) := Hom(Q, Q).
We start by identifying it with the automorphism group of Eq.

Proposition 4.1. Let Eq be the complex string algebroid in LemmalZ. 9. There
s a canonical group isomorphism

©: Aut(Eg) — Pic(Q)
[ [(de, T X, Eq, f(T™'X), f7)].
Proof. We use the notation Lg := T%' X for simplicity. By Theorem B.14],
o(f,)op(f,) =[(Idg, Lo, Eq, f,(Lo), fi )] o [(1dg, Lo, Eq, f,(Lo), f5 )]
= [(fhi;l(Lo)a Eq, f,(Lo), fh]
= [(Idg, Lo, Eq, (f, o f)(Lo), (fif2) )] = @(f, © f,),

and hence ¢ is a homomorphism. If ¢(f) = Id then

[(Idg, Lo, Eq, f(Lo), f1)] = [(Idg, Lo, Eq, Lo, 1dg)],

and hence f = Idg, by Lemma 3.9l Finally, given [A] € Pic(Q), by Lemma
B.7 we can choose a representative of the form (Idg, Lo, Eq, L, ) for suitable
(L,1). By Lemma 3.9 there exists a unique f € Aut(Fg) such that

L:i(LO)a ¢:f_17
and hence ¢(f) = [A]. O

We use now the previous result to obtain a structural property of the group
Pic(Q), based on the characterization of the automorphism group of a string
algebroid in [24] Prop. 2.11]. To state the result, recall from [24] App. A] that
there is a group homomorphism

op: QB — H3(X, (C),
defined by
op(g) = [CS(g8.) — CS(0.) — d(gbe NO.)] € H(X,C)

for any choice of connection 6. on P. This defines a short exact sequence of
groups (cf. 24, Prop. 2.11))

O /Q%,Cl /Aut<EQ> —>Ker0'£—>17

where Qécl the additive group of closed complex 2-forms on X. The proof of
the next result is immediate from Proposition [4.1l
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Corollary 4.2. There is a canonical exact sequence

0 — Q2 — Pic(Q) — Kerap — Gp —— H3(X,C).  (4.1)

To obtain a more explicit description of Pic(Q), we choose a representative
(P, H,0)] = [Q] € H'(S) and consider the model @y = @ in Definition 212

Then, we have an identification (see Lemma [2.9])
EQO = E07

for the complex string algebroid Ej determined by (P, H,60) (see Definition
2.13). Relying on [23] Cor. 4.2]-which characterizes Aut(Ep) in terms of
differential forms (cf. [24, Lem. 2.9])—, we obtain the following result by direct
application of Proposition [4.1]

Lemma 4.3. Let Qg be given by (P, H,0). There is a canonical bijection
between Pic(Qo) and the set of pairs (9,7) € Gp x Q% satisfying

dr = CS(g7'0) — CS(0) — d{g 0 N 0), (4.2)
where (g,7) acts on V +r+ & € Ey by
(g, 7)- (V4+r+& =V+g(r+iva?)+E+iyB— (iva?,a?) — 2(a?, r) (4.3)
for a? := g7'0 — 0. Via this bijection, the group structure on Pic(Qq) reads
(9:7)(d,7) = (99,7 + 7' + (g "a? Na?)).

The following result—characterizing the Lie algebra of Pic(Q)-has been
stated in [23] 24] without a proof. As it is key for our development in Section
42 we include a detailed proof here. We follow the notation in Lemma

Lemma 4.4. Let Qg be given by (P, H,0). There is a canonical bijection
Lie Pic(Qo) = {(s, B) | d(B — 2(s, F)) = 0} € Q"(ad P) x Q..
Via this bijection, the adjoint action of Pic(Qo) reads

(9,7)(s, B) = (gs, B — {a? A [s,a%]) — 2(d’s A a?)), (4.4)
for any (g,7) € Pic(Qy), and the Lie bracket structure is
[(80, BQ), (81, Bl)] = ([80, Sl], 2<d€80 AN d981>>. (45)

Proof. Let (g+, ;) be a one-parameter family in Pic(Qo) with (go, 70) = (Idp, 0).
Set a; = a%, and note that (a;)—o = d?s. Taking derivatives in ([2) at t = 0,
it follows that
(s, B) == (g1, 7 )j1=0 € 2°(ad P) x QF (4.6)
satisfies
d(B—2(s,Fp)) =0 (4.7)
(see Remark 2.5)). Conversely, given (s, B) € Q°(ad P) x Q% satisfying (4.7),
we define
(91, 7) € Gp x Q2
by g; = e and 7, = t(B — 2(s, Fp)) + i, where

e = /Ot(2(5, Fy,) + {ay, A d?s))du
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and 0, = g;'60. Notice that (7¢) =0 = B, as required. Setting
we have (see [22, Lem. 3.24])
Cy = 2(d%s, Fy,) + d{a; A d%s) = d(2(s, Fy,) + (a; A d*s)),
and therefore
th—Ct:d,ut—Ct:O
From 7y = 0 = Cj it follows that (g;, ;) € Pic(Qy) for all ¢.
We prove next formula (4] for the adjoint action. For (g;,7;) € Pic(Qy),
with j = 0,1, denote a; := g;le — 6. Using that
™ = gy'gy 10 — 0 =gy ao + ax,

we obtain

(90, 70) (91, 71) (90, 70) " = (90, 70) (91, 1) (95", —70)
-1
= (gogr90 5 1 + (g7 ag A ar) + (goa®9* A a% )
-1
= (909190 ", 71 + (a0 A g1 ao) + (a®t Aag) + (ao A ax)).

Assume now that (g1,71) = (g, 7t) is a one-parameter family of elements in
Pic(Qy), and define (s;, By) as in ([4.0). Taking derivatives in the previous
expression it follows that

(90, 70) (51, B1) = (gos1, B1 — {ao A [s1, ag]) — <d051 A ag) + (ao N d031>>7
as claimed in (4.4).

Finally, assume that (g, 70) = (g4, 7¢) is a one-parameter family of elements
in Pic(Qo), and define (sg, By) as in (Af). By taking derivatives in the last
formula we have

[(s0, Bo), (s1, B1)] = ([s0, 1], =2(d’s1 A d’s0)),

which proves (£I). For completeness, we check that Lie Pic(Q)y) is closed for
this bracket structure

d(2<d680 AN d081>) - 2([80, 81], Fg)) = 2<[F9, 81] N d0$0> - 2<d681 AN [Fg, 80]>
— 2([ds0, 51], Fy) — 2{[50, d’s1], Fp) = 0.

O
To finish, we observe from the first part of the proof of Lemma [4.4] that
the differential of op in ([@I) applied to s € Lie Gp = Q°(ad P) vanishes

identically,dop(s) = —[d(s, Fy,)] = 0. Therefore, at the infinitesimal level (@)
induces a short exact sequence

0 — Q% ;, — Lie Pic(Q) — Q°(ad P) — 0. (4.8)
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4.2. Hamiltonian automorphisms. In this section we define a normal sub-
group
Pic(Q) C Pic(Q)

by means of the Aeppli cohomology of the complex manifold X, which is the
key to our moment map picture in Section [7l To fix ideas, we shall think of
Pic(Q) as an analogue of the group of symplectomorphisms of a complex sym-
plectic manifold, while the elements in Pic4(Q) will play the role of complex
Hamiltonian symplectomorphisms.
Consider the Aeppli cohomology groups of the complex manifold X,
Ker(dde: QP14 — Qprhatl)

HY(X) = = . 4.9
A ( ) Im(a o) 0: Qp—1la ® Qp.a—1 Qp,q) ( )

Our first goal is to define a Lie algebra homomorphism

a: Lie Pic(Q) — HY'(X),

where the vector space Hi"l(X ) is regarded as an abelian Lie algebra. For
this, notice that for any choice of representative [(P, H,0)] = [Q] € H*(S) and
isomorphism @ = )y, Lemma [4.4] implies that there is a natural map

ag: Lie Pic(Qy) — HY'(X)

4.10
(s, B) = [B"! = 2(s, Fy ). 10

Lemma 4.5. There is a canonical linear map
a: Lie Pic(Q) — HY'(X), (4.11)

which is invariant under the adjoint action of Pic(Q). In particular, (Z11]) is
a Lie algebra homomorphism and there is a normal Lie subalgebra

Kera C Lie Pic(Q).

Moreover, for any choice of representative [(P, H,0)] = [Q] € H'(S) and iso-
morphism QQ = Qo, the induced homomorphism ag coincides with (LI0).

Proof. By Proposition L] an element [A] € Pic(Q) corresponds uniquely to
f € Aut(Eg). Given an isomorphism 1: @ — () (for a choice of representative
(P, H,0) of [Q] € H'(S)), arguing as in the proof of Lemma [3.5 we obtain an
isomorphism
% = & Idpoix & Id(TO,lx)* : EQ — FEy
inducing an identification Aut(Eg) = Aut(Ep). Thus, by Lemma 4] an ele-
ment ¢ € Lie Pic(Q) determines uniquely a pair (s, B) € Lie Pic(Qo). Then,
we define
a(¢) = ag(s, B) = [B"! — 2(s, F,"")] € HY'(X).

To check that a is invariant under the adjoint Pic(Q)-action, it is enough to

check that ag is invariant under the adjoint Pic(Q))-action. Following Lemma
44, we define a closed complex two-form

D:=B—{(a?N]s,a]) — 2(d05 Na?) —2(gs, Fy),
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so that [DV'] = ay((g, 7)(s, B)) € Hy'(X), and calculate

D =B+ <[a’ga ag]’ 5> - 2d<87 ag> + 2(‘97 da&g) - 2(‘97 F9719>

= B —2(s, Fy) — 2d(s, a?), (4.12)

which proves the invariance of ag. Here we have used the invariance of the
pairing (,) combined with

1
g Fy=Fy1g=Fy+da + §[a9, a?].

To finish, we check that (A1) is independent of choices, thus yielding a
canonical map. Consider a different choice of representative (P, H',0') of [Q)],
corresponding to an isomorphism v¢y: Qo — Q. Explicitly, ¢y = (go, B) for
go € Gp and suitable B € Q*°, acting as in (£3)) (we use the notation a% :=
95 10" —0) (see [24, Lem. 2.7]). As before, ¢ extends to an isomorphism (given
by the same expression)

V,: Bo=Qoo T X o (T™X)" = Ey= Qo T X @ (T X)",
under which an element (g, 7) € Aut(Ey) = Pic(Q) transforms by conjugation
(¢',7") = yo(g,T)yal € Aut(E]), where

9 = 9099
T =7+ (g7 (a®) Na®) = {(g7 g5 0" — 0) Aa®),
= g (@) A @) — (g7 + a) ),
From the previous formula, an element (s, B) € Lie Pic(Qg) transforms by
s' = Ad(go)s
B' = B+ (a® AN d’s) — ((—[s,a®] + d’s) A a®)
= B +2(a® Nd’s) + ([s,a%] A a®),
and therefore, arguing as in (£.12)), we have aj(s’, B') = ay(s, B). O
We are now ready to define the normal subgroup Pics(Q) C Pic(Q). Let
Picy(Q) denote the component of the identity Idg, in Pic(Q) (see Proposition
ELI). Given an element f € Pico(Q) and a smooth family f, € Pic(Q) such

that f = Idg, and f, = f, there exists a unique family ¢; € Lie Pic(Q) such
that

d

Eit =Go it'
Here, we regard (; as a vector field on the total space of E, following Propo-
sition [4.1]

Definition 4.6. Define Pic,(Q) C Pic(Q) as the set of elements f € Picy(Q)
such that there exists a smooth family f, € Pic(Q) with ¢ € [0, 1], satisfying

io = ldg,, L = [, and
a(¢;) =0, forallt. (4.13)
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By analogy with symplectic geometry, a family f, € Pic(Q) satisfying (4.13)
will be called a Hamiltonian isotopy on Pic(Q). Notice that any smooth family
¢; € Lie Pic(Q) satisfying (AI3]) generates a Hamiltonian isotopy.

Proposition 4.7. The subset Pica(Q) C Pic(Q) defines a normal subgroup
of Pic(Q) with Lie algebra Ker a.

Proof. The proof is a formality, following Lemma and [34, Prop. 10.2]. If
L? is a Hamiltonian isotopy generated by ¢ and E is a Hamiltonian isotopy

generated by ¢!, then ig o ﬁ is a Hamiltonian isotopy generated by

¢+ Ad(f))¢

and (f))~" is a Hamiltonian isotopy generated by —Ad((f})~")¢f. Hence,
Pic4(Q) is a group. Moreover, if (; generates the Hamiltonian isotopy it, then

(
Ad(f)¢: generates the isotopy fo f, o i’l for any f € Pic(Q), and therefore

Pic4(Q) is a normal subgroup of Pic(Q). The last part of the statement
follows by definition of Pic(Q). O

To finish this section, we comment on the construction of a different normal
subgroup

Picyr(Q) C Pic(Q)
associated to the De Rham cohomology H?(X, C). Even though this alternative
construction may look more natural at first sight, the Aeppli cohomology group
HY'(X) will play an important role in further developments in Section B To
define Picyr(Q), one considers a Lie algebra homomorphism

d: Lie Pic(Q) — H*(X,C),
given, when choosing an isomorphism @ = (), by
do(s, B) = [B — 2(s, Fy)] € H*(X,C).

The properties of d are analogue to those of a, and follow as in Lemma
using equation (4I2]). The definition of Picyr(Q) is as in Definition and
its Lie algebra is Kerd.

Remark 4.8. By analogy with symplectic geometry, it is natural to consider a
notion of flux homomorphism on the universal cover of Pic(Q) (see [34, Sec.
10.2]). We leave this interesting perspective for future work.

5. THE CHERN CORRESPONDENCE

5.1. Background on Bott-Chern theory. The goal of this section is to
prove an analogue of the classical Chern correspondence-which establishes the
existence of a unique compatible connection for any reduction to a maximal
compact subgroup on a holomorphic principal bundle—in the context of string
algebroids. We first recall some background about Bott-Chern theory which
we will need.

Let G be a complex reductive Lie group. Let P be a holomorphic principal
G-bundle over a complex manifold X. We fix a maximal compact subgroup
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K C G, and a bi-invariant symmetric complex bilinear form (,) on the Lie
algebra g of G. We will assume that it satisfies the reality condition

(txt) CR
for the Lie algebra ¢ C g of K. Given a reduction h € Q°(P/K) of P to K,
there is a uniquely defined Chern connection 6", whose curvature Fj, := Fyn
satisfies
=’ =0.

We denote by P, C P the corresponding principal K-bundle.

The following result considers secondary characteristic classes introduced by
Bott and Chern [11] (see also [I0, 16]). We denote by Q' the space of real
(1,1)-forms on X.

Proposition 5.1 ([10,[16]). For any pair of reductions hy, hy € Q°(P/K) there
1s a secondary characteristic class

R(hy, ho) € Qg'/Im(0 @ 0) (5.1)
with the following properties:
(1) R(ho, ho) =0, and, for any third metric hs,
R(hg, ho) = R(ha, h1) + R(hq, ho),
(2) if h varies in a one-parameter family hy, then
d .
@R(ht, ho) = —2ilhsh;*, F,), (5.2)
(3) the following identity holds

ddR(hy, ho) = (Fpy A Fyy) — (Fpg A Fy)-

As observed by Donaldson in [16, Prop. 6], the Bott-Chern class (5.1]) can
be defined by integration of (5.2)) along a path in the space of reductions of P.
More precisely, given hg and hy, one defines

1
R(hy, ho) = —22’/ (hehit, Fy,)dt € Qg (5.3)
0

for a choice of path h; joining hg and hy. For a different choice of path,
R(hy, hy) differs by an element in Im(0 & 0), and hence there is a well-defined

class R(hi, ho) = [R(h1, ho)] in (B1)). Notice that (5.3) implies that
R(ghi, gho) = R(h1, ho), (5.4)

for any automorphism g € Gp of P.

