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In this paper we propose a robust control for the counter-current heat exchanger. By using energy balance equations, we propose a model in structured bilinear system that allows to capture the heat transfer and convection phenomena. We study the problem of regulating the output temperature of the cold (or hot) fluid by controlling the flow rate of the hot (or cold) fluid. Using an integral action and a forwarding based control method, we derive a non linear control which achieves output temperature regulation. Numerical simulations confirm the effectiveness of the proposed control.

INTRODUCTION

The heat exchanger (HEX) is a central module in processes where thermal energy is needed and transferred between two (or more) fluid streams. For example, they are intensively used in chemical industries [START_REF] Gu | Retrofitting of the heat exchanger network with steam generation in a crude oil distillation unit[END_REF], urban heating and chilling networks [START_REF] Sakawa | Operational planning of district heating and cooling plants through genetic algorithms for mixed 0-1 linear programming[END_REF] and in the thermodynamic machinesWu et al. (2016).

A model for a HEX can be obtained in form of a distributed parameter system by writing energy balance equations, that is a partial differential equations (PDE) where the state variables are space and time dependent. Several authors addressed the control of a HEX based on a PDE model. See, among them, [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF][START_REF] Ozorio Cassol | Heat exchanger system boundary regulation[END_REF]; [START_REF] Huhtala | Robust output regulation of counter-flow heat exchangers[END_REF]. For control purposes, finite dimensional models are also often used in the literature, see, for instance, [START_REF] Varga | Controllability and observability of heat exchanger networks in the time-varying parameter case[END_REF]; [START_REF] Scholten | Modeling and control of heat networks with storage: The singleproducer multiple-consumer case[END_REF]; [START_REF] Chandrashekar | Thermodynamic systems analysis -i. a graph-theoretic approach[END_REF]. These models mainly fall into two classes. The first is based on thermodynamic phenomenological (possibly non linear) equations, while the second is based on a linear input output dynamic representation. The control problem of a HEX has been therefore addressed by using different techniques, that depend, in general, on the choice of the model. Among them, we recall the following: linearizing feedback, see [START_REF] Alsop | Nonlinear heat exchanger control through the use of partially linearized control variables[END_REF]; non linear output-based dynamical controller for a simplified one bicompartmental cell model, see [START_REF] Zavala-Río | Bounded positive control for double-pipe heat exchangers[END_REF]; model predictive control techniques for a non linear model, see [START_REF] Sridhar | Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger[END_REF]. Furthermore, PID controllers are often used for the regulation of the output temperature of HEX [START_REF] Diaz-Mendez | Reducing the energy consumption of an earth-air heat exchanger with a PID control system[END_REF].

In this paper, we propose a new approach for the control of counter-current HEX based on a finite dimensional model. The HEX is represented by a cascade of singlephase homogeneous compartments. The dynamical model is obtained by writing the energy balance equation on each compartment in which we considered heat convection, heat transfer phenomena between cold and hot fluids and uniform mass flow rates of the cold and hot streams. If the mass flow rate is considered as the manipulated variable for control, the HEX model turns out to be a bilinear system. Then, we analyze the bilinear dynamical model issued from energy balance equations and we show that it inherits some properties that will be used for control purpose. The control law is obtained by following the forwarding approach as proposed in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod L/sub g/V[END_REF]; [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF]. First, the HEX is extended by an integrator processing the desired output error. Then a stabilizing law for the extended system is derived by using a forwarding approach. The resulting bounded control law allows to stabilize asymptotically the system on an operating equilibrium while achieving the output regulation objective, such that is the output temperature is regulated to a desired constant set-point. The derived control inherits a robustness property with respect to parameters variations as shown in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod L/sub g/V[END_REF], [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF].

Furthermore, the proposed saturated control law is given in terms of flow rate and the domain of attraction of the equilibrium is global with respect to the domain of validity of the model. In this way, the physics of the HEX model is preserved.

The paper is organized as follows. In Section 2, the bilinear model of the counter-current HEX is presented. In section 3 we recall the forwarding-based control approach in the context of output regulation on a general class of input affine non linear systems and its application to a class of bilinear systems. Then, in section 4, we give the main results of the application of this control method on the HEX model. We present some numerical simulations in Section 5 and we derive conclusion and perspectives in Section 6.

MODELLING OF THE COUNTER-CURRENT HEAT EXCHANGER

We consider a counter-current HEX where single phase hot and cold stream exchange heat. We assume that the pressure P is constant and uniform along the HEX. Moreover we assume that there is no energy accumulation in the wall between the two fluids and there is no heat transfer through the external wall with the environment. We also assume that the convection velocity is uniform along the HEX. This convection velocity is considered as an input for the system, which achieves a spatially uniform steady-state in a neglected time scale compared to the heat transfer dynamics. Thus the dynamical model is derived mainly using an energy balance equation. Naturally, the HEX may be modelled by a distributed parameter system by writing where the state variables are space and time dependent.

