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GAUGE THEORY FOR STRING ALGEBROIDS

MARIO GARCIA-FERNANDEZ, ROBERTO RUBIO, AND CARL TIPLER

Abstract. We introduce a moment map picture for holomorphic string

algebroids where the Hamiltonian gauge action is described by means of
Morita equivalences, as suggested by higher gauge theory. The zero locus of
our moment map is given by the solutions of the Calabi system, a coupled
system of equations which provides a unifying framework for the classical
Calabi problem and the Hull-Strominger system. Our main results are con-
cerned with the geometry of the moduli space of solutions, and assume a
technical condition which is fulfilled in examples. We prove that the moduli
space carries a pseudo-Kähler metric with Kähler potential given by the
dilaton functional, a topological formula for the metric, and an infinitesimal
Donaldson-Uhlenbeck-Yau type theorem. Finally, we relate our topological
formula to a physical prediction for the gravitino mass in order to obtain a
new conjectural obstruction for the Hull-Strominger system.
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1. Introduction

Back to the work of Atiyah and Bott [7], the interaction of Yang-Mills theory
with symplectic geometry and, in particular, the idea of moment map, has had
an important impact in our understanding of the moduli theory for holomorphic
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vector bundles in algebraic geometry. The seed relation between stable bundles
on a Riemann surface and flat unitary connections observed in [7, 36], was
largely expanded with the Donaldson-Uhlenbeck-Yau Theorem [16, 41]. This
important result, initially conjectured by Hitchin and Kobayashi, establishes
a correspondence between the moduli space of solutions of the Hermite-Yang-
Mills equations and the moduli space of slope-stable bundles on a compact
Kähler manifold. A key upshot is that certain moduli spaces in algebraic
geometry, constructed via Mumford’s theory of stability, are endowed with
natural symplectic structures.
Our main goal in the present work is to explore a new scenario where the

‘moment map picture’ arises tightly bound up with recent developments in
higher gauge theory. Inspired by the Atiyah and Bott construction, our start-
ing point is a class of holomorphic bundle-like objects on a compact complex
manifold X , known as string algebroids [24]. A string algebroid Q is a spe-
cial class of holomorphic Courant algebroid, which can be thought of as the
‘higher Atiyah algebroid’ of a holomorphic principal bundle for the (complex-
ified) string group [43]. In the case of our interest, the geometric content of
Q comprises, in particular, a holomorphic principal G-bundle P over X with
vanishing first Pontryagin class p1(P ) = 0 and a holomorphic extension

0 // T ∗X // Q // AP // 0

of the holomorphic Atiyah algebroid AP of P by the holomorphic cotangent
bundle. We assume G to be a complex reductive Lie group with a fixed sym-
metric bilinear form 〈 , 〉 on its Lie algebra.
In this work we shall study gauge theoretical aspects of holomorphic string

algebroids. For this, we start by developing basic aspects of the theory, such
as gauge symmetries and a Chern correspondence in our setting. Gauge sym-
metries are described in Theorem 3.14, where we construct a category whose
objects are string algebroids and whose morphisms are (isomorphism classes
of) Morita equivalences. Two string algebroids Q, Q′ are Morita equivalent if
they can be obtained by reduction from the same complex string algebroid E
(the analogous concept in the smooth category), which we represent by

E

~~⑥
⑥
⑥
⑥

  ❇
❇

❇
❇

Q QL
oo QL′

// Q′.

Morita equivalences should be thought of as ‘higher gauge symmetries’ (see
Remark 3.15) and the Picard group of self-equivalences plays the role of the
‘complex gauge group’.
The Chern correspondence (Lemmas 5.11 and 7.5) requires the study of a

notion of compact form for Q by means of real string algebroids

ER ⊂ E.

A compact form ER determines a reduction Ph ⊂ P to a maximal compact
subgroup K ⊂ G (see Definition 5.4). The Chern correspondence associates to
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each compact form on Q a horizontal subspace

W ⊂ ER,

which provides the analogue of the Chern connection in our context. In agree-
ment with structural properties of connections in higher gauge theory [25, 39],
any such W ⊂ ER determines the classical Chern connection θh of Ph ⊂ P and
a real (1, 1)-form ω satisfying a structure equation (see Proposition 5.13).
We move on to study the geometry of the infinite-dimensional space of hori-

zontal subspaces W on a fixed compact form ER, whose associated (1, 1)-form
ω is hermitian. Via the Chern correspondence, this space has a (possibly de-
generate) pseudo-Kähler structure for each choice of volume form µ on X and
level ℓ ∈ R. There is a global Kähler potential given by − log of the dilaton
functional Mℓ, that is,

− logMℓ := − log

∫

X

e−ℓfω
ωn

n!
, (1.1)

where fω := 1
2
log(ωn/n!µ). In Proposition 7.14 we prove that there is a natural

Hamiltonian action for a subgroup of Morita Picard preserving the compact
form, with zero locus for the moment map given by solutions of the coupled
equations

F ∧ ωn−1 = 0, F 0,2 = 0,

d(e−ℓfωωn−1) = 0, ddcω + 〈F ∧ F 〉 = 0.
(1.2)

Here F is the curvature of a connection in the principal K-bundle underlying
ER, which is determined by W ⊂ ER.
The equations (1.2) were first found in [22] for ℓ = 1 in a holomorphic setting,

in relation to the critical locus of the dilaton functional M1. By Proposition
7.14, they can be regarded as a natural analogue of the Hermite-Yang-Mills
equations for string algebroids. Following [22], we will refer to (1.2) as the
Calabi system. These moment map equations provide a unifying framework for
the classical Calabi problem, which is recovered when K is trivial (see Section
7.2), and the Hull-Strominger system [31, 40]. For the latter, we assume that
X is a (non-necessarily Kähler) Calabi-Yau threefold with holomorphic volume
form Ω and we take ℓ = 1 and

µ = (−1)
n(n−1)

2 inΩ ∧ Ω. (1.3)

To our knowledge, Corollary 7.15 provides the first moment map interpretation
of the Hull-Strominger system in the mathematics literature (see [17, 21, 37]
for recent reviews covering this topic). As a matter of fact, this was our original
motivation when we initiated the present work.
Our main results, discussed briefly over the next section, are devoted to

the geometry of the moduli space of solutions of (1.2). Assuming a technical
Condition A which is fulfilled in examples (see Section 8.4), we shall prove
that the moduli space carries a (possibly degenerate) pseudo-Kähler metric
with Kähler potential (1.1) (see Theorem 8.8), a topological formula for the
metric (see Theorem 8.13), and an infinitesimal Donaldson-Uhlenbeck-Yau type
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Theorem (see Theorem 8.19). Interestingly, the non-degeneracy of the metric
is very sensitive to the level ℓ ∈ R.

Main results. Throughout this section we fix a solution W of the Calabi sys-
tem (1.2) on a compact form ER. Via the Chern correspondence, W determines
a string algebroid Q with underlying holomorphic principal G-bundle P . In
addition, W determines two cohomological quantities which play an important
role in the present paper, namely, a balanced class and an ‘Aeppli class of Q’

b :=
1

(n− 1)!
[e−ℓfωωn−1] ∈ Hn−1,n−1

BC (X,R), a = [ER] ∈ ΣA(Q,R). (1.4)

The space ΣA(Q,R) is constructed via Bott-Chern secondary characteristic
classes and is affine for a subspace of H1,1

A (X,R) (see Proposition 6.8). For
the sake of clarity, we will assume throughout this introduction that G is
semisimple and the following cohomological conditions are satisfied

h0,1A (X) = 0, h0,2
∂̄
(X) = 0, h0(adP ) = 0. (1.5)

The results in the paper are hence stronger and more precise than the presented
below. On the other hand, our main results assume Condition A. In a nutshell,
this technical condition states that any element in the kernel of the linearization
of (1.2) along the Aeppli class a determines an infinitesimal automorphism of
Q (see Remark 8.7). This is very natural, as it typically follows for geometric
PDE with a moment map interpretation. In Proposition 8.20 we discuss a
class of non-Kähler examples of solutions of (1.2) where Condition A applies,
obtained via deformation of a Kähler metric.
Our main theorem relies on a gauge fixing mechanism for infinitesimal vari-

ations (ω̇, ḃ, ȧ) ∈ Ω1,1
R

⊕Ω2 ⊕Ω1(Ph) of the Calabi system (1.2), which requires
Condition A (see Proposition 8.6). To state the result, we use the decomposi-
tion ω̇ = ω̇0 + (Λωω̇)ω/n into primitive and non-primitive parts with respect
to the hermitian form ω. Denote by Mℓ the moduli space of solutions of the
Calabi system (see Section 8.1). A precise statement is given in Theorem 8.8.

Theorem 1.1. Assume Condition A and (1.5). Then, the tangent space to
Mℓ at [W ] inherits a pseudo-Kähler structure with (possibly degenerate) metric

gℓ(ω̇, ḃ, ȧ) =
ℓ− 2

Mℓ

∫

X

〈ȧ ∧ Jȧ〉 ∧ e−ℓfω ωn−1

(n− 1)!

+
2− ℓ

2Mℓ

∫

X

(|ω̇0|2 + |ḃ1,10 |2)e−ℓfω ω
n

n!

+
2− ℓ

2Mℓ

(
ℓ

2
− n− 1

n

)∫

X

(|Λωḃ|2 + |Λωω̇|2)e−ℓfω
ωn

n!

+

(
2− ℓ

2Mℓ

)2
((∫

X

Λωω̇e
−ℓfω

ωn

n!

)2

+

(∫

X

Λωḃe
−ℓfω

ωn

n!

)2
)
.

(1.6)
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Ignoring topological issues, the significance of our main theorem is that the
‘smooth locus’ of the moduli space Mℓ inherits a (possibly degenerate) pseudo-
Kähler metric gℓ with Kähler potential (1.1). An interesting upshot of our
formula for the moduli space metric is that along the ‘bundle directions’, given
formally by the first line in formula (1.6), the metric is conformal to the Atiyah-
Bott-Donaldson pseudo-Kähler metric on the moduli space of Hermite-Yang-
Mills connections with fixed hermitian metric ω (see [7, 16, 33]). Observe that
the signature depends on 〈 , 〉. The conformal factor is given up to multiplicative
constants by the inverse of the ℓ-dilaton functionalMℓ in (1.1). This statement
must be handled very carefully, since the hermitian metric ω in our picture
varies in a complicated way from point to point in the moduli space.
Motivated by this observation, in Theorem 8.13 we study the structure of

the metric (1.6) along the fibres of a natural map from Mℓ to the moduli space
of holomorphic principal G-bundles, proving the following formula:

gℓ =
2− ℓ

2Mℓ

(
2− ℓ

2Mℓ

(Re ȧ · b)2 − Re ȧ · Re ḃ + 2− ℓ

2Mℓ

(Im ȧ · b)2 − Im ȧ · Im ḃ

)
.

(1.7)

Here, ḃ ∈ Hn−1,n−1
BC (X) and ȧ ∈ H1,1

A (X) are ‘complexified variations’ of the
Bott-Chern class and the Aeppli class of the solution in (1.4), obtained via
gauge fixing (see Lemma 8.10). Formula (1.7) shows that the moduli space
metric (1.6) is ‘semi-topological’, in the sense that fibre-wise it can be expressed
in terms of classical cohomological quantities.
When the structure group K is trivial, X is a Kähler Calabi-Yau threefold

and we take the volume form as in (1.3) and ℓ = 1, equation (1.7) matches
Strominger’s formula for the special Kähler metric on the ‘complexified Kähler
moduli’ for X [13, Eq. (4.1)]. As a consequence of our framework, this classical
moduli space is recovered, along with its special Kähler metric, by pseudo-
Kähler reduction in Theorem 1.1. As an application of (1.7), in Section 8.4 we
show that any stable vector bundle V over X satisfying

c1(V ) = 0, c2(V ) = c2(X)

determines a deformation of the moduli special Kähler geometry to an explicit
family of pseudo-Kähler metrics (see also Example 8.21).
On a (non necessarily Kähler) Calabi-Yau threefold (X,Ω), (7.25) is equiva-

lent to the Hull-Strominger system [31, 40] provided that ℓ = 1 and we take µ
as in (1.3). For this interesting case, the physics of string theory predicts that
the fibre-wise moduli metric (1.7) should be positive definite (see Conjecture
8.14 and Appendix A.3). This way, we obtain a physical prediction relating
the variations of the Aeppli classes and balanced classes of solutions.

Conjecture 1.2. If (X,P ) admits a solution of the Hull-Strominger system,
then (1.7) is positive definite. In particular, the variations of the Aeppli and
balanced classes of nearby solutions must satisfy

Re ȧ · Re ḃ < 1

2
∫
X
‖Ω‖ω ω3

6

(Re ȧ · b)2. (1.8)
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Formula (1.8) provides a potential obstruction to the existence of solutions
of the Hull-Strominger system around a given a solution. We expect this
phenomenon to be related to some obstruction to the global existence, which
goes beyond the slope stability of the bundle and the balanced property of the
manifold (cf. [45]). It would be interesting to obtain a physical explanation
for the inequality (1.8).
Our last result can be regarded as an infinitesimal Donaldson-Uhlenbeck-

Yau type theorem, relating the moduli space of solutions of the Calabi system
with a Teichmüller space for string algebroids (see Section 8.3). A precise
formulation can be found in Theorem 8.19.

Theorem 1.3. Assume Condition A and (1.5). Then, the tangent to the mod-
uli space Mℓ at [W ] is canonically isomorphic to the tangent to the Teichmüller
space for string algebroids at [Q].

This strongly suggests that—if we shift our perspective and consider the
Calabi system as equations for a compact form on fixed Bott-Chern algebroid
Q along a fixed Aeppli class—the existence of solutions should be related to
a stability condition in the sense of Geometric Invariant Theory. This was
essentially the point of view taken in [22]. The precise relation with stability
in our context is still unclear, as the balanced class b ∈ Hn−1,n−1

BC (X,R) of the
solution varies in the moduli space Mℓ. The conjectural stability condition
which characterizes the existence of solutions should be related to the integral of
the moment map, given by the dilaton functional Mℓ. We speculate that there
is a relation between this new form of stability and the conjectural inequality
(1.8). The global structure of the moduli space Mℓ is also a mistery to us. An
important insight for future studies of this structure might be provided by the
moduli space metric in our Theorem 1.1.
The moduli space of solutions of the Hull-Strominger system has been an

active topic of research over the last years, including a remarkable physical
construction of the moduli metric in [14, 35] and a very recent symplectic
intepretation of the system in the physics literature [6] (see also [3, 5, 8, 15, 23]
and references therein). Our formula for the Kähler potential (8.21), with ℓ = 1,
shall be compared with [14, Eq. (1.3)], which puts forward the case ℓ = 0. The
Morita setting in Section 3 establishes an interesting parallelism with recent
developments in generalized Kähler geometry [9], which were inspirational for
our work. It would be interesting to pursue further links between these two
frameworks in the future.
Acknowledgments: The authors would like to thank Luis Álvarez-Cónsul,

Vestislav Apostolov, Jean-Michel Bismut, Marco Gualtieri, Nigel Hitchin, Fer-
nando Marchesano, Jock McOrist, Carlos Shahbazi and Martin Ziegler for help-
ful conversations.

2. String algebroids and liftings

2.1. Holomorphic string algebroids. Let X be a complex manifold of di-
mension n. A holomorphic Courant algebroid (Q, 〈 , 〉, [ , ], π) over X consists
of a holomorphic vector bundle Q→ X , with sheaf of sections denoted also by
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Q, together with a holomorphic non-degenerate symmetric bilinear form 〈 , 〉,
a holomorphic vector bundle morphism π : Q→ TX , and a homomorphism of
sheaves of C-vector spaces

[ , ] : Q⊗C Q→ Q,

satisfying natural axioms, for sections u, v, w ∈ Q and φ ∈ OX ,

(D1): [u, [v, w]] = [[u, v], w] + [v, [u, w]],
(D2): π([u, v]) = [π(u), π(v)],
(D3): [u, φv] = π(u)(φ)v + φ[u, v],
(D4): π(u)〈v, w〉 = 〈[u, v], w〉+ 〈v, [u, w]〉,
(D5): [u, v] + [v, u] = 2π∗d〈u, v〉.
Given a holomorphic Courant algebroid Q over X with surjective anchor

map π, there is an associated holomorphic Lie algebroid

AQ := Q/(Ker π)⊥.

Furthermore, the holomorphic subbundle

adQ := Ker π/(Kerπ)⊥ ⊂ AQ

inherits the structure of a holomorphic bundle of quadratic Lie algebras.
Let G be a complex Lie group with Lie algebra g, and consider a bi-invariant

symmetric bilinear form 〈 , 〉 : g ⊗ g → C. Let p : P → X be a holomorphic
principal G-bundle over X . Consider the holomorphic Atiyah Lie algebroid
AP := TP/G of P , with anchor map dp : AP → TX and bracket induced by
the Lie bracket on TP . The holomorphic bundle of Lie algebras Ker dp =
adP ⊂ AP fits into the short exact sequence of holomorphic Lie algebroids

0 → adP → AP → TX → 0.

Definition 2.1. A string algebroid is a tuple (Q,P, ρ), where P is a holomor-
phic principal G-bundle over X , Q is a holomorphic Courant algebroid over X ,
and ρ is a bracket-preserving morphism inducing a short exact sequence

0 // T ∗X // Q
ρ

// AP // 0, (2.1)

such that the induced map of holomorphic Lie algebroids ρ : AQ → AP is an
isomorphism restricting to an isomorphism adQ ∼= (adP, 〈 , 〉).
We are interested in the classification of these objects up to isomorphism, as

given in the following definition.

Definition 2.2 ([24]). A morphism from (Q,P, ρ) to (Q′, P ′, ρ′) is a pair
(ϕ, g), where ϕ : Q → Q′ is a morphism of holomorphic Courant algebroids
and g : P → P ′ is a homomorphism of holomorphic principal bundles covering
the identity on X , such that the following diagram is commutative.

0 // T ∗X //

id
��

Q
ρ

//

ϕ

��

AP //

dg

��

0,

0 // T ∗X // Q′ ρ′
// AP ′

// 0.
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We say that (Q,P, ρ) is isomorphic to (Q′, P ′, ρ′) if there exists a morphism
(ϕ, g) such that ϕ and g are isomorphisms.

To recall the basic classification result that we need, we introduce now some
notation which will be used in the rest of the paper. Given a holomorphic
principal G-bundle P over X , denote by AP the space of connections θ on the
underlying smooth bundle P whose curvature Fθ satisfies F

0,2
θ = 0 and whose

(0, 1)-part induces P . Given θ ∈ AP , the Chern-Simons three-form CS(θ) is a
G-invariant complex differential form of degree three on the total space of P
defined by

CS(θ) = −1

6
〈θ ∧ [θ, θ]〉+ 〈Fθ ∧ θ〉 ∈ Ω3

C
(P ),

which satisfies

dCS(θ) = 〈Fθ ∧ Fθ〉.
Proposition 2.3 ([24], Prop. 2.8). The isomorphism classes of string alge-
broids are in one-to-one correspondence with the set

H1(S) = {(P,H, θ) : (H, θ) ∈ Ω3,0 ⊕ Ω2,1 ×AP | dH + 〈Fθ ∧ Fθ〉 = 0}/ ∼,
where (P,H, θ) ∼ (P ′, H ′, θ′) if there exists an isomorphism g : P → P ′ of
holomorphic principal G-bundles and, for some B ∈ Ω2,0,

H ′ = H + CS(gθ)− CS(θ′)− d〈gθ ∧ θ′〉+ dB. (2.2)

Remark 2.4. The notation H1(S) comes from the fact that the isomorphism
classes can be understood as the first cohomology of a certain sheaf S (see [24,
Sec. 3.1] for more details). Implicitly, we shall use a smooth version of this
sheaf (and its first cohomology) in Proposition 2.11.

Remark 2.5. Recall that given a pair of connections θ, θ′ on a smooth principal
G-bundle P over X , there is an equality (see e.g. [24])

CS(θ′)− CS(θ)− d〈θ′ ∧ θ〉 = 2〈a, Fθ〉+ 〈a, dθa〉+ 1

3
〈a, [a, a]〉 ∈ Ω3

C

where a = θ′−θ is a smooth 1-form with values in the adjoint bundle of P . By
an abuse of notation, we omit the pullback of the right-hand side to the total
space of P .

2.2. Liftings. Our next goal is to understand string algebroids in terms of
smooth data. For this, we will extend the lifting plus reduction method intro-
duced in [27]. Our construction can be regarded as a higher analogue of the
well-known construction of holomorphic vector bundles in terms of Dolbeault
operators.
Let X be a complex manifold. We denote by X the underlying smooth

manifold. A smooth complex Courant algebroid (E, 〈 , 〉, [ , ], π) over X consists
of a smooth complex vector bundle E → X together with a smooth non-
degenerate symmetric bilinear form 〈 , 〉, a smooth vector bundle morphism
π : E → TX ⊗ C and a bracket [ , ] on smooth sections satisfying the same
axioms (D1)-(D5) as a holomorphic Courant algebroid (see Section 2.1).
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We fix the data G, g, 〈 , 〉 as in the previous section. Let P be a smooth
principal G-bundle over X with vanishing first Pontryagin class

p1(P ) = 0 ∈ H4(X,C).

We consider the Atiyah Lie algebroid AP , fitting into the short exact sequence
of smooth complex Lie algebroids

0 → adP → AP → TX ⊗ C → 0, (2.3)

where TX ⊗ C denotes the complexified smooth tangent bundle of X . Recall
that AP is defined as the quotient of the complexification of the real Atiyah
algebroid of P , regarded as a principal bundle with real structure group, by
the ideal adP 0,1, whereby adP ∼= adP 1,0 in (2.3).

Definition 2.6. A complex string algebroid is a tuple (E, P , ρc), where P is a
smooth principal G-bundle over X , the bundle E is a smooth complex Courant
algebroid over X , and ρc is a bracket-preserving morphism inducing a short
exact sequence

0 // T ∗X ⊗ C // E
ρc

// AP // 0,

such that the induced map of complex Lie algebroids ρc : AE → AP is an
isomorphism restricting to an isomorphism adE ∼= (adP, 〈 , 〉).
Here, the notion of morphism is analogous to Definition 2.2, and it is there-

fore omitted. The basic device to produce a string algebroid out of a complex
string algebroid is provided by the following definition.

Definition 2.7. Given (E, P , ρc) a complex string algebroid, a lifting of T 0,1X
to E is an isotropic, involutive subbundle L ⊂ E mapping isomorphically to
T 0,1X under π : E → TX ⊗ C.

Our next result shows how to obtain a string algebroid for any lifting L ⊂ E.

Proposition 2.8. Let (E, P , ρc) be a complex string algebroid. Then, a lifting
L ⊂ E of T 0,1X determines a string algebroid (QL, PL, ρL), with

QL = L⊥/L

where L⊥ denotes the orthogonal complement of L ⊂ E.

Proof. We will follow closely [27, App. A]. Consider the reduction of E by L,
given by the orthogonal bundle L⊥/L. Arguing as in [12, Thm. 3.3], we obtain
that QL inherits the structure of a smooth Courant algebroid over X , with
surjective C-linear anchor map

πQL
: QL → T 1,0X ∼= TX

[e] 7→ π(e),

for π the anchor map of E. Furthermore, QL has a natural structure of holo-
morphic vector bundle given by the Dolbeault operator

∂̄LV e = [s(V ), ẽ] mod L,

where V ∈ Γ(T 0,1X), ẽ ∈ Γ(L⊥) is any lift of [e] ∈ Γ(QL) to L⊥, and
s = π−1

|L : T 0,1X → L. By construction, this endows QL with a canonical
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structure of holomorphic transitive Courant algebroid over X . To endow QL

with the structure of a string algebroid, we note that the image of ρL := ρE|L⊥

is an involutive subbundle of AP . This determines uniquely a G-invariant (in-
tegrable) almost complex structure on P , such that T 1,0P/G = Im ρL and
the induced map AQL

→ T 1,0P/G is an isomorphism of holomorphic Lie alge-
broids. �

In the following lemma we observe that every string algebroid comes from
reduction.

Lemma 2.9. Let (Q,P, ρ) be a string algebroid.

i) There is a structure of complex string algebroid with lifting on

EQ = Q⊕ T 0,1X ⊕ (T 0,1X)∗, L = T 0,1X,

such that, for any e, q ∈ Γ(Q), V,W ∈ Γ(T 0,1X), ξ, η ∈ Ω0,1, the anchor
map, the pairing, the bracket, and the bracket-preserving map are given
respectively by

π(e+ V + ξ) := π(e) + V,

〈e + V + ξ, e+ V + ξ〉 := 〈e, e〉+ ξ(V ),

[e+ V + ξ, q +W + η] := [e, q] + ∂̄QV q − ∂̄QW e + [V,W ] + LV η − iWdξ,

ρ(e+ V + ξ) := ρ(e) + θ0,1V,

where θ0,1 denotes the partial connection on P determined by the holomor-
phic principal bundle P .

ii) The reduced string algebroid QL is canonically isomorphic to Q via the
map induced by the natural projection L⊥ = Q⊕ T 0,1X → Q.

Proof. A direct proof of i) follows by a laborious but straightforward check
using the axioms in Definition 2.1 and it is omitted (see Remark 2.10 and
Remark 2.14 below for an alternative, shorter proof). Part ii) follows easily
from Proposition 2.8. �

Remark 2.10. The construction of EQ in Lemma 2.9 boils down to the fact
that Q forms a matched pair with the standard Courant structure on T 0,1X ⊕
(T 0,1X)∗ (cf. [26, 27]).