The other piece of information which we will need is the following technical
lemma from [22]. Given a reduction h € Q°(P/K), using the polar decompo-
sition

G =exp(it) - K
we regard h as a K-equivariant map h: P — exp(it). Recall that given an
element g € Gp regarded as an equivariant map g: P — G, there is a well-
defined covariant derivative

d"g = g*w” o (") € Q' (ad P)
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where w! is the (left-invariant) Maurer-Cartan 1-form on G and (6")* denotes
the horizontal projection with respect to the Chern connection of h.

Lemma 5.2 ([22]). Let h, i be reductions of P. Define R(W,h) € Qg' as in
(B3), where W' = e™h, foriu € Q°(iad B,), and hy = e'™h. Then,

2i0R(K', h) + CS(8") — CS(6") — d(6" A ") = dB>*,
where

1
B2 = - / (ay A dg)dt € 02
0
and a; = 0" — 0" = —0"(e72") and a, = 20" u.

5.2. Bott-Chern algebroids and compact forms. Our next goal is to
study a special type of string algebroids—known as Bott-Chern algebroids—
which appear in the Chern correspondence. These are tight to Bott-Chern
secondary characteristic classes and a notion of ‘reduction to a maximal com-
pact subgroup’ for string algebroids, which we introduce next. We follow the
notation in Section [5.1]

A smooth Courant algebroid (Fkg, (,),[,], ) over a smooth manifold X con-
sists of a smooth vector bundle Egx — X together with a non-degenerate sym-
metric bilinear form (,), a vector bundle morphism 7 : Fg — TX and a
bracket [, ] on sections satisfying the Courant algebroid axioms (see (D1)-(D5)
in Section 2.1]).

Definition 5.3. A real string algebroid with structure group K is a tuple
(Pr, ER, pr), where Py is a smooth principal K-bundle over X, Eg is a smooth
(real) Courant algebroid over X, and pgr is a bracket-preserving morphism
inducing a short exact sequence

0—T*X — Ep 25 Ap, —— 0,

such that the induced map of Lie algebroids pr: Ap, — Ap, is an isomorphism

~

restricting to an isomorphism adg, = (ad Pg, (,)).

Analogously to holomorphic and complex string algebroids, we denote by
H'(Sg) the set of isomorphism classes of real string algebroids on X with
structure group K. By [24) Prop. A.6], elements in H'(Sg) are represented by
equivalence classes of triples (Pgr, Hg, 0r) satisfying

dHg + (Fy, A Fy,) =0,

where Py is a principal K-bundle, Hp is a real 3-form on X, 6 is a connection
on Pg. The triple (Pg, Hg,0r) is related to (Pj, Hg,0g) if there exists an
isomorphism g: Pg — P such that, for some real two-form B € 02,

H}, = Hy + CS(gfr) — CS(0%) — d{gbg A 0%) + dB.

When there is no possibility of confusion, a real string algebroid (Eg, Pg, pr)
will be denoted simply by Fr. Given a principal K-bundle Pg, we can induce
uniquely a smooth principal G-bundle

BZPRXKG. (55)
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Similarly, any real string algebroid over X induces uniquely a complex string
algebroid—in the sense of Definition The underlying principal G-bundle
is P as in (5.0), the complex vector bundle is £ = Er ® C, and there is a
commutative diagram,

0—T*X®C——FE -5 Ap——0

UT UT T (5.6)

0 s T X s Fp 25 Ap, —— 0,

where the vertical arrows are canonical, such that the C-linear extension of the
bracket, the pairing, and the morphism pg in the bottom sequence induce an
isomorphism (this follows by using the universal property of the Atiyah alge-
broid Ap). Note that the map Ap, — Ap is not set-theoretically an inclusion,
but a canonical injective map (following the definition of Ap in (2.3])). This
construction will be referred to as the ‘complexification’” of Fr. Conversely, we
have the following.

Definition 5.4. Let E be a complex string algebroid. A compact form of E is
a real string algebroid Eg with structure group K fitting into a diagram (5.6]).
Compact forms will be denoted simply by Ex C E.

Example 5.5. Let Ey be the complex string algebroid given by (P, Hg, 0r)
with Hg € Q3 C Q2 a real three-form and 6 a connection on P induced by a
connection on some reduction P C P to the maximal compact subgroup (cf.

Definition 2.13]). Then, the tuple (Pg, Hg, 0r) defines a compact form
E()’]R = TX @D adPR @D T*X C E(].

Let @ be a string algebroid over a complex manifold X, with underlying
smooth manifold X. From Lemmal[2.9] @) has a canonically associated complex
string algebroid Ey.

Definition 5.6. A Bott-Chern algebroid over X is a string algebroid @) such
that £y admits a compact form Er C Ejp.

We provide next a handy characterization of the notion of Bott-Chern alge-
broid, which recovers the definition given originally in [22]. The proof requires
the Bott-Chern classes considered in Proposition 5.1l and Lemma We de-
note by P the holomorphic principal G-bundle underlying Q).

Lemma 5.7. A string algebroid @ is Bott-Chern if and only if there exists
(w,h) € Q' x Q(P/K) satisfying

dd‘w+ (F, N Fp) =0 (5.7)
and [Q] = [(P, —2i0w, 0")] € H(S).
Proof. Let Q be represented by a tuple (P, —2i0w, 0"). By the equality
— 2i0w = d‘w — (0w — 10w = d°w — d(iw) (5.8)
combined with Proposition 2.1 we have that
[Eq] = (P, —2i0w,0")] = [(, d‘w,0")].
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Let 1 be an isomorphism of Fg with a standard Ey given by (P, d‘w,6"). By
Example 5.5 there exists a compact form Eyr C E;. We then have that
Y1 (Eopr) is a compact form of Eg.

For the converse, let Er C Eg be a compact form with underlying K-bundle
P, C P. Then, the isomorphism class of Fy is represented by (P, Hg, 0")
(we can choose the connection on Py, at will by changing the real three-form
accordingly). Let (P, H, 0") represent the class of Q (by Proposition 23] we can
choose the connection on Ap at will by changing H accordingly). In H(S),
we have

(P, H,0")] = (P, Ha, 0")] € H(S).

Therefore, by Proposition ZI1] there exists g € Gp and B’ € Q2 such that

Hg = H + CS(g0") — CS(0") — d(g0" A O™) + dB'.
Notice that g#9 ' defines a connection on P,. Setting

Hly, = Hg + CS(0") — CS(g67 ") — d(6" A go7 T
we have that

-1
(P, Hy, g0 )] = [(P, Hg,0")] € H'(S)

and
1

Hl = H 4 CS(go") — CS(g09 ") — d(g8" A g#7 ") + dB
= H+CSO" —CSO9 ") —de" Ao + dB
where
B =B —(g0" NO") — (0" A g0 ") + (0" A 0T € Q2.
By Lemma 5.2, there exists a real (1,1)-form R € Qp' such that
Hp = H — 2i0R + dB,
possibly for a different choice of B. Since Hp, is real, its (3,0) + (2, 1)-part must
equal the conjugate of its (1,2) + (0, 3)-part, so we obtain
H — 2i0R + dB*° + 0B = dB%2 + 9BL1,
and hence L
H = —2i0(Im B"* — R) + d(B%2 — B*").

Therefore, [(P, H,0")] = [(P, —2i0(Im BY! — R),0")] € H'(S), as claimed. [

Observe that the complexification of real string algebroids induces a well-
defined map

c: H'(Sg) — HY(S).
Recall also that there is a forgetful map s: H'(S) — H'(S) (see Lemma [3.5).
We shall use the notation Hp(8S) for the set of classes of Bott-Chern algebroids
inside H'(S). Then, by Definition [5.6]
s(Hpo(S)) € o(H' (Sr)).

In the next proposition we show that compact forms on a Bott-Chern algebroid
are unique up to isomorphism. Consequently, we can actually define a map

r: H%;C(S) — H'(Sg)
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such that ¢ or = s, which sends [@] to [Eg| for any compact form Er C Ej.
This can be thought of as a ‘higher Chern character’ for Bott-Chern algebroids
(cf. Remark [5.9]). Our proof will use some results from Section

Proposition 5.8. Compact forms of a Bott-Chern algebroid are unique up to
1somorphism of real string algebroids. Consequently, there exists a unique map
r: Hpo(S) — HY(SR) fitting into the commuting diagram

Ho(S) : > H'(SR).

S\,LHI(Q)%

Proof. By Lemma below, given compact forms Eg, B, C E there exists
g € Aut(Eg) = Pic(Q) such that g(Er) = E}. Restricted to Eg, g induces
an isomorphism of real string algebroids, proving the first part of the state-
ment. By Lemma any isomorphism v: @ — @' induces an isomorphism
of complex string algebroids ¢: Eq — Eg. Using this, we can define r by
r([Q]) = [Er], for any compact form Er C Eg. Uniqueness follows from the
first part, which implies injectivity of ¢ on r(H'(Sg)).

O

Remark 5.9. When the holomorphic principal bundle p: P — X underlying
() has trivial automorphisms there is a more amenable characterization of the
Bott-Chern condition using real string classes, in the sense of Redden [38]. To
see this, notice that Gp = {1} implies that [Q] € H*(S) determines uniquely a
De Rham cohomology class

p"H + CS(0)] € H3(P,C)

for any choice representative [(P, H,0)] = [Q] (see Proposition 23]). Then,
Lemma 5.7 implies that @ is Bott-Chern if and only if the pullback of [p*H +
CS(0)] to P, C P, for any reduction h of P, is a real string class.

5.3. Chern correspondence for string algebroids. We start by introduc-
ing the type of objects which play the role of the Chern connection in our
context.

Definition 5.10. Let Egr be a real string algebroid over X. A horizontal lift
of TX to Eg is given by a subbundle W C Eg such that

rk W = dimg X, and W nNKerm={0}.

Following [20, Prop. 3.4], it is not difficult to see that a horizontal lift
W C FEg is equivalent to a real symmetric 2-tensor ¢ on X and an isotropic
splitting A\: T X — Eg such that

W={\V)+o(V):VeTX} (5.9)

Recall that A\ induces a connection g on Pg, a three-form Hg on X, and an
isomorphism
Er2EY =TXGad PR T*X, (5.10)

so that the string algebroid structure on E is as in Example
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Let FE be a complex string algebroid with underlying smooth principal G-
bundle P. We assume that G is reductive, and fix a maximal compact subgroup
K C G. Given a compact form Er C FE (see definition [5.4]), the Cartan
involution on g determined by the compact Lie subalgebra £ C g combined
with the underlying reduction Pr C P induces a well-defined involution

Q(ad P) — Q°(ad P)

5.11
s> s*h ( )

whose fixed points are given by Q°(ad Pg).

Lemma 5.11 (Chern correspondence). Let (E, L) be a pair given by a complex
string algebroid E over X and a lifting L C E of T%'X. Then, any compact
form Er C E determines uniquely a horizontal lift W C Egr such that

L={ecW®C|n(e)cT"X} CE. (5.12)

Proof. We choose an isotropic splitting A\g: TX — Er. We will use the same
notation for the C-linear extension of \y to the complexification E. Via the iso-
morphism (5.I0)) induced by Ag, we obtain by complexification an isomorphism
of complex string algebroids

i(]: EO — F
inducing the identity on Ap, and such that A\g = (f 0)|T£. Then, by Lemma
the lifting L determines uniquely (v, ) € Q41792 ¢ Q%! (ad P) such that

Lo = f (L) = (=7, =B)(T*'X).

Furthermore, given a horizontal lift W C Eg, there exists a uniquely deter-
mined pair (b,a) € Q? @ Q' (ad Pg) and a real symmetric 2-tensor o on X such
that

Wo == [ (W) = (=b,—a){V +0(V): V e TX} C Ey.

The isotropic condition for (5.12]) implies that o is a symmetric tensor of type
(1,1). Denote the associated hermitian form by

w=0c(J,) ey,
where J denotes the almst complex structure of X. Then, condition (5.12)
implies
(=7, =B)T*1X) = (iw = b, ~a)(T*1X)
= (iw — b — (a® A a'?), —a"N) (T X)
and therefore
w4 BUIFO2 (g0 A g1 = a®' = 8.

From this it follows that

w=—Im (7! = (a®! A aM9))

b=TRe (7" — (a®' A at0)) + 402 4402 (5.13)

a=p+p5",
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where * is defined combining the involution (5.I1]) with the conjugation of
complex differential forms. It is not difficult to see that (E.13)) is independent
of the choice of splitting A. O

Remark 5.12. Similarly as in the classical Chern correspondence for principal
bundles, where the integrability of the complex structure on P determined by
a (0, 1)-connection plays no role in determining the horizontal subspace of the
Chern connection, the involutivity of the lifting L C E is not required for the
proof of Lemma 5111

Let @ be a Bott-Chern algebroid over X with underlying principal G-bundle
P. Let (E, L,v) be a Morita brick for @) (see Definition [3.2))

E

N
AN
N

o0

Without loss of generality, we will assume that () and F have the same un-
derlying smooth principal G-bundle P, with complex gauge group Gp. Recall
that Lemma [3.7] establishes the existence of a unique Morita brick isomorphism
[+ E — Eg between (E, L,v) and (Eg, T*'X,1dg). By Definition 5.6, F ad-
mits a compact form Er C E with structure group K. Our next result unravels
the data determined by Er C E in relation to the fixed Bott-Chern algebroid
@, using the Chern correspondence.

Proposition 5.13. Let (E, L,) be a Morita brick for Q. Then, any compact
form Ex C E determines uniquely a triple (w, h, ), where

(1) we Qg and h € Q°(P/K) is a reduction of P to K C G, such that
ddw + <th A th> = 0,

where g € Gp s covered by f: E — Eg, the unique Morita brick iso-
morphism between (E, L,v) and (Eg, T*>'X,1dg),

(2) ¢: Qo — Q is an isomorphism of string algebroids given by a commu-
tative diagram

0—T"X Qo Ap 0 (5.14)

T

O—>T*X /Q /AP /O,

where the string algebroid structure on Qq is given by (P, —2idw,H9").

Furthermore, the data (w, h, @) recovers the flagW C Egr C E, where W is the
horizontal lift given by Eg via the Chern correspondence, and the three-form
Hyg and connection g induced by W are given by

Hy = dw, Op = g~ 169" (5.15)

Proof. Given a compact form Ex C FE, the principal K-bundle underlying
Eg induces a reduction h € Q°(P/K). Furthermore, the horizontal lift W



GAUGE THEORY FOR STRING ALGEBROIDS 33
determined by L in Lemma [5.11] is equivalent to a pair (w, A) where w € Q%gl
and \: T X — FEp is an isotropic splitting such that

W®C=e“\NT"X)®e“\T"X)

for L = e“\(T™' X). Recall that ) induces a connection fg on Py, a three-form
Hpg on X, and an isomorphism (G.10).

Via (5.I0]), we obtain by complexification an isomorphism of complex string
algebroids

i)\i Ey— F
inducing the identity on Ap, and such that A = (f,);rx and
S @C) = e H(TX) @ Lo
for Ly = [ (L) = (T X).
Hence the involutivity of Lg combined with Lemma 2.15] yields
HIP? ige =0, =20 =0
R

Therefore, using that Hg is real, Hg = d‘w. The reduction of Ey by Lo, is
the string algebroid @ = Qr, determined by the triple (P’, —2i0w, 0x) (see
Proposition [2Z16)), for P’ = (P, 9%’1), where we have used that

HP — 9(iw) = —2idw.
We obtain a string algebroid isomorphism
0 7 T*X 7 Q6 4 AP/ 7 0

N

0 /T*X /QL /AP/ /0.