In this paper we consider a discrete space representation for the HEX. In doing so, the hot and cold side of the HEX are represented by a cascade of homogeneous and uniform compartments. Without loss of generality, and for simplicity of the presentation, we propose a spatial subdivision into 3 homogeneous compartments, see Figure 1. This space resolution may be arbitrarily chosen, while keeping valid the results of this paper. The heat transfer coefficients is denoted as λ (J/K/s) and considered constant. For the hot and the cold fluid, the mass density ρ (Kg/m 3 ) and heat capacity c p (J/Kg.K) are assumed to be constant. The volume V (m 3 ) of the fluid in all the compartments is constant.

To derive the dynamical model, we write the energy balance equation for each compartment by taking into account an accumulation term, exchanged thermal energy through convection and heat transfer terms. Therefore, each compartment energy balance equation may be rewritten as a temperature differential equation, see [START_REF] Zitte | Representation of heat exchanger networks using graph formalism[END_REF] for more details. The dynamical model is given by

                                     Ṫ1 = λ ρV c p (T 1 -T 1 ) + q ρV T in - q ρV T 1 Ṫ2 = λ ρV c p (T 2 -T 2 ) + q ρV T 1 - q ρV T 2 Ṫ3 = λ ρV c p (T 3 -T 3 ) + q ρV T 2 - q ρV T 3 Ṫ 1 = -λ ρV c p (T 1 -T 1 ) + q ρV T 2 - q ρV T 1 Ṫ 2 = -λ ρV c p (T 2 -T 2 ) + q ρV T 3 - q ρV T 2 Ṫ 3 = -λ ρV c p (T 3 -T 3 ) + q ρV T in - q ρV T 3 (1)
where T i , T i ∈ R represent the temperature of the compartment i of the hot (cold) fluid and of the cold (hot) fluid, respectively, T in , T in ∈ R represent the inlet temperatures of the hot (or cold) and cold (or hot) fluid respectively, and q, q ∈ R (Kg/s) are the mass flow rate of the hot (or cold) fluid and of the cold (or hot) fluid respectively. By using the compact notation

x = (T 1 , T 2 , T 3 , T 1 , T 2 , T 3 ) ∈ R 6 , x in = T in , xin = T in , we can thus compactly write the dynamical model (1) in the form ẋ = Ax + (b 1 x in + Bx)q + ( b1 xin + Bx)q
(2) where

A = k        -1 0 0 1 0 0 0 -1 0 0 1 0 0 0 -1 0 0 1 1 0 0 -1 0 0 0 1 0 0 -1 0 0 0 1 0 0 -1        , b 1 = 1 ρV        1 0 0 0 0 0        , B = 1 ρV        -1 0 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        , b1 = 1 ρV        0 0 0 0 0 1        , B = 1 ρV        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 -1       
,

where k = λ ρV cp . System (2) represents a multi-variable bilinear system with four degrees of freedom which are mass flow rates q, q and inlet temperatures x in , xin of the two fluids. To complete the system (2), we consider the outlet temperatures of the two fluids as a measured outputs y, η ∈ R defined as y = T 1 , η = T 3 , that is

y η = C D x, C = 0 0 0 1 0 0 , D = 0 0 1 0 0 0 .
In the following section we recall the forwarding based approach for output regulation problem on a class of input affine non linear systems and applied on a class of bilinear systems. Then its application on the HEX will be given in section 4.

ROBUST CONTROL OF BILINEAR SYSTEMS VIA FORWARDING

Consider a non linear system of the form ẋ

= f (x) + g(x)u ż = h(x) (3) 
where (x, z) ∈ R n × R is the state and u ∈ R is the control input. A methodology that can be used to design a state-feedback control law ensuring asymptotic stability of the origin of (3) is the forwarding approach developed in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod L/sub g/V[END_REF], [START_REF] Poulain | Robust asymptotic stabilization of nonlinear systems by state feedback[END_REF]. For this, the following assumptions are needed. Assumption 1. The origin of ẋ = f (x) is globally asymptotically stable, that is, there exists a known positive definite Lyapunov function

V : R n → R ≥0 satisfying V = ∂V ∂x f (x) < 0 for all x ∈ R n \ {0}.
Assumption 2. There exists a C 1 function M : R n → R such that M(0) = 0 and satisfying the following properties

∂M ∂x f (x) = h(x), ∂M ∂x g(0) = 0. (4)
Then, under previous assumptions, we have the following result, [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod L/sub g/V[END_REF], [START_REF] Poulain | Robust asymptotic stabilization of nonlinear systems by state feedback[END_REF]. Proposition 1. Under Assumptions 1, 2, the origin of system (3) in closed loop with

u(x, z) = - ∂V ∂x g(x) -(z -M(x)) ∂M ∂x g(x) (5) 
is globally asymptotically stable.