To finish this section, we recall the classification of complex string algebroids.
This will be useful for some of the calculations in Section 4. Given a smooth
principal G-bundle, we denote by AP the space of connections on P .

Proposition 2.11 ([24], App. A). The isomorphism classes of complex string
algebroids are in one-to-one correspondence with the set

H1(S) = {(P,Hc, θc) : (Hc, θc) ∈ Ω3
C
×AP | dHc + 〈Fθc ∧ Fθc〉 = 0}/ ∼, (2.4)

where (P,Hc, θc) ∼ (P ′, H ′
c, θ

′
c) if there exists an isomorphism g : P → P ′ of

smooth principal G-bundles and (2.2) is satisfied for some B ∈ Ω2
C
.
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2.3. Explicit models. We describe now concrete models for string algebroids,
either in the holomorphic or smooth categories, which will be used throughout
the paper. We refer to [24, Prop. 2.4] for the fact that the model in the next
definition satisfies the axioms in Definition 2.1 .

Definition 2.12. For any triple (P,H, θ) as in Proposition 2.3, we denote by

Q0 = T 1,0X ⊕ adP ⊕ (T 1,0X)∗

the string algebroid with Dolbeault operator

∂̄0(V + r + ξ) = ∂̄V + iV F
1,1
θ + ∂̄θr + ∂̄ξ + iVH

2,1 + 2〉F 1,1
θ , r〉,

non-degenerate symmetric bilinear form, or pairing,

〈V + r + ξ, V + r + ξ〉0 = ξ(V ) + 〈r, r〉,
bracket on OQ0 ,

[V + r + ξ,W + t+ η]0 = [V,W ]− F 2,0
θ (V,W ) + ∂θV t− ∂θW r

+ iV ∂η + ∂(η(V ))− iW∂ξ + iV iWH
3,0,

+ 2〈∂θr, t〉+ 2〈iV F 2,0
θ , t〉 − 2〈iWF 2,0

θ , r〉,
anchor map π0(V +r+ξ) = V , and bracket-preserving map ρ0(V +r+ξ) = V +r,
where we use the connection θ to identify AP ∼= T 1,0X ⊕ adP .

We turn next to the the case of complex string algebroids. Since this case
has not been considered previously in the literature, we give a few more details
of the construction. Given a triple (P,Hc, θc) as in Proposition 2.11, we can
associate a complex string algebroid as follows: consider the smooth complex
vector bundle

E0 = (TX ⊗ C)⊕ adP ⊕ (T ∗X ⊗ C)

with the C-valued pairing

〈V + r + ξ, V + r + ξ〉 = ξ(V ) + 〈r, r〉 (2.5)

and anchor map π(V + r + ξ) = V . Endowed with the bracket

[V + r + ξ,W + t+ η] = [V,W ]− Fθc(V,W ) + dθcV t− dθcW r − [r, t]

+ LV η − iWdξ + iV iWHc

+ 2〈dθcr, t〉+ 2〈iV Fθc , t〉 − 2〈iWFθc , r〉,
(2.6)

the bundle E0 becomes a smooth complex Courant algebroid (the Jacobi iden-
tity for the bracket is equivalent to the four-form equation in (2.4)). The
connection θc gives a splitting of the Atiyah sequence (2.3), so that AP ∼=
(TX ⊗ C)⊕ adP , and in this splitting the Lie bracket on sections of AP is

[V + r,W + t] = [V,W ]− Fθc(V,W ) + dθcV t− dθcW r − [r, t].

Then, one can readily check that

ρ0(V + r + ξ) = V + r (2.7)

defines a structure of complex string algebroid (P,E0, ρ), in the sense of Defi-
nition 2.6, where we again use θc to identify AP ∼= (TX ⊗ C)⊕ adP .
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Definition 2.13. For any triple (P,Hc, θc) as in (2.4), we denote by

E0 = (TX ⊗ C)⊕ adP ⊕ (T ∗X ⊗ C)

the complex string algebroid described by the pairing (2.5), the bracket (2.6),
and the bracket-preserving map (2.7).

Remark 2.14. By using the explicit models Q0 and E0 in Definition 2.12 and
Definition 2.13, combined with Propositions 2.3 and 2.11, one can obtain a
short proof of Lemma 2.9.

We next obtain explicit characterizations of liftings of T 0,1X in terms of
differential forms. Given (γ, β) ∈ Ω2

C
⊕ Ω1(adP ) we can define an orthogonal

automorphism (γ, β) of E0 by (see [24])

(γ, β)(V + r + ξ) = V + iV β + r + iV γ − 〈iV β, β〉 − 2〈β, r〉+ ξ. (2.8)

Lemma 2.15. Let E0 be the complex string algebroid determined by a triple
(P,Hc, θc), as in Definition 2.13. There is a one-to-one correspondence between
liftings of T 0,1X to E0 and elements

(γ, β) ∈ Ω1,1+0,2 ⊕ Ω0,1(adP )

satisfying
(
Hc + dγ − 2〈β, Fθc〉 − 〈β, dθcβ〉 − 1

3
〈β, [β, β]〉

)1,2+0,3

= 0,

F 0,2
θc

+ ∂̄θcβ +
1

2
[β, β] = 0.

(2.9)

More precisely, given (γ, β) satisfying (2.9), the lifting is

L = {(−γ,−β)(V 0,1), V 0,1 ∈ T 0,1X}, (2.10)

and, conversely, any lifting is uniquely expressed in this way.

Proof. An isotropic subbundle L ⊂ E0 mapping isomorphically to T 0,1X under
π is necessarily of the form (2.10) for a suitable (γ̃, β̃) ∈ Ω1,1+0,2 ⊕ Ω1(adP )
(see [20, Sec. 3.1]). Observe that, for any V 0,1 ∈ T 0,1X ,

(−γ̃,−β̃)(V 0,1) = (−γ,−β)(V 0,1),

where β = β̃0,1 and γ = γ̃ + 〈β̃0,1 ∧ β̃1,0〉, and the pair

(γ, β) ∈ Ω1,1+0,2 ⊕ Ω0,1(adP )

is uniquely determined by L. By the proof of [23, Prop. 4.3] we have

(γ, β)[(−γ,−β)·, (−γ,−β)·]θc,Hc
= [·, ·]θc+β,H′

c
(2.11)

where [·, ·]Hc,θc denotes the Dorfman bracket (2.6) and

H ′
c = Hc + dγ − 2〈β, Fθc〉 − 〈β, dθcβ〉 − 1

3
〈β, [β, β]〉. (2.12)

Then, by formula (2.6) for the bracket, L is involutive if and only if

F 0,2
θc+β

= F 0,2
θc

+ ∂̄θcβ +
1

2
[β, β] = 0, (H ′

c)
1,2+0,3 = 0, (2.13)

and the proof follows. �
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We describe now the isomorphism class of the reduced string algebroid in
Proposition 2.8, in terms of the explicit model in the previous lemma.

Proposition 2.16. Let E0 be the complex string algebroid determined by a
triple (P ,Hc, θc), as in Definition 2.13. If L = (−γ,−β)T 0,1X, as in (2.10),
then the isomorphism class of (QL, PL, ρL) is (see Proposition 2.3)

[(PL, H
3,0+2,1
c + ∂γ1,1 − 2〈β, F 2,0

θc
〉, θc + β)] ∈ H1(S), (2.14)

where PL denotes P endowed with the holomophic structure θ0,1c + β.

Proof. By the second equation in (2.9) it follows that θ0,1c +β induces a structure
of holomorphic principal bundle on P , called PL. Now, we have

L⊥ = {(−γ,−β)(W + t+ η1,0) | W ∈ TX ⊗ C, t ∈ adP, η1,0 ∈ (T 1,0X)∗}
and therefore there is a smooth bundle isomorphism

QL → T 1,0X ⊕ adP ⊕ (T 1,0X)∗

[(−γ,−β)(W + t+ η1,0)] 7→W 1,0 + t+ η1,0. (2.15)

Let us now express the holomorphic Courant structure in terms of (2.15).
Firstly, note that (see (2.11))

(γ, β)[(−γ,−β)(V 0,1), (−γ,−β)(W 1,0 + t+ η1,0)]

= ∂̄V 0,1W 1,0 − Fθ′c(V
0,1,W 1,0) + ∂̄

θ′c
V 0,1t

+ ∂̄V 0,1η1,0 + iV 0,1iW 1,0H ′
c + 2〈iV 0,1Fθ′c , t〉,

where H ′
c is as in (2.12) and θ′c = θc + β. Since L is involutive, we have

(H ′
c)

1,2+0,3 = 0 (see (2.13)), and

∂̄L(W 1,0 + t+ η1,0) = ∂̄W 1,0 + iW 1,0F 1,1
θ′c

+ ∂̄θ
′
ct

+ ∂̄η1,0 + iW 1,0(H ′2,1
c ) + 2〈F 1,1

θ′c
, t〉.

Therefore, using the connection θ′c to identify

APL
= T 1,0X ⊕ adP

it follows that

ρL : QL → APL

[(−γ,−β)(W + t+ η1,0)] 7→W 1,0 + t

is holomorphic, and hence QL is a string algebroid. To finish, arguing as for
the Dolbeault operator, we notice that, in terms of (2.15), the bracket of QL

is given by

[V + r + ξ,W + t + η] = [V,W ]− Fθ′c(V,W ) + ∂
θ′c
V t− ∂

θ′c
W r − [r, t]

+ ∂(iV η) + iV ∂η − iW∂ξ + iV iWH
′3,0
c

+ 2〈∂θ′cr, t〉+ 2〈iV F 2,0
θ′c
, t〉 − 2〈iWF 2,0

θ′c
, r〉,

for V + r + ξ,W + t + η holomorphic sections of T 1,0X ⊕ adP ⊕ (T 1,0X)∗.
Then, by [24, Prop. 2.4] it follows that the isomorphism class of (QL, PL, ρL)
is (2.14), as claimed. �
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3. Morita equivalence

3.1. Definition and basic properties. We introduce now our notion of
Morita equivalence for string algebroids over a fixed complex manifold X . We
follow the notation in Proposition 2.8. For simplicity, when it is clear from
the context, we will denote a complex string algebroid (E, P , ρc) (resp. string
algebroid (Q,P, ρ)) over X simply by E (resp. Q). We fix the structure group
of all our principal bundles (either smooth or holomorphic) to be a complex
Lie group G.

Definition 3.1. A Morita equivalence between a pair of string algebroids Q
and Q′ is given by a complex string algebroid E, a pair of liftings L ⊂ E ⊃ L′

of T 0,1X and string algebroid isomorphisms ψ, ψ′, fitting in a diagram

E

~~⑥
⑥
⑥
⑥

  ❇
❇

❇
❇

Q QL
ψ

oo QL′

ψ′

// Q′,

where the discontinuous arrows refer to the partial maps

L⊥ → QL = L⊥/L, L′⊥ → QL′ = L′⊥/L′.

The set of Morita equivalences between Q andQ′ will be denoted by Hom(Q,Q′).

Our goal in this section is to characterize when Hom(Q,Q′) 6= ∅ for any
given pair of string algebroids. It will be helpful to study the triples (E,L, ψ),
consisting of a reduction and an isomorphism, thought of as ‘half of a Morita
equivalence’.

Definition 3.2. Let Q be a string algebroid. A Morita brick for Q is a tuple
(E,L, ψ), given by a complex string algebroid E, a lifting L ⊂ E of T 0,1X and
a string algebroid isomorphism ψ : QL → Q.

Remark 3.3. Actually, a Morita brick (E,L, ψ) can be seen as a Morita equiva-
lence of Q with itself of the form (ψ, L,E, L, ψ). However, it is helpful to single
out these objects in order to develop the theory.

By Lemma 2.9, there always exists a Morita brick for a given string algebroid
Q, given by

E = EQ, L = T 0,1X, ψ = IdQ. (3.1)

Here IdQ denotes the isomorphism QL := L⊥/L → Q induced by the natural
projection L⊥ = Q ⊕ T 0,1X → Q. Furthermore, as we will see shortly, this is
essentially the unique Morita brick, up to the right notion of isomorphism.
To introduce the following definition, observe that given pairs (E,L) and

(E ′, L′), an isomorphism

f : E → E ′ such that f(L) = L′
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induces, upon restriction to L⊥, an isomorphism f : QL → QL′ and a commu-
tative diagram

E //❴❴❴

f

��

QL

f

��

E ′ //❴❴❴ QL′.

(3.2)

Definition 3.4. We say that two Morita bricks (E,L, ψ), (E ′, L′, ψ′) for the
same string algebroid Q are isomorphic if there exists an isomorphism f : E →
E ′ such that f(L) = L′, thus inducing an isomorphism f : QL → QL′ , and
ψ = ψ′ ◦ f . That is, the following diagram commutes

E
''P

P
P

f

��

QL ψ

''❖
❖❖

❖❖
❖

f

��

E ′

''❖
❖

❖ Q.

QL′
ψ′

77♦♦♦♦♦♦

In the following result, we observe that there is a natural forgetful map
from the set of isomorphism classes of string algebroids H1(S) to the set of
isomorphism classes of complex string algebroids H1(S) (see Proposition 2.3
and Proposition 2.11). This provides a lift of the map which sends a holomor-
phic principal G-bundle P to the underlying smooth principal bundle P (see
Remark 3.6).

Lemma 3.5. Using the notation in Lemma 2.9, there is a well-defined map

s : H1(S) → H1(S)
[Q] 7→ [EQ]. (3.3)

Proof. Given an isomorphism f : Q → Q′, we can define an induced isomor-
phism of complex string algebroids

f := f ⊕ IdT 0,1X ⊕ Id(T 0,1X)∗ : EQ → EQ′.

�

Remark 3.6. Alternatively, relying on the classification in Proposition 2.3 and
Proposition 2.11, we can also write (3.3) as

s([(P,H, θ)]) = [(P,H, θ)],

where P denotes the smooth complex principal G-bundle underlying P .

We are now ready to prove the uniqueness of Morita bricks up to (unique)
isomorphism.
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Lemma 3.7. Let Q be a string algebroid. Given a Morita brick (E,L, ψ) for
Q, there exists a unique isomorphism

E
''P

PPP

f

��

QL ψ

&&◆
◆◆

◆◆
◆

f

��

EQ

''❖
❖

❖
❖ Q.

Q
IdQ

88♣♣♣♣♣♣♣

(3.4)

to the Morita brick (EQ, T
0,1X, IdQ) in (3.1). Consequently, any Morita brick

(E,L, ψ) for Q satisfies, for the map s in (3.3),

[E] = s([Q]) ∈ H1(S).
Proof. The isotropic splitting L ⊂ E gives a decomposition of E into L⊥, which
contains L, and (T 0,1X)∗ ⊂ E. Combining this with L ∼= T 0,1X , the definition
of QL and ψ, we get

E = L⊥ + (T 0,1X)∗ ∼= QL+ T 0,1X + (T 0,1X)∗ ∼=ψ Q+ T 0,1X + (T 0,1X)∗ = EQ.

This is an isomorphism of Courant algebroids with the Courant algebroid struc-
ture given in Lemma 2.9. This isomorphism tautologically sends L to T 0,1X ,
and induces a map from QL to Q which makes the diagram 3.4 commutative.
The uniqueness follows from the fact that the first isomorphism above is the

only one that sends L to T 0,1X via projection, and the second one is the only
one satisfying ψ = IdQ ◦ f . Finally, the last statement follows from the fact
that [E] = [EQ] = s([Q]), as defined in Lemma 3.5. �

With the previous result at hand, we can now decide whether there ex-
ists a Morita equivalence between any two string algebroids. The condition
Hom(Q,Q′) 6= ∅ holds, precisely, when Q and Q′ can be reduced from the
same complex string algebroid (up to isomorphism).

Proposition 3.8. Let Q and Q′ be string algebroids. Then, Hom(Q,Q′) 6= ∅
if and only if

s([Q]) = s([Q′]) ∈ H1(S). (3.5)

Proof. A Morita equivalence contains Morita bricks for Q and Q′, so by Lemma
3.7, the existence of Λ ∈ Hom(Q,Q′) implies (3.5). Conversely, if (3.5) holds,
take Morita bricks (E1, L1, ψ1) and (E ′

1, L
′, ψ′

1), which exist by Lemma 2.9, and
any isomorphism f : E1 → E ′

1, the tuple

(ψ1 ◦ f−1, f(L1), E
′
1, L

′, ψ′
1)

is a Morita equivalence between Q and Q′. �

3.2. The Morita category. Building on Lemma 3.7, we show next that a
pair of Morita bricks for Q admit a unique isomorphism, which we will use for
the definition of the composition of Morita equivalences.
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Lemma 3.9. Let Q be a string algebroid and a pair of Morita bricks (E1, L1, ψ1)
and (E2, L2, ψ2) for Q. Then, there exists a unique isomorphism f : E1 → E2

such that f(L1) = L2 making the following diagram commutative

E1

!!❈
❈

❈
❈

f
// E2.

}}③
③
③
③

QL1

ψ1 //

f

""

Q QL2

ψ2oo

Proof. The statement follows as a direct consequence of Lemma 3.7, with the
isomorphism given by f−1

2
◦ f

1
in the following diagram:

E1

!!❉
❉

❉
❉

f
1
��

E2

f
2

��||③
③
③
③

EQ

!!❈
❈

❈
❈

Id

EE
QL1

ψ1 //

ψ1

��

f

""

Q

Id
��

QL2

ψ2oo

ψ2

��

EQ.

||③
③
③
③

Q
IdQ

// Q Q
IdQ

oo

(3.6)

�

We are now ready to define the composition law on Morita equivalences.

Definition 3.10. The composition law for Morita equivalences

Hom(Q,Q′)×Hom(Q′, Q′′) → Hom(Q,Q′′)

is defined by

(ψ1, L1, E1, L
′
1, ψ

′
1) ◦ (ψ′

2, L
′
2, E2, L

′′
2, ψ

′′
2) = (ψ1 ◦ f−1, f(L1), E2, L

′′
2, ψ

′′
2 )

where f : E1 → E2 is the unique isomorphism such that f(L′
1) = L′

2 given in
Lemma 3.9, which we call composing isomorphism, whereas f : QL1 → Qf(L1)

is the induced isomorphism.

In the following result we check that the composition law is associative.

Lemma 3.11. For Λ1 ∈ Hom(Q,Q′),Λ2 ∈ Hom(Q′, Q′′),Λ3 ∈ Hom(Q′′, Q′′′),

(Λ1 ◦ Λ2) ◦ Λ3 = Λ1 ◦ (Λ2 ◦ Λ3).

Proof. We set the notation

Λ1 = (ψ1, L1, E1, L
′
1, ψ

′
1),

Λ2 = (ψ′
2, L

′
2, E2, L

′′
2, ψ

′′
2), (3.7)

Λ3 = (ψ′′
3 , L

′′
3, E3, L

′′′
3 , ψ

′′′
3 ).

On the one hand,

(Λ1 ◦ Λ2) ◦ Λ3 = (ψ, f
23
◦ f

12
(L1), E3, L

′′′
3 , ψ

′′′
3 )
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where ψ = ψ1 ◦ (f23 ◦ f12)−1 and

f
12
: E1 → E2, f

23
: E2 → E3,

are uniquely determined by

f
12
(L′

1) = L′
2, f

23
(L′′

2) = L′′
3

and the corresponding diagram (3.6). On the other hand

Λ1 ◦ (Λ2 ◦ Λ3) = (ψ̃, f̃
13
(L1), E3, L

′′′
3 , ψ

′′′
3 )

where ψ̃ = ψ1 ◦ f̃−1
13 and

f
13
: E1 → E3,

is uniquely determined by

f
13
(L′

1) = f
23
(L′

2)

and the diagram (3.6). Since

f
23
◦ f

12
(L′

1) = f
23
(L′

2) = f
13
(L′

1),

we have f
23
◦ f

12
= f

13
and hence the composition is associative. �

Remark 3.12. A Morita equivalence of the form (IdQ, T
0,1X,EQ, T

0,1X, IdQ)
provides a left identity for the product, as

(IdQ, T
0,1X,EQ, T

0,1X, IdQ) ◦ Λ2 = (ψ1 ◦ f−1, f(L1), E2, L
′′
2, ψ

′′
2) = Λ2 (3.8)

where f : EQ → E2 is uniquely determined by f(T 0,1X) = L′
2 and the condition

IdQ = ψ′
2◦f . However, it is not unique (we could replace EQ by E0, for instance)

and does not provide a right inverse, which does not exist.

In order to overcome the shortcomings of Definition 3.10 mentioned in Re-
mark 3.12, we pass to the quotient by introducing the following notion of iso-
morphism. Our construction shall be compared with the algebraic definition
of Morita equivalence for bimodules.

Definition 3.13. Let Q and Q′ be string algebroids. Given Morita equiva-
lences, for j = 1, 2,

Λj = (ψj , Lj , Ej, L
′
j , ψ

′
j) ∈ Hom(Q,Q′),

an isomorphism between Λ1 and Λ2 is an isomorphism of complex string alge-
broids

f : E1 → E2,

such that f(L1) = L2 and f(L′
1) = L′

2, inducing a commutative diagram

E1

ww♦
♦
♦

f

��

''❖
❖

❖

QL1ψ1

ww♣♣
♣♣
♣♣

f

��

QL′

1 ψ′

1

''❖
❖❖

❖❖
❖

f

��

Q E2

ww♣
♣
♣

''◆
◆

◆ Q′.

QL2

ψ2

gg◆◆◆◆◆◆

QL′

2

ψ′

2

77♦♦♦♦♦♦
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Whenever there exists such an isomorphism we will say that Λ1 and Λ2 are
isomorphic, and denote it by Λ1

∼= Λ2. The set of isomorphism classes of
Morita equivalences between Q and Q′ will be denoted by Hom(Q,Q′).

We are now ready to prove the main result of this section, which gives
the structural properties for the composition law (3.10) after passing to the
quotient. We express this in standard categorical language.

Theorem 3.14. There exists a groupoid whose objects are string algebroids
Q, and whose morphisms are isomorphism classes of Morita equivalences. In
particular, the composition law

Hom(Q,Q′)×Hom(Q′, Q′′) → Hom(Q,Q′′) (3.9)

is defined by

[Λ1] ◦ [Λ2] = [Λ1 ◦ Λ2]

and we have

i) for [Λ1] ∈ Hom(Q,Q′), [Λ2] ∈ Hom(Q′, Q′′), [Λ3] ∈ Hom(Q′′, Q′′′),

([Λ1] ◦ [Λ2]) ◦ [Λ3] = [Λ1] ◦ ([Λ2] ◦ [Λ3]),

ii) the identity morphism IdQ ∈ Hom(Q,Q) is

IdQ = [(IdQ, T
0,1X,EQ, T

0,1X, IdQ)],

where EQ is defined as in Lemma 2.9.

Proof. We first check that (3.9) is well defined. With the notation of (3.7),
let Λ1 ◦ Λ2 be defined via the composing isomorphism f

12
from Lemma 3.9.

Consider different representatives gΛ1 and hΛ2, as in Definition 3.13. The

composing isomorphism for the composition gΛ1 ◦hΛ2 is then h◦f12
◦g−1, and

Λ1 ◦ Λ2 is isomorphic to gΛ1 ◦ hΛ2 via h.
Associativity, that is, i), follows directly from Lemma 3.11. As for ii), we

have from (3.8) that IdQ is a left identity. We see that IdQ is a right identity:
let f be the composing isomorphism for IdQ ◦ Λ2. We have that f−1 is the

composing isomorphism for Λ2 ◦ IdQ, so Λ2 ◦ IdQ is isomorphic to Λ2 via f , that
is

[IdQ] ◦ [Λ2] = [Λ2] ◦ [IdQ] = [Λ2].

Finally, the fact that our category is a grupoid follows from

[(ψ, L,E, L′, ψ′)]−1 = [(ψ′, L′, E, L, ψ)].

�

Remark 3.15. We expect that the previous result can be strengthened by prov-
ing that there exists a 2-category, whose objects are string algebroids Q, whose
1-morphisms are the Morita equivalences Λ, and whose 2-morphisms are iso-
morphisms of Morita equivalences, in the sense of Definition 3.13. Checking
the details goes beyond the scope of the present work.
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4. Hamiltonian Morita Picard

4.1. The Morita Picard. Let (Q,P, ρ) be a string algebroid with complex
structure group G over a complex manifold X . As usual, (Q,P, ρ) will be
denoted simply by Q. Let P be the smooth G-bundle underlying P , and let GP
be the corresponding gauge group. In this section we study the Morita Picard
of Q, that is, the group of automorphisms of Q in the groupoid constructed in
Theorem 3.14,

Pic(Q) := Hom(Q,Q).

We start by identifying it with the automorphism group of EQ.

Proposition 4.1. Let EQ be the complex string algebroid in Lemma 2.9. There
is a canonical group isomorphism

ϕ : Aut(EQ) → Pic(Q)

f 7→ [(IdQ, T
0,1X,EQ, f(T

0,1X), f−1)].