Consider the unique Morita brick isomorphism f: E — Eg between (E, L, )
and (Eg, T*'X,1dg),

covering g € Gp. The condition that g: P’ — P is an isomorphism implies
now that

gOp = 69"
We use now the notation = to denote the algebroids, as in Definition 2.12] or
Example B3] given by a tuple. By Proposition 23] ¢ induces an isomorphism
©o: Q) = (P, —2i0w, ) — Qo = (P, —2idw, 69" (5.16)

and therefore o := 1o fy 0@y’ Qo — @ has the required form (5.14), which
proves (1), (2), and (5.I5).

Conversely, given (w, h, ¢) as in the statement, we have a real string algebroid
EY = (P, d°w, g~'09") with complexification Ej, and lifting

LO — €in0’1X

such that Qp, = Q) = (P, —2i0w, g~ 10").
Consider the isomorphism

$o- QIO — QO = (Pa _2i8wa egh)
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induced by ¢ as in (5.16), and the unique isomorphism z: Ey — FE such that

f(Lg) = L, given by the diagram

Then, we define the compact form and horizontal lift by
Er:=J(EY), W :=J({V+ao(V):VeTX}),
where ¢ is the symmetric tensor determined by w. O

Remark 5.14. The notion of metric on @ introduced in [22] is recovered from
Proposition [5.13] by considering compact forms Er C Eg and the canonical
Morita brick (Eg, T%'X,1dg), with the additional assumption that w(,J) is a
Riemannian metric on X. This positivity condition will appear naturally in
our moment map construction in Section [7.2l

6. AEPPLI CLASSES AND PICARD ORBITS

6.1. Pic(Q)-action on compact forms. Let () be a Bott-Chern algebroid
over a complex manifold X, with underlying principal G-bundle P. We fix a
maximal compact subgroup K C G. Consider the Picard group Pic(Q) of Q,
as defined in Section [4.Jl This section is devoted to the study of the interplay
between Pic(Q) and the space of compact forms with structure group K on
the complex string algebroid E (see Lemma 2.9)). We introduce the following
notation for the space of compact forms on Eg with structure group K

Bg = {Er C Eg | Er is a compact form}.
Via the isomorphism Pic(Q) = Aut(Eg) proved in Proposition .I-which will
be used systematically in this section—there is a natural left action
Pic(Q) x Bo — Bg
(f, Er) — [ - Er = f(ER)

which extends the classical action of the complex gauge group Gp on the space
of reductions Q°(P/K). More precisely, there is a commutative diagram

(6.1)

Pic(Q) x B, ———— Bg

| |

Kerop x Q(P/K) — Q°(P/K),

where Kerop C Gp is the subgroup defined by (41]) and the bottom arrow
is induced by the left Gp-action on QY(P/K). In order to obtain a better
understanding of this action, we start by giving a more explicit description of
the space B for the case of a string algebroid given by a triple (P, H,0) (see
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Proposition 23] and Definition 2.12]). For this, we apply Proposition 513 to
the canonical Morita brick (Eg, T%' X, 1dg) for Q.

Lemma 6.1. Let Q) be the string algebroid given by a triple (P, H,0). Then,
Bg, can be regarded canonically as the subset

Bo, C ' @ Q*° x Q°(P/K)
given by
By, = {(w o, h) | dv = H + 2idw + CS(0) — CS(0") — d(6 A eh>}. (6.2)

Proof. Let Ex € Bg, and consider the triple (w,h,¢) corresponding to the
canonical Morita brick (Eg,, T%'X,Idg,) for Qo via Proposition .13 Then,
@ is given explicitly by
0= (v,0—0" (6.3)

acting as in (2.8)), where v € Q*? satisfies the condition in (6.2]) (see Proposition
2.3)), and therefore Eg can be identified with a triple (w + v,h) as in the
statement.

Observe that the compact form and horizontal subspace corresponding to a
triple (w + v, h) are given by

Eg = (v—iw,0 —0")(Fryp) C Eog,, (6.4)
where
E]R,h = TX @D ad Ph @D T*X, (65)
and
W®C=(v-—_2iw,0 —0")(T°X)oT™"X. (6.6)
[

Our next result provides an explicit formula for the Pic(Q)-action on Bg
in terms of the model in Lemma 6.1l In the sequel, we will use the notation
w = (w+ v, h) for the elements in Bg,.

Lemma 6.2. Let Qo be the string algebroid given by a triple (P, H,0). Let
f=1(g,7) € Pic(Qy) (see Lemmal[].3) and w = (w +v,h) € Bg,. Then,

frw= (W + gh),
where (for a? = g0 —0)
W' =w—TIm(7+ (@ A0 — ") 4 (g0" — 0 A 69" — go"))!
V' =v+ (T {ad AO— ") + (g — O A OT" — go"))EO (6.7)
— (7 + (96" — O A 99 — goh))0:2,

Proof. Let w = (w+ v, h) € Bg, with real form (6.4). Then, for f = (g,7) we
have

f(Er) = (v —iw+T7+ (a? N0 — 0", g(a? + 60 — Hh))(ER,gh)
=Ww—iw+T+{aNO—0"),0— g0")(Eggn).
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where Eg g, is as in ([6.5). Using that (0, g6" — 69")(Eg 41) = Fgr g, we obtain

F(Fr) = (0 — w7+ (a9 A O —0"),0 — g6")(0, 66" — 0%) (Fi )
=(—iw+T+(aAO—0")+ (0 — gb" A gb" — 69"),0 — 609")(Exr gp).

Let W' C f(ER) be the horizontal subspace determined by the canonical Morita

brick (EQO_, T%1 X 1dg,) via the Chern correspondence. Following the proof of
Lemma [5.17], we set

(bo, ap) = (v —iw + 7+ (a? A0 — ") + (0 — gb" A g0" — 09"), 6 — 6.

There exists (b,a) € Q* ® Q' (ad Pr,,) and a real symmetric tensor o’ with
associated differential form

W' =0o'(J,) € Qy',
uniquely determined by the condition
Wy = (—=bo, —ag)(W') = (=b,—a){V 4+ o' (V) : Ve TX} C Eg g, ®C.
Next, we define (v, 3) € QM192 ¢ Q%! (ad P) by
(=bo, —ao)(T"'X) = (=7, =BT X).
More explicitly,
Y= dE g
and therefore (B.13]) implies a = 0, and
W =—Imby' =w —TIm(r + (a? A — ") + (8 — gb" A gb" — §9")) 1
b=Re by' + 102 + 002
=Re (74 (@ A0 —0") + (0 — gb" A g0" — 69"))!!
+ (T4 (0 — g0" A g0" — 09")*2 4 (7 + (0 — g A gOh — G9h))02,

(6.8)

The first equation in (6.8) gives the formula for «’ in (€7). To obtain the
formula for v/, notice that (6.6]) implies that

W®C=(—2iw,0—6")(T"°X)e T X

and, on the other hand,
W'® C = (bo, ao)(Wp)
= ((bp — b)"'"+>0 — i, 0 — ") (TX) @ TO' X.
Therefore, we conclude
v = (b — b)*°
=v+ (T4 (@ ANO—0") + (0 — g0" A g0 — §9))20
— (174 (8 — go" A g0 — 097))0:2

as claimed. O
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Using the previous lemma, we want to calculate a formula for the infinitesi-
mal Pic(Q)-action on B in terms of the model Q. For this, we characterize
next the tangent space to Bg,. Of course, the only difficulty is to show that
any solution of the infinitesimal variation of the equation in the right-hand side
of ([6.2)) can be integrated to a curve in By, .

Lemma 6.3. The tangent space of Bg, at w = (w + v, h) € B, is given by
the subspace
T.Bg, C Qp' @ 0*° @ Q%(iad P,).
defined by
TBg, = {(w +v,iu) | d(0 + 2i(0" — 0 A 0"u)) = 2i0(w + 2(u, Fy))}.  (6.9)

Proof. Showing that the right-hand side of (6.9)) is contained in 7,,B¢, is a
formality, by taking derivatives along a curve (w; + vt, hy) in Bg,. To see this,
we define
C, = CS() —CSO") —d(o A o™)
and use Remark combined with Lemma to calculate
d d

_ - hy _ hey he\ h ht h ht
dt\tzoct dtt:()(CS(e) C'S(0") —d(O A O™y —d(O" A O™) +d(6" Ao ))
e i <2<€h_0ht /\Fh> +d<0h _eAeht>>
dt [t=0

= 4i0{u, F},) — 2id(0" — 6 A 0"u).

Here, we have used the formula for the infinitesimal variation of the Chern
connection with respect to iu € Q°(iad P,) (see Lemma [5.2)):

d
dt 1=0
Conversely, given (w + U, iu) satisfying
d(0 + 2i(0" — 0 A O"u)) = 2i0(w + 2(u, F))
we define, for t € R, w; = (w; + vy, hy) by
hy = "D
wy = w +t(w + 2(u, Fy)) — R(hy, h)

g = —2i0"u € Q'0(iad P,).

‘ (6.10)
v = v+ (0 + 200" — O A O"u)) — / (0= — 0" A 200" u)ds
0

—{(ONO") 4+ (O AO") + (0" A O™)

where R(hy,h) is defined as in Lemma We claim that w, satisfies the
equation in the right-hand side of (6.2) and therefore w; € Bg, for all t. To
see this, using Lemma [5.2, we calculate

dv, = H + 2i0w, + CS(0) — CS(0") — d(6 A 6™) + d (6" A ™)
t
+ 2i0R(hy, h) — d ( / (0" — 6" A 2i8hsu)ds>
0
—= H + 2idw, + CS(9) — CS (") — d(f A O").
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Finally, using Proposition 5.1l and Lemma again,

d
Wy = —wy = w + 2(u, F,) — 2(u, F,)

‘flt (6.11)
by i= oy =0+ (0" — 0 A 2i0"u) — (0" — O A 200" u).

and thus the tangent vector of w; := (wy + vy, hy) at t =0is (W + v,iu). O
We are ready to calculate the Lie algebra action induced by (€.1])
p: LiePic(Q) — I'(TBg). (6.12)

Recall that, for any choice of reduction h € QY(P/K), the Cartan involution
induces a well-defined involution (5.1T]).

Lemma 6.4. The Lie algebra action ([612) is surjective. Furthermore, for any
choice of representative [(P, H,0)] = [Q] € HY(S) and isomorphism Q = Qo,
the induced action py: Lie Pic(Qo) — I'(TBg,) is given by

po(Q = (&, 3(s = 5™)), (6.13)

for ¢ = (s,B) € Lie Pic(Qo) (see Lemma[{.4]) and w = (w+ v,h) € Bg,,
where

&= —Im (B" +2(6" — 0 A 0s))
0 =B — B2 4 (f" — A 4+ Os).

Proof. We start by proving (6.13)). Let f, = (g:,7:) € Pic(Qo) a one-parameter
subgroup and let

(6.14)

d

B) .= — .
(s, B) dt\t:Oit
Then, taking derivatives in (6.1) at t = 0 we obtain
d . ©o1 *
Eu:oit Cw = (w +0,5(5—s h))

where
w=—Im(B+(ds N0 —0") + (0" — O A d"s))"?
= —Im(B + 2(8" — 0 A 9s))*!
U= (B+{(d"s N0 —0") + (0" —ON—-0"(s — ™)+ d"s))*"
— B2 —(gh — O A —0"(s — s7) + dhs)02
= B> —BO2 4 (0" — O N s + O"s™h)
Finally, we prove the surjectivity of (6.13). Given (W + v,iu) € T,Bq,, taking
imaginary parts in (6.9]),
d(—Im (0 + 2i(0" — O AN O"u)) +w + 2(u, Fj,)) =0

and therefore
¢ = (iu, —iw + ilm (0 + 2i(0" — 0 A O"u)) + (0 — 6" A dPu + d"u))
is an element in Lie Pic((Q)) which satisfies po(¢) - w = (W + 0, iu). O
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6.2. Aeppli classes and Hamiltonian orbits. Consider the normal sub-
group Pic4(Q) C Pic(Q) defined in Proposition 7. By (6.I]), we obtain an
induced left action

PICA(Q) X BQ — BQ. (615)
The goal of this section is to provide a cohomological interpretation of the
Pica(Q)-orbits on By using Bott-Chern secondary characteristic classes. For
this, we use the notion of Aeppli classes on a Bott-Chern algebroid introduced
in [22]. In order to achieve our goal, we first prove a structural property of the
space of compact forms By.

Lemma 6.5. The space Bg is contractible. Consequently, the Pic(Q)-action
(©T)) on Bgq is transitive.

Proof. We work with a model @y = @ as in (6.2)), and fix w = (w+v, h) € By,.
Using (6.2) and Lemma [5.2] given w’ = (W' 4+ v', ') € Bg, we have

d(v' —v) —d@ A" +dO A" = 2i0(w' —w + R(W, h))
, ! 6.16
+d{0" ANO™) + d (/ (0" — o™ A 2i8h‘u>dt) , (6.16)
0
where hy = e for u € Q°(ad B,) such that b’ = e™h. Therefore, setting
w=w —w+ R(K, h) —2u, F})
O=0" —v— (A" + (O A" — (0" A O")
1
- / (0" — 0% A 2P u)dt — 20(0" — 0 A 0P,
0
it follows (w + 0,iu) € T,Bg, (described as in ([6.9))). Consider the curve
w; € B, defined as in (6.10). Explicitly, this is given by
hy = ¢"h
wy =w+tw —w+ R(W,h)) — R(hy, h)

1
v =v+t (U/ —v— (BN + (AT — (B" A O — / (0" — oh= A 22’8hsu>d$)
0

t
— / (0" — 0" A 200" u)ds — (0 A O™ + (O AO") + (0" A O™
0

For t =1 we have w; = w’, and therefore a continuous deformation retraction
of Bg, (in C*°-topology, say) is defined by
F: [O, 1] X BQO — BQO
(s,w) = wy_.

One can then check that this retraction is independent of our choice of model
Qo = Q.

The last part of the statement follows from the surjectivity of the infinitesi-
mal action (Lemma[6.4]), and the contractibility of the space B (Lemma [6.5]).
This is the analogous statement, and is analogously proved, to the uniqueness,
up to isomorphism, of the compact form of a holomorphic principal bundle. [
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We recall next the notion of Aeppli class on a Bott-Chern algebroid intro-
duced in [22]. The proof of the following result follows from (6.2) and the
properties of the Bott-Chern secondary characteristic class in Proposition [G.1]
and Lemma [5.2] but we include a short proof for completeness. Observe that
the Aeppli cohomology group Hy'(X) (EJ) admits a canonical real structure
HY'(X,R).

Lemma 6.6. There is a well-defined map
Ap: Bg x Bg — HY'(X,R),
which satisfies the cocycle condition
Ap(wa, wp) = Ap(wa, w1) + Ap(w, wo) (6.17)
for any triple of elements in Bg. More explicitly, given Qo = ) determined by
a triple (P, H,0) (see Definition[2.12),
Apop(W,w) = W' —w+ R(I,h)] € HY' (X, R), (6.18)
where R(W, h) is as in Lemma 52
Proof. Given w,w’ € Bg,, taking imaginary parts in (6.16]) we obtain
dImB = d(w' —w+ R(K, 1)),
where B is given by

1
B:v’—u—<9A0h)+<9A9h’>—<0h/\9h’>—/ (0" — 0™ A 2i0Mu)dt. (6.19)
0

Here, h; = ¢ for u € Q°(ad P,) such that i/ = e™h. By type decomposition it
follows that ' —w—+ R(K/, h) is 00-closed, and hence (BI8) is well-defined. The
cocycle condition (€I7T) follows from Proposition 5.1l We leave as an exercise
to check that Apg is independent of the model Qg = Q). O

As a straightforward consequence of the cocycle condition (6.17]), we obtain
that the map Ap induces an equivalence relation in B¢ defined by

w o~y W if and only if  Ap(w,w’) = 0.
Definition 6.7. The set of Aeppli classes of () is the quotient
ZA(Q,R) = BQ/ ~A .