Proof: A complete proof can be found in [START_REF] Praly | Stabilization of nonlinear systems via forwarding mod L/sub g/V[END_REF] and references therein. We recall here only the main arguments. Using the following Lyapunov function

W (x, z) = V (x) + 1 2 (z -M(x)) 2 with (4), we obtain: Ẇ (x, z) = ∂V ∂x f (x) -u(x, z) 2 . Thus Ẇ (x, z) < 0 for (x, z) = (0, 0) and Ẇ (x, z) = 0 only if (x, z) = (0, 0) since L g M(0) = 0. 2 
Now, let us specialize this result to bilinear systems:

ẋ = F o x + (B o x + b o )u ż = C o x (6) with (x, z) ∈ R n × R and u ∈ R. Proposition 2. Suppose F o is Hurwitz and C o F -1 o b o = 0.
Then, the origin of system (6) in closed loop with 

u = -(2x P -(z -M x) )M )(B o x + b o ) ( 7 
C o F -1 o b o = 0, also Assumption 2 is verified with M(x) = M x.
Then, the result follows by Proposition 1 by noting that the control law (5) coincides with (7) since

L g V = 2x P (B o x + b o ) and L g M = M (B o x + b o ). 2 Note that the condition C o F -1 o b o = 0 corresponds to the fact that the transfer function H(s) = C o (sI -F o ) -1 b o
has no zeros at the origin, see [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF]. Equivalently, this condition is verified if the following matrix

F o b o C o 0 is full rank.

MAIN RESULTS

Control objective for heat exchanger

We consider as a manipulated control input the mass flow rate u(t) = q(t) (even hot or cold fluid), and we suppose that the three remaining degrees of freedom q, x in and xin are fixed at a nominal constant value (fixed operative conditions). The control objective is to regulate the output temperature y = T 1 at a desired feasible temperature reference T 1 , denoted in the following as r.

Towards potential unknown and bounded perturbations of the three fixed operative conditions q, x in and xin , we aim to derive a control law which ensures robust regulation.

We assume that the the fluid flow rate u(t) is bounded and satisfies

u ∈ D u := [u m , u M ] = {u ∈ R + : u m ≤ u ≤ u M }, (10 
) where u m and u M are the minimal and the maximal flow rate. In the rest of the paper, given a compact set A, we define int(A) as its interior, namely the set of all interior points of A. According to this notation, we obtain, for instance, int

(D u ) = (u m , u M ) = {u ∈ R + : u m < u < u M }.
Then system (2) can be formulated as follows:

ẋ = F x + (Bx + b)u + G y = Cx (11) with F = A + qB, b = b 1 x in and G = b1 xin q.

Analysis of the heat exchanger model

In this subsection we analyze three important properties of the HEX model ( 11) for fixed operative conditions. First, we show that for bounded inputs u and G, that is, input temperatures T in , T in and flow rates q, q in model ( 1), the trajectories of ( 11) evolve in an invariant compact set on which x i > 0 for all i = 1, . . . , 6, see Lemma 1 below. Then, we analyze the properties of system (11) at a given equilibrium, showing the stability of a state matrix, see Lemma 2. Finally, we characterize the admissible output regulation set-points for system (12), see Lemma 3.

In the following, we consider, without loss of generality, the case in which T in and T in are the hot inlet temperature and the cold inlet one respectively. We have the result:

Lemma 1. For any u ∈ D u and fixed operative conditions, T in and T in (equivalently x in and xin ,respectively) the compact domain

D x = {x ∈ R 6 : T in ≤ x i ≤ T in } is invariant with respect to (11).
Proof: The sign of the dynamics on the boundary of the domain is analysed and we can show that the dynamics direction remains on the boundary or is such that it enters in the domain.

2

Now let x * be the steady-state of system (11) at a given (constant) input u * , defined by 0

= F x * + (Bx * + b)u * + G y * = Cx * (12)
with y * being the corresponding output. We have the following result concerning the stability of the matrix F + Bu * in the domain of interest.