Proof. We use the notation L0 := T 0,1X for simplicity. By Theorem 3.14,

ϕ(f
1
) ◦ ϕ(f

2
) = [(IdQ, L0, EQ, f 1

(L0), f
−1
1 )] ◦ [(IdQ, L0, EQ, f2

(L0), f
−1
2 )]

= [(f1, f
−1

1
(L0), EQ, f2

(L0), f
−1
2 )]

= [(IdQ, L0, EQ, (f 1
◦ f

2
)(L0), (f1f2)

−1)] = ϕ(f
1
◦ f

2
),

and hence ϕ is a homomorphism. If ϕ(f) = IdQ then

[(IdQ, L0, EQ, f(L0), f
−1)] = [(IdQ, L0, EQ, L0, IdQ)],

and hence f = IdEQ
by Lemma 3.9. Finally, given [Λ] ∈ Pic(Q), by Lemma

3.7 we can choose a representative of the form (IdQ, L0, EQ, L, ψ) for suitable
(L, ψ). By Lemma 3.9 there exists a unique f ∈ Aut(EQ) such that

L = f(L0), ψ = f−1,

and hence ϕ(f) = [Λ]. �

We use now the previous result to obtain a structural property of the group
Pic(Q), based on the characterization of the automorphism group of a string
algebroid in [24, Prop. 2.11]. To state the result, recall from [24, App. A] that
there is a group homomorphism

σP : GP → H3(X,C),

defined by

σP (g) = [CS(gθc)− CS(θc)− d〈gθc ∧ θc〉] ∈ H3(X,C)

for any choice of connection θc on P . This defines a short exact sequence of
groups (cf. [24, Prop. 2.11])

0 // Ω2
C,cl

// Aut(EQ) // KerσP // 1,

where Ω2
C,cl the additive group of closed complex 2-forms on X . The proof of

the next result is immediate from Proposition 4.1.
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Corollary 4.2. There is a canonical exact sequence

0 // Ω2
C,cl

// Pic(Q) // Ker σP // GP
σP

// H3(X,C). (4.1)

To obtain a more explicit description of Pic(Q), we choose a representative
[(P,H, θ)] = [Q] ∈ H1(S) and consider the model Q0

∼= Q in Definition 2.12.
Then, we have an identification (see Lemma 2.9)

EQ0 = E0,

for the complex string algebroid E0 determined by (P ,H, θ) (see Definition
2.13). Relying on [23, Cor. 4.2]–which characterizes Aut(E0) in terms of
differential forms (cf. [24, Lem. 2.9])–, we obtain the following result by direct
application of Proposition 4.1.

Lemma 4.3. Let Q0 be given by (P,H, θ). There is a canonical bijection
between Pic(Q0) and the set of pairs (g, τ) ∈ GP × Ω2

C
satisfying

dτ = CS(g−1θ)− CS(θ)− d〈g−1θ ∧ θ〉, (4.2)

where (g, τ) acts on V + r + ξ ∈ E0 by

(g, τ) · (V + r + ξ) = V + g(r + iV a
g) + ξ + iVB − 〈iV ag, ag〉 − 2〈ag, r〉 (4.3)

for ag := g−1θ − θ. Via this bijection, the group structure on Pic(Q0) reads

(g, τ)(g′, τ ′) = (gg′, τ + τ ′ + 〈g′−1ag ∧ ag′〉).
The following result–characterizing the Lie algebra of Pic(Q0)–has been

stated in [23, 24] without a proof. As it is key for our development in Section
4.2, we include a detailed proof here. We follow the notation in Lemma 4.3.

Lemma 4.4. Let Q0 be given by (P,H, θ). There is a canonical bijection

LiePic(Q0) = {(s, B) | d(B − 2〈s, Fθ〉) = 0} ⊂ Ω0(adP )× Ω2
C.

Via this bijection, the adjoint action of Pic(Q0) reads

(g, τ)(s, B) = (gs, B − 〈ag ∧ [s, ag]〉 − 2〈dθs ∧ ag〉), (4.4)

for any (g, τ) ∈ Pic(Q0), and the Lie bracket structure is

[(s0, B0), (s1, B1)] = ([s0, s1], 2〈dθs0 ∧ dθs1〉). (4.5)

Proof. Let (gt, τt) be a one-parameter family inPic(Q0) with (g0, τ0) = (IdP , 0).
Set at = agt , and note that (ȧt)|t=0 = dθs. Taking derivatives in (4.2) at t = 0,
it follows that

(s, B) := (ġt, τ̇t)|t=0 ∈ Ω0(adP )× Ω2
C

(4.6)

satisfies
d(B − 2〈s, Fθ〉) = 0 (4.7)

(see Remark 2.5). Conversely, given (s, B) ∈ Ω0(adP ) × Ω2
C
satisfying (4.7),

we define
(gt, τt) ∈ GP × Ω2

C

by gt = ets and τt = t(B − 2〈s, Fθ〉) + µt, where

µt =

∫ t

0

(2〈s, Fθu〉+ 〈au ∧ dθus〉)du
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and θt = g−1
t θ. Notice that (τ̇t)|t=0 = B, as required. Setting

Ct := CS(θt)− CS(θ)− d〈θt ∧ θ〉,

we have (see [22, Lem. 3.24])

Ċt = 2〈dθts, Fθt〉+ d〈at ∧ dθts〉 = d(2〈s, Fθt〉+ 〈at ∧ dθts〉),

and therefore

dτ̇t − Ċt = dµ̇t − Ċt = 0.

From τ0 = 0 = C0 it follows that (gt, τt) ∈ Pic(Q0) for all t.
We prove next formula (4.4) for the adjoint action. For (gj, τj) ∈ Pic(Q0),

with j = 0, 1, denote aj := g−1
j θ − θ. Using that

ag0g1 = g−1
1 g−1

0 θ − θ = g−1
1 a0 + a1,

we obtain

(g0, τ0)(g1, τ1)(g0, τ0)
−1 = (g0, τ0)(g1, τ1)(g

−1
0 ,−τ0)

= (g0g1g
−1
0 , τ1 + 〈g−1

1 a0 ∧ a1〉+ 〈g0ag0g1 ∧ ag
−1
0 〉)

= (g0g1g
−1
0 , τ1 + 〈a0 ∧ g−1

1 a0〉+ 〈ag−1
1 ∧ a0〉+ 〈a0 ∧ a1〉).

Assume now that (g1, τ1) = (gt, τt) is a one-parameter family of elements in
Pic(Q0), and define (s1, B1) as in (4.6). Taking derivatives in the previous
expression it follows that

(g0, τ0)(s1, B1) = (g0s1, B1 − 〈a0 ∧ [s1, a0]〉 − 〈dθs1 ∧ a0〉+ 〈a0 ∧ dθs1〉),
as claimed in (4.4).
Finally, assume that (g0, τ0) = (gt, τt) is a one-parameter family of elements

in Pic(Q0), and define (s0, B0) as in (4.6). By taking derivatives in the last
formula we have

[(s0, B0), (s1, B1)] = ([s0, s1],−2〈dθs1 ∧ dθs0〉),
which proves (4.5). For completeness, we check that LiePic(Q0) is closed for
this bracket structure

d(2〈dθs0 ∧ dθs1〉)− 2〈[s0, s1], Fθ〉) = 2〈[Fθ, s1] ∧ dθs0〉 − 2〈dθs1 ∧ [Fθ, s0]〉
− 2〈[dθs0, s1], Fθ〉 − 2〈[s0, dθs1], Fθ〉 = 0.

�

To finish, we observe from the first part of the proof of Lemma 4.4 that
the differential of σP in (4.1) applied to s ∈ Lie GP = Ω0(adP ) vanishes
identically,dσP (s) = −[d〈s, Fθc〉] = 0. Therefore, at the infinitesimal level (4.1)
induces a short exact sequence

0 // Ω2
C,cl

// Lie Pic(Q) // Ω0(adP ) // 0. (4.8)
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4.2. Hamiltonian automorphisms. In this section we define a normal sub-
group

PicA(Q) ⊂ Pic(Q)

by means of the Aeppli cohomology of the complex manifold X , which is the
key to our moment map picture in Section 7. To fix ideas, we shall think of
Pic(Q) as an analogue of the group of symplectomorphisms of a complex sym-
plectic manifold, while the elements in PicA(Q) will play the role of complex
Hamiltonian symplectomorphisms.
Consider the Aeppli cohomology groups of the complex manifold X ,

Hp,q
A (X) =

Ker(ddc : Ωp,q → Ωp+1,q+1)

Im(∂ ⊕ ∂̄ : Ωp−1,q ⊕ Ωp,q−1 → Ωp,q)
. (4.9)

Our first goal is to define a Lie algebra homomorphism

a : LiePic(Q) → H1,1
A (X),

where the vector space H1,1
A (X) is regarded as an abelian Lie algebra. For

this, notice that for any choice of representative [(P,H, θ)] = [Q] ∈ H1(S) and
isomorphism Q ∼= Q0, Lemma 4.4 implies that there is a natural map

a0 : LiePic(Q0) → H1,1
A (X)

(s, B) 7→ [B1,1 − 2〈s, F 1,1
θ 〉].

(4.10)

Lemma 4.5. There is a canonical linear map

a : LiePic(Q) → H1,1
A (X), (4.11)

which is invariant under the adjoint action of Pic(Q). In particular, (4.11) is
a Lie algebra homomorphism and there is a normal Lie subalgebra

Ker a ⊂ LiePic(Q).

Moreover, for any choice of representative [(P,H, θ)] = [Q] ∈ H1(S) and iso-
morphism Q ∼= Q0, the induced homomorphism a0 coincides with (4.10).

Proof. By Proposition 4.1 an element [Λ] ∈ Pic(Q) corresponds uniquely to
f ∈ Aut(EQ). Given an isomorphism ψ : Q→ Q0 (for a choice of representative

(P,H, θ) of [Q] ∈ H1(S)), arguing as in the proof of Lemma 3.5 we obtain an
isomorphism

ψ := ψ ⊕ IdT 0,1X ⊕ Id(T 0,1X)∗ : EQ → E0

inducing an identification Aut(EQ) ∼= Aut(E0). Thus, by Lemma 4.4, an ele-
ment ζ ∈ LiePic(Q) determines uniquely a pair (s, B) ∈ LiePic(Q0). Then,
we define

a(ζ) = a0(s, B) = [B1,1 − 2〈s, F 1,1
θ 〉] ∈ H1,1

A (X).

To check that a is invariant under the adjoint Pic(Q)-action, it is enough to
check that a0 is invariant under the adjoint Pic(Q0)-action. Following Lemma
4.4, we define a closed complex two-form

D := B − 〈ag ∧ [s, ag]〉 − 2〈dθs ∧ ag〉 − 2〈gs, Fθ〉,
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so that [D1,1] = a0((g, τ)(s, B)) ∈ H1,1
A (X), and calculate

D = B + 〈[ag, ag], s〉 − 2d〈s, ag〉+ 2〈s, dθag〉 − 2〈s, Fg−1θ〉
= B − 2〈s, Fθ〉 − 2d〈s, ag〉, (4.12)

which proves the invariance of a0. Here we have used the invariance of the
pairing 〈 , 〉 combined with

g−1Fθ = Fg−1θ = Fθ + dθag +
1

2
[ag, ag].

To finish, we check that (4.11) is independent of choices, thus yielding a
canonical map. Consider a different choice of representative (P,H ′, θ′) of [Q],
corresponding to an isomorphism ψ0 : Q0 → Q′

0. Explicitly, ψ0 = (g0, B) for
g0 ∈ GP and suitable B ∈ Ω2,0, acting as in (4.3) (we use the notation ag0 :=
g−1
0 θ′−θ) (see [24, Lem. 2.7]). As before, ψ0 extends to an isomorphism (given
by the same expression)

ψ
0
: E0 = Q0 ⊕ T 0,1X ⊕ (T 0,1X)∗ → E ′

0 = Q′
0 ⊕ T 0,1X ⊕ (T 0,1X)∗,

under which an element (g, τ) ∈ Aut(E0) ∼= Pic(Q0) transforms by conjugation
(g′, τ ′) = ψ

0
(g, τ)ψ−1

0
∈ Aut(E ′

0), where

g′ = g0gg
−1
0

τ ′ = τ + 〈g−1(ag0) ∧ ag〉 − 〈(g−1g−1
0 θ′ − θ) ∧ ag0〉,

= τ + 〈g−1(ag0) ∧ ag〉 − 〈(g−1ag0 + ag) ∧ ag0〉.
From the previous formula, an element (s, B) ∈ LiePic(Q0) transforms by

s′ = Ad(g0)s

B′ = B + 〈ag0 ∧ dθs〉 − 〈(−[s, ag0] + dθs) ∧ ag0〉
= B + 2〈ag0 ∧ dθs〉+ 〈[s, ag0] ∧ ag0〉,

and therefore, arguing as in (4.12), we have a′
0(s

′, B′) = a0(s, B). �

We are now ready to define the normal subgroup PicA(Q) ⊂ Pic(Q). Let
Pic0(Q) denote the component of the identity IdEQ

in Pic(Q) (see Proposition
4.1). Given an element f ∈ Pic0(Q) and a smooth family f

t
∈ Pic(Q) such

that f
0
= IdEQ

and f
1
= f , there exists a unique family ζt ∈ LiePic(Q) such

that
d

dt
f
t
= ζt ◦ f t.

Here, we regard ζt as a vector field on the total space of EQ, following Propo-
sition 4.1.

Definition 4.6. Define PicA(Q) ⊂ Pic(Q) as the set of elements f ∈ Pic0(Q)
such that there exists a smooth family f

t
∈ Pic(Q) with t ∈ [0, 1], satisfying

f
0
= IdEQ

, f
1
= f , and

a(ζt) = 0, for all t. (4.13)
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By analogy with symplectic geometry, a family f
t
∈ Pic(Q) satisfying (4.13)

will be called a Hamiltonian isotopy on Pic(Q). Notice that any smooth family
ζt ∈ LiePic(Q) satisfying (4.13) generates a Hamiltonian isotopy.

Proposition 4.7. The subset PicA(Q) ⊂ Pic(Q) defines a normal subgroup
of Pic(Q) with Lie algebra Ker a.

Proof. The proof is a formality, following Lemma 4.5 and [34, Prop. 10.2]. If
f0

t
is a Hamiltonian isotopy generated by ζ0t and f 1

t
is a Hamiltonian isotopy

generated by ζ1t , then f
0

t
◦ f 1

t
is a Hamiltonian isotopy generated by

ζ0t +Ad(f 0

t
)ζ1t ,

and (f 0

t
)−1 is a Hamiltonian isotopy generated by −Ad((f 0

t
)−1)ζ0t . Hence,

PicA(Q) is a group. Moreover, if ζt generates the Hamiltonian isotopy f
t
, then

Ad(f)ζt generates the isotopy f ◦ f
t
◦ f−1 for any f ∈ Pic(Q), and therefore

PicA(Q) is a normal subgroup of Pic(Q). The last part of the statement
follows by definition of PicA(Q). �

To finish this section, we comment on the construction of a different normal
subgroup

PicdR(Q) ⊂ Pic(Q)

associated to the De Rham cohomologyH2(X,C). Even though this alternative
construction may look more natural at first sight, the Aeppli cohomology group
H1,1
A (X) will play an important role in further developments in Section 6. To

define PicdR(Q), one considers a Lie algebra homomorphism

d : LiePic(Q) → H2(X,C),

given, when choosing an isomorphism Q ∼= Q0, by

d0(s, B) = [B − 2〈s, Fθ〉] ∈ H2(X,C).

The properties of d are analogue to those of a, and follow as in Lemma 4.5
using equation (4.12). The definition of PicdR(Q) is as in Definition 4.6 and
its Lie algebra is Kerd.

Remark 4.8. By analogy with symplectic geometry, it is natural to consider a
notion of flux homomorphism on the universal cover of Pic(Q) (see [34, Sec.
10.2]). We leave this interesting perspective for future work.

5. The Chern correspondence

5.1. Background on Bott-Chern theory. The goal of this section is to
prove an analogue of the classical Chern correspondence–which establishes the
existence of a unique compatible connection for any reduction to a maximal
compact subgroup on a holomorphic principal bundle–in the context of string
algebroids. We first recall some background about Bott-Chern theory which
we will need.
Let G be a complex reductive Lie group. Let P be a holomorphic principal

G-bundle over a complex manifold X . We fix a maximal compact subgroup
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K ⊂ G, and a bi-invariant symmetric complex bilinear form 〈 , 〉 on the Lie
algebra g of G. We will assume that it satisfies the reality condition

〈k⊗ k〉 ⊂ R

for the Lie algebra k ⊂ g of K. Given a reduction h ∈ Ω0(P/K) of P to K,
there is a uniquely defined Chern connection θh, whose curvature Fh := Fθh
satisfies

F 0,2
h = F 2,0

h = 0.

We denote by Ph ⊂ P the corresponding principal K-bundle.
The following result considers secondary characteristic classes introduced by

Bott and Chern [11] (see also [10, 16]). We denote by Ω1,1
R

the space of real
(1, 1)-forms on X .

Proposition 5.1 ([10, 16]). For any pair of reductions h0, h1 ∈ Ω0(P/K) there
is a secondary characteristic class

R(h1, h0) ∈ Ω1,1
R
/ Im(∂ ⊕ ∂̄) (5.1)

with the following properties:

(1) R(h0, h0) = 0, and, for any third metric h2,

R(h2, h0) = R(h2, h1) +R(h1, h0),

(2) if h varies in a one-parameter family ht, then

d

dt
R(ht, h0) = −2i〈ḣth−1

t , Fht〉, (5.2)

(3) the following identity holds

ddcR(h1, h0) = 〈Fh1 ∧ Fh1〉 − 〈Fh0 ∧ Fh0〉.
As observed by Donaldson in [16, Prop. 6], the Bott-Chern class (5.1) can

be defined by integration of (5.2) along a path in the space of reductions of P .
More precisely, given h0 and h1, one defines

R̃(h1, h0) = −2i

∫ 1

0

〈ḣth−1
t , Fht〉dt ∈ Ω1,1

R
, (5.3)

for a choice of path ht joining h0 and h1. For a different choice of path,
R̃(h1, h0) differs by an element in Im(∂ ⊕ ∂̄), and hence there is a well-defined

class R(h1, h0) = [R̃(h1, h0)] in (5.1). Notice that (5.3) implies that

R(gh1, gh0) = R(h1, h0), (5.4)

for any automorphism g ∈ GP of P .
The other piece of information which we will need is the following technical

lemma from [22]. Given a reduction h ∈ Ω0(P/K), using the polar decompo-
sition

G = exp(ik) ·K
we regard h as a K-equivariant map h : P → exp(ik). Recall that given an
element g ∈ GP regarded as an equivariant map g : P → G, there is a well-
defined covariant derivative

dhg = g∗ωL ◦ (θh)⊥ ∈ Ω1(adP )
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where ωL is the (left-invariant) Maurer-Cartan 1-form on G and (θh)⊥ denotes
the horizontal projection with respect to the Chern connection of h.

Lemma 5.2 ([22]). Let h, h′ be reductions of P . Define R̃(h′, h) ∈ Ω1,1
R

as in
(5.3), where h′ = eiuh, for iu ∈ Ω0(i adPh), and ht = etiuh. Then,

2i∂R̃(h′, h) + CS(θh
′

)− CS(θh)− d〈θh′ ∧ θh〉 = dB2,0,

where

B2,0 = −
∫ 1

0

〈at ∧ ȧt〉dt ∈ Ω2,0

and at := θh − θht = −∂h(e−2tiu) and ȧt = 2i∂htu.

5.2. Bott-Chern algebroids and compact forms. Our next goal is to
study a special type of string algebroids–known as Bott-Chern algebroids–
which appear in the Chern correspondence. These are tight to Bott-Chern
secondary characteristic classes and a notion of ‘reduction to a maximal com-
pact subgroup’ for string algebroids, which we introduce next. We follow the
notation in Section 5.1.
A smooth Courant algebroid (ER, 〈 , 〉, [ , ], π) over a smooth manifold X con-

sists of a smooth vector bundle ER → X together with a non-degenerate sym-
metric bilinear form 〈 , 〉, a vector bundle morphism π : ER → TX and a
bracket [ , ] on sections satisfying the Courant algebroid axioms (see (D1)-(D5)
in Section 2.1).

Definition 5.3. A real string algebroid with structure group K is a tuple
(PR, ER, ρR), where PR is a smooth principal K-bundle over X , ER is a smooth
(real) Courant algebroid over X , and ρR is a bracket-preserving morphism
inducing a short exact sequence

0 // T ∗X // ER

ρR // APR

// 0,

such that the induced map of Lie algebroids ρR : AER
→ APR

is an isomorphism
restricting to an isomorphism adER

∼= (adPR, 〈 , 〉).
Analogously to holomorphic and complex string algebroids, we denote by

H1(SR) the set of isomorphism classes of real string algebroids on X with
structure group K. By [24, Prop. A.6], elements in H1(SR) are represented by
equivalence classes of triples (PR, HR, θR) satisfying

dHR + 〈FθR ∧ FθR〉 = 0,

where PR is a principal K-bundle, HR is a real 3-form on X, θR is a connection
on PR. The triple (PR, HR, θR) is related to (P ′

R
, H ′

R
, θ′

R
) if there exists an

isomorphism g : PR → P ′
R
such that, for some real two-form B ∈ Ω2,

H ′
R
= HR + CS(gθR)− CS(θ′

R
)− d〈gθR ∧ θ′

R
〉+ dB.

When there is no possibility of confusion, a real string algebroid (ER, PR, ρR)
will be denoted simply by ER. Given a principal K-bundle PR, we can induce
uniquely a smooth principal G-bundle

P = PR ×K G. (5.5)
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Similarly, any real string algebroid over X induces uniquely a complex string
algebroid–in the sense of Definition 2.6. The underlying principal G-bundle
is P as in (5.5), the complex vector bundle is E = ER ⊗ C, and there is a
commutative diagram,

0 // T ∗X ⊗ C // E
ρc

// AP // 0

0 // T ∗X //

∪

OO

ER

ρR //

∪

OO

APR

//

OO

0,

(5.6)

where the vertical arrows are canonical, such that the C-linear extension of the
bracket, the pairing, and the morphism ρR in the bottom sequence induce an
isomorphism (this follows by using the universal property of the Atiyah alge-
broid AP ). Note that the map APR

→ AP is not set-theoretically an inclusion,
but a canonical injective map (following the definition of AP in (2.3)). This
construction will be referred to as the ‘complexification’ of ER. Conversely, we
have the following.

Definition 5.4. Let E be a complex string algebroid. A compact form of E is
a real string algebroid ER with structure group K fitting into a diagram (5.6).
Compact forms will be denoted simply by ER ⊂ E.

Example 5.5. Let E0 be the complex string algebroid given by (P ,HR, θR)
with HR ∈ Ω3 ⊂ Ω3

C
a real three-form and θR a connection on P induced by a

connection on some reduction PR ⊂ P to the maximal compact subgroup (cf.
Definition 2.13). Then, the tuple (PR, HR, θR) defines a compact form

E0,R := TX ⊕ adPR ⊕ T ∗X ⊂ E0.

Let Q be a string algebroid over a complex manifold X , with underlying
smooth manifold X . From Lemma 2.9, Q has a canonically associated complex
string algebroid EQ.

Definition 5.6. A Bott-Chern algebroid over X is a string algebroid Q such
that EQ admits a compact form ER ⊂ EQ.

We provide next a handy characterization of the notion of Bott-Chern alge-
broid, which recovers the definition given originally in [22]. The proof requires
the Bott-Chern classes considered in Proposition 5.1 and Lemma 5.2. We de-
note by P the holomorphic principal G-bundle underlying Q.

Lemma 5.7. A string algebroid Q is Bott-Chern if and only if there exists
(ω, h) ∈ Ω1,1

R
× Ω0(P/K) satisfying

ddcω + 〈Fh ∧ Fh〉 = 0 (5.7)

and [Q] = [(P,−2i∂ω, θh)] ∈ H1(S).
Proof. Let Q be represented by a tuple (P,−2i∂ω, θh). By the equality

− 2i∂ω = dcω − i∂ω − i∂̄ω = dcω − d(iω) (5.8)

combined with Proposition 2.11, we have that

[EQ] = [(P ,−2i∂ω, θh)] = [(P , dcω, θh)].
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Let ψ be an isomorphism of EQ with a standard E0 given by (P , dcω, θh). By
Example 5.5, there exists a compact form E0,R ⊂ E0. We then have that
ψ−1(E0,R) is a compact form of EQ.
For the converse, let ER ⊂ EQ be a compact form with underlying K-bundle

Ph ⊂ P . Then, the isomorphism class of ER is represented by (Ph, HR, θ
h)

(we can choose the connection on Ph at will by changing the real three-form
accordingly). Let (P,H, θh) represent the class of Q (by Proposition 2.3 we can
choose the connection on AP at will by changing H accordingly). In H1(S),
we have

[(P ,H, θh)] = [(P ,HR, θ
h)] ∈ H1(S).

Therefore, by Proposition 2.11 there exists g ∈ GP and B′ ∈ Ω2
C
such that

HR = H + CS(gθh)− CS(θh)− d〈gθh ∧ θh〉+ dB′.

Notice that gθg
−1h defines a connection on Ph. Setting

H ′
R
= HR + CS(θh)− CS(gθg

−1h)− d〈θh ∧ gθg−1h〉
we have that

[(P ,H ′
R, gθ

g−1h)] = [(P ,HR, θ
h)] ∈ H1(S)

and

H ′
R
= H + CS(gθh)− CS(gθg

−1h)− d〈gθh ∧ gθg−1h〉+ dB

= H + CS(θh)− CS(θg
−1h)− d〈θh ∧ θg−1h〉+ dB

where
B = B′ − 〈gθh ∧ θh〉 − 〈θh ∧ gθg−1h〉+ 〈θh ∧ θg−1h〉 ∈ Ω2

C
.