The set X 4(Q,R) has a natural structure of affine space modelled on the
kernel of the map
9: Hy'(X,R) — HY(Q%") (6.20)
induced by the O operator on forms, where H 1(@?50) denotes the first Cech
cohomology of the sheaf of closed (2, 0)-forms on X (see [22, Prop. 3.9]).

Our next result shows that the equivalence classes of elements in B¢ given by
the Aeppli classes in Definition [6.7] correspond to Pic4(Q)-orbits (see (6.15).

Proposition 6.8. A pair of w,w’ € By are in the same Pica(Q)-orbit if and
only if they define the same Aeppli class

[w] = [w] € Za(Q,R).
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Proof. We fix a model Qo = @ determined by a triple (P, H,#) (see Definition
212). Let w,w’ € Bg, and consider the curve w; € By, joining w and w’,
constructed in Lemma Then, the Aeppli map along the curve is

Ap(wy, w) = [t(w' —w + R(K', b)) — R(hs, h) + R(hy, h)] = tAp(w', w).

Assume first that w ~4 w’, which implies w ~4 w; for all ¢t by the previous
equation. Taking derivatives along the curve we obtain (see (6.11))

Wy = %wt =w' —w+ R(W,h) —2(u, F,),
Oy = %vt = —v— (OGN0 + (ONAOY) — (6" A OY)

1
- / (0" — 0" A 200" u)ds — (0" — O A 2i0"u),
0

which corresponds to the infinitesimal action of
G = (iu, —idy 4 ilm (0 + 26(0™ — O A O"u)) + (0 — 0" A dPu + d"u)).
Evaluating in the Lie algebra homomorphism in Lemma
ag((y) = [—iwy + 2i(0 — 0™ A Ou)) — 2i{u, Fy)]
= —iAp(w', w) + 2i[(u, Fy,,) + (0 — 0" A Ou)) — (u, Fy)]
= 2i[(u, Fj,, + 0(0 — ™) — )] = 0,
where in the last equality we have used that
(Fp, — Fp)"t = 0(0™ — 0). (6.21)
Therefore, ; € Lie Pica(Qo) for all ¢ (see Definition [4.6]), which proves the ‘if
part’ of the statement.
Conversely, assume that there exists a curve w; = (w¢+ vy, ht) € B, joining

w and w’, and a one-parameter family of Lie algebra elements ¢, = (s, By) €
Ker ag, such that

00(Ct) jw: = (—Im (Btl’1 +2(9ht —9/\58t>)+?~)t, %(st—s:ht)> = (W + vy, hthgl),

for a suitable (2,0)-form vy (see (6.14])). Taking derivatives of the Aeppli map
along the curve

d . I
%Ap(wt, (AJ) = [wt — 2Z<htht 1, th>]

= —Im[B;}"" +2(6" — 0 A Ds;) — 2(sy, F,)]
= —Im[B" — 2(s, Fp, — 0(8" — 0))]
= —Im aO(Q) = 0,

which proves the statement. For the last equality, we have used ([6.21]) combined
with (4I0), while the second equality follows from

Im (sy, Fp,) = —i(hhit, Fp,).
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Remark 6.9. From the proof of Lemma [6.6, it follows that one can define a
refined map k: Bg x Bg — H?(X,R), given explicitly by

k(W' w) = [w —w+ R(K,h) — ImB] € H*(X,R)

for any choice of isomorphism Qo = @), where B is an ([6.19). We have not been
able to prove that  satisfies a cocycle condition similar to (617, and therefore
it is unclear whether it induces an equivalence relation on Bg. Nonetheless,
one can define a De Rham affine space for Bott-Chern algebroids, modelled on
H?*(X,R), as the set of Picgr(Q)-orbits for the group Picyr(Q) in Section 2l

7. MOMENT MAPS

7.1. Conformally balanced metrics and moment maps. Let X be a com-
pact complex manifold of dimension n. Consider the space

1,1 1,1
Q2 C O

of positive (1, 1)-forms on X, sitting inside the vector space of real (1, 1)-forms
Q%’l as an open subspace. We will use the convention that, for V € T X,

w(V,JV) >0

defines a hermitian metric for any w € QLj, where we recall that J is the
almost complex structure associated to X. We use the notation (w,b) for the
elements of T' Qié, the total space of the tangent bundle

Ll A oLl 1,1
and the notation (w,b) for elements in the tangent bundle of TQLy at (w,b).
The space TQI>’(1) has a natural integrable complex structure given by

J(@,b) = (—=b,w). (7.1)
Consider the partial action of the additive group of complex two-forms
0L x TQLy) — TOR'

7.2
(B, (w,b)) = (w+Re BY b+ Im B, (7:2)

preserving the complex structure J. This section is devoted to the study of a
Hamiltonian action of the subgroup of purely imaginary two-forms iQ? C Q2
for a natural family of Kéhler structures on TQY;.

To define the family of symplectic structures of our interest, we fix a smooth
volume form g on X compatible with the complex structure. For any w € Qié,
we define a function f,, by
wn
= e . (7.3)
We will call f,, the dilaton function of the hermitian metric w with respect to
. Note that e/« is the point-wise norm of p with respect to w.

Definition 7.1. Given £ € R\{2}, the (-dilaton functional on TQY is

n

My(w,b) ::/ et
X

n!
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Associated to the functionals M, there is a family of exact (1, 1)-forms defined
by
Qg = —delOg Mg. (74)

The following family of 1-form potentials plays a key role in the present work

1
)\g = —Jdlog Mg = —MJdMg (75)
L

Lemma 7.2. The forms A\ and Qy, evaluated at the tangent vectors (w;, b]) at
the point (w,b) € TQI>’(1), are given by

(-2 . wnt
e = bAe e
LT oM, /X C o

g - 2 . M . M _gfw wn_Q
QZZQMZA(wlAbQ—WQAbl)AG m
00 —2) Lo Co o e, W
4MZ /)((AwbleuWQ - AwaAww1>€ wam (76)

" (é;@z)Q (/}(Aw(wl)effw%) (/XAw(z}Q)efwa_T)
_ (é;{j)Q (/X Aw(wz)e—ffw%) (/X Aw(bl)e—ffw(;i_?).

Proof. Let (w,b) denote a tangent vector at (w,b) € Q. Using that

M, = / e-0f
X

dM, (&, b) = —— / —ffw

where we have used that 20 f, (W) = Aww by definition of f,. Thus, the first
part of (6] follows from (Z.1). As for the second formula, we calculate

dIdM,((601,by), (o2, o))

it follows that

2 € . . ) B n—l
T | (b (Nuin) [2) — bi(—E( D) [2)) A e
2 Jx (n—1)!
2— E . . . . _ C’L)an
+T X(bg/\wl—bl/\WQ)/\e wam
02— . i n
= !/‘ (AwblAwwg — AwbgAww1>€—ffww_
4 X n!
24 o L _pr w2
+T X(wl/\bg—uJQ/\bl)/\e wam,
and therefore (7.6) follows from
1
Qp=—— M, M, M,.
¢ Mngd ¢+ (Mé)Qd o N JdM,
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We provide next a formula for the associated family of symmetric tensors,
obtaining Kéahler metrics for certain values of the parameter ¢. Given (w,b) €
7O

20, we denote by
the primitive part of b with respect to w.

Lemma 7.3. The symmetric tensor go = Q(,J) at (w,b) is given by
2—4
2M, Jx

2—0(¢ n-—1 : o oy e, W
Y7 <2 n )/X(|A“b| +Auwl)e

2 1\? w2 2 1\? . w2
A e Ho Z A be e} .
() (o) + () (L)

(7.7)

. . g W
(liool* + [bo[*)e ™"« =

gf(wv b) = n

In particular, go is a Kdhler if 2 — % <l <2 and —g, is Kdhler if { > 2.

Proof. The proof of (.7) is straightforward from (7.I) and (Z.6]). The Kéahler
property of —g, for £ > 2 follows from the Cauchy-Schwarz inequality, which

implies
1 TR ’ 2 e, W
— Aybe e — | < [ |ALb[ e —.

Consider the action of the additive group of purely imaginary two-forms

induced by ([Z.2])

t

, 1,1 1,1
i x TQ2y — T,
(iB, (w,b)) = (w,b+ BYY).
Since the i€2%-action preserves both J and My, it also preserves the one-form

A¢ (see (ZH)). Thus, by (74)), the action is Hamiltonian and there exists an
equivariant moment map, which we calculate in the following result.

Proposition 7.4. The action of i2* on TQ;(I] is Hamiltonian, with equivariant
moment map

2/ w1
¢ B :—/ BAe e : :
<:u (w7b>7 > 9 vy Ne (n_1>' (78)

Upon restriction to the subgroup iQ2, C iQ? of imaginary ezact 2-forms on X,
zeros of the moment map are given by (-conformally balanced metrics, that is,

d(e w1 = 0.
Proof. The iQ2%-action is Hamiltonian, with moment map

<//(w’ b)a'LB> = _)‘E(iB ’ (w’ b)) = _)‘E(OaB)a
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where iB - (w, b) € T(%b)TQ;(l] denotes the infinitesimal action of iB on (w, b).
Formula (7.8)) follows now from (Z.6]). The last part of the statement is straight-
forward and is left to the reader. O

To the knowledge of the authors, the previous result provides the first mo-
ment map interpretation of the conformally balanced equation in the literature.
In particular, for £ = 0 we obtain a symplectic interpretation of balanced met-
rics. Similarly, when X admits a holomorphic volume form €2 and we take

n(n—1) —
w=(=1)"=2 "QAQ (7.9)
and ¢ = 1, Proposition [(.4] characterizes hermitian metrics with holonomy for
the Bismut connection contained in SU(n) as a moment map condition (see
e.g. [22]) (cf. Corollary [.TH). Observe that for these two interesting cases we
cannot ensure that the metric +¢, in (7.7)) is Kéhler.

7.2. Kahler reduction and the Calabi system. Let Er be a real string
algebroid with underlying principal K-bundle Pg over our compact complex
manifold X. We will assume that the bi-invariant symmetric bilinear form ()
on the Lie algebra £ of K is non-degenerate (see Section B.1). Let G be the
complexification of K. Let E be the complexification of Egr, with underlying
principal G-bundle P = Pr X G. Given a horizontal lift W C Er of TX to
Ex (see Definition [5.10) we define

Ly ={ecW®C|7(e) e T X} C E.
Consider the set of horizontal lifts of T X to Eg such that Ly, is isotropic
W = {W C Egr | W is a horizontal lift and Ly is isotropic}.

Recall from Section that any W € W induces the following data: a real
(1,1)-form w € Q%gl on X, a three-form Hpg, a connection fg on Pg, and an
isomorphism Er = Eyr (see (5.10)), so that the Courant structure on Eyg is
as in Definition In particular, there is a well-defined forgetful map

W — Qp' x A, (7.10)

where A denotes the space of principal connections on Pg. Furthermore, via
Er = Eyr, we have

W={V+oV):VeTX}
where 0 = w(, J). The following result is a straightforward consequence of the
Chern correspondence in Lemma [5.111

Lemma 7.5. Denote by L the set of isotropic subbundles L C E mapping
isomorphically to T'X under m: E — TX ® C. Then, there is a bijection

W — L

The sets W and L have natural structures of affine space modelled on the
vector spaces Q' @ Q2 ® Q' (ad Pg) and Q11402 @ Q%! (ad P), respectively (see
Lemma and Lemma [5.1T]). It is not difficult to see that the map (.I1) is
affine, and thus the natural complex structure on £ given by multiplication by
i induces a complex structure J on W making ((Z.11]) holomorphic.
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Lemma 7.6. Any element W € W induces a natural bijection W = Q%’l &)
02 @ A. Via this identification, J is given by

T (@, b,a) = (b4, & +ib™* — 602, Ja) (7.12)
for (w,b,a) € Q' @ Q2@ Q' (ad Pr) and Ja = ia®' — a0, Consequently, the
forgetful map W — A induced by ([TI0) is holomorphic.

Proof. Without loss of generality, we fix an isotropic splitting \g: TX — Eg,
with induced connection 8y on Pr. Via the isomorphism Er = Ejr induced
by Ao, as in (5.I0), an element W € W is given by a triple

(w,b,0g) € Qx" x Q% x A,
with corresponding horizontal lift
W= (=b,—a){V+wlV,J):VeTX},
for a = g — 0y, and isotropic subbundle (see Lemma [5.1T])
Ly = (iw — b, —a)(T"' X)
— (iw — BUIHO2 (g0 A qLOY g0y (701 X)
= (iw — oM — La A Ja)V, —a®M) (T X).

Thus, the differential of the map (TI1) at W = (w, b, fg) can be identified with
the linear map

Qp' @ 02 @ O (ad Pr) — QM2 0 Q% (ad P)

(@,b,a) — (B0 —i(@ — 3(a A Ja)"t — La A Ja)h), 6,

1
2
and the induced complex structure is given by

T (@, b,a) = (=0 + (@A a)! o+ (Ja Aa)! + b2 —ib02, Ja).

Taking now Ay to be the isotropic splitting induced by W we have a = 0 and
the statement follows (for the last part see e.g. [16]). O

Consider now the natural left action of Aut(FEg) on W, given by
Aut(Er) x W — W
(W)= [-W = f(W).

Our goal is to find a Hamiltonian action on W induced by ((C.I3]) and study its
symplectic reduction. For this, we need a better understanding of the action
(CI3). Our next result shows that (.I3]) preserves the complex structure J,
and furthermore it extends the classical action of the gauge group Gp, on the
space of connections A. Recall from [24, App. A] that there is a well-defined
group homomorphism

(7.13)

op,: Gp, — H*(X,R)

defined as in Corollary [4.2], inducing an exact sequence

0 — Q2 — Aut(Ep) — Kerop, — Gp, —2s H3(X,R).
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Lemma 7.7. The action ((I3) preserves J. Furthermore, the forgetful map
(CIQ) jointly with the action ([LI3) induce a commutative diagram

Aut(Bp) x W ———— W

! |

1,1 1,1
Kerop, x Q" x A—— Q" x A,

where the bottom arrow is induced by the left Gp,-action on Q%’l x A, given by
9 (w,br) = (w, g0r).

Proof. For the first part, observe that the map (ZI1]) is equivariant for the
action of Aut(Fg) on L, given by

Aut(Eg) x L — L
(f, L) — f- L= f(L).

Using that (ZI4) is induced by the natural complex Aut(FE)-action on £ (de-
fined by the same formula), we obtain that J is preserved by ((Z.13)).

As for the second part, without loss of generality we fix an isotropic splitting
Xo: TX — Eg, with induced connection 6y on Pr. Via the induced isomor-
phism Er = Eyg, as in (5.10), an element W € W is given by a triple

(w,b,0g) € Qx" x Q% x A,

(7.14)

with corresponding horizontal lift
W = (=b,0y — Ox) W,

for W, :={V4+w(V,J): V€ TX}. An element in Aut(Er) = Aut(Epr) is
given by a pair (g,7) € Gp, x Q2 satisfying (cf. Lemma [£3))

dr = C’S(gfl(%) — 05(90) — d(gflﬁo N 90)
and the action (TI3)) is

(g, 7)(W) = (1 —b+ (a? ANy — Or), g(a’ + Oy — Or))(W,,)
= (T — b+ <(lg A 90 — 0R>,90 — gQR)(Ww)

for a? = g=10y — 6. Thus, the statement follows. O

Consider the open subset Q;é C Qﬁgl given by the positive (1, 1)-forms on

X. The phase space for our symplectic reduction is the following open subset

of W
W, ={WeW|w(,J)>0}CW.