By Lemma 5.2, there exists a real (1, 1)-form R ∈ Ω1,1
R

such that

H ′
R
= H − 2i∂R + dB,

possibly for a different choice of B. Since H ′
R
is real, its (3, 0)+(2, 1)-part must

equal the conjugate of its (1, 2) + (0, 3)-part, so we obtain

H − 2i∂R + dB2,0 + ∂B1,1 = dB0,2 + ∂B1,1,

and hence
H = −2i∂(ImB1,1 −R) + d(B0,2 −B2,0).

Therefore, [(P,H, θh)] = [(P,−2i∂(ImB1,1 −R), θh)] ∈ H1(S), as claimed. �

Observe that the complexification of real string algebroids induces a well-
defined map

c : H1(SR) → H1(S).
Recall also that there is a forgetful map s : H1(S) → H1(S) (see Lemma 3.5).
We shall use the notationH1

BC(S) for the set of classes of Bott-Chern algebroids
inside H1(S). Then, by Definition 5.6,

s(H1
BC(S)) ⊆ c(H1(SR)).

In the next proposition we show that compact forms on a Bott-Chern algebroid
are unique up to isomorphism. Consequently, we can actually define a map

r : H1
BC(S) → H1(SR)
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such that c ◦ r = s, which sends [Q] to [ER] for any compact form ER ⊂ EQ.
This can be thought of as a ‘higher Chern character’ for Bott-Chern algebroids
(cf. Remark 5.9). Our proof will use some results from Section 6.

Proposition 5.8. Compact forms of a Bott-Chern algebroid are unique up to
isomorphism of real string algebroids. Consequently, there exists a unique map
r : H1

BC(S) → H1(SR) fitting into the commuting diagram

H1
BC(S)

s ))❙❙
❙❙❙

❙

r // H1(SR).

cuu❦❦❦
❦❦❦

H1(S)

Proof. By Lemma 6.5 below, given compact forms ER, E
′
R
⊂ EQ there exists

g ∈ Aut(EQ) ∼= Pic(Q) such that g(ER) = E ′
R
. Restricted to ER, g induces

an isomorphism of real string algebroids, proving the first part of the state-
ment. By Lemma 3.9 any isomorphism ψ : Q → Q′ induces an isomorphism
of complex string algebroids ψ : EQ → EQ′. Using this, we can define r by
r([Q]) = [ER], for any compact form ER ⊂ EQ. Uniqueness follows from the
first part, which implies injectivity of c on r(H1(SR)).

�

Remark 5.9. When the holomorphic principal bundle p : P → X underlying
Q has trivial automorphisms there is a more amenable characterization of the
Bott-Chern condition using real string classes, in the sense of Redden [38]. To
see this, notice that GP = {1} implies that [Q] ∈ H1(S) determines uniquely a
De Rham cohomology class

[p∗H + CS(θ)] ∈ H3(P,C)

for any choice representative [(P,H, θ)] = [Q] (see Proposition 2.3). Then,
Lemma 5.7 implies that Q is Bott-Chern if and only if the pullback of [p∗H +
CS(θ)] to Ph ⊂ P , for any reduction h of P , is a real string class.

5.3. Chern correspondence for string algebroids. We start by introduc-
ing the type of objects which play the role of the Chern connection in our
context.

Definition 5.10. Let ER be a real string algebroid over X . A horizontal lift
of TX to ER is given by a subbundle W ⊂ ER such that

rkW = dimRX, and W ∩Kerπ = {0}.
Following [20, Prop. 3.4], it is not difficult to see that a horizontal lift

W ⊂ ER is equivalent to a real symmetric 2-tensor σ on X and an isotropic
splitting λ : TX → ER such that

W = {λ(V ) + σ(V ) : V ∈ TX}. (5.9)

Recall that λ induces a connection θR on PR, a three-form HR on X , and an
isomorphism

ER
∼= E0

R := TX ⊕ adPR ⊕ T ∗X, (5.10)

so that the string algebroid structure on E0
R
is as in Example 5.5.
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Let E be a complex string algebroid with underlying smooth principal G-
bundle P . We assume that G is reductive, and fix a maximal compact subgroup
K ⊂ G. Given a compact form ER ⊂ E (see definition 5.4), the Cartan
involution on g determined by the compact Lie subalgebra k ⊂ g combined
with the underlying reduction PR ⊂ P induces a well-defined involution

Ω0(adP ) → Ω0(adP )

s 7→ s∗h
(5.11)

whose fixed points are given by Ω0(adPR).

Lemma 5.11 (Chern correspondence). Let (E,L) be a pair given by a complex
string algebroid E over X and a lifting L ⊂ E of T 0,1X. Then, any compact
form ER ⊂ E determines uniquely a horizontal lift W ⊂ ER such that

L = {e ∈ W ⊗ C | π(e) ∈ T 0,1X} ⊂ E. (5.12)

Proof. We choose an isotropic splitting λ0 : TX → ER. We will use the same
notation for the C-linear extension of λ0 to the complexification E. Via the iso-
morphism (5.10) induced by λ0, we obtain by complexification an isomorphism
of complex string algebroids

f
0
: E0 → E

inducing the identity on AP , and such that λ0 = (f
0
)|TX . Then, by Lemma

2.15 the lifting L determines uniquely (γ, β) ∈ Ω1,1+0,2 ⊕ Ω0,1(adP ) such that

L0 := f−1

0
(L) = (−γ,−β)(T 0,1X).

Furthermore, given a horizontal lift W ⊂ ER, there exists a uniquely deter-
mined pair (b, a) ∈ Ω2 ⊕Ω1(adPR) and a real symmetric 2-tensor σ on X such
that

W0 := f−1

0
(W ) = (−b,−a){V + σ(V ) : V ∈ TX} ⊂ E0.

The isotropic condition for (5.12) implies that σ is a symmetric tensor of type
(1, 1). Denote the associated hermitian form by

ω = σ(J, ) ∈ Ω1,1
R
,

where J denotes the almst complex structure of X . Then, condition (5.12)
implies

(−γ,−β)(T 0,1X) = (iω − b,−a)(T 0,1X)

= (iω − b− 〈a0,1 ∧ a1,0〉,−a0,1)(T 0,1X)

and therefore

−iω + b1,1+0,2 + 〈a0,1 ∧ a1,0〉 = γ, a0,1 = β.

From this it follows that

ω = −Im (γ1,1 − 〈a0,1 ∧ a1,0〉)
b = Re (γ1,1 − 〈a0,1 ∧ a1,0〉) + γ0,2 + γ0,2

a = β + β∗,

(5.13)
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where β∗ is defined combining the involution (5.11) with the conjugation of
complex differential forms. It is not difficult to see that (5.13) is independent
of the choice of splitting λ0. �

Remark 5.12. Similarly as in the classical Chern correspondence for principal
bundles, where the integrability of the complex structure on P determined by
a (0, 1)-connection plays no role in determining the horizontal subspace of the
Chern connection, the involutivity of the lifting L ⊂ E is not required for the
proof of Lemma 5.11.

Let Q be a Bott-Chern algebroid over X with underlying principal G-bundle
P . Let (E,L, ψ) be a Morita brick for Q (see Definition 3.2)

E

  ❆
❆

❆
❆

QL
ψ

// Q.

Without loss of generality, we will assume that Q and E have the same un-
derlying smooth principal G-bundle P , with complex gauge group GP . Recall
that Lemma 3.7 establishes the existence of a unique Morita brick isomorphism
f : E → EQ between (E,L, ψ) and (EQ, T

0,1X, IdQ). By Definition 5.6, E ad-
mits a compact form ER ⊂ E with structure group K. Our next result unravels
the data determined by ER ⊂ E in relation to the fixed Bott-Chern algebroid
Q, using the Chern correspondence.

Proposition 5.13. Let (E,L, ψ) be a Morita brick for Q. Then, any compact
form ER ⊂ E determines uniquely a triple (ω, h, ϕ), where

(1) ω ∈ Ω1,1
R

and h ∈ Ω0(P/K) is a reduction of P to K ⊂ G, such that

ddcω + 〈Fgh ∧ Fgh〉 = 0,

where g ∈ GP is covered by f : E → EQ, the unique Morita brick iso-

morphism between (E,L, ψ) and (EQ, T
0,1X, IdQ),

(2) ϕ : Q0 → Q is an isomorphism of string algebroids given by a commu-
tative diagram

0 // T ∗X //

id
��

Q0
//

ϕ

��

AP //

id
��

0

0 // T ∗X // Q // AP // 0,

(5.14)

where the string algebroid structure on Q0 is given by (P,−2i∂ω, θgh).

Furthermore, the data (ω, h, ϕ) recovers the flag W ⊂ ER ⊂ E, where W is the
horizontal lift given by ER via the Chern correspondence, and the three-form
HR and connection θR induced by W are given by

HR = dcω, θR = g−1θgh. (5.15)

Proof. Given a compact form ER ⊂ E, the principal K-bundle underlying
ER induces a reduction h ∈ Ω0(P/K). Furthermore, the horizontal lift W
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determined by L in Lemma 5.11 is equivalent to a pair (ω, λ) where ω ∈ Ω1,1
R

and λ : TX → ER is an isotropic splitting such that

W ⊗ C = e−iωλ(T 1,0X)⊕ eiωλ(T 0,1X)

for L = eiωλ(T 0,1X). Recall that λ induces a connection θR on PR, a three-form
HR on X, and an isomorphism (5.10).
Via (5.10), we obtain by complexification an isomorphism of complex string

algebroids

f
λ
: E0 → E

inducing the identity on AP , and such that λ = (f
λ
)|TX and

f−1

λ
(W ⊗ C) = e−iω(T 1,0X)⊕ L0

for L0 = f−1

λ
(L) = eiω(T 0,1X).

Hence the involutivity of L0 combined with Lemma 2.15, yields

H1,2+0,3
R

− i∂̄ω = 0, F 0,2
θR

= F 2,0
θR

= 0.

Therefore, using that HR is real, HR = dcω. The reduction of E0 by L0, is
the string algebroid Q′

0 = QL0 determined by the triple (P ′,−2i∂ω, θR) (see
Proposition 2.16), for P ′ = (P , θ0,1

R
), where we have used that

H3,0+2,1
R

− ∂(iω) = −2i∂ω.

We obtain a string algebroid isomorphism

0 // T ∗X //

id
��

Q′
0

//

fλ
��

AP ′
//

id
��

0

0 // T ∗X // QL
// AP ′

// 0.

Consider the unique Morita brick isomorphism f : E → EQ between (E,L, ψ)

and (EQ, T
0,1X, IdQ),

covering g ∈ GP . The condition that g : P ′ → P is an isomorphism implies
now that

gθR = θgh.

We use now the notation ≡ to denote the algebroids, as in Definition 2.12 or
Example 5.5, given by a tuple. By Proposition 2.3, g induces an isomorphism

ϕ0 : Q
′
0 ≡ (P ′,−2i∂ω, θR) → Q0 ≡ (P,−2i∂ω, θgh) (5.16)

and therefore ϕ := ψ ◦ fλ ◦ ϕ−1
0 : Q0 → Q has the required form (5.14), which

proves (1), (2), and (5.15).
Conversely, given (ω, h, ϕ) as in the statement, we have a real string algebroid

E0
R
≡ (Ph, d

cω, g−1θgh) with complexification E0 and lifting

L0 = eiωT 0,1X

such that QL0 = Q′
0 ≡ (P ′,−2i∂ω, g−1θgh).

Consider the isomorphism

ϕ0 : Q
′
0 → Q0 ≡ (P,−2i∂ω, θgh)
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induced by g as in (5.16), and the unique isomorphism f̃ : E0 → E such that

f̃(L0) = L, given by the diagram

E0

''◆
◆

◆

f̃

��

Q′
0 ϕ◦ϕ0

&&◆
◆◆

◆◆
◆

f̃

��

E
''◆

◆
◆ Q.

QL
ψ

77♣♣♣♣♣♣

Then, we define the compact form and horizontal lift by

ER := f̃(E0
R
), W := f̃({V + σ(V ) : V ∈ TX}),

where σ is the symmetric tensor determined by ω. �

Remark 5.14. The notion of metric on Q introduced in [22] is recovered from
Proposition 5.13 by considering compact forms ER ⊂ EQ and the canonical
Morita brick (EQ, T

0,1X, IdQ), with the additional assumption that ω(, J) is a
Riemannian metric on X . This positivity condition will appear naturally in
our moment map construction in Section 7.2.

6. Aeppli classes and Picard orbits

6.1. Pic(Q)-action on compact forms. Let Q be a Bott-Chern algebroid
over a complex manifold X , with underlying principal G-bundle P . We fix a
maximal compact subgroup K ⊂ G. Consider the Picard group Pic(Q) of Q,
as defined in Section 4.1. This section is devoted to the study of the interplay
between Pic(Q) and the space of compact forms with structure group K on
the complex string algebroid EQ (see Lemma 2.9). We introduce the following
notation for the space of compact forms on EQ with structure group K

BQ = {ER ⊂ EQ | ER is a compact form}.
Via the isomorphism Pic(Q) ∼= Aut(EQ) proved in Proposition 4.1–which will
be used systematically in this section–there is a natural left action

Pic(Q)×BQ −→ BQ

(f, ER) 7−→ f ·ER := f(ER)
(6.1)

which extends the classical action of the complex gauge group GP on the space
of reductions Ω0(P/K). More precisely, there is a commutative diagram

Pic(Q)×BQ
//

��

BQ

��

Ker σP × Ω0(P/K) // Ω0(P/K),

where Ker σP ⊂ GP is the subgroup defined by (4.1) and the bottom arrow
is induced by the left GP -action on Ω0(P/K). In order to obtain a better
understanding of this action, we start by giving a more explicit description of
the space BQ for the case of a string algebroid given by a triple (P,H, θ) (see
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Proposition 2.3 and Definition 2.12). For this, we apply Proposition 5.13 to
the canonical Morita brick (EQ, T

0,1X, IdQ) for Q.

Lemma 6.1. Let Q0 be the string algebroid given by a triple (P,H, θ). Then,
BQ0 can be regarded canonically as the subset

BQ0 ⊂ Ω1,1
R

⊕ Ω2,0 × Ω0(P/K)

given by

BQ0 =
{
(ω + υ, h) | dυ = H + 2i∂ω + CS(θ)− CS(θh)− d〈θ ∧ θh〉

}
. (6.2)

Proof. Let ER ∈ BQ0 and consider the triple (ω, h, ϕ) corresponding to the
canonical Morita brick (EQ0 , T

0,1X, IdQ0) for Q0 via Proposition 5.13. Then,
ϕ is given explicitly by

ϕ = (υ, θ − θh) (6.3)

acting as in (2.8), where υ ∈ Ω2,0 satisfies the condition in (6.2) (see Proposition
2.3), and therefore ER can be identified with a triple (ω + υ, h) as in the
statement.
Observe that the compact form and horizontal subspace corresponding to a

triple (ω + υ, h) are given by

ER = (υ − iω, θ − θh)(ER,h) ⊂ EQ0, (6.4)

where

ER,h := TX ⊕ adPh ⊕ T ∗X, (6.5)

and

W ⊗ C = (υ − 2iω, θ − θh)(T 1,0X)⊕ T 0,1X. (6.6)

�

Our next result provides an explicit formula for the Pic(Q)-action on BQ

in terms of the model in Lemma 6.1. In the sequel, we will use the notation
ω = (ω + υ, h) for the elements in BQ0.

Lemma 6.2. Let Q0 be the string algebroid given by a triple (P,H, θ). Let
f = (g, τ) ∈ Pic(Q0) (see Lemma 4.3) and ω = (ω + υ, h) ∈ BQ0. Then,

f · ω = (ω′ + υ′, gh),

where (for ag = g−1θ − θ)

ω′ = ω − Im(τ + 〈ag ∧ θ − θh〉+ 〈gθh − θ ∧ θgh − gθh〉)1,1

υ′ = υ + (τ + 〈ag ∧ θ − θh〉+ 〈gθh − θ ∧ θgh − gθh〉)2,0

− (τ + 〈gθh − θ ∧ θgh − gθh〉)0,2.
(6.7)

Proof. Let ω = (ω + υ, h) ∈ BQ0 with real form (6.4). Then, for f = (g, τ) we
have

f(ER) = (υ − iω + τ + 〈ag ∧ θ − θh〉, g(ag + θ − θh))(ER,gh)

= (υ − iω + τ + 〈ag ∧ θ − θh〉, θ − gθh)(ER,gh).
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where ER,gh is as in (6.5). Using that (0, gθh − θgh)(ER,gh) = ER,gh, we obtain

f(ER) = (υ − iω + τ + 〈ag ∧ θ − θh〉, θ − gθh)(0, gθh − θgh)(ER,gh)

= (υ − iω + τ + 〈ag ∧ θ − θh〉+ 〈θ − gθh ∧ gθh − θgh〉, θ − θgh)(ER,gh).

LetW ′ ⊂ f(ER) be the horizontal subspace determined by the canonical Morita

brick (EQ0, T
0,1X, IdQ0) via the Chern correspondence. Following the proof of

Lemma 5.11, we set

(b0, a0) = (υ − iω + τ + 〈ag ∧ θ − θh〉+ 〈θ − gθh ∧ gθh − θgh〉, θ − θgh).

There exists (b, a) ∈ Ω2 ⊕ Ω1(adPR,gh) and a real symmetric tensor σ′ with
associated differential form

ω′ = σ′(J, ) ∈ Ω1,1
R
,

uniquely determined by the condition

W ′
0 := (−b0,−a0)(W ′) = (−b,−a){V + σ′(V ) : V ∈ TX} ⊂ ER,gh ⊗ C.

Next, we define (γ, β) ∈ Ω1,1+0,2 ⊕ Ω0,1(adP ) by

(−b0,−a0)(T 0,1X) = (−γ,−β)(T 0,1X).

More explicitly,

γ = b1,1+0,2
0 , β = 0,

and therefore (5.13) implies a = 0, and

ω′ = −Im b1,10 = ω − Im(τ + 〈ag ∧ θ − θh〉+ 〈θ − gθh ∧ gθh − θgh〉)1,1

b = Re b1,10 + b0,20 + b0,20

= Re (τ + 〈ag ∧ θ − θh〉+ 〈θ − gθh ∧ gθh − θgh〉)1,1

+ (τ + 〈θ − gθh ∧ gθh − θgh〉)0,2 + (τ + 〈θ − gθh ∧ gθh − θgh〉)0,2.

(6.8)

The first equation in (6.8) gives the formula for ω′ in (6.7). To obtain the
formula for υ′, notice that (6.6) implies that

W ′ ⊗ C = (υ′ − 2iω′, θ − θgh)(T 1,0X)⊕ T 0,1X

and, on the other hand,

W ′ ⊗ C = (b0, a0)(W
′
0)

= ((b0 − b)1,1+2,0 − iω′, θ − θgh)(T 1,0X)⊕ T 0,1X.

Therefore, we conclude

υ′ = (b0 − b)2,0

= υ + (τ + 〈ag ∧ θ − θh〉+ 〈θ − gθh ∧ gθh − θgh〉)2,0

− (τ + 〈θ − gθh ∧ gθh − θgh〉)0,2,
as claimed. �
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Using the previous lemma, we want to calculate a formula for the infinitesi-
mal Pic(Q)-action on BQ in terms of the model Q0. For this, we characterize
next the tangent space to BQ0. Of course, the only difficulty is to show that
any solution of the infinitesimal variation of the equation in the right-hand side
of (6.2) can be integrated to a curve in BQ0.

Lemma 6.3. The tangent space of BQ0 at ω = (ω + υ, h) ∈ BQ0 is given by
the subspace

TωBQ0 ⊂ Ω1,1
R

⊕ Ω2,0 ⊕ Ω0(i adPh).

defined by

TωBQ0 = {(ω̇ + υ̇, iu) | d(υ̇ + 2i〈θh − θ ∧ ∂hu〉) = 2i∂(ω̇ + 2〈u, Fh〉)}. (6.9)

Proof. Showing that the right-hand side of (6.9) is contained in TωBQ0 is a
formality, by taking derivatives along a curve (ωt + υt, ht) in BQ0. To see this,
we define

Ct = CS(θ)− CS(θht)− d〈θ ∧ θht〉
and use Remark 2.5 combined with Lemma 5.2 to calculate
d

dt |t=0
Ct =

d

dt |t=0

(
CS(θh)− CS(θht)− d〈θ ∧ θht〉 − d〈θh ∧ θht〉+ d〈θh ∧ θht〉

)

=
d

dt |t=0

(
2〈θh − θht ∧ Fh〉+ d〈θh − θ ∧ θht〉

)

= 4i∂〈u, Fh〉 − 2id〈θh − θ ∧ ∂hu〉.
Here, we have used the formula for the infinitesimal variation of the Chern
connection with respect to iu ∈ Ω0(i adPh) (see Lemma 5.2):

d

dt |t=0
θe

ituh = −2i∂hu ∈ Ω1,0(i adPh).

Conversely, given (ω̇ + υ̇, iu) satisfying

d(υ̇ + 2i〈θh − θ ∧ ∂hu〉) = 2i∂(ω̇ + 2〈u, Fh〉)
we define, for t ∈ R, ωt = (ωt + υt, ht) by

ht = eituh

ωt = ω + t(ω̇ + 2〈u, Fh〉)− R̃(ht, h)

υt = υ + t(υ̇ + 2i〈θh − θ ∧ ∂hu〉)−
∫ t

0

〈θhs − θh ∧ 2i∂hsu〉ds

− 〈θ ∧ θht〉+ 〈θ ∧ θh〉+ 〈θh ∧ θht〉

(6.10)

where R̃(ht, h) is defined as in Lemma 5.2. We claim that ωt satisfies the
equation in the right-hand side of (6.2) and therefore ωt ∈ BQ0 for all t. To
see this, using Lemma 5.2, we calculate

dυt = H + 2i∂ωt + CS(θ)− CS(θh)− d〈θ ∧ θht〉+ d〈θh ∧ θht〉

+ 2i∂R̃(ht, h)− d

(∫ t

0

〈θhs − θh ∧ 2i∂hsu〉ds
)

= H + 2i∂ωt + CS(θ)− CS(θht)− d〈θ ∧ θht〉.
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Finally, using Proposition 5.1 and Lemma 5.2 again,

ω̇t :=
d

dt
ωt = ω̇ + 2〈u, Fh〉 − 2〈u, Fht〉

υ̇t :=
d

dt
υt = υ̇ + 〈θh − θ ∧ 2i∂hu〉 − 〈θht − θ ∧ 2i∂htu〉.

(6.11)

and thus the tangent vector of ωt := (ωt + υt, ht) at t = 0 is (ω̇ + υ̇, iu). �

We are ready to calculate the Lie algebra action induced by (6.1)

ρ : LiePic(Q) → Γ(TBQ). (6.12)

Recall that, for any choice of reduction h ∈ Ω0(P/K), the Cartan involution
induces a well-defined involution (5.11).

Lemma 6.4. The Lie algebra action (6.12) is surjective. Furthermore, for any
choice of representative [(P,H, θ)] = [Q] ∈ H1(S) and isomorphism Q ∼= Q0,
the induced action ρ0 : LiePic(Q0) → Γ(TBQ0) is given by

ρ0(ζ)|ω =
(
ω̇ + υ̇, 1

2
(s− s∗h)

)
, (6.13)

for ζ = (s, B) ∈ LiePic(Q0) (see Lemma 4.4) and ω = (ω + υ, h) ∈ BQ0,
where

ω̇ = −Im (B1,1 + 2〈θh − θ ∧ ∂̄s〉)
υ̇ = B2,0 − B0,2 + 〈θh − θ ∧ ∂hs∗h + ∂θs〉.

(6.14)

Proof. We start by proving (6.13). Let f
t
= (gt, τt) ∈ Pic(Q0) a one-parameter

subgroup and let

(s, B) :=
d

dt |t=0
f
t
.

Then, taking derivatives in (6.7) at t = 0 we obtain

d

dt |t=0
f
t
· ω =

(
ω̇ + υ̇, 1

2
(s− s∗h)

)

where

ω̇ = − Im(B + 〈dθs ∧ θ − θh〉+ 〈θh − θ ∧ dhs〉)1,1

= − Im(B + 2〈θh − θ ∧ ∂̄s〉)1,1

υ̇ = (B + 〈dθs ∧ θ − θh〉+ 〈θh − θ ∧ −∂h(s− s∗h) + dhs〉)2,0

− B0,2 − 〈θh − θ ∧ −∂h(s− s∗h) + dhs〉0,2

= B2,0 −B0,2 + 〈θh − θ ∧ ∂θs+ ∂hs∗h〉
Finally, we prove the surjectivity of (6.13). Given (ω̇+ υ̇, iu) ∈ TωBQ0, taking
imaginary parts in (6.9),

d(−Im (υ̇ + 2i〈θh − θ ∧ ∂hu〉) + ω̇ + 2〈u, Fh〉) = 0

and therefore

ζ = (iu,−iω̇ + iIm (υ̇ + 2i〈θh − θ ∧ ∂hu〉) + i〈θ − θh ∧ dθu+ dhu〉)
is an element in LiePic(Q0) which satisfies ρ0(ζ) · ω = (ω̇ + υ̇, iu). �
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6.2. Aeppli classes and Hamiltonian orbits. Consider the normal sub-
group PicA(Q) ⊂ Pic(Q) defined in Proposition 4.7. By (6.1), we obtain an
induced left action

PicA(Q)×BQ −→ BQ. (6.15)

The goal of this section is to provide a cohomological interpretation of the
PicA(Q)-orbits on BQ using Bott-Chern secondary characteristic classes. For
this, we use the notion of Aeppli classes on a Bott-Chern algebroid introduced
in [22]. In order to achieve our goal, we first prove a structural property of the
space of compact forms BQ.

Lemma 6.5. The space BQ is contractible. Consequently, the Pic(Q)-action
(6.1) on BQ is transitive.

Proof. We work with a model Q0
∼= Q as in (6.2), and fix ω = (ω+υ, h) ∈ BQ0.

Using (6.2) and Lemma 5.2, given ω
′ = (ω′ + υ′, h′) ∈ BQ0 we have

d(υ′ − υ)− d〈θ ∧ θh〉+ d〈θ ∧ θh′〉 = 2i∂(ω′ − ω + R̃(h′, h))

+ d〈θh ∧ θh′〉+ d

(∫ 1

0

〈θh − θht ∧ 2i∂htu〉dt
)
,

(6.16)

where ht = eitu for u ∈ Ω0(adPh) such that h′ = eiuh. Therefore, setting

ω̇ = ω′ − ω + R̃(h′, h)− 2〈u, Fh〉
υ̇ = υ′ − υ − 〈θ ∧ θh〉+ 〈θ ∧ θh′〉 − 〈θh ∧ θh′〉

−
∫ 1

0

〈θh − θht ∧ 2i∂htu〉dt− 2i〈θh − θ ∧ ∂hu〉,

it follows (ω̇ + υ̇, iu) ∈ TωBQ0 (described as in (6.9)). Consider the curve
ωt ∈ BQ0 defined as in (6.10). Explicitly, this is given by

ht = eituh

ωt = ω + t(ω′ − ω + R̃(h′, h))− R̃(ht, h)

υt = υ + t

(
υ′ − υ − 〈θ ∧ θh〉+ 〈θ ∧ θh′〉 − 〈θh ∧ θh′〉 −

∫ 1

0

〈θh − θhs ∧ 2i∂hsu〉ds
)

−
∫ t

0

〈θhs − θh ∧ 2i∂hsu〉ds− 〈θ ∧ θht〉+ 〈θ ∧ θh〉+ 〈θh ∧ θht〉

For t = 1 we have ω1 = ω
′, and therefore a continuous deformation retraction

of BQ0 (in C∞-topology, say) is defined by

F : [0, 1]×BQ0 → BQ0

(s,ω′) 7→ ω1−s.

One can then check that this retraction is independent of our choice of model
Q0

∼= Q.
The last part of the statement follows from the surjectivity of the infinitesi-

mal action (Lemma 6.4), and the contractibility of the space BQ (Lemma 6.5).
This is the analogous statement, and is analogously proved, to the uniqueness,
up to isomorphism, of the compact form of a holomorphic principal bundle. �
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We recall next the notion of Aeppli class on a Bott-Chern algebroid intro-
duced in [22]. The proof of the following result follows from (6.2) and the
properties of the Bott-Chern secondary characteristic class in Proposition 5.1
and Lemma 5.2, but we include a short proof for completeness. Observe that
the Aeppli cohomology group H1,1

A (X) (4.9) admits a canonical real structure

H1,1
A (X,R).

Lemma 6.6. There is a well-defined map

Ap : BQ ×BQ → H1,1
A (X,R),

which satisfies the cocycle condition

Ap(ω2,ω0) = Ap(ω2,ω1) + Ap(ω1,ω0) (6.17)

for any triple of elements in BQ. More explicitly, given Q0
∼= Q determined by

a triple (P,H, θ) (see Definition 2.12),

Ap0(ω
′,ω) = [ω′ − ω + R̃(h′, h)] ∈ H1,1

A (X,R), (6.18)

where R̃(h′, h) is as in Lemma 5.2.

Proof. Given ω,ω′ ∈ BQ0, taking imaginary parts in (6.16) we obtain

d ImB = d(ω′ − ω + R̃(h′, h)),

where B is given by

B = υ′− υ−〈θ∧ θh〉+ 〈θ∧ θh′〉− 〈θh ∧ θh′〉−
∫ 1

0

〈θh− θht ∧ 2i∂htu〉dt. (6.19)

Here, ht = eitu for u ∈ Ω0(adPh) such that h′ = eiuh. By type decomposition it

follows that ω′−ω+R̃(h′, h) is ∂∂̄-closed, and hence (6.18) is well-defined. The
cocycle condition (6.17) follows from Proposition 5.1. We leave as an exercise
to check that Ap0 is independent of the model Q0

∼= Q. �

As a straightforward consequence of the cocycle condition (6.17), we obtain
that the map Ap induces an equivalence relation in BQ defined by

ω ∼A ω
′ if and only if Ap(ω,ω′) = 0.

Definition 6.7. The set of Aeppli classes of Q is the quotient

ΣA(Q,R) := BQ/ ∼A .

The set ΣA(Q,R) has a natural structure of affine space modelled on the
kernel of the map

∂ : H1,1
A (X,R) → H1(Ω2,0

cl ) (6.20)

induced by the ∂ operator on forms, where H1(Ω2,0
cl ) denotes the first Čech

cohomology of the sheaf of closed (2, 0)-forms on X (see [22, Prop. 3.9]).
Our next result shows that the equivalence classes of elements in BQ given by

the Aeppli classes in Definition 6.7 correspond to PicA(Q)-orbits (see (6.15)).

Proposition 6.8. A pair of ω,ω′ ∈ BQ are in the same PicA(Q)-orbit if and
only if they define the same Aeppli class

[ω] = [ω′] ∈ ΣA(Q,R).
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Proof. We fix a model Q0
∼= Q determined by a triple (P,H, θ) (see Definition

2.12). Let ω,ω′ ∈ BQ0 and consider the curve ωt ∈ BQ0 joining ω and ω
′,

constructed in Lemma 6.5. Then, the Aeppli map along the curve is

Ap(ωt,ω) = [t(ω′ − ω + R̃(h′, h))− R̃(ht, h) + R̃(ht, h)] = tAp(ω′,ω).

Assume first that ω ∼A ω
′, which implies ω ∼A ωt for all t by the previous

equation. Taking derivatives along the curve we obtain (see (6.11))

ω̇t :=
d

dt
ωt = ω′ − ω + R̃(h′, h)− 2〈u, Fht〉,

υ̇t :=
d

dt
υt = υ′ − υ − 〈θ ∧ θh〉+ 〈θ ∧ θh′〉 − 〈θh ∧ θh′〉

−
∫ 1

0

〈θh − θhs ∧ 2i∂hsu〉ds− 〈θht − θ ∧ 2i∂htu〉,

which corresponds to the infinitesimal action of

ζt = (iu,−iω̇t + iIm (υ̇t + 2i〈θht − θ ∧ ∂htu〉) + i〈θ − θht ∧ dθu+ dhtu〉).
Evaluating in the Lie algebra homomorphism in Lemma 4.5

a0(ζt) = [−iω̇t + 2i〈θ − θht ∧ ∂̄u〉)− 2i〈u, Fθ〉]
= −iAp(ω′,ω) + 2i[〈u, Fht〉+ 〈θ − θht ∧ ∂̄u〉)− 〈u, Fθ〉]
= 2i[〈u, Fht + ∂̄(θ − θht)− Fθ〉] = 0,

where in the last equality we have used that

(Fht − Fθ)
1,1 = ∂̄(θht − θ). (6.21)

Therefore, ζt ∈ LiePicA(Q0) for all t (see Definition 4.6), which proves the ‘if
part’ of the statement.
Conversely, assume that there exists a curve ωt = (ωt+υt, ht) ∈ BQ0 joining

ω and ω
′, and a one-parameter family of Lie algebra elements ζt = (st, Bt) ∈

Kera0, such that

ρ0(ζt)|ωt
:=
(
− Im (B1,1

t +2〈θht −θ∧ ∂̄st〉)+ υ̃t, 12(st−s
∗ht
t )
)
= (ω̇t+ υ̇t, ḣth

−1
t ),

for a suitable (2, 0)-form υ̃t (see (6.14)). Taking derivatives of the Aeppli map
along the curve

d

dt
Ap(ωt,ω) = [ω̇t − 2i〈ḣth−1

t , Fht〉]

= −Im[B1,1
t + 2〈θht − θ ∧ ∂̄st〉 − 2〈st, Fht〉]

= −Im[B1,1
t − 2〈st, Fht − ∂̄(θht − θ)〉]

= −Im a0(ζt) = 0,

which proves the statement. For the last equality, we have used (6.21) combined
with (4.10), while the second equality follows from

Im 〈st, Fht〉 = −i〈ḣth−1
t , Fht〉.

�
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Remark 6.9. From the proof of Lemma 6.6, it follows that one can define a
refined map κ : BQ ×BQ → H2(X,R), given explicitly by

κ(ω′,ω) = [ω′ − ω + R̃(h′, h)− ImB] ∈ H2(X,R)

for any choice of isomorphism Q0
∼= Q, where B is an (6.19). We have not been

able to prove that κ satisfies a cocycle condition similar to (6.17), and therefore
it is unclear whether it induces an equivalence relation on BQ. Nonetheless,
one can define a De Rham affine space for Bott-Chern algebroids, modelled on
H2(X,R), as the set of PicdR(Q)-orbits for the group PicdR(Q) in Section 4.2.

7. Moment maps

7.1. Conformally balanced metrics and moment maps. LetX be a com-
pact complex manifold of dimension n. Consider the space

Ω1,1
>0 ⊂ Ω1,1

R

of positive (1, 1)-forms on X , sitting inside the vector space of real (1, 1)-forms
Ω1,1

R
as an open subspace. We will use the convention that, for V ∈ TX ,

ω(V, JV ) > 0

defines a hermitian metric for any ω ∈ Ω1,1
>0, where we recall that J is the

almost complex structure associated to X . We use the notation (ω, b) for the
elements of TΩ1,1

>0, the total space of the tangent bundle

TΩ1,1
>0

∼= Ω1,1
>0 × Ω1,1

R
,

and the notation (ω̇, ḃ) for elements in the tangent bundle of TΩ1,1
>0 at (ω, b).

The space TΩ1,1
>0 has a natural integrable complex structure given by

J(ω̇, ḃ) = (−ḃ, ω̇). (7.1)

Consider the partial action of the additive group of complex two-forms

Ω2
C
× TΩ1,1

>0 → TΩ1,1
R

(B, (ω, b)) 7→ (ω + Re B1,1, b+ Im B1,1),
(7.2)

preserving the complex structure J. This section is devoted to the study of a
Hamiltonian action of the subgroup of purely imaginary two-forms iΩ2 ⊂ Ω2

C

for a natural family of Kähler structures on TΩ1,1
>0.

To define the family of symplectic structures of our interest, we fix a smooth
volume form µ on X compatible with the complex structure. For any ω ∈ Ω1,1

>0,
we define a function fω by

ωn

n!
= e2fωµ. (7.3)

We will call fω the dilaton function of the hermitian metric ω with respect to
µ. Note that e−fω is the point-wise norm of µ with respect to ω.

Definition 7.1. Given ℓ ∈ R\{2}, the ℓ-dilaton functional on TΩ1,1
>0 is

Mℓ(ω, b) :=

∫

X

e−ℓfω
ωn

n!
.
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Associated to the functionalsMℓ there is a family of exact (1, 1)-forms defined
by

Ωℓ := −dJd logMℓ. (7.4)

The following family of 1-form potentials plays a key role in the present work

λℓ := −Jd logMℓ = − 1

Mℓ
JdMℓ. (7.5)

Lemma 7.2. The forms λℓ and Ωℓ, evaluated at the tangent vectors (ω̇j, ḃj) at

the point (ω, b) ∈ TΩ1,1
>0, are given by

λℓ =
ℓ− 2

2Mℓ

∫

X

ḃ ∧ e−ℓfω ωn−1

(n− 1)!
,

Ωℓ =
ℓ− 2

2Mℓ

∫

X

(ω̇1 ∧ ḃ2 − ω̇2 ∧ ḃ1) ∧ e−ℓfω
ωn−2

(n− 2)!

+
ℓ(ℓ− 2)

4Mℓ

∫

X

(Λωḃ1Λωω̇2 − Λωḃ2Λωω̇1)e
−ℓfω

ωn

n!

+

(
ℓ− 2

2Mℓ

)2(∫

X

Λω(ω̇1)e
−ℓfω

ωn

n!

)(∫

X

Λω(ḃ2)e
−ℓfω

ωn

n!

)

−
(
ℓ− 2

2Mℓ

)2(∫

X

Λω(ω̇2)e
−ℓfω

ωn

n!

)(∫

X

Λω(ḃ1)e
−ℓfω

ωn

n!

)
.

(7.6)

Proof. Let (ω̇, ḃ) denote a tangent vector at (ω, b) ∈ Ω1,1
>0. Using that

Mℓ =

∫

X

e(2−ℓ)fωµ

it follows that

dMℓ(ω̇, ḃ) =
2− ℓ

2

∫

X

Λω(ω̇)e
−ℓfω

ωn

n!

where we have used that 2δfω(ω̇) = Λωω̇ by definition of fω. Thus, the first
part of (7.6) follows from (7.1). As for the second formula, we calculate

dJdMℓ((ω̇1,ḃ1), (ω̇2, ḃ2))

=
2− ℓ

2

∫

X

(ḃ2(−ℓ(Λωω̇1)/2)− ḃ1(−ℓ(Λωω̇2)/2)) ∧ e−ℓfω
ωn−1

(n− 1)!

+
2− ℓ

2

∫

X

(ḃ2 ∧ ω̇1 − ḃ1 ∧ ω̇2) ∧ e−ℓfω
ωn−2

(n− 2)!

=
ℓ(2− ℓ)

4

∫

X

(Λωḃ1Λωω̇2 − Λωḃ2Λωω̇1)e
−ℓfω

ωn

n!

+
2− ℓ

2

∫

X

(ω̇1 ∧ ḃ2 − ω̇2 ∧ ḃ1) ∧ e−ℓfω
ωn−2

(n− 2)!
,

and therefore (7.6) follows from

Ωℓ = − 1

Mℓ
dJdMℓ +

1

(Mℓ)2
dMℓ ∧ JdMℓ.

�
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We provide next a formula for the associated family of symmetric tensors,
obtaining Kähler metrics for certain values of the parameter ℓ. Given (ω, b) ∈
TΩ1,1

>0, we denote by

b0 = b− Λωb

n
ω

the primitive part of b with respect to ω.

Lemma 7.3. The symmetric tensor gℓ = Ωℓ(,J) at (ω, b) is given by

gℓ(ω̇, ḃ) =
2− ℓ

2Mℓ

∫

X

(|ω̇0|2 + |ḃ0|2)e−ℓfω
ωn

n!

+
2− ℓ

2Mℓ

(
ℓ

2
− n− 1

n

)∫

X

(|Λωḃ|2 + |Λωω̇|2)e−ℓfω
ωn

n!

+

(
2− ℓ

2Mℓ

)2(∫

X

Λωω̇e
−ℓfω

ωn

n!

)2

+

(
2− ℓ

2Mℓ

)2(∫

X

Λωḃe
−ℓfω

ωn

n!

)2

.

(7.7)

In particular, gℓ is a Kähler if 2− 2
n
< ℓ < 2 and −gℓ is Kähler if ℓ > 2.

Proof. The proof of (7.7) is straightforward from (7.1) and (7.6). The Kähler
property of −gℓ for ℓ > 2 follows from the Cauchy-Schwarz inequality, which
implies

1

Mℓ

(∫

X

Λωḃe
−ℓfω

ωn

n!

)2

≤
∫

X

|Λωḃ|2e−ℓfω
ωn

n!
.

�

Consider the action of the additive group of purely imaginary two-forms
induced by (7.2)

iΩ2 × TΩ1,1
>0 → TΩ1,1

>0

(iB, (ω, b)) 7→ (ω, b+B1,1).

Since the iΩ2-action preserves both J and Mℓ, it also preserves the one-form
λℓ (see (7.5)). Thus, by (7.4), the action is Hamiltonian and there exists an
equivariant moment map, which we calculate in the following result.

Proposition 7.4. The action of iΩ2 on TΩ1,1
>0 is Hamiltonian, with equivariant

moment map

〈µℓ(ω, b), B〉 = 2− ℓ

2Mℓ

∫

X

B ∧ e−ℓfω ωn−1

(n− 1)!
. (7.8)

Upon restriction to the subgroup iΩ2
ex ⊂ iΩ2 of imaginary exact 2-forms on X,

zeros of the moment map are given by ℓ-conformally balanced metrics, that is,

d(e−ℓfωωn−1) = 0.

Proof. The iΩ2-action is Hamiltonian, with moment map

〈µℓ(ω, b), iB〉 = −λℓ(iB · (ω, b)) = −λℓ(0, B),
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where iB · (ω, b) ∈ T(ω,b)TΩ
1,1
>0 denotes the infinitesimal action of iB on (ω, b).

Formula (7.8) follows now from (7.6). The last part of the statement is straight-
forward and is left to the reader. �

To the knowledge of the authors, the previous result provides the first mo-
ment map interpretation of the conformally balanced equation in the literature.
In particular, for ℓ = 0 we obtain a symplectic interpretation of balanced met-
rics. Similarly, when X admits a holomorphic volume form Ω and we take

µ = (−1)
n(n−1)

2 inΩ ∧ Ω (7.9)

and ℓ = 1, Proposition 7.4 characterizes hermitian metrics with holonomy for
the Bismut connection contained in SU(n) as a moment map condition (see
e.g. [22]) (cf. Corollary 7.15). Observe that for these two interesting cases we
cannot ensure that the metric ±gℓ in (7.7) is Kähler.

7.2. Kähler reduction and the Calabi system. Let ER be a real string
algebroid with underlying principal K-bundle PR over our compact complex
manifold X . We will assume that the bi-invariant symmetric bilinear form 〈 , 〉
on the Lie algebra k of K is non-degenerate (see Section 5.1). Let G be the
complexification of K. Let E be the complexification of ER, with underlying
principal G-bundle P = PR ×K G. Given a horizontal lift W ⊂ ER of TX to
ER (see Definition 5.10) we define

LW := {e ∈ W ⊗ C | π(e) ∈ T 0,1X} ⊂ E.

Consider the set of horizontal lifts of TX to ER such that LW is isotropic

W := {W ⊂ ER | W is a horizontal lift and LW is isotropic}.
Recall from Section 5.3 that any W ∈ W induces the following data: a real
(1, 1)-form ω ∈ Ω1,1

R
on X, a three-form HR, a connection θR on PR, and an

isomorphism ER
∼= E0,R (see (5.10)), so that the Courant structure on E0,R is

as in Definition 2.13. In particular, there is a well-defined forgetful map

W −→ Ω1,1
R

×A, (7.10)

where A denotes the space of principal connections on PR. Furthermore, via
ER

∼= E0,R, we have
W = {V + σ(V ) : V ∈ TX},

where σ = ω(, J). The following result is a straightforward consequence of the
Chern correspondence in Lemma 5.11.

Lemma 7.5. Denote by L the set of isotropic subbundles L ⊂ E mapping
isomorphically to T 0,1X under π : E → TX ⊗ C. Then, there is a bijection

W → L
W 7→ LW .

(7.11)

The sets W and L have natural structures of affine space modelled on the
vector spaces Ω1,1

R
⊕Ω2⊕Ω1(adPR) and Ω1,1+0,2⊕Ω0,1(adP ), respectively (see

Lemma 2.15 and Lemma 5.11). It is not difficult to see that the map (7.11) is
affine, and thus the natural complex structure on L given by multiplication by
i induces a complex structure J on W making (7.11) holomorphic.
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Lemma 7.6. Any element W ∈ W induces a natural bijection W ∼= Ω1,1
R

⊕
Ω2 ⊕A. Via this identification, J is given by

J|W (ω̇, ḃ, ȧ) = (−ḃ1,1, ω̇ + ib0,2 − ib0,2, Jȧ) (7.12)

for (ω̇, ḃ, ȧ) ∈ Ω1,1
R

⊕Ω2 ⊕Ω1(adPR) and Jȧ := iȧ0,1 − iȧ1,0. Consequently, the
forgetful map W −→ A induced by (7.10) is holomorphic.

Proof. Without loss of generality, we fix an isotropic splitting λ0 : TX → ER,
with induced connection θ0 on PR. Via the isomorphism ER

∼= E0,R induced
by λ0, as in (5.10), an element W ∈ W is given by a triple

(ω, b, θR) ∈ Ω1,1
R

× Ω2 ×A,
with corresponding horizontal lift

W = (−b,−a){V + ω(V, J) : V ∈ TX},
for a = θR − θ0, and isotropic subbundle (see Lemma 5.11)

LW = (iω − b,−a)(T 0,1X)

= (iω − b1,1+0,2 − 〈a0,1 ∧ a1,0〉,−a0,1)(T 0,1X)

= (iω − b1,1+0,2 − i
2
〈a ∧ Ja〉1,1,−a0,1)(T 0,1X).

Thus, the differential of the map (7.11) atW ≡ (ω, b, θR) can be identified with
the linear map

Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPR) −→ Ω1,1+0,2 ⊕ Ω0,1(adP )

(ω̇, ḃ, ȧ) 7−→ (ḃ1,1+0,2 − i(ω̇ − 1
2
〈ȧ ∧ Ja〉1,1 − 1

2
〈a ∧ Jȧ〉1,1), ȧ0,1),

and the induced complex structure is given by

J|W (ω̇, ḃ, ȧ) = (−ḃ1,1 + 〈ȧ ∧ a〉1,1, ω̇ + 〈Jȧ ∧ a〉1,1 + ib0,2 − ib0,2, Jȧ).

Taking now λ0 to be the isotropic splitting induced by W we have a = 0 and
the statement follows (for the last part see e.g. [16]). �

Consider now the natural left action of Aut(ER) on W, given by

Aut(ER)×W −→ W
(f,W ) 7−→ f ·W := f(W ).

(7.13)

Our goal is to find a Hamiltonian action on W induced by (7.13) and study its
symplectic reduction. For this, we need a better understanding of the action
(7.13). Our next result shows that (7.13) preserves the complex structure J,
and furthermore it extends the classical action of the gauge group GPR

on the
space of connections A. Recall from [24, App. A] that there is a well-defined
group homomorphism

σPR
: GPR

→ H3(X,R)

defined as in Corollary 4.2, inducing an exact sequence

0 // Ω2 // Aut(ER) // KerσPR

// GPR

σPR // H3(X,R).
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Lemma 7.7. The action (7.13) preserves J. Furthermore, the forgetful map
(7.10) jointly with the action (7.13) induce a commutative diagram

Aut(ER)×W //

��

W

��

KerσPR
× Ω1,1

R
×A // Ω1,1

R
×A,

where the bottom arrow is induced by the left GPR
-action on Ω1,1

R
×A, given by

g · (ω, θR) = (ω, gθR).

Proof. For the first part, observe that the map (7.11) is equivariant for the
action of Aut(ER) on L, given by

Aut(ER)× L −→ L
(f, L) 7−→ f · L := f(L).

(7.14)

Using that (7.14) is induced by the natural complex Aut(E)-action on L (de-
fined by the same formula), we obtain that J is preserved by (7.13).
As for the second part, without loss of generality we fix an isotropic splitting

λ0 : TX → ER, with induced connection θ0 on PR. Via the induced isomor-
phism ER

∼= E0,R, as in (5.10), an element W ∈ W is given by a triple

(ω, b, θR) ∈ Ω1,1
R

× Ω2 ×A,
with corresponding horizontal lift

W = (−b, θ0 − θR)Wω

for Wω := {V + ω(V, J) : V ∈ TX}. An element in Aut(ER) ∼= Aut(E0,R) is
given by a pair (g, τ) ∈ GPR

× Ω2 satisfying (cf. Lemma 4.3)

dτ = CS(g−1θ0)− CS(θ0)− d〈g−1θ0 ∧ θ0〉
and the action (7.13) is

(g, τ)(W ) = (τ − b+ 〈ag ∧ θ0 − θR〉, g(ag + θ0 − θR))(Wω)

= (τ − b+ 〈ag ∧ θ0 − θR〉, θ0 − gθR)(Wω)

for ag = g−1θ0 − θ0. Thus, the statement follows. �

Consider the open subset Ω1,1
>0 ⊂ Ω1,1

R
given by the positive (1, 1)-forms on

X . The phase space for our symplectic reduction is the following open subset
of W

W+ = {W ∈ W | ω(, J) > 0} ⊂ W.

To define our family of symplectic structures, we fix a smooth volume form µ
on X compatible with the complex structure. For any ω ∈ Ω1,1

>0, we define the
dilaton function fω ∈ C∞(X) as in (7.3).

Definition 7.8. Given ℓ ∈ R\{2}, the ℓ-dilaton functional on W+ is

Mℓ(W ) :=

∫

X

e−ℓfω
ωn

n!
. (7.15)
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Observe that Mℓ is the pullback of the functional in Definition 7.1 by the
projection W → Ω1,1

R
induced by (7.10). In the sequel we fix ℓ ∈ R\{2}.