To define our family of symplectic structures, we fix a smooth volume form p

on X compatible with the complex structure. For any w € Ql>’(1), we define the

dilaton function f, € C*°(X) as in (Z3).
Definition 7.8. Given ¢ € R\{2}, the ¢-dilaton functional on W, is

n

M(W) = /X et (7.15)

n!
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Observe that M, is the pullback of the functional in Definition [Z.1] by the
projection W — Q' induced by (ZI0). In the sequel we fix £ € R\{2}.
Associated to the functional M, there is a one-form A\, € Q'(W,) on W,
given by

1
)\g = —Jleg Mg = —EJdMg

Lemma 7.9. The one-form )\ is preserved by the Aut(Eg)-action. Further-
more,

e -2 (. _,, wi
Ajw (@0, b, @) = o, /Xb/\e ﬁfwm. (7.16)

for (w,b,a) € TwWy = QL' & Q2 @ Q' (ad Py).

Proof. The first part of the statement is a direct consequence of Lemma [7.0]
and Lemma [[7l As for formula (.16), without loss of generality, we fix an
isotropic splitting \g: TX — Er with induced connection 6, on Pgr. By the
proof of Lemma combined with Lemma [[.2] the one-form A, is

n—1

-2 /X(bm —(aAa)) A et (:_ o (7.17)

2M,

)\Z|W(w7 67 a’) =

for a = O — 6y. Taking now \g to be the isotropic splitting induced by W we
have a = 0 and the statement follows. O

Similarly as in Section [[I] we endow W, with an Aut(FEg)-invariant exact
(1,1)-form defined by

Qg = —dJd log Mg. (718)
We calculate next a formula for 2, and the symmetric two-tensor g, = Q(, J).

We use the notation in Lemma for the decomposition of two-forms into
primitive and non-primitive parts.

Lemma 7.10. The evaluation of Qy and g, along tangent vectors (w;, Bj, a;) at
the point (w,b,a) is given by:

A Go) A e” fo
M, /X(a1 Gz) ¢ (n—1)!

2 . : . ; _
+2Mg /X(wl/\bg—u@/\bl)/\eéf“
0t —2)

4M,

(G ([ 2) ([ i)
_ (é;;) (/X Aw(wQ)e’ffw%T) (/X Aw(g}l)eéfwfl_?) .

0 =

wn—2

(n—2)!

; . ; oy —ep, W
/ (AwblAWWQ - AwaAwwl)e bl = (719)
X

n!
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n—1

S =2 . : _op, W
ge(w,b,a) = Y7 /){(a/\Ja}/\e éf“m

2—£ .12 71,112\ —f w"
bv fw
+ i [l + 5 e
2—0 (¢ n-1 . W™
- — Ab? + |Apw|?)e e —
Y7 (2 n )/X(| P4 AwePe 0

2 (\? w2 2 1\? . W™\ 2
A e Ho A be o) .
(o) (Lasrsn) (G ) (fabe=ss)

(7.20)

Proof. We fix an isotropic splitting A\g: 77X — Er. Formulae (7.19) and (7.20)
follow by taking first the exterior derivative in (ZI7)) and then setting Ay to be
the splitting induced by W, combined with Lemma and Lemma [7.6l O

Remark 7.11. Arguing as in the proof of Lemma [7.3] one can prove that g,
(respectively —gy) induces a pseudo-Kéhler metric along the subbundle Q%’l @
Q' @ Q'(ad Pr) € TW, provided that 2 — 2 < { < 2 (respectively ¢ > 2).

By Lemma [Z9] the action of Aut(Egr) on (W,,€) is Hamiltonian, with

moment map
(W), 0) = =Xel(¢- W)

for ¢ € Lie Aut(ER), where (-W denotes the infinitesimal action. The following
explicit formula follows from the proof of Lemma [l.7l Recall that any W € W
determines an isotropic splitting A\: TX — Fr with connection fg, and via
the isomorphism (5.10) the Lie algebra Lie Aut(Eg) can be identified with (cf.
Lemma [£.4]

Lie Awt(Eg) 2 {(s, B) | d(B — 2(s, Fy,)) = 0} € Q%ad Pg) x Q% (7.21)

Proposition 7.12. The action of Aut(Er) on (W4, ) is Hamiltonian with
equivariant moment map

(W), ¢) = 62;452 /X B Ae e (7;":)!. (7.22)

Consider the Aut(Eg)-invariant subspace of ‘integrable’ horizontal lifts
WP ={W eW | [Lw,Lw] C Lw} C W, (7.23)

and define WY = W’ nW,. Via (ZII), W maps to an open set of the
space of liftings of T%'X to E, which defines a complex subspace of £. Thus,
WY C Wy is (formally) a complex submanifold, and inherits an exact (1,1)-
form denoted also by €2,. Similarly as in Section 4.2l we define the following
group of ‘Hamiltonian’ automorphisms of Fr. Recall from Lemma that
there is Lie algebra homomorphism

a: Lie Aut(E) — Hy'(X),

which defines a normal Lie subalgebra Kera C Lie Aut(FE).
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Definition 7.13. Define the subgroup H C Aut(Eg) as the set of elements
/€ Aut(Eg) such that there exists a smooth family f € Aut(Er) with ¢ €

[0, 1], satisfying io = Idg,, L = f, and
a(¢;) =0, forallt. (7.24)
We are ready to prove the main result of this section.

Proposition 7.14. The H-action on (W,Qy) is Hamiltonian, with equivari-
ant moment map induced by ([22). Furthermore, zeros of the moment map
are given by solutions of the Calabi system with level ¢, defined by

Fy, Aw" 1 =0, Fp? =0,

7.25
d(e” w1 =0, dd‘w + (Fy, \ Fy,) = 0. (7.25)

Proof. The integrability condition in the definition of WY implies that the pair
(w,0r) associated to W € WY via (LI0) satisfies the two equations in the
right-hand side of (7.25]) (see Proposition B.13]). Assume that (u,(W),() =0
for all ( € Lie ‘H. Via the identification (.21]), the condition a(¢) = 0 implies
that

Bh! — 2<Sv FGR) = (dé)l’l
for some £ € Q. Furthermore, for any ¢ € Q' we have
(s,d€ + 2(s, Fyp,)) € Lie H.

The two equations in the left hand side of (7.25]) follow from Proposition [.12.
U

By Proposition [7.14], the coupled system ([Z.25]) can be regarded as a natural
analogue of the Hermite-Yang-Mills equations for string algebroids. These
equations were originally found in [22] for / = 1 in a holomorphic setting,
that is, fixing the string algebroid and caculating the critical points of the
dilaton functional M, for compact forms in a fixed Aeppli class (see Proposition
[6.8). Following [22], we will refer to (T.28) as the Calabi system. As a matter
of fact, when the structure group K is trivial, the solutions of (Z2H)) are in
correspondence with solutions of the Calabi problem for Kéahler metrics on X
w_' = cu, dw = 0, (7.26)
n!
for ¢ € R.g, which motivates the name for these equations (see [22]). Thus,
in particular, Proposition [.14] yields a new moment map interpretation of this
classical problem, which shall be compared with [I§].

Assume now that X is a (non-necessarily Kahler) Calabi-Yau manifold with
holomorphic volume form 2 and we take p as in (7.9) and ¢ = 1. In this case,
the dilaton function is given by

el =19,

and therefore Proposition [7.14] characterizes solutions of the Hull-Strominger
system [31] [40] as a moment map condition (see e.g. [22]).
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Corollary 7.15. Let (X,Q) be a Calabi-Yau manifold and let p defined by
(C3). Then, the H-action on (WY, Q) is Hamiltonian, with equivariant mo-
ment map induced by ([[22). Furthermore, zeros of the moment map are given
by solutions of the Hull-Strominger system

Fp, Aw™™ ' =0, Fp? =0,

. (7.27)

a(||Q||.w™ ) =0, dd‘w + (Fy, N\ Fy,) = 0.

To the knowledge of the authors, this result provides the first symplectic
interpretation of the Hull-Strominger system in the mathematics literature.

8. MODULI METRIC AND INFINITESIMAL DONALDSON-UHLENBECK-YAU

8.1. Gauge fixing. Let X be a compact complex manifold of dimension n.
We fix a smooth volume form p compatible with the orientation. The moduli
space of solutions of the Calabi system with level ¢ on (X, i) is defined as the
set of classes of ‘gauge equivalent’ solutions of (7.25]). More precisely, it is given
by the symplectic quotient

My = ;' (0)/H,

where g, is the moment map in Proposition [[. 14l In this section we study
some basic features of the geometry of M, and point out some directions for
future research. We will proceed formally, ignoring subtleties coming from the
theory of infinite dimensional manifolds and Lie groups. In the sequel, the
bi-invariant pairing (,) in the Lie algebra of the maximal compact subgroup
K C @ is assumed to be non-degenerate (see (5.1))). For simplicity, we will
also assume that K is semi-simple.

Our first goal is to undertake a gauge fizing for solutions of the linearized
Calabi system (7.25)), whereby the complex structure (Z12)) and the symmet-
ric tensor g, in ((C.20)) descend to the moduli space via symplectic reduction.
Difficulties will arise, due to the fact that g, is neither a definite pairing nor
non-degenerate (see Remark [[.TT]). Throughout this section, we fix a real string
algebroid Eg with principal K-bundle P, the level ¢ € R, and W € WY solving
the Calabi system (Z.25), that is, such that p,(W) = 0. Recall that W deter-
mines a holomorphic principal G-bundle P, a conformally balanced hermitian
form w € Oy, and a Hermite-Yang-Mills Chern connection 6" on P (via the
fixed reduction P, C P).

We start by characterizing the tangent space to M, at [IW]. By Lemma [1.G]
an infinitesimal variation of our horizontal lift W is given by

(@,b,a) € ' @02 @ Qad P,).
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Lemma 8.1. The combined linearization of the Calabi system (L.25) and the
integrability condition in (T23)) is given by the linear equations

d"aNw" P (n—DE, AN =0,

d(e_gf“ ((n —DwAW2— g(/\ww)wn_l>> =0,

(8.1)
9a™! = 0,
d°w + 2(a, F,) — db = 0.
Proof. The linearization of (.25]) is
d"aNw" P (n—DE, AN =0,
14
d<6_€f“ <(n —DwAW?2— §(Aww)wn_1>> =0, (8.2)

da™ =0,
d(d°w + 2(a, Fy)) = 0,

while the integrability condition [Ly, Lw| C Ly (see (.23))) implies at the
infinitesimal level that (see Lemma [2.15 and Lemma [5.1T])

da™t =0,
di®? + O(b — i) — 2(a®, F,) = 0.
The second equation in (83) yields
d°w = db — 2(a, Fy),

and therefore (8.3]) implies the last two equations in (82). Thus, the tangent
to p1;1(0) € WY is characterized by the linear equations (8. O

(8.3)

We denote by L(w, b, a) the differential operator defined by the left hand
side of equations (8.1). We turn next to the study of the infinitesimal action,
in order to define a complex. From the proof of Lemma [.7], we can identify
elements ( € LieH with pairs

¢ = (u, B) € Lie Q°(ad P,) @ Q?
satisfying (see Lemma [£.4])
d<B - 2<u7 Fh>) =0, Bh — 2(“7 Fh> = (d£)171 (84)

for a real one-form £ € Q!, and the infinitesimal action at W, denoted P (u, B),
is

(u, B) - W = (0, B, d"u) = (0, (d&)™* + 2(u, [},) + B + B92 d"u).  (8.5)
Define the vector space
R :=Q*(ad P,) @ Q*" ' @ Q" (ad P) @ O,

given by the domain of the left hand side of (8II). Then, the operator L
induced by (&) jointly with (X)) define a complex of vector spaces

(S*) LieH — Q' @ Q2 6 Q'(ad By) — R, (8.6)
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whose cohomology H!(S*) := % will be formally identified with the tangent

space Ty M. Observe that the elements of LieH do not correspond to sections
of a vector bundle, due to the conditions in (84]), and hence (80 is not a
complex of differential operators. To circunvent this issue, we consider the Lie
subalgebra

{(u, dé +2(u, F},)) | € € QY} C LieH

and define the induced complex

(5%) WadP) e ol e a0 (adp) B R, (8.7)
where R
P(u7 5) = (07 dé- + 2<U, Fh>7 dhu)
Our next result shows that the moduli space M, is finite-dimensional. The
proof builds on the infinitesimal moduli construction in [23]. Consider the

Aeppli cohomology group HY'(X) and the natural map from Dolbeault to
Bott-Chern cohomology induced by the 0 operator:

HYA(X) -2 HE2(X). (8.8)
We will denote A% (X) = dim H}'(X) and h°(ad P) = dim H°(ad P).
Lemma 8.2. The sequence [81) is an elliptic complex of differential oper-
ators.  Consequently, the cohomology H'(S*) of ([86) is finite-dimensional.

Furthermore, assuming that h°(ad P) = 0 and h%'(X) = 0, there is an ezact
sequence

0 — Kerd — H'(S*) — H'(S*) — 0

where 0 is as in (8.8)).
Proof. Ellipticity of (87) follows as in [23, Prop. 4.4], implying that H'(S*) is
finite-dimensional due to the existence of a natural surjective map

HY(S*) — H'(S*) — 0. (8.9)
The kernel is given by the quotient Im P /Im f’, where

ImP = {(0, B*? + B2 4 (d&)™ + 2(u, F,), d"u) | d(B** — 9¢™) = 0}.

We claim that (89) induces a well-defined surjective map

ImP  — Kerd C H*(X)
(07 ba a’) = [30,2 - 85071]'
provided that h°(ad P) = 0. Firstly, since " is Hermite-Yang-Mills, this con-
dition implies dim ker d* = 0. Therefore, if
(0,6,6) = (0, B} + B+ (d&)* + 2w, ), d"u)

for j = 1,2 then, u; = uy, BY> = BY* and 90(¢)"" — €3") = 0, so that (8I0)
is well defined. As for surjectivity, if [y] € Ker 0, there exists %' € Q%! such
that

(8.10)

d(/y - 550’1) = 07
and hence (0,7 + 9¢%! + c.c.,0) is an element of LieH mapping to [7].
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Any element in Im P maps to 0 via (810), and therefore this induces a well-
defined surjection InP/ImP — Kerd. We claim that this induced map is
injective, provided that h%’l(X ) = 0. To see this, notice that if

BO,2 - 5&0,1 — 5§/O,1
it follows that 90¢*! = 0 and hence ¢*! is 9-exact. Thus, B%? = 9¢%! and
B%? + B92 4 (d&)M' = d¢.
[

Our strategy to build a complex structure induced by (ZI2)) on the moduli

space is to work orthogonally to the image of the operator P with respect to
the non-definite pairing ¢, in (Z.20)) (cf. [35]). The existence of this complex
structure will automatically yield a symmetric tensor of type (1, 1), since the
two-form Qy in (Z.I8)) is well defined on the cohomology H'(S*) by Proposition
[[14l Our construction relies on a technical condition already found in [22],
which we explain next. Consider the indefinite L?-pairing on the domain of
the operator P in ([B7) induced by w and (,)

(0. (w8} = 2t ( JwwSs [ gmwe—m%) (s.11)

where M, is the value of the functional (7.I5)) at the solution W.

Lemma 8.3. The following operator provides an adjoint off’ for the pairings
BII) and (7.20)
P QM @ 0@ Q' ad P,) — Q°(ad P,) ® Q'
where P* = 13(’; ® 13’1‘ is defined by
1
(n—1)!