Associated to the functional Mℓ there is a one-form λℓ ∈ Ω1(W+) on W+,
given by

λℓ := −Jd logMℓ = − 1

Mℓ
JdMℓ.

Lemma 7.9. The one-form λℓ is preserved by the Aut(ER)-action. Further-
more,

λℓ|W (ω̇, ḃ, ȧ) =
ℓ− 2

2Mℓ

∫

X

ḃ ∧ e−ℓfω ωn−1

(n− 1)!
. (7.16)

for (ω̇, ḃ, ȧ) ∈ TWW+
∼= Ω1,1

R
⊕ Ω2 ⊕ Ω1(adPR).

Proof. The first part of the statement is a direct consequence of Lemma 7.6
and Lemma 7.7. As for formula (7.16), without loss of generality, we fix an
isotropic splitting λ0 : TX → ER with induced connection θ0 on PR. By the
proof of Lemma 7.6 combined with Lemma 7.2, the one-form λℓ is

λℓ|W (ω̇, ḃ, ȧ) =
ℓ− 2

2Mℓ

∫

X

(ḃ1,1 − 〈ȧ ∧ a〉1,1) ∧ e−ℓfω ωn−1

(n− 1)!
, (7.17)

for a = θR − θ0. Taking now λ0 to be the isotropic splitting induced by W we
have a = 0 and the statement follows. �

Similarly as in Section 7.1, we endow W+ with an Aut(ER)-invariant exact
(1, 1)-form defined by

Ωℓ := −dJd logMℓ. (7.18)

We calculate next a formula for Ωℓ and the symmetric two-tensor gℓ = Ωℓ(,J).
We use the notation in Lemma 7.3 for the decomposition of two-forms into
primitive and non-primitive parts.

Lemma 7.10. The evaluation of Ωℓ and gℓ along tangent vectors (ω̇j , ḃj, ȧj) at
the point (ω, b, a) is given by:

Ωℓ =
ℓ− 2

Mℓ

∫

X

〈ȧ1 ∧ ȧ2〉 ∧ e−ℓfω
ωn−1

(n− 1)!

+
ℓ− 2

2Mℓ

∫

X

(ω̇1 ∧ ḃ2 − ω̇2 ∧ ḃ1) ∧ e−ℓfω
ωn−2

(n− 2)!

+
ℓ(ℓ− 2)

4Mℓ

∫

X

(Λωḃ1Λωω̇2 − Λωḃ2Λωω̇1)e
−ℓfω

ωn

n!

+

(
ℓ− 2

2Mℓ

)2(∫

X

Λω(ω̇1)e
−ℓfω

ωn

n!

)(∫

X

Λω(ḃ2)e
−ℓfω

ωn

n!

)

−
(
ℓ− 2

2Mℓ

)2(∫

X

Λω(ω̇2)e
−ℓfω

ωn

n!

)(∫

X

Λω(ḃ1)e
−ℓfω

ωn

n!

)
.

(7.19)
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gℓ(ω̇, ḃ, ȧ) =
ℓ− 2

Mℓ

∫

X

〈ȧ ∧ Jȧ〉 ∧ e−ℓfω ωn−1

(n− 1)!

+
2− ℓ

2Mℓ

∫

X

(|ω̇0|2 + |ḃ1,10 |2)e−ℓfω ω
n

n!

+
2− ℓ

2Mℓ

(
ℓ

2
− n− 1

n

)∫

X

(|Λωḃ|2 + |Λωω̇|2)e−ℓfω
ωn

n!

+

(
2− ℓ

2Mℓ

)2(∫

X

Λωω̇e
−ℓfω

ωn

n!

)2

+

(
2− ℓ

2Mℓ

)2(∫

X

Λωḃe
−ℓfω

ωn

n!

)2

.

(7.20)

Proof. We fix an isotropic splitting λ0 : TX → ER. Formulae (7.19) and (7.20)
follow by taking first the exterior derivative in (7.17) and then setting λ0 to be
the splitting induced by W , combined with Lemma 7.2 and Lemma 7.6. �

Remark 7.11. Arguing as in the proof of Lemma 7.3, one can prove that gℓ
(respectively −gℓ) induces a pseudo-Kähler metric along the subbundle Ω1,1

R
⊕

Ω1,1
R

⊕ Ω1(adPR) ⊂ TW+ provided that 2− 2
n
< ℓ < 2 (respectively ℓ > 2).

By Lemma 7.9, the action of Aut(ER) on (W+,Ωℓ) is Hamiltonian, with
moment map

〈µℓ(W ), ζ〉 = −λℓ(ζ ·W )

for ζ ∈ LieAut(ER), where ζ ·W denotes the infinitesimal action. The following
explicit formula follows from the proof of Lemma 7.7. Recall that any W ∈ W
determines an isotropic splitting λ : TX → ER with connection θR, and via
the isomorphism (5.10) the Lie algebra LieAut(ER) can be identified with (cf.
Lemma 4.4

LieAut(ER) ∼= {(s, B) | d(B − 2〈s, FθR〉) = 0} ⊂ Ω0(adPR)× Ω2. (7.21)

Proposition 7.12. The action of Aut(ER) on (W+,Ωℓ) is Hamiltonian with
equivariant moment map

〈µℓ(W ), ζ〉 = ℓ− 2

2Mℓ

∫

X

B ∧ e−ℓfω ωn−1

(n− 1)!
. (7.22)

Consider the Aut(ER)-invariant subspace of ‘integrable’ horizontal lifts

W0 = {W ∈ W | [LW , LW ] ⊂ LW} ⊂ W+, (7.23)

and define W0
+ = W0 ∩ W+. Via (7.11), W0

+ maps to an open set of the
space of liftings of T 0,1X to E, which defines a complex subspace of L. Thus,
W0

+ ⊂ W+ is (formally) a complex submanifold, and inherits an exact (1, 1)-
form denoted also by Ωℓ. Similarly as in Section 4.2, we define the following
group of ‘Hamiltonian’ automorphisms of ER. Recall from Lemma 4.5 that
there is Lie algebra homomorphism

a : LieAut(E) → H1,1
A (X),

which defines a normal Lie subalgebra Ker a ⊂ LieAut(E).



50 M. GARCIA-FERNANDEZ, R. RUBIO, AND C. TIPLER

Definition 7.13. Define the subgroup H ⊂ Aut(ER) as the set of elements
f ∈ Aut(ER) such that there exists a smooth family f

t
∈ Aut(ER) with t ∈

[0, 1], satisfying f
0
= IdER

, f
1
= f , and

a(ζt) = 0, for all t. (7.24)

We are ready to prove the main result of this section.

Proposition 7.14. The H-action on (W0
+,Ωℓ) is Hamiltonian, with equivari-

ant moment map induced by (7.22). Furthermore, zeros of the moment map
are given by solutions of the Calabi system with level ℓ, defined by

FθR ∧ ωn−1 = 0, F 0,2
θR

= 0,

d(e−ℓfωωn−1) = 0, ddcω + 〈FθR ∧ FθR〉 = 0.
(7.25)

Proof. The integrability condition in the definition of W0
+ implies that the pair

(ω, θR) associated to W ∈ W0
+ via (7.10) satisfies the two equations in the

right-hand side of (7.25) (see Proposition 5.13). Assume that 〈µℓ(W ), ζ〉 = 0
for all ζ ∈ Lie H. Via the identification (7.21), the condition a(ζ) = 0 implies
that

B1,1 − 2〈s, FθR〉 = (dξ)1,1

for some ξ ∈ Ω1. Furthermore, for any ξ ∈ Ω1 we have

(s, dξ + 2〈s, FθR〉) ∈ Lie H.
The two equations in the left hand side of (7.25) follow from Proposition 7.12.

�

By Proposition 7.14, the coupled system (7.25) can be regarded as a natural
analogue of the Hermite-Yang-Mills equations for string algebroids. These
equations were originally found in [22] for ℓ = 1 in a holomorphic setting,
that is, fixing the string algebroid and caculating the critical points of the
dilaton functionalMℓ for compact forms in a fixed Aeppli class (see Proposition
6.8). Following [22], we will refer to (7.25) as the Calabi system. As a matter
of fact, when the structure group K is trivial, the solutions of (7.25) are in
correspondence with solutions of the Calabi problem for Kähler metrics on X

ωn

n!
= cµ, dω = 0, (7.26)

for c ∈ R>0, which motivates the name for these equations (see [22]). Thus,
in particular, Proposition 7.14 yields a new moment map interpretation of this
classical problem, which shall be compared with [18].
Assume now that X is a (non-necessarily Kähler) Calabi-Yau manifold with

holomorphic volume form Ω and we take µ as in (7.9) and ℓ = 1. In this case,
the dilaton function is given by

e−fω = ‖Ω‖ω,
and therefore Proposition 7.14 characterizes solutions of the Hull-Strominger
system [31, 40] as a moment map condition (see e.g. [22]).
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Corollary 7.15. Let (X,Ω) be a Calabi-Yau manifold and let µ defined by
(7.9). Then, the H-action on (W0

+,Ω1) is Hamiltonian, with equivariant mo-
ment map induced by (7.22). Furthermore, zeros of the moment map are given
by solutions of the Hull-Strominger system

FθR ∧ ωn−1 = 0, F 0,2
θR

= 0,

d(‖Ω‖ωωn−1) = 0, ddcω + 〈FθR ∧ FθR〉 = 0.
(7.27)

To the knowledge of the authors, this result provides the first symplectic
interpretation of the Hull-Strominger system in the mathematics literature.

8. Moduli metric and infinitesimal Donaldson-Uhlenbeck-Yau

8.1. Gauge fixing. Let X be a compact complex manifold of dimension n.
We fix a smooth volume form µ compatible with the orientation. The moduli
space of solutions of the Calabi system with level ℓ on (X, µ) is defined as the
set of classes of ‘gauge equivalent’ solutions of (7.25). More precisely, it is given
by the symplectic quotient

Mℓ := µ−1
ℓ (0)/H,

where µℓ is the moment map in Proposition 7.14. In this section we study
some basic features of the geometry of Mℓ and point out some directions for
future research. We will proceed formally, ignoring subtleties coming from the
theory of infinite dimensional manifolds and Lie groups. In the sequel, the
bi-invariant pairing 〈 , 〉 in the Lie algebra of the maximal compact subgroup
K ⊂ G is assumed to be non-degenerate (see (5.1)). For simplicity, we will
also assume that K is semi-simple.
Our first goal is to undertake a gauge fixing for solutions of the linearized

Calabi system (7.25), whereby the complex structure (7.12) and the symmet-
ric tensor gℓ in (7.20) descend to the moduli space via symplectic reduction.
Difficulties will arise, due to the fact that gℓ is neither a definite pairing nor
non-degenerate (see Remark 7.11). Throughout this section, we fix a real string
algebroid ER with principal K-bundle Ph, the level ℓ ∈ R, andW ∈ W0

+ solving
the Calabi system (7.25), that is, such that µℓ(W ) = 0. Recall that W deter-
mines a holomorphic principal G-bundle P , a conformally balanced hermitian
form ω ∈ Ω1,1

>0, and a Hermite-Yang-Mills Chern connection θh on P (via the
fixed reduction Ph ⊂ P ).
We start by characterizing the tangent space to Mℓ at [W ]. By Lemma 7.6,

an infinitesimal variation of our horizontal lift W is given by

(ω̇, ḃ, ȧ) ∈ Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh).
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Lemma 8.1. The combined linearization of the Calabi system (7.25) and the
integrability condition in (7.23) is given by the linear equations

dhȧ ∧ ωn−1 + (n− 1)Fh ∧ ω̇ ∧ ωn−2 = 0,

d
(
e−ℓfω

(
(n− 1)ω̇ ∧ ωn−2 − ℓ

2
(Λωω̇)ω

n−1
))

= 0,

∂̄ȧ0,1 = 0,

dcω̇ + 2〈ȧ, Fh〉 − dḃ = 0.

(8.1)

Proof. The linearization of (7.25) is

dhȧ ∧ ωn−1 + (n− 1)Fh ∧ ω̇ ∧ ωn−2 = 0,

d
(
e−ℓfω

(
(n− 1)ω̇ ∧ ωn−2 − ℓ

2
(Λωω̇)ω

n−1
))

= 0,

∂̄ȧ0,1 = 0,

d(dcω̇ + 2〈ȧ, Fh〉) = 0,

(8.2)

while the integrability condition [LW , LW ] ⊂ LW (see (7.23)) implies at the
infinitesimal level that (see Lemma 2.15 and Lemma 5.11)

∂̄ȧ0,1 = 0,

dḃ0,2 + ∂̄(ḃ1,1 − iω̇)− 2〈ȧ0,1, Fh〉 = 0.
(8.3)

The second equation in (8.3) yields

dcω̇ = dḃ− 2〈ȧ, Fh〉,
and therefore (8.3) implies the last two equations in (8.2). Thus, the tangent
to µ−1

ℓ (0) ⊂ W0
+ is characterized by the linear equations (8.1). �

We denote by L(ω̇, ḃ, ȧ) the differential operator defined by the left hand
side of equations (8.1). We turn next to the study of the infinitesimal action,
in order to define a complex. From the proof of Lemma 7.7, we can identify
elements ζ ∈ LieH with pairs

ζ = (u,B) ∈ Lie Ω0(adPh)⊕ Ω2

satisfying (see Lemma 4.4)

d(B − 2〈u, Fh〉) = 0, B1,1 − 2〈u, Fh〉 = (dξ)1,1 (8.4)

for a real one-form ξ ∈ Ω1, and the infinitesimal action atW , denoted P(u,B),
is

(u,B) ·W = (0, B, dhu) = (0, (dξ)1,1 + 2〈u, Fh〉+B0,2 +B0,2, dhu). (8.5)

Define the vector space

R := Ω2n(adPh)⊕ Ω2n−1 ⊕ Ω0,2(adP )⊕ Ω3,

given by the domain of the left hand side of (8.1). Then, the operator L

induced by (8.1) jointly with (8.5) define a complex of vector spaces

(S∗) LieH P−→ Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh)
L−→ R, (8.6)
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whose cohomology H1(S∗) := KerL
ImP

will be formally identified with the tangent
space TWMℓ. Observe that the elements of LieH do not correspond to sections
of a vector bundle, due to the conditions in (8.4), and hence (8.6) is not a
complex of differential operators. To circunvent this issue, we consider the Lie
subalgebra

{(u, dξ + 2〈u, Fh〉) | ξ ∈ Ω1)} ⊂ LieH
and define the induced complex

(Ŝ∗) Ω0(adPh)⊕ Ω1 P̂−→ Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh)
L−→ R, (8.7)

where
P̂(u, ξ) = (0, dξ + 2〈u, Fh〉, dhu).

Our next result shows that the moduli space Mℓ is finite-dimensional. The
proof builds on the infinitesimal moduli construction in [23]. Consider the
Aeppli cohomology group H0,1

A (X) and the natural map from Dolbeault to
Bott-Chern cohomology induced by the ∂ operator:

H0,2

∂̄
(X)

∂−→ H1,2
BC(X). (8.8)

We will denote h0,1A (X) = dimH0,1
A (X) and h0(adP ) = dimH0(adP ).

Lemma 8.2. The sequence (8.7) is an elliptic complex of differential oper-
ators. Consequently, the cohomology H1(S∗) of (8.6) is finite-dimensional.
Furthermore, assuming that h0(adP ) = 0 and h0,1A (X) = 0, there is an exact
sequence

0 −→ Ker ∂ −→ H1(Ŝ∗) −→ H1(S∗) −→ 0

where ∂ is as in (8.8).

Proof. Ellipticity of (8.7) follows as in [23, Prop. 4.4], implying that H1(S∗) is
finite-dimensional due to the existence of a natural surjective map

H1(Ŝ∗) −→ H1(S∗) −→ 0. (8.9)

The kernel is given by the quotient ImP/Im P̂, where

ImP = {(0, B0,2 +B0,2 + (dξ)1,1 + 2〈u, Fh〉, dhu) | d(B0,2 − ∂̄ξ0,1) = 0}.
We claim that (8.9) induces a well-defined surjective map

ImP → Ker ∂ ⊂ H0,2

∂̄
(X)

(0, ḃ, ȧ) 7→ [B0,2 − ∂̄ξ0,1].
(8.10)

provided that h0(adP ) = 0. Firstly, since θh is Hermite-Yang-Mills, this con-
dition implies dim ker dh = 0. Therefore, if

(0, ḃ, ȧ) = (0, B0,2
j +B0,2

j + (dξj)
1,1 + 2〈uj, Fh〉, dhu)

for j = 1, 2 then, u1 = u2, B
0,2
1 = B0,2

2 and ∂∂̄(ξ0,11 − ξ0,12 ) = 0, so that (8.10)
is well defined. As for surjectivity, if [γ] ∈ Ker ∂, there exists ξ0,1 ∈ Ω0,1 such
that

d(γ − ∂̄ξ0,1) = 0,

and hence (0, γ + ∂ξ0,1 + c.c., 0) is an element of LieH mapping to [γ].
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Any element in Im P̂ maps to 0 via (8.10), and therefore this induces a well-

defined surjection ImP/Im P̂ → Ker ∂. We claim that this induced map is
injective, provided that h0,1A (X) = 0. To see this, notice that if

B0,2 − ∂̄ξ0,1 = ∂̄ξ′0,1

it follows that ∂∂̄ξ′0,1 = 0 and hence ξ′0,1 is ∂̄-exact. Thus, B0,2 = ∂̄ξ0,1 and

B0,2 +B0,2 + (dξ)1,1 = dξ.

�

Our strategy to build a complex structure induced by (7.12) on the moduli

space is to work orthogonally to the image of the operator P̂ with respect to
the non-definite pairing gℓ in (7.20) (cf. [35]). The existence of this complex
structure will automatically yield a symmetric tensor of type (1, 1), since the
two-form Ωℓ in (7.18) is well defined on the cohomology H1(S∗) by Proposition
7.14. Our construction relies on a technical condition already found in [22],
which we explain next. Consider the indefinite L2-pairing on the domain of

the operator P̂ in (8.7) induced by ω and 〈 , 〉

〈(u, ξ), (u, ξ)〉ℓ =
2− ℓ

Mℓ

(∫

X

〈u, u〉ω
n

n!
+

1

2

∫

X

ξ ∧ Jξ ∧ e−ℓfω ωn−1

(n− 1)!

)
, (8.11)

where Mℓ is the value of the functional (7.15) at the solution W .

Lemma 8.3. The following operator provides an adjoint of P̂ for the pairings
(8.11) and (7.20)

P̂∗ : Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh) → Ω0(adPh)⊕ Ω1

where P̂∗ = P̂∗
0 ⊕ P̂∗

1 is defined by

P̂∗
0(ω̇, ḃ, ȧ) =

1

(n− 1)!
∗
(
e−ℓfω

(
dhJȧ ∧ ωn−1 − (n− 1)Fh ∧ ḃ ∧ ωn−2

))
,

P̂∗
1(ω̇, ḃ, ȧ) =

1

(n− 1)!
∗ d
(
e−ℓfω

(
(n− 1)ḃ1,1 ∧ ωn−2 − ℓ

2
(Λωḃ)ω

n−1
))
.

Proof. The proof follows from a straightforward calculation using integration
by parts. Setting v = (ω̇, ḃ, ȧ), y = (u, ξ), and using (7.20) and(7.25) we have

gℓ(v, P̂y) =
ℓ− 2

Mℓ

∫

X

〈ȧ ∧ Jdhu〉 ∧ e−ℓfω ωn−1

(n− 1)!

− 2− ℓ

2Mℓ

∫

X

ḃ1,1 ∧ (dξ + 2〈u, Fh〉) ∧ e−ℓfω
ωn−2

(n− 2)!

+
(2− ℓ)ℓ

4Mℓ

∫

X

(Λω ḃ)dξ ∧ e−ℓfω
ωn−1

(n− 1)!

=
2− ℓ

Mℓ(n− 1)!

∫

X

〈u, dhJȧ ∧ ω − (n− 1)Fh ∧ ḃ〉 ∧ e−ℓfωωn−2

− 2− ℓ

2Mℓ(n− 1)!

∫

X

ξ ∧ d
(
e−ℓfω

(
(n− 1)ḃ1,1 ∧ ωn−2 − ℓ

2
(Λωḃ)ω

n−1
))
.
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The statement follows from ∗2|Ω2n−1 = −1 and the action of the Hodge star

operator on one-forms

∗ξ = Jdξ ∧ ωn−1

(n− 1)!
.

�

Consider now the L2-orthogonal decomposition of Ω1 induced by the De
Rham differential

Ω1 = Im d⊕ Im d∗ ⊕H1

and define a differential operator

L : Ω0(adPh)× Im d∗ → Ω0(adPh)× Im d∗

(u, ξ) 7→ P̂∗ ◦ P̂(u, ξ).
(8.12)

We state next the key condition on the solution W of (7.25) which we need to
assume for our argument.

Condition A. The kernel of L vanishes.

A geometric characterization of Condition A is mentioned in Remark 8.7.
On the practical side, this hypothesis will enable us to construct the complex
structure on the moduli space under natural cohomological conditions. We
build on the following result from [22]. Using ω and a choice of bi-invariant
positive-definite bilinear form on k, we endow the domain of L with an L2

norm (possibly different from (8.11), which may be indefinite) and extend the
domain of L to an appropriate Sobolev completion.

Proposition 8.4 ([22]). The operator L is Fredholm with zero index.

Assuming Condition A, we obtain a natural gauge fixing via a gℓ-orthogonal
decomposition

Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh) = Im P̂⊕ (Im P̂)⊥gℓ . (8.13)

Lemma 8.5. Assume Condition A. Then, there exists an orthogonal decom-
position (8.13) for the pairing gℓ in (7.20). Consequently, for any element

v ∈ Ω1,1
R

⊕ Ω1,1
R

⊕ Ω1(adPh) there exists a unique Πv ∈ Im P̂ such that

(ω̇, ḃ, ȧ) = v − Πv solves the linear equations

d
(
e−ℓfω

(
(n− 1)ḃ1,1 ∧ ωn−2 − ℓ

2
(Λω ḃ)ω

n−1
)
= 0,

dhJȧ ∧ ωn−1 − (n− 1) ∗ Fh ∧ ḃ ∧ ωn−2 = 0.

Proof. Notice first that from the non-degeneracy of 〈 , 〉, the pairing given in
(8.11) is non-degenerate. Thus

ker P̂∗ = (Im P̂)⊥gℓ .

If v ∈ Im P̂ ∩ (Im P̂)⊥gℓ , then v = P̂(y) for y ∈ Ω0(adPh) × Im d∗. But then

P̂∗ ◦ P̂(y) = 0 and, by Condition A, v = 0. Thus

Im P̂ ∩ (Im P̂)⊥gℓ = {0}. (8.14)
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Let v ∈ Ω1,1
R

⊕ Ω1,1
R

⊕ Ω1(adPh). The condition

v − P̂(y) ∈ (Im P̂)⊥gℓ

for some y ∈ Ω0(adPh)× Im d∗ is equivalent to

P̂∗(v) = P̂∗ ◦ P̂(y). (8.15)

But by Proposition 8.4 and Condition A, P̂∗ ◦ P̂ is surjective. Then, by elliptic
regularity, one can solve (8.15) for y ∈ Ω0(adPh) × Im d∗. The orthogonal
decomposition follows. The last statement of the Lemma comes from the ex-

pression of P̂∗ in Lemma 8.3. �

The above Lemma suggests to define the space of harmonic representatives
of the complex (8.7):

H1(Ŝ∗) = kerL ∩ ker P̂∗.

Our next result provides our gauge fixing mechanism for the linearization of
the Calabi system (8.1) under natural cohomological assumptions.

Proposition 8.6. Assume Condition A and the cohomological conditions

h0,1A (X) = 0, Ker ∂ = {0}, h0(adP ) = 0, (8.16)

where ∂ is as in (8.8). Then, the inclusion H1(Ŝ∗) ⊂ kerL induces an isomor-
phism

H1(Ŝ∗) ≃ H1(S∗).

More precisely, any class in the cohomology H1(S∗) of the complex (8.6) admits

a unique representative (ω̇, ḃ, ȧ) solving the linear equations

dhȧ ∧ ωn−1 + (n− 1)Fh ∧ ω̇ ∧ ωn−2 = 0,

d
(
e−ℓfω

(
(n− 1)ω̇ ∧ ωn−2 − ℓ

2
(Λωω̇)ω

n−1
))

= 0,

∂̄ȧ0,1 = 0,

dcω̇ + 2〈ȧ, Fh〉 − dḃ = 0,

d
(
e−ℓfω

(
(n− 1)ḃ1,1 ∧ ωn−2 − ℓ

2
(Λωḃ)ω

n−1
)
= 0,

dhJȧ ∧ ωn−1 − (n− 1)Fh ∧ ḃ ∧ ωn−2 = 0.

(8.17)

Proof. The correspondence between H1(S∗) and the space of solutions of (8.17)
follows from Lemma 8.1, Lemma 8.2, and Lemma 8.5. �

Remark 8.7. Condition A, the key hypothesis for our gauge fixing mechanism,
is secretly a geometric condition. To see this, denote by E the complexifica-
tion of ER. Recall that Aut(E) acts on the space of compact forms on the
Bott-Chern algebroid Q := QLW

with surjective infinitesimal action ρ (see
Lemma 6.4 and Proposition 4.1). From the proof of Lemma 6.4, there is a
partial inverse for ρ which sends an infinitesimal variation (ω̇ + υ̇, iu) of ER

to the Lie algebra element ζ(ω̇ + υ̇, iu) = (iu,−iω̇ + iIm υ̇) ∈ LieAut(E).
Denote by Aut(Q) the group of automorphisms of Q, regarded as the isotropy
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group of LW on Aut(E). Then, one can prove that a solution W of the Cal-
abi system (7.25) with h0(adP ) = 0 satisfies Condition A if and only if the
following holds: an infinitesimal variation (ω̇ + υ̇, iu) of ER along the Aeppli
class [ER] ∈ ΣA(Q,R) solves the linearization of the Calabi system (7.25) only
if ζ(ω̇ + υ̇, iu) ∈ LieAut(Q). This shall be compared with a classical result in
Kähler geometry, which states that solutions of the linearized constant scalar
curvature equation, for Kähler metrics in a fixed Kähler class, are in bijective
correspondence with Hamiltonian Killing vector fields.

8.2. The moduli space metric. We are ready to prove our main result,
which shows that the gauge fixing in Proposition 8.6 enables us to descend the
complex structure (7.12) and the symmetric tensor gℓ in (7.20) to the moduli
space Mℓ, via the symplectic reduction in Proposition 7.14.

Theorem 8.8. Assume Condition A and the cohomological conditions (8.16).
Then, the tangent space to Mℓ at [W ], identified with the space of solutions
of the gauge fixed linear equations (8.17), inherits a complex structure J and
a (possibly degenerate) metric gℓ such that Ωℓ = gℓ(J, ), given respectively by
(7.12) and (7.20), and where Ωℓ stands for the restriction of (7.19).

Proof. The fact that H1(S∗) inherits a complex structure follows from Propo-
sition 8.6, using that J in (7.12) preserves (8.17). The formula for the metric
is a direct consequence of Lemma 7.9 and Proposition 7.12. �

Remark 8.9. Using (8.16), it is not difficult to see that any [(ω̇, ḃ, ȧ)] ∈ H1(S∗)

admits a representative with ḃ = ḃ1,1. Thus, relying on Remark 7.11, we expect
that (7.20) leads to a non-degenerate metric at least for ℓ > 2− 2

n
.

We study next the structure of the metric (7.20) along the fibres of a natural
map from Mℓ to the moduli space of holomorphic principal G-bundles. As
we will see shortly, the moduli space metric constructed in Theorem 8.8 is
‘semi-topological’, in the sense that fibre-wise it can be expressed in terms of
classical cohomological quantities associated to a gauge-fixed variation of the
solution. Denote by

A0 = {θR ∈ A | F 0,2
θR

= 0}
the space of integrable connections on Ph = PR. Via the classical Chern cor-
respondence, we can identify A0 with the space of structures of holomorphic
principal G-bundle on P := Ph ×K G, which we denote by C0, obtaining a
well-defined map

Mℓ → C0/GP . (8.18)

By standard theory, C0/GP is the well-studied moduli space of holomorphic
principal G-bundles over X with fixed topological bundle P . As before, we fix
a solution W of (7.25) and consider the corresponding point

[P ] ∈ C0/GP .
We start by characterizing the tangent space to the fibre of (8.18) over the
class [P ], using the gauge fixing in Proposition 8.6.
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Lemma 8.10. Assume Condition A and the cohomological conditions (8.16).
Then, any infinitesimal variation in the fibre of (8.18) over [P ] at [W ] admits

a unique representative of its class in H1(S∗) of the form (ω̇, ḃ,−Jdhs+ dhs′),
for s, s′ ∈ Ω0(adPh), solving the linear equations

−dhJdhs ∧ ωn−1 + (n− 1)Fh ∧ ω̇ ∧ ωn−2 = 0,

d
(
e−ℓfω

(
(n− 1)ω̇ ∧ ωn−2 − ℓ

2
(Λωω̇)ω

n−1
))

= 0,

dc(ω̇ − 2〈s, Fh〉)− d(ḃ− 2〈s′, Fh〉) = 0,

d
(
e−ℓfω

(
(n− 1)ḃ1,1 ∧ ωn−2 − ℓ

2
(Λωḃ)ω

n−1
)
= 0,

−dhJdhs′ ∧ ωn−1 + (n− 1)Fh ∧ ḃ ∧ ωn−2 = 0.

(8.19)

Proof. Let (ω̇, ḃ, ȧ) ∈ Ω1,1
R

⊕Ω2 ⊕Ω1(adPh) be an infinitesimal variation of the
solution W of (7.25). Assuming that it is tangent to the fibre over [P ], there
exists r ∈ Ω0(adP ) such that

ȧ0,1 = ∂̄r.

Then we can write uniquely

ȧ = −Jdhs+ dhs′

for s, s′ ∈ Ω0(adPh). The statement follows from Proposition 8.6 using that
(dh)2s ∧ ωn−1 = [Fh, s] ∧ ωn−1 = 0 by (7.25). �

Remark 8.11. Using that θh is Hermite-Yang-Mills and that h0(adP ) vanishes,
by the first and last equations in (8.19) the elements s and s′ are uniquely

determined by ω̇ and ḃ.

The gauge fixed system (8.19) for variations along the fibres of (8.18) allows

us to define Aeppli and Bott-Chern cohomology classes. Let (ω̇, ḃ,−Jdhs+dhs′)
be, as in Lemma 8.10, a solution of (8.19). From the third equation in (8.19)
we obtain

ddc(ω̇ − 2〈s, Fh〉) = 0, ddc(ḃ− 2〈s′, Fh〉) = 0,

and we can define the variation of the ‘complexified Aeppli class’ of the solution
(cf. Proposition 6.8) by

ȧ = Re ȧ+ iIm ȧ

= [ω̇ − 2〈s, Fh〉] + i[ḃ− 2〈s′, Fh〉] ∈ H1,1
A (X).

Notice that, by Lemma 7.7, the balanced class

b =
1

(n− 1)!
[e−ℓfωωn−1] ∈ Hn−1,n−1

BC (X,R)

is independent of the representative in [W ] ∈ Mℓ. Thus, using the second
and fourth equations in (8.19), we define the variations of the ‘complexified
balanced class’ by

ḃ = Re ḃ+ iIm ḃ

= [Re ν̇] + i[Im ν̇] ∈ Hn−1,n−1
BC (X),
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where ν̇ ∈ Ωn−1,n−1 is defined by

(n− 1)!Re ν̇ := e−ℓfω(n− 1)ω̇0 ∧ ωn−2 +
n(2− ℓ)− 2

2n
e−ℓfω(Λωω̇)ω

n−1,

(n− 1)!Im ν̇ := e−ℓfω(n− 1)ḃ0 ∧ ωn−2 +
n(2− ℓ)− 2

2n
e−ℓfω(Λωḃ)ω

n−1.

The subscript 0 stands for the primitive (1, 1)-forms

ω̇0 = ω̇ − 1

n
(Λωω̇)ω, ḃ0 = ḃ− 1

n
(Λωḃ)ω.

The variation of the balanced class b of ω corresponds in our notation to
Re ḃ. For the next result, we use the duality pairing H1,1

A (X) ∼= Hn−1,n−1
BC (X)∗

between the Aeppli and Bott-Chern cohomologies.

Lemma 8.12. The pairing between Re ḃ and Re ȧ is given by:

Re ḃ · Re ȧ = −
∫

X

|ω̇0|2e−ℓfω
ωn

n!
+
n(2− ℓ)− 2

2n

∫

X

e−ℓfω |Λωω̇|2
ωn

n!

+ 2

∫

X

〈dhs ∧ Jdhs〉 ∧ e−ℓfω ωn−1

(n− 1)!
.

Proof. Define ω̃ = e−ℓfω/n−1ω. Using that ω̃ is balanced, we have

∆ω̃〈s, s〉 : = 2iΛω̃∂̄∂〈s, s〉
= 4i〈Λω̃∂̄∂hs, s〉+ 2Λω̃〈(dh)cs ∧ dhs〉
= 4i〈Λω̃∂̄∂hs, s〉+ 2Λω̃〈Jdhs ∧ dhs〉.

By equation Fh ∧ ωn−1 = 0, we can express dhJdh as follows

−(dhJdhs) ∧ ωn−1 = (2i∂̄∂hs) ∧ ωn−1 − [Fh, s] ∧ ωn−1 = (2i∂̄∂hs) ∧ ωn−1

and hence the first equation in (8.19) gives

∆ω̃〈s, s〉
ω̃n

n!
= −2〈Fh, s〉 ∧ ω̇0 ∧

e−ℓfωωn−2

(n− 2)!
+ 2Λω̃〈Jdhs ∧ dhs〉

ω̃n

n!
.

Finally, we calculate

Re ḃ · Re ȧ =

∫

X

Re ν̇ ∧ (ω̇0 + (Λωω̇)ω/n− 2〈s, Fh〉)

=

∫

X

ω̇0 ∧ ω̇0 ∧ e−ℓfω
ωn−2

(n− 2)!
+
n(2− ℓ)− 2

2n

∫

X

e−ℓfω |Λωω̇|2
ωn

n!

− 2

∫

X

〈s, Fh〉 ∧ e−ℓfω ω̇0 ∧
ωn−2

(n− 2)!

= −
∫

X

|ω̇0|2e−ℓfω
ωn

n!
+
n(2− ℓ)− 2

2n

∫

X

e−ℓfω |Λωω̇|2
ωn

n!

+ 2

∫

X

Λω̃〈dhs ∧ Jdhs〉
ω̃n

n!
.

�
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Note that we have a similar formula for the pairing Im ḃ · Im ȧ. We calculate
next our formula for the metric in the fibres of (8.18).

Theorem 8.13. Assume Condition A and (8.16). Let (ω̇, ḃ,−Jdhs + dhs′)
be an element in the tangent of the fiber of (8.18) solving equations (8.19).

Denote by ḃ and ȧ the associated variations of complex Bott-Chern class and
Aeppli class. Then

gℓ =
2− ℓ

2Mℓ

(
2− ℓ

2Mℓ

(Re ȧ · b)2 − Re ȧ · Re ḃ+ 2− ℓ

2Mℓ

(Im ȧ · b)2 − Im ȧ · Im ḃ

)

(8.20)

Proof. The proof follows from Theorem 8.8 and Lemma 8.10 by a straightfor-
ward calculation. E.g., for v = (ω̇, 0,−Jdhs) we have

gℓ(v, v) =
ℓ− 2

Mℓ

∫

X

〈dhs ∧ Jdhs〉 ∧ e−ℓfω ωn−1

(n− 1)!
+

2− ℓ

2Mℓ

∫

X

|ω̇1,1
0 |2e−ℓfω ω

n

n!

+
2− ℓ

2Mℓ

(
ℓ

2
− n− 1

n

)∫

X

|Λωω̇|2e−ℓfω
ωn

n!
+

(
2− ℓ

2Mℓ

)2

(Re ȧ · b)2

=
2− ℓ

2Mℓ

(
− 2

∫

X

〈dhs ∧ Jdhs〉 ∧ e−ℓfω ωn−1

(n− 1)!
+

∫

X

|ω̇1,1
0 |2e−ℓfω ω

n

n!

)

+
2− ℓ

2Mℓ

(
− n(2− ℓ)− 2

2n

∫

X

|Λωω̇|2e−ℓfω
ωn

n!

)
+

(
2− ℓ

2Mℓ

)2

(Re ȧ · b)2

=
2− ℓ

2Mℓ
(−Re ḃ · Re ȧ) +

(
2− ℓ

2Mℓ

)2

(Re ȧ · b)2.

�

When the structure group K is trivial, the solutions of (7.25) are in cor-
respondence with solutions of the Calabi problem for Kähler metrics on X
(see (7.26)). By Yau’s solution of the Calabi Conjecture [44], when ℓ < 2
formula (8.20) defines a positive definite Kähler metric on the ‘complexified
Kähler moduli space’ of Kähler metrics on X with prescribed volume form, as
obtained via symplectic reduction in Corollary 7.15. Observe that we have an
isomorphism H1,1

A (X) ∼= H1,1(X), and therefore the moduli metric is positive-
definite by the Lefschetz decomposition.
A case of special interest is when X admits a holomorphic volume form Ω

and we take µ as in (7.9) and ℓ = 1. In this case, (7.25) is equivalent to
the condition of SU(n)-holonomy for the metric and equation (8.20) matches
(up to homothety) Strominger’s formula for the special Kähler metric on the
‘complexified Kähler moduli’ for X [13, Equation (4.1)]. As a consequence of
our framework, this classical moduli space is recovered, along with its special
metric, via pseudo-Kähler reduction in Theorem 8.8. It is interesting to observe
that the formula for the holomorphic prepotential on a Calabi-Yau threefold,
given by the natural cubic form on H1,1(X), breaks as soon as we split the
Kähler class into the Aeppli and Bott-Chern parameters a and b.
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On a (non necessarily Kähler) Calabi-Yau threefold (X,Ω) and for a suitable
choice of the structure groupK, the equations (7.25) are equivalent to the Hull-
Strominger system [31, 40] provided that ℓ = 1 and we take µ as in (7.9) (see
Corollary 7.15). For this interesting system of equations, the physics of string
theory predicts that the moduli space metric (7.20) should be positive definite
along the fibres of (8.18). This follows from our formula for the moduli space
Kähler potential, given in this case by

K = − log

∫

X

‖Ω‖ω
ω3

6
, (8.21)

and the following physical conjecture, explained in Appendix A.3. Our formula
for the Kähler potential (8.21), with ℓ = 1, shall be compared with [14, Eq.
(1.3)], which puts forward the case ℓ = 0.

Conjecture 8.14. Formula (8.21) defines the Kähler potential for a Kähler
metric in the moduli space of solutions of the Hull-Strominger system, for fixed
bundle P and fixed Calabi-Yau threefold (X,Ω).

Combined with Theorem 8.13, we obtain an interesting physical prediction
relating the variations of the Aeppli classes and balanced classes of solutions
in the special case of the Hull-Strominger system on a Calabi-Yau threefold.

Conjecture 8.15. If (X,Ω, P ) admits a solution of the Hull-Strominger sys-
tem, then (8.20) is positive definite. In particular, the variations of the Aeppli
and balanced classes of nearby solutions must satisfy

Re ȧ · Re ḃ < 1

2
∫
X
‖Ω‖ω ω3

6

(Re ȧ · b)2. (8.22)

Formula (8.22) provides a potential obstruction to the existence of solutions
of the Hull-Strominger system around a given solution. For example, if we fix
Re ȧ, the possible variations in the balanced class Re ḃ are constrained by the
duality pairing Re ȧ · Re ḃ, via an affective bound in terms of the balanced
class of the given solution and the value of the dilaton functional. We expect
this phenomenon to be related to some global obstruction to the existence
of solutions. It would be interesting to obtain a physical explanation for the
inequality (8.22).

8.3. Infinitesimal Donaldson-Uhlenbeck-Yau. We discuss next the rela-
tion between Mℓ and the moduli space of string algebroids Q over X with fixed
class [EQ] = [E] ∈ H1(S) (see Lemma 3.5). This relation is suggested by the
correspondence between the moduli space of solutions of the Hermite-Yang-
Mills equations and the moduli space of polystable principal bundles, given
by the Donaldson-Uhlenbeck-Yau Theorem [16, 41]. In the case of our main
interest, E is the complexification of ER, our string algebroids are Bott-Chern,
and [EQ] = [E] is equivalent to r(Q) = [ER] (see Proposition 5.8).
In order to establish this relation, notice that the proof of Lemma 7.7 shows

that (7.13) extends to a left Aut(E)-action

Aut(E)×W −→ W
(f,W ) 7−→ f ·W := f(W ′)

(8.23)
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where W ′ := W (f−1(ER), LW ) ⊂ f−1(ER) is the horizontal subspace induced
by the Chern correspondence in Lemma 5.11. Similarly as in Lemma 7.7,
the forgetful map (7.10) jointly with the action (8.23) induce a commutative
diagram

Aut(E)×W //

��

W

��

Ker σP ×A // A,
where KerσP ⊂ GP is as in Corollary 4.2 and the bottom arrow is induced
by the action of the complex gauge group GP on A (see e.g. [16]). Consider
the isomorphism A0 ∼= C0 between the space of integrable connections A0

on Ph and the space C0 of holomorphic principal G-bundle structures on P ,
given by the classical Chern correspondence (cf. Section 8.2). Consider the
subgroup AutA(E) ⊂ Aut(E) as in Definition 4.6. Then, the set-theoretical
Chern correspondence in Lemma 7.5 induces a diagram

Mℓ
// W0/AutA(E)

∼= //

��

L0/AutA(E)

��

W0/Aut(E)
∼= //

��

L0/Aut(E)

�� ��

A0/KerσP
∼= //

��

C0/KerσP

��

A0/GP
∼= // C0/GP ,

(8.24)

where L0 denotes the space of liftings of T 0,1X to E and σP is as in (4.1).
Let us analyse briefly the tower of moduli spaces on the right hand side of the

diagram (8.24). Firstly, C0/GP is the moduli space of holomorphic principal
G-bundles over X with fixed topological bundle P , as considered in Section
8.2. The fibre of the map

C0/KerσP → C0/GP
over [P ] is discrete (see (4.8)). Assuming that the automorphism group GP of
P is trivial, the fibre is parametrized by Im σP ⊂ H3(X,C). As for the moduli
space L0/Aut(E), we have the following.

Lemma 8.16. The set L0/Aut(E) parametrizes isomorphism classes of string
algebroids Q over X with [EQ] = [E] ∈ H1(S) (see Lemma 3.5).

Proof. Any element L ∈ L0 determines a string algebroid QL with [EQL
] =

[E] ∈ H1(S) (see Lemma 3.7). If L and L′ are in the same Aut(E)-orbit
then by (3.2) it follows that QL and QL′ are isomorphic. Conversely, given a
string algebroid Q with [EQ] = [E], then any choice of isomorphism f : EQ →
E determines L = f(T 0,1X) ∈ L0. For a different choice of isomorphism

f ′ : EQ → E, we have L′ = f ′ ◦ f−1 · L which lies in the same Aut(E)-orbit.
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Finally, if ψ : Q→ Q′ is an isomorphism of string algebroids, then there exists
a unique isomorphism f̃ : EQ → EQ′ in a diagram

EQ

''◆
◆

◆
◆

f̃

��

Q IdQ

&&▼
▼▼

▼▼
▼

ψ

��

EQ′

''◆
◆

◆
Q

Q′ ψ

88rrrrrr

which determines L̃ = f ◦f̃−1
(T 0,1X) ∈ L0. By Lemma 3.9, L̃ ∈ Aut(E)·L. �

Remark 8.17. The local geometry of the bigger moduli space of string alge-
broids over X with varying [EQ] ∈ H1(S) has been recently understood in [24]
via the construction of a Kuranishi slice theorem.

By the previous lemma, L0/Aut(E) is the moduli space of string algebroids
Q over X with fixed complex string algebroid E, while L0/AutA(E) is a Te-
ichmüller space for string algebroids. We analyse next in detail the infinitesimal
structure of the Teichmüller space when E is the complexification of ER, to-
wards a Donaldson-Uhlenbeck-Yau type theorem for the Calabi system. For
this, we fix a solutionW of (7.25) and consider the associated element LW ∈ L0

via the Chern correspondence in Lemma 7.5. Relying on Lemma 2.15 and Sec-
tion 8.2, the tangent space of L0/AutA(E) at [LW ] is given (formally) by the
cohomology of the complex

(C∗) LieAutA(E)
P

c

−→ Ω1,1+0,2⊕Ω0,1(adP )
L
c

−→ Ω1,2+0,3⊕Ω0,2(adP ), (8.25)

where LieAutA(E) ⊂ Ω0(adP )⊕ Ω2
C
is as in Proposition 4.7 and

Pc(r, B) = (B1,1+0,2, ∂̄r),

Lc(γ̇, β̇) = (dγ̇0,2 + ∂̄γ̇1,1 − 2〈β̇, Fh〉, ∂̄β̇).
Similarly as for (8.6), (8.25) is not a complex of differential operators (as
LieAutA(E) is not the space of sections of a vector bundle) and we consider
the Lie subalgebra

{(dξ + 2〈r, Fh〉 | ξ ∈ Ω1
C)} ⊂ LieAutA(E)

and define the induced complex

(Ĉ∗) Ω0(adP )⊕ Ω1
C

P̂
c

−→ Ω1,1+0,2 ⊕ Ω0,1(adP )
L
c

−→ Ω1,2+0,3 ⊕ Ω0,2(adP ),
(8.26)

where
P̂c(r, ξ) = (dξ0,1 + ∂̄ξ1,0 + 2〈r, Fh〉, ∂̄r).

We show next that the Teichmüller space L0/AutA(E) is finite-dimensional.

Lemma 8.18. The sequence (8.26) is an elliptic complex of differential op-
erators. Consequently, the cohomology H1(C∗) of (8.6) is finite-dimensional.
Furthermore, assuming that h0(adP ) = 0 and h0,1A (X = 0), there is an exact
sequence

0 −→ Ker ∂ −→ H1(Ĉ∗) −→ H1(C∗) −→ 0
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where ∂ is as in (8.8).

The proof is analogue to that of Lemma 8.2 and it is therefore omitted.

Ellipticity of the complex Ĉ∗ can be easily obtained via comparison with the
Dolbeault complex of the holomorphic vector bundle underlying QLW

(cf. [3,
15] and arXiv version 1503.07562v1 of reference [23]).
Our strategy to compare H1(C∗) with the tangent to the moduli space of

solutions of the Calabi system, given by H1(S∗) as in Lemma 8.2, is to work

orthogonally to the image of the operator P̂c with respect to the non-definite
pairing gℓ in (7.20). Notice here that the Chern correspondence in Lemma 7.5
induces an isomorphism

Υ: Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh) −→ Ω1,1+0,2 ⊕ Ω0,1(adP )

(ω̇, ḃ, ȧ) 7−→ (ḃ1,1+0,2 − iω̇, ȧ0,1),

which we use to define the pairing gℓ on Ω1,1+0,2 ⊕ Ω0,1(adP ).

Theorem 8.19. Assume Condition A and the cohomological conditions (8.16).
Then, the cohomology of the complexes (8.6) and (8.25) are canonically iso-
morphic H1(S∗) ∼= H1(C∗).

Proof. Using the conditions h0,1A (X) = h0(adP ) = 0 one can easily prove that

Im P̂ ∩ JIm P̂ = {0}.
Then, via the isomorphism Υ, we have equalities

Υ−1(Im P̂c) = Im P̂⊕ JIm P̂

Υ−1(KerLc) = {(ω̇, ḃ, ȧ) | ∂̄ȧ0,1 = 0, dcω̇ + 2〈ȧ, Fh〉 − dḃ = 0}
Assuming Condition A, there is a gℓ-orthogonal projection Π as in Lemma 8.5
and we consider the map

Πc : Ω1,1
R

⊕ Ω2 ⊕ Ω1(adPh) −→ (Im P̂⊕ JIm P̂)⊥gℓ

v 7−→ Πcv := −J(Id−Π)J(Id−Π)v.

We take yj ∈ Ω0(adPh)⊕ Ω1, for j = 1, 2, and check that it is well-defined

gℓ(Π
cv, P̂(y1) + JP̂(y2)) = gℓ(v − Πv,JP̂(y2))

+ Ωℓ(ΠJ(v −Πv), P̂(y1)) + gℓ(ΠJ(v −Πv), P̂(y2))

= gℓ(v − Πv,JP̂(y2)) + gℓ(J(v − Πv), P̂(y2)) = 0.

For the second equality we used that Im Π ⊂ Im P̂, that µℓ is equivariant, and
also µℓ(W ) = 0. By Proposition 8.6, there is an equality

H1(Ŝ∗) := kerL ∩ ker P̂∗ = (Im P̂⊕ JIm P̂)⊥gℓ ∩Υ−1(KerLc)

and therefore, since Πc preserves Υ−1(KerLc), it induces a well-defined surjec-
tive map

Πc : Υ−1(KerLc) −→ H1(Ŝ∗).
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We claim that this map induces an isomorphism H1(Ĉ∗) ∼= H1(Ŝ∗). To see

this, notice that (8.14) implies that ΠJIm P̂ = 0, as

gℓ(P̂(y1),ΠJP̂(y2)) = −Ωℓ(P̂(y1), P̂(y2)) = 0.

for any y1, y2. Then, if v = P̂(y1) + JP̂(y2) it follows that

Πcv = v −Πv + JΠJ(v − Πv)

= (Id− Π)JP̂(y2) + JΠJ(Id− Π)JP̂(y2) = JP̂(y2)− JΠP̂(y2) = 0.