ﬁ;(w, i), a) = * <6_€f‘” (th(z At — (n—1)F, A bA w"_2>>,
o _1 0 * d(e’gf“ ((n — Db AW — g(Awb)w”1>>.

Proof. The proof follows from a straightforward calculation using integration

by parts. Setting v = (@, b, @), y = (u, &), and using (Z20) and(Z.25) we have

P*(w,b,a) =

P 6_2 wnfl
Py) = A JdPu) N e e 2
ge(v, Py) M, /X<a u) Ae T
2—0 [ ., e
— o, /Xb A (dE+2{(u, Fp)) Ne =
(2—0)¢ / L ]
o ) W Jb)dE e e
2_ .
= ng)/ <u7dhja Nw — (n — 1>Fh A b> A €7€f“’wn72
(n —

. 0.
wa _ 1,1 n—2 _ = n—1
~ S T gn—l /f/\d Do Aw 2(Awb)w ))
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The statement follows from *‘292”_1 = —1 and the action of the Hodge star
operator on one-forms
n—1
x€ = Jdé N .
¢ S (n—1)!

t

Consider now the L2-orthogonal decomposition of Q! induced by the De
Rham differential
Q'=ImdeImd oH'

and define a differential operator

L: Qadp,) xImd — Q%adP,) x Im d*
(u,€) = PToP(u,f).

We state next the key condition on the solution W of (25]) which we need to
assume for our argument.

Condition A. The kernel of £ vanishes.

(8.12)

A geometric characterization of Condition [A] is mentioned in Remark R7
On the practical side, this hypothesis will enable us to construct the complex
structure on the moduli space under natural cohomological conditions. We
build on the following result from [22]. Using w and a choice of bi-invariant
positive-definite bilinear form on £, we endow the domain of £ with an L?
norm (possibly different from (8IT]), which may be indefinite) and extend the
domain of £ to an appropriate Sobolev completion.

Proposition 8.4 ([22]). The operator L is Fredholm with zero index.

Assuming Condition [Al, we obtain a natural gauge fixing via a g,-orthogonal
decomposition

O e o0 (ad P,) = Im P @ (Im P)*o. (8.13)

Lemma 8.5. Assume Condition [Al. Then, there exists an orthogonal decom-

position [8I3) for the pairing g, in ((20). Consequently, for any element
v e Qf @Oyt @ Qlad P,) there exists a unique Tlv € Im P such that

(@, b, a) = v — v solves the linear equations

. 0.
—Lfw . 1,1 n—-2 - n— —

d(e <(n Db Aw 2(Awb)w ) 0,
d"Ja AWt = (n—1) % Fy AbAW™2 = 0.

Proof. Notice first that from the non-degeneracy of (,), the pairing given in
(BI1) is non-degenerate. Thus

ker P* = (Im lg)Lgf.

If v elmPn (Im P)Ler, then v = f’(y) for y € Q%ad P,) x Im d*. But then
P* o P(y) = 0 and, by Condition [Al v = 0. Thus

Im P N (Im P)* = {0}. (8.14)
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Let v € Q' ® Q' @ Q'(ad P,). The condition
v—P(y) € (Im P)*=
for some y € Q°(ad B,) x Im d* is equivalent to
P*(v) = P* o P(y). (8.15)

But by Proposition B4 and Condition [A] P*oP is surjective. Then, by elliptic
regularity, one can solve ([8IH) for y € Q°ad P,) x Im d*. The orthogonal
decomposition follows. The last statement of the Lemma comes from the ex-
pression of P* in Lemma B3] O

The above Lemma suggests to define the space of harmonic representatives

of the complex (8.7):

7'(5*) = ker L M ker P*.
Our next result provides our gauge fixing mechanism for the linearization of
the Calabi system (8.1]) under natural cohomological assumptions.

Proposition 8.6. Assume Condition[4l and the cohomological conditions
RSN (X)=0, Kerd={0}, h°adP)=0, (8.16)

where 0 is as in (88). Then, the inclusion Hl(g*) C ker L induces an isomor-
phism

HY(S*) ~ HY(S™).
More precisely, any class in 'the cohomology H'(S*) of the complex (88) admits
a unique representative (W, b, a) solving the linear equations

d"aNw" P (n—DE, AN =0,
d<6_€f“ <(n —DoAwW"2— g(/\ww)wn_l>> =0,
da™ =0,

' ' . (8.17)
d°w + 2(a, F) — db = 0,

d(eigf“ ((n — )bt A W2 : (Awl'))w"ﬂ) =0,

2
d"Ja A"t — (n— D) F, AbAw™2 = 0.

Proof. The correspondence between H'(S*) and the space of solutions of (817))
follows from Lemma R1], Lemma R.2], and Lemma O

Remark 8.7. Condition [A] the key hypothesis for our gauge fixing mechanism,
is secretly a geometric condition. To see this, denote by E the complexifica-
tion of Eg. Recall that Aut(F) acts on the space of compact forms on the
Bott-Chern algebroid @) := @, with surjective infinitesimal action p (see
Lemma and Proposition ]). From the proof of Lemma [6.4] there is a
partial inverse for p which sends an infinitesimal variation (w + v,iu) of Fg
to the Lie algebra element ((w + v,iu) = (iu, —iw + ilm ©) € Lie Aut(FE).
Denote by Aut(Q) the group of automorphisms of @), regarded as the isotropy
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group of Ly on Aut(E). Then, one can prove that a solution W of the Cal-
abi system (7.25) with h°(ad P) = 0 satisfies Condition [Al if and only if the
following holds: an infinitesimal variation (W + ©,iu) of Fg along the Aeppli
class [Egr] € X4(Q,R) solves the linearization of the Calabi system (Z.25) only
if (W + 0,iu) € Lie Aut(Q). This shall be compared with a classical result in
Kahler geometry, which states that solutions of the linearized constant scalar
curvature equation, for Kahler metrics in a fixed Kahler class, are in bijective
correspondence with Hamiltonian Killing vector fields.

8.2. The moduli space metric. We are ready to prove our main result,
which shows that the gauge fixing in Proposition enables us to descend the
complex structure (Z.I2]) and the symmetric tensor g, in (Z.20) to the moduli
space My, via the symplectic reduction in Proposition [[. 14

Theorem 8.8. Assume Condition[Al and the cohomological conditions (8.16]).
Then, the tangent space to My at (W], identified with the space of solutions
of the gauge fized linear equations (817, inherits a complex structure J and
a (possibly degenerate) metric g, such that Qy = go(J,), given respectively by

(CI2) and ([T20), and where Q) stands for the restriction of (TI19).

Proof. The fact that H'(S*) inherits a complex structure follows from Propo-
sition 8.6 using that J in (7I12) preserves (8IT). The formula for the metric
is a direct consequence of Lemma and Proposition [7.12] O

Remark 8.9. Using (8I6), it is not difficult to see that any [(w, b, a)] € H'(S*)
admits a representative with b = b%!. Thus, relying on Remark [Z.11] we expect
that (Z20) leads to a non-degenerate metric at least for £ > 2 — 2.

We study next the structure of the metric (7.20) along the fibres of a natural
map from M, to the moduli space of holomorphic principal G-bundles. As
we will see shortly, the moduli space metric constructed in Theorem [B.§ is
‘semi-topological’, in the sense that fibre-wise it can be expressed in terms of
classical cohomological quantities associated to a gauge-fixed variation of the
solution. Denote by

A’ ={br € A| F)* =0}

the space of integrable connections on P, = Pg. Via the classical Chern cor-
respondence, we can identify A° with the space of structures of holomorphic
principal G-bundle on P := P, xx G, which we denote by C°, obtaining a
well-defined map

My —C°/Gp. (8.18)

By standard theory, C°/Gp is the well-studied moduli space of holomorphic
principal G-bundles over X with fixed topological bundle P. As before, we fix
a solution W of (Z.25)) and consider the corresponding point

[P] €C°/Gp.

We start by characterizing the tangent space to the fibre of (8I8) over the
class [P], using the gauge fixing in Proposition
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Lemma 8.10. Assume Condition[Al and the cohomological conditions (810).
Then, any infinitesimal variation in the fibre of (8IR)) over [P] at [W] admits
a unique representative of its class in H'(S*) of the form (w, b, —Jd"s + d"s'),
for s,s' € Qad By,), solving the linear equations

—d"Jd"s A"t + (n — 1)Fh ANOAW?=0,

d<6_€f“<(n—1)w/\w - — A w)w ))
d*(w — 2(s, Fy)) — (b—2<3 Fy)

d(e’gf“ ((n — 1)61’1 Aw' 2 — 1)

—d"Jd"s' Nw™ 4 (n — 1)Fh AbAwW™2=0.

(8.19)

Proof. Let (&, b,a) € Q' ® Q2 @ Q'(ad P,) be an infinitesimal variation of the
solution W of (T.27]). Assuming that it is tangent to the fibre over [P], there
exists r € 2°(ad P) such that )
= Or.

Then we can write uniquely

a=—Jd"'s+d"s
for 5,5 € Q%ad P,). The statement follows from Proposition using that
(d")2s AWt = [Fy, s] Aw™™t =0 by ([Z.28). O
Remark 8.11. Using that 0" is Hermite-Yang-Mills and that h°(ad P) vanishes,
by the first and last equations in (BI9) the elements s and s" are uniquely
determined by w and b.

The gauge fixed system (8.I9) for variations along the fibres of (8.I8) allows
us to define Aeppli and Bott-Chern cohomology classes. Let (w, b, —Jd"s+d"s")
be, as in Lemma R.10, a solution of (8.19). From the third equation in (8.19)
we obtain ‘

dd‘(w — 2(s, F)) = 0, dd®(b—2(s', F},)) = 0,
and we can define the variation of the ‘complexified Aeppli class’ of the solution
(cf. Proposition [6.8]) by
a=Rea+ilma
= [0 — 2(s, Fy,)] +i[b — 2(s', F)] € Hi'(X).
Notice that, by Lemma [.7] the balanced class
1

(n—1)!

is independent of the representative in [W] € M,. Thus, using the second

and fourth equations in (819), we define the variations of the ‘complexified
balanced class’ by

b= [e=ew ] € Hp " 1(X,R)

b =Re b +ilm b
= [Re 7] 4 i[lm »] € Hpc"" (X)),
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where 7 € Q"= 171 is defined by

2—-10)—2
(n—1DRe v :=e Y (n—Dwy Aw" + %G_Zf“(/\w@)wn_la
. 2 0)—2 .
(n—)m & := e Y (n — 1)bg Aw" 2+ %6_““ (Aub)w™ ™!
The subscript 0 stands for the primitive (1, 1)-forms

L;.JO =w— E(Aww)w, bo =b— —(Awb)w.

The variation of the balanced class b of w Corresponds in our notation to
Re b. For the next result, we use the duality pairing H ' (X) & Hpg'"H(X)*
between the Aeppli and Bott Chern cohomologies.

Lemma 8.12. The pairing between Re b and Re a is given by:
. ' n 2—0)—2 "
Re b-Re d — _/ et 4 u/ et A
x n! 2n x n!
2/ (d"s N Jd"s) N e He
X

Proof. Define @ = e~*f«/m=1¢. Using that @& is balanced, we have
Ag(s,s) : = 2iA;00(s, s)
= 4i(A500"s, s) + 20z ((d")s A\ d"s)
= 4i(A500"s, s) + 205 (Jd"s N d"s).

n—1

(n—1)I

n=l — (), we can express d"Jd" as follows

—(d"Jd"s) AWt = (2i00"s) Aw™ ! = [Fy, s] Aw" Tt = (2i00"s) A W™
and hence the first equation in (8I9) gives

om ] e—éfwwn—Z , h on

By equation Fj A w

Ag (s, s)

nl

Finally, we calculate

Reb-Red= / Re v A (wo + (Apw)w/n — 2(s, Fp))
X

n—2 20 —2 n
= / LLJO A d)(] AN €7gfw i + n< ) / eisz‘Awu'.}‘Qw—
X (n—2)! 2n X n!

wn72

—2/<s F) A e Hedn A (n—2)

2—/ "
/ |CU0|2 —wa ( ) / e—ﬁfW|Aww|2w_
! 2n X n!

+2/A (dhs/\th)
X

n!’
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Note that we have a similar formula for the pairing Im b-Im a. We calculate
next our formula for the metric in the fibres of (8IF]).

Theorem 8.13. Assume Condition [A and &I6). Let (&, b, —Jd"s + d"s')
be an element in the tangent of the fiber of (BI8]) solving equations (8I9I).
Denote by b and a the associated variations of complex Bott-Chern class and
Aeppli class. Then

2—0f2—0¢,_ . T B . :
— p)? = : ma-6)2—TIma-I
ge 2M£<2M€(Rea b)°—Rea Reb+2M£(ma b) ma-Imb

(8.20)

Proof. The proof follows from Theorem .8 and Lemma [8.10 by a straightfor-
ward calculation. E.g., for v = (w,0, —Jd"s) we have

EA_; /X (d"s A Jd"s) A et <:n 2Mz / ™ e *"fw
) e
:22;/[f<—2/)((dhs/\<]dhs)/\ o= =1 /|w "% ~tfe )
(L ) (o

2/ l
= 2Mg< Re b - Re a) + (QMg) (Re a- b)?.

gg<U, U) =

t

When the structure group K is trivial, the solutions of (7.25) are in cor-
respondence with solutions of the Calabi problem for Kahler metrics on X
(see ([[26])). By Yau’s solution of the Calabi Conjecture [44], when ¢ < 2
formula (8:20) defines a positive definite Kahler metric on the ‘complexified
Kahler moduli space’ of Kahler metrics on X with prescribed volume form, as
obtained via symplectic reduction in Corollary Observe that we have an
isomorphism H4'(X) = HY(X), and therefore the moduli metric is positive-
definite by the Lefschetz decomposition.

A case of special interest is when X admits a holomorphic volume form €2
and we take p as in (Z9) and ¢ = 1. In this case, (.20 is equivalent to
the condition of SU(n)-holonomy for the metric and equation (8.20) matches
(up to homothety) Strominger’s formula for the special Kéhler metric on the
‘complexified Kéhler moduli’ for X [13, Equation (4.1)]. As a consequence of
our framework, this classical moduli space is recovered, along with its special
metric, via pseudo-Kéhler reduction in Theorem B8] It is interesting to observe
that the formula for the holomorphic prepotential on a Calabi-Yau threefold,
given by the natural cubic form on H™!(X), breaks as soon as we split the
Kéhler class into the Aeppli and Bott-Chern parameters a and b.
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On a (non necessarily Kéhler) Calabi-Yau threefold (X, 2) and for a suitable
choice of the structure group K, the equations (.25]) are equivalent to the Hull-
Strominger system [31, 40] provided that ¢ = 1 and we take p as in ([C9) (see
Corollary [[T5). For this interesting system of equations, the physics of string
theory predicts that the moduli space metric (Z.20)) should be positive definite
along the fibres of (8I8]). This follows from our formula for the moduli space
Kahler potential, given in this case by

WP
K = —log/ ”Q”w_6 , (8.21)
X

and the following physical conjecture, explained in Appendix[A.3l Our formula
for the Kéhler potential (821]), with ¢ = 1, shall be compared with [14, Eq.
(1.3)], which puts forward the case ¢ = 0.

Conjecture 8.14. Formula [821)) defines the Kdhler potential for a Kdhler
metric in the moduli space of solutions of the Hull-Strominger system, for fized

bundle P and fized Calabi-Yau threefold (X, €).

Combined with Theorem [B.13] we obtain an interesting physical prediction
relating the variations of the Aeppli classes and balanced classes of solutions
in the special case of the Hull-Strominger system on a Calabi-Yau threefold.

Conjecture 8.15. If (X,Q), P) admits a solution of the Hull-Strominger sys-
tem, then [820) is positive definite. In particular, the variations of the Aeppli
and balanced classes of nearby solutions must satisfy

. 1
Reda-Reb< ——————=(Red-b) 8.22
YRGS &2
Formula (8.22)) provides a potential obstruction to the existence of solutions
of the Hull-Strominger system around a given solution. For example, if we fix
Re a, the possible variations in the balanced class Re b are constrained by the
duality pairing Re @ - Re b, via an affective bound in terms of the balanced
class of the given solution and the value of the dilaton functional. We expect
this phenomenon to be related to some global obstruction to the existence
of solutions. It would be interesting to obtain a physical explanation for the

inequality (8.22]).

8.3. Infinitesimal Donaldson-Uhlenbeck-Yau. We discuss next the rela-
tion between M, and the moduli space of string algebroids ) over X with fixed
class [Eg] = [E] € H'(S) (see Lemma [3.H). This relation is suggested by the
correspondence between the moduli space of solutions of the Hermite-Yang-
Mills equations and the moduli space of polystable principal bundles, given
by the Donaldson-Uhlenbeck-Yau Theorem [16] 41]. In the case of our main
interest, F is the complexification of Fg, our string algebroids are Bott-Chern,
and [Eg| = [E] is equivalent to r(Q) = [ERr] (see Proposition [(.8]).

In order to establish this relation, notice that the proof of Lemma [7.7 shows
that (CI3]) extends to a left Aut(FE)-action

Aut(E) x W — W

(f,W) —s f-W = f(W') (8.23)
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where W’ := W(f (Er),Lw) C f~'(Eg) is the horizontal subspace induced
by the Chern correspondence in Lemma [B.11l Similarly as in Lemma [7.7]
the forgetful map (ZI0) jointly with the action (823) induce a commutative
diagram

Aut(E) x W —— W

|

Kerop x A —— A,

where Kerop C Gp is as in Corollary and the bottom arrow is induced
by the action of the complex gauge group Gp on A (see e.g. [16]). Consider
the isomorphism A° = C° between the space of integrable connections .A°
on P, and the space C° of holomorphic principal G-bundle structures on P,
given by the classical Chern correspondence (cf. Section [B2]). Consider the
subgroup Auts(E) C Aut(F) as in Definition 1.6l Then, the set-theoretical
Chern correspondence in Lemma induces a diagram

My —— WO/ Aut(E) — £/ Aut(E) (8.24)

L

WO/ Aut(E) —=— £0/ Aut(E)

L

A°/ Kerop —— C°/ Kerop

A /Gp —————C°/Gp,

where £° denotes the space of liftings of 7' X to £ and op is as in ([@1)).

Let us analyse briefly the tower of moduli spaces on the right hand side of the
diagram (824)). Firstly, C°/Gp is the moduli space of holomorphic principal
G-bundles over X with fixed topological bundle P, as considered in Section
The fibre of the map

C’/Kerop — C°/Gp

over [P] is discrete (see (£8)). Assuming that the automorphism group Gp of
P is trivial, the fibre is parametrized by Im op C H*(X,C). As for the moduli
space LY/ Aut(FE), we have the following.

Lemma 8.16. The set £°/ Aut(E) parametrizes isomorphism classes of string
algebroids Q over X with [Eg] = [E] € HY(S) (see Lemmal[3.3).

Proof. Any element L € L, determines a string algebroid Q) with [Eg,] =
[E] € HY(S) (see Lemma B.7). If L and L' are in the same Aut(FE)-orbit
then by (8.2)) it follows that @), and ();, are isomorphic. Conversely, given a
string algebroid @ with [Eg] = [E], then any choice of isomorphism f: Eg —
E determines L = f(T%'X) € £° TFor a different choice of isomorphism
fi Eg — E, we have I' = f' o f~' - L which lies in the same Aut(E)-orbit.
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Finally, if ¢: @ — Q' is an isomorphism of string algebroids, then there exists
a unique isomorphism f: Fg — E¢g in a diagram

Eq

et
J Q IdQ
E I
QY P Q
T Q’ (4
which determines L = iozil(TO’lX) € £°. By Lemma[39, L € Aut(E)-L. O

Remark 8.17. The local geometry of the bigger moduli space of string alge-
broids over X with varying [Eg] € H'(S) has been recently understood in [24]
via the construction of a Kuranishi slice theorem.

By the previous lemma, £°/ Aut(E) is the moduli space of string algebroids
Q over X with fixed complex string algebroid F, while £°/ Aut(F) is a Te-
schmailler space for string algebroids. We analyse next in detail the infinitesimal
structure of the Teichmiiller space when E is the complexification of Eg, to-
wards a Donaldson-Uhlenbeck-Yau type theorem for the Calabi system. For
this, we fix a solution W of (T.25]) and consider the associated element Ly, € L,
via the Chern correspondence in Lemma [.5l Relying on Lemma and Sec-
tion B2 the tangent space of £°/ Auty(FE) at [Ly] is given (formally) by the
cohomology of the complex

(C*) LieAuty(E) =5 QMH02 400 (ad P) 25 QU203 5,002(ad P), (8.25)
where Lie Aut4(F) C Q°(ad P) & Q2 is as in Proposition .7 and
Pe(r, B) = (B"'*%2 dr),

L3, ) = (d3"* + 07" — 2(B, Fi), 9P).
Similarly as for (86), (825) is not a complex of differential operators (as

Lie Aut4(F) is not the space of sections of a vector bundle) and we consider
the Lie subalgebra

{(dé +2(r, F,) | € € Q¢)} C Lie Auty(F)

and define the induced complex

(€ QadP)® 0L Z5 Q02 g 00l (ad P) 25 V203 g 002 (ad P),
(8.26)
where R
PC(r, &) = (d€"" 4+ 9¢"0 + 2(r, Fy,), Or).
We show next that the Teichmiiller space £°/ Aut4(FE) is finite-dimensional.

Lemma 8.18. The sequence [820) is an elliptic complezx of differential op-
erators. Consequently, the cohomology H'(C*) of (86 is finite-dimensional.
Furthermore, assuming that h°(ad P) = 0 and %' (X = 0), there is an exact
sequence

0 —s Kerd — H(C*) — HY(C*) — 0
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where 0 is as in (8.8)).

The proof is analogue to that of Lemma and it is therefore omitted.
Ellipticity of the complex C* can be easily obtained via comparison with the
Dolbeault complex of the holomorphic vector bundle underlying Qr,, (cf. [3|
15] and arXiv version 1503.07562v1 of reference [23]).

Our strategy to compare H'(C*) with the tangent to the moduli space of
solutions of the Calabi system, given by H'(S*) as in Lemma B2 is to work

orthogonally to the image of the operator P¢ with respect to the non-definite
pairing g, in (Z.20)). Notice here that the Chern correspondence in Lemma [7.5]
induces an isomorphism

T: Q' @ Q@ Ql(ad P) — QY1102 @ Q% (ad P)
(@, b, a) — (B1F02 — i, a®h),
which we use to define the pairing g, on QH1+92 @ Q%1 (ad P).

Theorem 8.19. Assume Condition[Al and the cohomological conditions (810).
Then, the cohomology of the complexes (86) and [B23) are canonically iso-
morphic H'(S*) = H'(C*).

Proof. Using the conditions h%'(X) = h°(ad P) = 0 one can easily prove that
Im P N JIm P = {0}.
Then, via the isomorphism Y, we have equalities
T '(Im P¢) = Im P ¢ JIm P
T H(Ker L) = {(&,b,a) | 0™ = 0, d + 2(a, F,) — db = 0}

Assuming Condition [A] there is a g,-orthogonal projection IT as in Lemma
and we consider the map

e QL @ 2@ Q' (ad P,) — (Im P @ JIm P) e
v— 1% = =J(Id — I1)J(Id — IT)v.
We take y; € Q°(ad P,) ® Q' for j = 1,2, and check that it is well-defined
9e(T°, P(y1) + IP(y2)) = ge(v — T, TP (1))
+ QI3 (0 = TTw), P(y1)) + (T3 (0 — TTw), P(y))
= go(v = v, TP (1)) + ge(I (v = TIv), P(ya)) = 0.

For the second equality we used that Im II C Im 13, that py is equivariant, and
also (W) = 0. By Proposition B, there is an equality

#H'(5%) := ker L N ker P* = (Im P @ JIm P)™» N Y~ (Ker L)

and therefore, since I1¢ preserves T—!(Ker L¢), it induces a well-defined surjec-
tive map

I¢: T (Ker L¢) —s H(S").
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We claim that this map induces an isomorphism H!(C*) = #'(S*). To see
this, notice that (8I4) implies that IIJIm P = 0, as

9/(P(y1), IIP(32)) = —Q(P(11), P(y2)) = 0.
for any y1,ys. Then, if v = lg(yl) + Jlg(yg) it follows that
I = v — v + JILJ (v — ITv)
= (Id — T)JIP(y2) + JTI(Id — ) IP(y2) = JP(y2) — JIIP () = 0.
Conversely, if 10 = 0:
v=Tv—JI(v—TIv) € Im P ® JIm P,

and therefore H'(C*) = #(5*), as claimed. The proof follows combining
Lemma [82] with Lemma R.18 O

Our Theorem can be regarded as an infinitesimal Donaldson-Uhlenbeck-
Yau type theorem, relating the moduli space of solutions of the Calabi system
with the Teichmiiller space £°/ Aut4(E) for string algebroids. This strongly
suggests that-if we shift our perspective and consider the Calabi system as
equations

Fh AN wnil = 0,
d(e_gf“w"_l) =0,

for a compact form on fixed string algebroid () along a fixed Aeppli class
a € X4(Q,R) (see Proposition [6.8])-the existence of solutions should be related
to a stability condition in the sense of Geometric Invariant Theory. This was
essentially the point of view taken in [22]. The precise relation with stability
in our context is still unclear, as the balanced class b € H" " 1(X R) of the
solution varies in the moduli space M,. Recall that b is required to measure
slope stability of the holomorphic bundle in the classical Donaldson-Uhlenbeck-
Yau Theorem [T6], [41] (see also [33]). The conjectural stability condition which
characterizes the existence of solutions of (8.27) should be for pairs given by
string algebroid @) of Bott-Chern type equipped with a ‘complexified Aeppli
class’ (see Appendix [B]). It must be closely related to the properties of the
integral of the moment map u, for compact forms in a fixed Aeppli class, given
by the (-dilaton functional (cf. [22])

M, BQ — R.

We speculate that there is a relation between this new form of stability and the
conjectural inequality (8.22). This may lead to an obstruction to the global
existence which goes beyond the slope stability of the bundle and the balanced
property of the manifold (cf. [45]).

(8.27)

8.4. Examples. We present an interesting class of examples of solutions of
the Calabi system where Condition [A] holds, and Theorem R.8, Theorem
and Theorem apply. These examples are non-Kéhler solutions of ([7.25])
obtained by deformation of a solution of the Calabi problem for Kahler metrics,
as in (.20, equipped with a polystable vector bundle. Our method is analogue
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to the one used in [2] to find solutions of the Hull-Strominger system on Kéhler
Calabi-Yau manifolds.

Let X be a compact Kahler manifold equipped with smooth volume form u
compatible with the orientation and a Kahler class k € H"'(X,R). Let 1 and
V1 be k-stable holomorphic vector bundles over X with vanishing first Chern
class and the same second Chern character

cha(Vy) = cha(Vy) € H**(X,R).
Given /, e € R, consider the system of equations
F, Aw™™ 1 =0,
F,, Aw™t =0,
d(e_gf“w"_l) =0,
dd‘w — etrg Fpy N\ Fpy + €try Fp, A Fp, = 0.

(8.28)

for a hermitian form w on X and hermitian metrics h; in V;. Taking P to be
the bundle of split frames of Vy @ V;, any solution of (8.28]) provides a solution
of the Calabi system (Z.28) for

(,)e = —€trg+etry.

Combining the Donaldson-Uhlenbeck-Yau Theorem [16, 41] with Yau’s solu-
tion of the Calabi Conjecture [44], there exists a unique solution (wp, ko, h1,0)
of (B28) for e = 0 with [wg] = k. Notice here that such solution must be
necessarily Kéahler (see [22]), that is, dwy = 0.

Proposition 8.20. Assume ( > 2—2 and h®'(X) =0, and let (X, Vy, V1) be as
above. Then, there exists g > 0 and a smooth family (we, ho ¢, hie) of solutions
of B28) parametrized by [0, o[ such that Condition [Al holds for sufficiently

small € > 0. Furthermore, (we, hoe, h1e) converge uniformly in C° norm to
(WO, h070, hl,O) as € — 0.

Proof. Existence of the family of solutions (we, ho., h1) follows as in [2] by
application of an implicit function theorem argument (cf. [22, Lem. 5.17)).
We prove now that any such solution satisfies Condition [Al for sufficiently small
€. Denote by P, the bundle of split unitary frames for he = hoe X hy.. For
L. as in (8I2) and (u, &) € Q°ad B,,) x Im d*, the condition £ (u,&) = 0 is
equivalent to

Consider the family of elliptic operator
Uyo: QadpB,) — Q*(ad Py,)
defined by
Ueo(u) = d" Jd" u Aw?™ — (n— 1)Fy,, A (2(u, F,,)e) Aw' 2,

By hypothesis, Uo,o is elliptic with zero kernel, and therefore U, has vanishing
kernel for sufficiently small € by upper semi-continuity of dim Ker U, . Notice
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that U, can be regarded as an operator Q°(ad P,,) — Q°(ad Py,) by a gauge
transformation depending only on h.. Let € > 0 such that Ker U,y = {0}, and
assume that (u, &) € Ker L. Given A € R, consider the family of elliptic
operators
U€7)\ : Qo(adPhe) — Qo(ad Phe)
defined by
Uea(u) = d"Jd" u Aw™™ — (n — 1)Fp, A (A€ + 2(u, Fy)e) A w2

By upper semi-continuity of dim Ker U,  we have that Ker U, , = {0} for suffi-
ciently small A. Since Au, € Ker U, ,, it follows that u. = 0. Using now Lemma
and setting v = (0, d&, 0), we have g,(v,v) = 0 and therefore

L 2t We (L _n—l A del2e—tho e _
[ 1 ape n!+(2 - )/X| gt — g,

For £ > 2 — 2 this implies (d¢)"' = 0, and therefore 9IE>" = 0. Finally, using
that A%1(X) = 0 we conclude £%!' = 9¢ for some complex valued function ¢,

and hence d¢ = 0. U

We finish with concrete examples where the hypothesis of Proposition
are satisfied. We will take X to be a Calabi-Yau threefold with holomorphic
volume form €, and p as in (7.9). We choose a Kéhler class k, and k-stable
bundles Vj and V] such that

a(V;) =0, c2(V}) = eo(X)

(see [2, 21] and references therein for constructions of such bundles). In this
setup, h%(X) = h%?*(X) = 0 and h°(End V) = h°(EndV;) = 0. Hence,
the hypothesis of Proposition hold, and Theorem K.8, Theorem and
Theorem apply.

Our choice of bundles Vj, V) can be interpreted, geometrically, as a de-
formation of the special Kahler metric on the ‘complexified Kahler moduli’
for the Calabi-Yau manifold X (see Section [8.2)). More precisely, Proposi-
tion combined with Theorem gives a family of pseudo-Kéahler met-
rics g (see (820)) in a non-empty open subset of HY'(X) = HY'(X), for
(¢,€) €]3,2[x[0,e0[. Here, the fibre of ®I8) over [P] (for P the bundle of
split frames of Vy & V) is regarded as a subset of H!(X) via [22, Corollary
5.14]. The special Kéhler metric in the ‘complexified Kéhler moduli’ of X is
recovered (up to homothety) in the € — 0 limit of this family. The case of the
Hull-Strominger equations corresponds to £ = 1, and it is not covered by our
result.