Conversely, if Πcv = 0:

v = Πv − JΠJ(v − Πv) ∈ Im P̂⊕ JIm P̂,

and therefore H1(Ĉ∗) ∼= H1(Ŝ∗), as claimed. The proof follows combining
Lemma 8.2 with Lemma 8.18. �

Our Theorem 8.19 can be regarded as an infinitesimal Donaldson-Uhlenbeck-
Yau type theorem, relating the moduli space of solutions of the Calabi system
with the Teichmüller space L0/AutA(E) for string algebroids. This strongly
suggests that–if we shift our perspective and consider the Calabi system as
equations

Fh ∧ ωn−1 = 0,

d(e−ℓfωωn−1) = 0,
(8.27)

for a compact form on fixed string algebroid Q along a fixed Aeppli class
a ∈ ΣA(Q,R) (see Proposition 6.8)–the existence of solutions should be related
to a stability condition in the sense of Geometric Invariant Theory. This was
essentially the point of view taken in [22]. The precise relation with stability
in our context is still unclear, as the balanced class b ∈ Hn−1,n−1(X,R) of the
solution varies in the moduli space Mℓ. Recall that b is required to measure
slope stability of the holomorphic bundle in the classical Donaldson-Uhlenbeck-
Yau Theorem [16, 41] (see also [33]). The conjectural stability condition which
characterizes the existence of solutions of (8.27) should be for pairs given by
string algebroid Q of Bott-Chern type equipped with a ‘complexified Aeppli
class’ (see Appendix B). It must be closely related to the properties of the
integral of the moment map µℓ for compact forms in a fixed Aeppli class, given
by the ℓ-dilaton functional (cf. [22])

Mℓ : BQ → R.

We speculate that there is a relation between this new form of stability and the
conjectural inequality (8.22). This may lead to an obstruction to the global
existence which goes beyond the slope stability of the bundle and the balanced
property of the manifold (cf. [45]).

8.4. Examples. We present an interesting class of examples of solutions of
the Calabi system where Condition A holds, and Theorem 8.8, Theorem 8.13
and Theorem 8.19 apply. These examples are non-Kähler solutions of (7.25)
obtained by deformation of a solution of the Calabi problem for Kähler metrics,
as in (7.26), equipped with a polystable vector bundle. Our method is analogue
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to the one used in [2] to find solutions of the Hull-Strominger system on Kähler
Calabi-Yau manifolds.
Let X be a compact Kähler manifold equipped with smooth volume form µ

compatible with the orientation and a Kähler class k ∈ H1,1(X,R). Let V0 and
V1 be k-stable holomorphic vector bundles over X with vanishing first Chern
class and the same second Chern character

ch2(V0) = ch2(V1) ∈ H2,2(X,R).

Given ℓ, ǫ ∈ R, consider the system of equations

Fh0 ∧ ωn−1 = 0,

Fh1 ∧ ωn−1 = 0,

d(e−ℓfωωn−1) = 0,

ddcω − ǫ tr0 Fh0 ∧ Fh0 + ǫ tr1 Fh1 ∧ Fh1 = 0.

(8.28)

for a hermitian form ω on X and hermitian metrics hj in Vj. Taking P to be
the bundle of split frames of V0⊕V1, any solution of (8.28) provides a solution
of the Calabi system (7.25) for

〈 , 〉ǫ = −ǫ tr0+ǫ tr1 .
Combining the Donaldson-Uhlenbeck-Yau Theorem [16, 41] with Yau’s solu-
tion of the Calabi Conjecture [44], there exists a unique solution (ω0, h0,0, h1,0)
of (8.28) for ǫ = 0 with [ω0] = k. Notice here that such solution must be
necessarily Kähler (see [22]), that is, dω0 = 0.

Proposition 8.20. Assume ℓ > 2− 2
n
and h0,1(X) = 0, and let (X, V0, V1) be as

above. Then, there exists ǫ0 > 0 and a smooth family (ωǫ, h0,ǫ, h1,ǫ) of solutions
of (8.28) parametrized by [0, ǫ0[ such that Condition A holds for sufficiently
small ǫ > 0. Furthermore, (ωǫ, h0,ǫ, h1,ǫ) converge uniformly in C∞ norm to
(ω0, h0,0, h1,0) as ǫ→ 0.

Proof. Existence of the family of solutions (ωǫ, h0,ǫ, h1,ǫ) follows as in [2] by
application of an implicit function theorem argument (cf. [22, Lem. 5.17]).
We prove now that any such solution satisfies Condition A for sufficiently small
ǫ. Denote by Phǫ the bundle of split unitary frames for hǫ = h0,ǫ × h1,ǫ. For
Lǫ as in (8.12) and (u, ξ) ∈ Ω0(adPhǫ) × Im d∗, the condition Lǫ(u, ξ) = 0 is
equivalent to

d
(
e−ℓfωǫ

(
(n− 1)((dξ)1,1 + 2〈u, Fhǫ〉ǫ) ∧ ωn−2

ǫ − ℓ

2
(Λωǫ

dξ)ωn−1
ǫ

))
= 0,

dhǫJdhǫu ∧ ωn−1
ǫ − (n− 1)Fhǫ ∧ (dξ + 2〈u, Fhǫ〉ǫ) ∧ ωn−2

ǫ = 0.

Consider the family of elliptic operator

Uǫ,0 : Ω0(adPhǫ) → Ω2n(adPhǫ)

defined by

Uǫ,0(u) = dhǫJdhǫu ∧ ωn−1
ǫ − (n− 1)Fhǫ ∧ (2〈u, Fhǫ〉ǫ) ∧ ωn−2

ǫ .

By hypothesis, Ũ0,0 is elliptic with zero kernel, and therefore Uǫ,0 has vanishing
kernel for sufficiently small ǫ by upper semi-continuity of dimKerUǫ,0. Notice
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that Uǫ,0 can be regarded as an operator Ω0(adPh0) → Ω0(adPh0) by a gauge
transformation depending only on hǫ. Let ǫ > 0 such that KerUǫ,0 = {0}, and
assume that (uǫ, ξǫ) ∈ KerLǫ. Given λ ∈ R, consider the family of elliptic
operators

Uǫ,λ : Ω0(adPhǫ) → Ω0(adPhǫ)

defined by

Uǫ,λ(u) = dhǫJdhǫu ∧ ωn−1
ǫ − (n− 1)Fhǫ ∧ (λdξǫ + 2〈u, Fhǫ〉ǫ) ∧ ωn−2

ǫ .

By upper semi-continuity of dimKerUǫ,λ we have that KerUǫ,λ = {0} for suffi-
ciently small λ. Since λuǫ ∈ KerUǫ,λ, it follows that uǫ = 0. Using now Lemma
8.3 and setting v = (0, dξǫ, 0), we have gℓ(v, v) = 0 and therefore

∫

X

|((dξ)1,1)0|2e−ℓfωǫ
ωnǫ
n!

+

(
ℓ

2
− n− 1

n

)∫

X

|Λωǫ
dξ|2e−ℓfωǫ

ωnǫ
n!

= 0.

For ℓ > 2− 2
n
this implies (dξ)1,1 = 0, and therefore ∂∂̄ξ0,1 = 0. Finally, using

that h0,1(X) = 0 we conclude ξ0,1 = ∂̄φ for some complex valued function φ,
and hence dξ = 0. �

We finish with concrete examples where the hypothesis of Proposition 8.20
are satisfied. We will take X to be a Calabi-Yau threefold with holomorphic
volume form Ω, and µ as in (7.9). We choose a Kähler class k, and k-stable
bundles V0 and V1 such that

c1(Vj) = 0, c2(Vj) = c2(X)

(see [2, 21] and references therein for constructions of such bundles). In this
setup, h0,1(X) = h0,2(X) = 0 and h0(EndV0) = h0(EndV1) = 0. Hence,
the hypothesis of Proposition 8.20 hold, and Theorem 8.8, Theorem 8.13 and
Theorem 8.19 apply.
Our choice of bundles V0, V1 can be interpreted, geometrically, as a de-

formation of the special Kähler metric on the ‘complexified Kähler moduli’
for the Calabi-Yau manifold X (see Section 8.2). More precisely, Proposi-
tion 8.20 combined with Theorem 8.13 gives a family of pseudo-Kähler met-
rics gℓ,ǫ (see (8.20)) in a non-empty open subset of H1,1(X) ∼= H1,1

A (X), for
(ℓ, ǫ) ∈]4

3
, 2[×[0, ǫ0[. Here, the fibre of (8.18) over [P ] (for P the bundle of

split frames of V0 ⊕ V1) is regarded as a subset of H1,1(X) via [22, Corollary
5.14]. The special Kähler metric in the ‘complexified Kähler moduli’ of X is
recovered (up to homothety) in the ǫ→ 0 limit of this family. The case of the
Hull-Strominger equations corresponds to ℓ = 1, and it is not covered by our
result.

Example 8.21. Let X be a complete intersection Calabi-Yau threefold. By
[32, Cor. 2.2], TX has unobstructed deformations parametrized byH1(End TX).
Since TX is stable for any Kähler class, any pair of small deformations V0 and
V1 of TX are also stable. For the quintic hypersurface h1(EndTX) = 224 and
we obtain a family of deformations of the special Kähler metric on H1,1(X) of
dimension 450, parametrized by a non-empty open subset of

H1(EndTX)×H1(EndTX)×]4
3
, 2[×[0, ǫ0[.
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Appendix A. Moduli Kähler potential and the gravitino mass

A.1. The gravitino equation. In this section we explain the physical argu-
ment which leads to Conjecture 8.14 and to the formula (8.21) for the Kähler
potential on the moduli space of solutions of the Hull-Strominger system. This
provides further motivation for Conjecture 8.15. In addition, we hope that this
addendum makes the present work more accessible to physicists.
We start with a brief detour which shows that both string algebroids of

Bott-Chern type and the Hull-Strominger system, as considered in the present
work, appear naturally via variational principles in string theory. Consider a
flux compactification of the heterotic string from 10 to 4 dimensions. Spacetime
is assumed to be topologically of the form

R
4 ×X,

where X is the internal (spin) compact manifold. The 10-dimensional metric
is a warped product [31, 40]

g10 = e2D(g1,3 + g6),

where g1,3 is the flat Minkowski metric, g6 is a Riemannian metric, and D is a
conformal factor which only depends on X .
Assume that this geometry satisfies the 10-dimensional gravitino equation,

that is, there exists a covariantly constant spinor for the spin connection asso-
ciated to

∇g10 − 1

2
H10,

for∇g10 the Levi-Civita connection andH10 the 10-dimensional three-form flux.
Then, we have the integrability condition [40]

|d(D − φ10)|2 = 0

where φ10 is the 10-dimensional dilaton, which implies D = φ10. Assuming
a natural compactification ansatz for the spinor, we further obtain an SU(3)-
structure (Ψ, ω) on X satisfying

HR = −N + (dcω)2,1+1,2. (A.1)

Here N denotes the Nijenhuis tensor of the almost complex structure induced
by Ψ and HR = H10, depending only on the internal manifold.
Under these assumptions, we would like to characterize compactification

backgrounds with N = 1 supersymmetry in 4-dimensions. In other words, we
want to understand which solutions of the 10-dimensional gravitino equation
also satisfy the dilatino equation and the gaugino equation, which at this point
can be written simply as

(HR + 2dφ) · η = 0, FA · η = 0.

Here, η is a spinor on (X, g6) associated to (Ψ, ω), A is the gauge field, and
φ = φ10, depending only on the internal manifold. Strikingly, this question can
be turned into a variational problem for two natural physical quantities: the
heterotic superpotential and the dilaton of the 4-dimensional effective theory.
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A.2. The heterotic superpotential. Consider the heterotic superpotential,
defined on solutions of the gravitino equation as follows [29, 28]

W =

∫

X

e−2φ(HR − idω) ∧Ψ. (A.2)

The variation of W with respect to Ψ implies that

(HR − idω)1,2+0,3 = 0

since the variation of Ψ lies in Ω3,0 ⊕ Ω2,1, and therefore

N = 0, HR = dcω

by (A.1) (in particular, the almost complex structure induced by Ψ is inte-
grable). The variation of W with respect to ω implies that

d(e−2φΨ) = 0,

and therefore Ω = e−2φΨ is a holomorphic volume form on X . Note that the
previous conditions already imply W = 0.
The variation of W with respect to HR requires a special treatment due to

the Green-Schwarz mechanism for anomaly cancellation, relating HR with the
gauge field A and an auxiliary connection ∇ on the tangent bundle via the
Bianchi identity

dHR = α′ trR∇ ∧ R∇ − α′ trFA ∧ FA. (A.3)

One way of understanding mathematically this variation is to regard the data
ω, HR, ∇, and A as induced by a horizontal lift on a real string algebroid

W ⊂ ER

(see Section 5.3) and impose a Dirac quantization condition on the isomorphism
class (see Section 5.2)

[ER] ∈ H1(SR).

Choose an SU(3)-structure on X and consider the principal bundle PR given
by the product of the bundle of special unitary frames on X with the gauge
bundle. The set H1(SR) fits naturally in a exact sequence of pointed sets

H1(SR)


// H1(CK)
p1

// H4(X,R),

(see [24, Prop. A.4]) where H1(CK) is the set of isomorphism classes of principal
K-bundles and p1 stands for the first Pontryagin class of the bundle with
respect to (cf. (5.1))

〈 , 〉 = −α′ trTX +α′ tr .

The fibre −1([PR]) is a quotient of the H3(X,R)-torsor of real string classes
[38] (see [24, Prop. A.8]). Integral elements in H1(SR) are given by (classes
of) isotopy classes of lifts of PR : X → BK to the classifying space of the
corresponding string group [42]. Dirac quantization of [ER] implies that a
variation ḢR of HR must satisfy

ḢR = db− 2α′ tr ∇̇ ∧ R∇ + 2α′ tr Ȧ ∧ FA,
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for a two-form b on X . Taking this into account, the variation of the superpo-
tential W with respect to HR implies

FA ∧Ψ = 0, R∇ ∧Ψ = 0,

or equivalently F 0,2
A = 0 = R0,2

∇ .
The upshot of the previous discussion is the following: by imposing the con-

dition of critical point for the heterotic superpotential (on top of the gravitino
equation)

δW = 0,

we have obtained a familiar geometry discussed in Section 5.3, namely, a
Calabi-Yau threefold (X,Ω) and a real string algebroid ER equipped with a
horizontal lift W ⊂ ER inducing a lifting of T 0,1X (see Lemma 7.5)

LW ⊂ ER ⊗ C.

In particular, by Lemma 2.15 and Proposition 5.8 we obtain a string algebroid
Q = QLW

over the the Calabi-Yau threefold (X,Ω) endowed with a compact
form (hence, Q is Bott-Chern by Definition 5.6).

A.3. The dilaton functional and the gravitino mass. Consider the uni-
versal formula for the 4-dimensional dilaton in the effective field theory induced
by a string compactification [4]

e−2φ4 =

∫

X

e−2φ10volg6 . (A.4)

Imposing the gravitino equation and δW = 0, we obtain the alternative ex-
pression

e−2φ4 =

∫

X

‖Ω‖ω
ω3

6
,

which is precisely the formula for the dilaton functional with level ℓ = 1 and
volume form (7.9). We shift our perspective and regard e−2φ4 as a functional for
compact forms on a fixed Bott-Chern algebroid Q, given by a critical point of
the superpotential. Fixing now the Aeppli class [ER] ∈ ΣA(Q,R) (see Section
6.2), the variation of the dilaton functional is given by

1

4

∫

X

(2i〈h−1ḣ, Fh〉+ ∂ξ0,1 + ∂ξ0,1) ∧ ‖Ω‖ωω2,

and we obtain the desired variational characterization of the remaning N = 1
supersymmetry conditions in four dimensions, as observed originally in [22].

Proposition A.1 ([22]). The critical points of the dilaton functional for com-
pact forms on Q in a fixed Aeppli class are the solutions of the equations

d(‖Ω‖ωω2) = 0, Fh ∧ ω2 = 0.

Let us now turn to Conjecture 8.14 and formula (8.21) for the moduli Kähler
potential. We build on a universal relation between the Kähler potential,
the superpotential, and the gravitino mass. In the context of N = 1 four-
dimensional supergravity the gravitino mass m3/2 can be written as

m3/2 = c0e
K/2W
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for some universal constant c0 ∈ R. By the standard supersymmetry lore,
N = 1 supersymmetry in four dimensions imposes that the scalar manifold is a
Kähler Hodge manifold, and K is the Kähler potential. For a compactification
of 10-dimensional heterotic supergravity to 4-dimensions, the superpotential
is given by (A.2), and the scalar manifold corresponds to the moduli space of
solutions of the Hull-Strominger system.
A Gukov-type formula [29] for the gravitino mass in 4-dimensional heterotic

flux compatifications was derived in [30] (valid to first order in α′ expansion),
namely,

m3/2 =

√
8eφ4W

4
∫
X
‖Ω‖ω ω3

6

,

where e−2φ4 is the four-dimensional dilaton (A.4). The previous two formulae
need to be understood off-shell, that is, without imposing the supersymmetry
conditions coming from δW = 0, nor the equations of motion of the ten-
dimensional theory. Comparing the two formula for the gravitino mass, it
follows that

eK =
e2φ4

2c20(
∫
X
‖Ω‖ω ω3

6
)2
.

By the discussion in Section A.2, imposing now δW = 0, we have e−2φ4 =∫
X
‖Ω‖ω ω

3

6
, and therefore we obtain the following off-shell formula for the mod-

uli Kähler potential

K = −3 log

∫

X

‖Ω‖ω
ω3

6
− 2 log c0 − log 2. (A.5)

This physical prediction from the heterotic string must be handled very care-
fully. In the physical analysis, the connection ∇ on TX is a complicated
function of the hermitian form ω and the parameter α′ in the Bianchi iden-
tity (A.3). Thus, a comparison with our mathematical study of the metric in
Section 8.2 only seems to be valid if we fix the holomorphic principal bundle un-
derlying the Bott-Chern algebroid Q. This motivates Conjecture 8.14. Notice
that formula (A.5) for the Kähler potential agrees with [14, Eq. (1.3)] to first
order in α′ expansion. We thank J. McOrist for this interesting observation.

Appendix B. Complexified Aeppli classes

In this section we dwell further into the geometry of the sequence of moduli
spaces on the right hand side of (8.24). Our goal is to find an explanation for the
variations of ‘complexified Aeppli classes’ appearing in formula (8.20) for the
fibre-wise moduli metric, via the study of the Teichmüller space L0/AutA(E)
for string algebroids. Recall here that the infinitesimal Donaldson-Uhlenbeck-
Yau type Theorem 8.19 identifies the tangent to the moduli space Mℓ with the
tangent to the Teichmüller space. We follow the notation in Section 8.3.
By Lemma 8.16, the fibre over [P ] ∈ C0/Ker σP of the natural map

L0/Aut(E) → C0/KerσP (B.1)
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parametrizes isomorphism classes of string algebroids with underlying principal
G-bundle P . To give a cohomological interpretation of this fibre, denote by
Ω2,0
cl the sheaf of (holomorphic) closed (2, 0)-forms on X . Recall from [23, Lem.

2.10] that there is a group homomorphism

σP : GP → H1(Ω2,0
cl )

defined by

σP (g) = [CS(gθh)− CS(θh)− d〈gθh ∧ θh〉] ∈ H1(Ω2,0
cl ),

for any choice of reduction h ∈ Ω0(P/K). Here we use [27] (see also [23, Lem.
3.3]) to identify

H1(Ω2,0
cl )

∼= Ker d : Ω3,0 ⊕ Ω2,1 → Ω4,0 ⊕ Ω3,1 ⊕ Ω2,2

Im d : Ω2,0 → Ω3,0 ⊕ Ω2,1
. (B.2)

The quotient

H1(Ω2,0
cl )/Im σP .

can be identified with the set of isomorphism classes of string algebroids with
underlying holomorphic principal G-bundle P (see [24, Prop. 3.11]). We want
to describe the fibre of (B.1) as a natural subspace of H1(Ω2,0

cl )/Im σP . Using
(4.9) and the isomorphism (B.2), we define a map

∂ : H1,1
A (X) → H1(Ω2,0

cl ), (B.3)

induced by the ∂ operator on forms acting on representatives. We consider
also the the natural map from Aeppli to Bott-Chern cohomology induced by
the ∂̄ operator:

H1,1
A (X)

∂̄−→ H1(Ω2,0
cl ) :=

Ker d : Ω1,2 ⊕ Ω0,3 → Ω2,2 ⊕ Ω1,3 ⊕ Ω0,4

Im d : Ω0,2 → Ω1,2 ⊕ Ω0,3
(B.4)

Lemma B.1. The fibre of (B.1) over [P ] is an affine space modelled on the
image of the map

∂ : ker ∂̄ → H1(Ω2,0
cl )/Im σP (B.5)

induced by (B.3), where ker ∂̄ ⊂ H1,1
A (X) is defined by (B.4)

Proof. Fix a lifting L0 ∈ L0 and denote by P the induced holomorphic prin-
cipal G-bundle structure on P . Without loss of generality, we fix an isotropic
splitting λ0 : TX → E and regard

L0 ⊂ Ω1,1+0,2 ⊕ Ω0,1(adP ).

We can choose λ0 such that L0 = (0, 0), with induced three-form H ∈ Ω3,0+2,1

and connection θh, for some choice of reduction h ∈ Ω0(P/K). Then, by
Proposition 2.16, if L = (γ, β) ∈ L0 induces [P ] ∈ C0/KerσP it follows that
β is in the Ker σP -orbit of 0. By (4.1), we can ‘gauge’ β and assume that
(γ, β) = (γ, 0). Hence,

dγ0,2 + ∂̄γ1,1 = 0

and γ induces a class

[γ1,1] ∈ ker ∂̄ ⊂ H1,1
A (X).
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The change in the isomorphism class of the string algebroid, from L0 to L, is
(see Proposition 2.16)

∂([γ1,1]) := [∂γ1,1] ∈ H1(Ω2,0
cl ).

An element (γ′, 0) ∈ L0 is in the same Aut(E)-orbit as (γ, 0) if and only if
the corresponding string algebroids are isomorphic (see Lemma 8.16). This is
equivalent to the existence of g ∈ GP and B ∈ Ω2,0 such that (see Proposition
2.3)

∂γ′1,1 = ∂γ1,1 + CS(gθh)− CS(θh)− d〈gθh ∧ θh〉+ dB.

Thus, the induced map from the fibre of (B.1) over [P ] to H1(Ω2,0
cl )/Im σP is

well-defined and injective. Surjectivity onto the image of (B.5) follows from
Proposition B. �

We turn next to the study of the map

L0/AutA(E) → L0/Aut(E). (B.6)

Set-theoretically, the fibre over [L] ∈ L0/Aut(E) is given by the double quo-
tient AutA(E)\Aut(E)/Aut(QL), where Aut(QL) is regarded as the isotropy
group of L in Aut(E). Following Proposition 4.7 and Lemma B.1, this quo-
tient should have an intepretation in terms of the Aeppli cohomology group
H1,1
A (X). The precise relation goes beyond the scope of the present work, and

shall be compared with the link between the group of symplectomorphisms
and the first cohomology of a symplectic manifold via the flux homomorphism
(see Remark 4.8). Our modest goal here is to characterize the tangent to the
fibre of (B.6). Strikingly, this infinitesimal study requires the classical Futaki
invariant for the principal bundle P [19] (see also [1]). Let b ∈ Hn−1,n−1

BC (X,R)
be a Bott-Chern class. Then, the Futaki invariant of P is given by a Lie algebra
homomorp hism

Fb : Lie GP → C

which provides an obstruction to the existence of solutions of the Hermite-
Yang-Mills equations for a given balanced metric on X with class b (and hence
in particular of (7.25)). Using the duality pairing H1,1

A (X) ∼= Hn−1,n−1
BC (X)∗

between the Aeppli and Bott-Chern cohomologies, the Futaki invariant can be
regarded as the Lie algebra homomorphism

F : Lie GP → H1,1
A (X)

s 7→ [〈s, Fh〉]
for any choice of reduction h ∈ Ω0(P/K). Using Lemma 5.2, it is not difficult
to see that (B.5) induces a well-defined map

∂ : ker ∂̄/Im F → H1(Ω2,0
cl )/Im dσP , (B.7)

where ker ∂̄ ⊂ H1,1
A (X) is defined by (B.4).

Lemma B.2. Let L ∈ L0 with induced principal bundle P . Then, the tangent
to the fibre of (B.6) over [L] ∈ L0/Aut(E) is isomorphic to the kernel of
(B.7).
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Proof. We build on the proof of Lemma B.1, following the same notation. We
fix a lifting L0 ∈ L0 and an isotropic splitting λ0 : TX → E. If (γ, 0), (γ′, 0) ∈
L0 represent elements over [L0] ∈ L0/Aut(E) there exists (g, τ) ∈ Aut(E) (see
Lemma 4.3) such that g ∈ GP ∩KerGP and

γ′ = γ − τ 1,1+0,2.

Therefore, if (γ̇, 0), (γ̇′, 0) are tangent to the fibre over [L0] we have (see Defi-
nition 4.6)

γ̇′1,1 − γ̇1,1 − 2〈s, Fh〉 ∈ Im ∂ ⊕ ∂̄

for s ∈ Lie GP . Thus, the map

[(γ̇, 0)] 7→ [γ̇1,1] ∈ ker ∂̃ ⊂ ker ∂̄/Im F
is well-defined an injective. Surjectivity follows from Lemma 2.15. �

As a straightforward consequence of Lemma B.1 and Lemma B.2, we obtain
the following cohomological interpretation of the tangent space to the fibres of
the map between moduli spaces

L0/AutA(E) → C0/GP (B.8)

induced by (8.24). Relying on Theorem 8.19, this provides the desired expla-
nation for the ‘complexified Aeppli classes’ appearing in formula (8.20) for the
fibre-wise moduli metric.

Proposition B.3. The tangent space to the fibre of (B.8) over [P ] is isomor-
phic to ker ∂̄/Im F ⊂ H1,1

A (X)/Im F , where ∂̄ is as in (B.4).
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