Example 8.21. Let X be a complete intersection Calabi-Yau threefold. By
[32, Cor. 2.2], TX has unobstructed deformations parametrized by H'(End T'X).
Since T'X is stable for any Kéahler class, any pair of small deformations V[ and
Vi of TX are also stable. For the quintic hypersurface h'(End TX) = 224 and
we obtain a family of deformations of the special Kahler metric on H!(X) of
dimension 450, parametrized by a non-empty open subset of

H'(EndTX) x H'(End TX)x]%,2[x[0, ].
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APPENDIX A. MoDULI KAHLER POTENTIAL AND THE GRAVITINO MASS

A.1. The gravitino equation. In this section we explain the physical argu-
ment which leads to Conjecture 814l and to the formula (82I)) for the Kéhler
potential on the moduli space of solutions of the Hull-Strominger system. This
provides further motivation for Conjecture 815 In addition, we hope that this
addendum makes the present work more accessible to physicists.

We start with a brief detour which shows that both string algebroids of
Bott-Chern type and the Hull-Strominger system, as considered in the present
work, appear naturally via variational principles in string theory. Consider a
flux compactification of the heterotic string from 10 to 4 dimensions. Spacetime
is assumed to be topologically of the form

R* x X,

where X is the internal (spin) compact manifold. The 10-dimensional metric
is a warped product [31], [40]

g0 = €2D(g1,3 + 96),

where ¢, 3 is the flat Minkowski metric, g is a Riemannian metric, and D is a
conformal factor which only depends on X.

Assume that this geometry satisfies the 10-dimensional gravitino equation,
that is, there exists a covariantly constant spinor for the spin connection asso-
ciated to

1
vgl() _ §H107

for V910 the Levi-Civita connection and H;y the 10-dimensional three-form flux.
Then, we have the integrability condition [40]

d(D = ¢)[2 =0

where ¢y is the 10-dimensional dilaton, which implies D = ¢'°. Assuming
a natural compactification ansatz for the spinor, we further obtain an SU(3)-
structure (¥, w) on X satisfying

Hg = —N + (dw)>'12, (A1)

Here N denotes the Nijenhuis tensor of the almost complex structure induced
by ¥ and Hgr = Hyp, depending only on the internal manifold.

Under these assumptions, we would like to characterize compactification
backgrounds with N = 1 supersymmetry in 4-dimensions. In other words, we
want to understand which solutions of the 10-dimensional gravitino equation
also satisfy the dilatino equation and the gaugino equation, which at this point
can be written simply as

(HR—FQd(b)-?]:O, FA-T]ZO.

Here, 7 is a spinor on (X g¢) associated to (¥,w), A is the gauge field, and
¢ = ¢'°, depending only on the internal manifold. Strikingly, this question can
be turned into a variational problem for two natural physical quantities: the
heterotic superpotential and the dilaton of the 4-dimensional effective theory.
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A.2. The heterotic superpotential. Consider the heterotic superpotential,
defined on solutions of the gravitino equation as follows [29] 28]

W = / e 2 (Hg — idw) A 0. (A.2)

The variation of W with respect to ¥ implies that
(Hg — idw)203 = 0

since the variation of ¥ lies in Q%" @ Q%! and therefore
N =0, Hp = dw

by (AJ) (in particular, the almost complex structure induced by V¥ is inte-
grable). The variation of W with respect to w implies that

d(e W) = 0,

and therefore Q) = ¢~ 2?W¥ is a holomorphic volume form on X. Note that the
previous conditions already imply W = 0.

The variation of W with respect to Hg requires a special treatment due to
the Green-Schwarz mechanism for anomaly cancellation, relating Hgr with the
gauge field A and an auxiliary connection V on the tangent bundle via the
Bianchi identity

dHR:O/tI'Rv/\Rv—O/tI'FA/\FA. (A3)

One way of understanding mathematically this variation is to regard the data
w, Hg, V, and A as induced by a horizontal lift on a real string algebroid

W C Egr

(see Section [5.3]) and impose a Dirac quantization condition on the isomorphism
class (see Section [5.2)

[Eg] € H'(Sg).
Choose an SU(3)-structure on X and consider the principal bundle Pg given

by the product of the bundle of special unitary frames on X with the gauge
bundle. The set H!(Sg) fits naturally in a exact sequence of pointed sets

HY(Sg) — HY(Cx) — H*(X,R),

(see [24, Prop. A.4]) where H!(C) is the set of isomorphism classes of principal
K-bundles and p; stands for the first Pontryagin class of the bundle with
respect to (cf. (B.1])
(,)=—atrpx +a'tr.

The fibre 57! ([Pg]) is a quotient of the H?(X,R)-torsor of real string classes
[38] (see 24, Prop. A.8]). Integral elements in H'(Sg) are given by (classes
of) isotopy classes of lifts of Pg: X — BK to the classifying space of the
corresponding string group [42]. Dirac quantization of [Eg| implies that a
variation HR of Hr must satisfy

Hg =db—20"tr VA Ry + 2/ tr A A Fy,
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for a two-form b on X. Taking this into account, the variation of the superpo-
tential W with respect to Hg implies

}7114/\\11207 Rv/\\II:O7

or equivalently FS’Q =0= R%Q.

The upshot of the previous discussion is the following: by imposing the con-
dition of critical point for the heterotic superpotential (on top of the gravitino
equation)

oW =0,
we have obtained a familiar geometry discussed in Section (.3 namely, a
Calabi-Yau threefold (X,Q) and a real string algebroid Er equipped with a
horizontal lift W C Eg inducing a lifting of T%' X (see Lemma [7.5])

Ly C Er ® C.

In particular, by Lemma 2.15] and Proposition 5.8 we obtain a string algebroid
Q = Qr,, over the the Calabi-Yau threefold (X, (2) endowed with a compact
form (hence, @ is Bott-Chern by Definition [.6]).

A.3. The dilaton functional and the gravitino mass. Consider the uni-
versal formula for the 4-dimensional dilaton in the effective field theory induced
by a string compactification [4]

e 20 :/Xe%lovolge. (A.4)

Imposing the gravitino equation and 0WW = 0, we obtain the alternative ex-

pression
3
R
e
X w 6 9

which is precisely the formula for the dilaton functional with level ¢ = 1 and
volume form (Z.9). We shift our perspective and regard e~2%4 as a functional for
compact forms on a fixed Bott-Chern algebroid (), given by a critical point of
the superpotential. Fixing now the Aeppli class [Egr] € ¥4(Q,R) (see Section
[6.2), the variation of the dilaton functional is given by

4

and we obtain the desired variational characterization of the remaning N =1
supersymmetry conditions in four dimensions, as observed originally in [22].

1/ (2i(h R, Fy) 4 0621 + 9E0T) A ||| ow?,
X

Proposition A.1 ([22]). The critical points of the dilaton functional for com-
pact forms on Q in a fired Aeppli class are the solutions of the equations

d(||9|,w?) = 0, F, Aw? =0.
Let us now turn to Conjecture B.I4 and formula (8.21]) for the moduli Kahler
potential. We build on a universal relation between the Kahler potential,

the superpotential, and the gravitino mass. In the context of N = 1 four-
dimensional supergravity the gravitino mass mg/, can be written as

Mgy = coePW
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for some universal constant ¢y € R. By the standard supersymmetry lore,
N = 1 supersymmetry in four dimensions imposes that the scalar manifold is a
Kéhler Hodge manifold, and K is the Kahler potential. For a compactification
of 10-dimensional heterotic supergravity to 4-dimensions, the superpotential
is given by (A.2), and the scalar manifold corresponds to the moduli space of
solutions of the Hull-Strominger system.

A Gukov-type formula [29] for the gravitino mass in 4-dimensional heterotic
flux compatifications was derived in [30] (valid to first order in o/ expansion),
namely,

B \/§6¢4W
4 [ 195

where e=2%* is the four-dimensional dilaton (A.4]). The previous two formulae
need to be understood off-shell, that is, without imposing the supersymmetry
conditions coming from d¥W = 0, nor the equations of motion of the ten-
dimensional theory. Comparing the two formula for the gravitino mass, it
follows that

ms/2

2%

- 26( Sy 1901.5%)?

By the discussion in Section [A.2] imposing now 6W = 0, we have e 2% =
I HQHW%S, and therefore we obtain the following off-shell formula for the mod-

K

uli Kahler potential
w3
K = —3log/ ||Q||w€ — 2log ¢y — log 2. (A.5)
X

This physical prediction from the heterotic string must be handled very care-
fully. In the physical analysis, the connection V on TX is a complicated
function of the hermitian form w and the parameter o/ in the Bianchi iden-
tity ([A.3]). Thus, a comparison with our mathematical study of the metric in
Section 8.2l only seems to be valid if we fix the holomorphic principal bundle un-
derlying the Bott-Chern algebroid ). This motivates Conjecture 814l Notice
that formula (A.5]) for the Kahler potential agrees with [14, Eq. (1.3)] to first
order in o expansion. We thank J. McOrist for this interesting observation.

ApPPENDIX B. COMPLEXIFIED AEPPLI CLASSES

In this section we dwell further into the geometry of the sequence of moduli
spaces on the right hand side of (824]). Our goal is to find an explanation for the
variations of ‘complexified Aeppli classes’ appearing in formula ([820) for the
fibre-wise moduli metric, via the study of the Teichmiiller space £°/ Aut4(E)
for string algebroids. Recall here that the infinitesimal Donaldson-Uhlenbeck-
Yau type Theorem identifies the tangent to the moduli space M, with the
tangent to the Teichmiiller space. We follow the notation in Section [R.3L

By Lemma RB.I6] the fibre over [P] € C°/ Kerop of the natural map

LY/ Aut(E) — C°/ Kerop (B.1)
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parametrizes isomorphism classes of string algebroids with underlying principal
G-bundle P. To give a cohomological interpretation of this fibre, denote by
Q" the sheaf of (holomorphic) closed (2, 0)-forms on X. Recall from [23, Lem.
2.10] that there is a group homomorphism
op: Gp — Hl(QiiO)

defined by

op(g) = [CS(g8") — CS(0") — d(g0" N O")] € H'(Q"),
for any choice of reduction h € Q°(P/K). Here we use [27] (see also [23, Lem.
3.3]) to identify
Ker d: Q30 @ Q> — Q40 Q31 @ 022

Hl QQ,O
(2°) T d: Q20 5 (B0 @ (21

I

(B.2)

The quotient

HY Q%) /Im op.
can be identified with the set of isomorphism classes of string algebroids with
underlying holomorphic principal G-bundle P (see [24, Prop. 3.11]). We want
to describe the fibre of (B as a natural subspace of H*(Q%%)/Im op. Using
(£9) and the isomorphism (B.2), we define a map

9: Hy'(X) — HYQY), (B.3)

induced by the 0 operator on forms acting on representatives. We consider
also the the natural map from Aeppli to Bott-Chern cohomology induced by
the O operator:
11 5 T coo. . Ker d: Q2@ Q% — 022 Ql? e Q0
Hy (X)) — HYQ") = Imd: Q02 — QL2 g (03 (B.4)
Lemma B.1. The fibre of (BI)) over [P] is an affine space modelled on the
image of the map

d: kerd — HY(Q)/Im op (B.5)
induced by ([B3), where kerd ¢ HY'(X) is defined by (B.4)

Proof. Fix a lifting Ly € £° and denote by P the induced holomorphic prin-
cipal G-bundle structure on P. Without loss of generality, we fix an isotropic
splitting Ag: T'X — F and regard

LO C Ql,l+0,2 D Qo’l(adﬁ).

We can choose \g such that Ly = (0,0), with induced three-form H € Q*0+2!1
and connection 6", for some choice of reduction h € Q°(P/K). Then, by
Proposition 216}, if L = (v, 8) € LY induces [P] € C°/Kerop it follows that
B is in the Ker op-orbit of 0. By (4], we can ‘gauge’ § and assume that

(%,8) = (7.0). Hence, ]
dy"? + oy =0

and ~ induces a class
(Y] € kerd ¢ HY'(X).
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The change in the isomorphism class of the string algebroid, from Lg to L, is
(see Proposition 2.T6])

o([yM]) = 7] € HH(Q).

An element (v/,0) € £° is in the same Aut(FE)-orbit as (v,0) if and only if
the corresponding string algebroids are isomorphic (see Lemma R.I6). This is
equivalent to the existence of g € Gp and B € Q> such that (see Proposition
23)

oyt = oyt + CS(gh") — CS(0") — d{gb" A O") + dB.

Thus, the induced map from the fibre of (B over [P] to H'(Q%")/Im op is
well-defined and injective. Surjectivity onto the image of (B.H) follows from
Proposition [Bl O

We turn next to the study of the map
L) Aut4(E) — £°/ Aut(E). (B.6)

Set-theoretically, the fibre over [L] € £°/ Aut(F) is given by the double quo-
tient Aut(E)\ Aut(E)/ Aut(Qr), where Aut(Qy) is regarded as the isotropy
group of L in Aut(FE). Following Proposition .7l and Lemma [B.I], this quo-
tient should have an intepretation in terms of the Aeppli cohomology group
Hi"l(X ). The precise relation goes beyond the scope of the present work, and
shall be compared with the link between the group of symplectomorphisms
and the first cohomology of a symplectic manifold via the flux homomorphism
(see Remark [A.8). Our modest goal here is to characterize the tangent to the
fibre of (B.6l). Strikingly, this infinitesimal study requires the classical Futaki
invariant for the principal bundle P [19] (see also [1]). Let b € Hp"" (X, R)
be a Bott-Chern class. Then, the Futaki invariant of P is given by a Lie algebra
homomorp hism

Fy: LieGp — C

which provides an obstruction to the existence of solutions of the Hermite-
Yang-Mills equations for a given balanced metric on X with class b (and hence
in particular of (Z2H)). Using the duality pairing Hy'(X) = Hpg'" ' (X)*
between the Aeppli and Bott-Chern cohomologies, the Futaki invariant can be
regarded as the Lie algebra homomorphism

F: Lie Gp — HY'(X)
s = [(s, Fp)]

for any choice of reduction h € Q°(P/K). Using Lemma [5.2] it is not difficult
to see that (B.5) induces a well-defined map

9: ker 0/Im F — HY(Q%°)/Im dop, (B.7)
where ker & ¢ Hy'(X) is defined by (B.4).

Lemma B.2. Let L € £° with induced principal bundle P. Then, the tangent
to the fibre of (B.E) over [L] € L°/ Aut(E) is isomorphic to the kernel of
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Proof. We build on the proof of Lemma Bl following the same notation. We
fix a lifting Ly € £° and an isotropic splitting A\g: TX — E. If (v,0), (v/,0) €
L° represent elements over [Lo] € £°/ Aut(E) there exists (g,7) € Aut(E) (see
Lemma [£3)) such that g € Gp N Ker Gp and

o 1,140,2
Y=7—T .

Therefore, if (4,0), (4/,0) are tangent to the fibre over [Ly] we have (see Defi-
nition [£.6]) )
A AN 2(s B € Im O @O
for s € Lie Gp. Thus, the map
[(4,0)] = [¥"'] € ker & C ker §/Im F
is well-defined an injective. Surjectivity follows from Lemma O

As a straightforward consequence of Lemma [B.1] and Lemma [B.2] we obtain
the following cohomological interpretation of the tangent space to the fibres of
the map between moduli spaces

L0/ Aut(E) — C°/Gp (B.8)

induced by (824]). Relying on Theorem [B19] this provides the desired expla-
nation for the ‘complexified Aeppli classes’ appearing in formula (820) for the
fibre-wise moduli metric.

Proposition B.3. The tangent space to the fibre of (B.8) over [P] is isomor-
phic to ker /Im F ¢ HY'(X)/Im F, where 9 is as in (B.4).
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