Lemma 2. For all u * ∈ D u , with D u defined in (10), the matrix F = F + Bu * defined as

F = A + B q + B u * =        -k -u * 0 0 k 0 0 u * -k -u * 0 0 k 0 0 u * -k -u * 0 0 k k 0 0 -k -q q 0 0 k 0 0 -k -q q 0 0 k 0 0 -k - q      
is Hurwitz, namely its eigenvalues have strictly negative real part.

Proof: Thanks to Gershgorin Theorem, see [START_REF] Gershgorin | Über die Abgrenzung der Eigenwerte einer Matrix[END_REF], we know that eigenvalue of the matrix F are in the union of the following circles:

Φ i = {z ∈ C : |z -Fii | ≤ 6 j=1 j =i | Fij |}, i = 1, 2, ..., 6.
The previous expression gives 6 circles with two different centers: c 1 = -k -u * and c 2 = -k -q with radius r 1 = k + u * and r 2 = k + q, respectively. This circles are on the left hand side of the complex plane including the origin. Hence all the eigenvalues of F have non-positive real part. Furthermore, since the only point of the imaginary axes included in the circle is the origin, F cannot have any imaginary eigenvalues with zero real part. Finally, it is possible to show that the origin cannot be an eigenvalue of F since the only vector

v satisfying F v = 0 is v = 0.
We conclude that all the eigenvalues of F have strictly negative real parts. 2

Finally, we analyze the domain of admissible constant reference outputs for model (12).

Lemma 3. For any fixed operative condition q, x in and xin (equivalently, for any given fixed F and G), there exist y M > y m > 0 such that for any r ∈ (y m , y M ) there exists (x * , u * ), with u ∈ int(D u ), such that y * = r, with y * given by (12).

Proof: In view of Lemma 2, the matrix F = F + Bu * is invertible for any u * ∈ D u . Hence, for any u * , there exists a unique equilibrium point satisfying x * (12). It is computed as

x * = -(F + Bu * ) -1 (bu * + G). Hence, define the function φ : R → R as φ(u * ) = -C(F + Bu * ) -1 (bu * + G).
It is continuous on the compact set D u and it has a maximum and a minimum defined as

y m = inf u * ∈Du φ(u * ), y M = sup u * ∈Du φ(u * ). Hence φ is surjective on [y m , y M ]
and the proof is completed. 2

Robust temperature regulation

For the output temperature reference r, we define the output error variable as follows: e = Cx -r .

(13) Based on this error variable we define an extended system with output error integral dynamics as follows ẋ

= F x + (Bx + b)u + G ż = Cx -r . (14) 
In order to design a stabilizing control law for system (14) achieving the temperature regulation objective y * = r, we follow the forwarding design procedure highlighted in Section 3. For this, let P be a symmetric positive definite matrix solution of F P + P F = (F + Bu * )

P + P (F + Bu * ) = -Q, (15) 
for some symmetric positive definite matrix Q and for some operative point u * to be fixed. Then, let M be a matrix solution of

M F = M (F + Bu * ) = C, (16) 
again, for some operative point u * to be fixed. Note that in light of invertibility of F , M can be computed as M = C F -1 . Finally, let us define the following saturation function sat Du : R → R as

sat Du (u) = u m if 0 < u ≤ u m , u if u m < u ≤ u M , u M if u M ≤ u. (17) 
The following theorem presents the main result of this paper.

Theorem 1. Let F, G be fixed, and select any desired temperature reference r ∈ (y m , y M ), with y m , y M given by Lemma 3. Let (x * , u * ) be a solution to (12) with y * = r, and let P , M computed according to (15) and ( 16), respectively. Then, for any initial condition (x(0), z(0)) ∈ int(D x ) × {0}, with D x given by Lemma 1, the corresponding trajectory of system (14) in closed loop with 

u = sat Du u * -2(x -x * ) P -(z -M (x -x * )) M (Bx + b) (18) satisfies x(t) ∈ D x for all t ≥ 0
W (x, z) = x P x + 1 2 (z -M x) 2 .
(20) The derivative of W along the closed loop system is given by Ẇ

= -x Qx + 2x P (B x + b)(u -u * ) + (z -M x) (C x -M F x -M (B x + b)(u -u * )) = -x Qx + U (x, z, u) (21 
) where we defined U (x, z, u) = α(x, z) sat Du (u * -α(x, z)) -u * . Next, we show that U (x, z, u) < 0 for all x, z, u. For this we consider the following three cases, in which we recall that u m < u * < u M . 

= (x in -x * 1 ) (x * 1 -x * 2 ) (x * 2 -x * 1
) 0 0 0 , C = 0 0 0 1 0 0 . Therefore, it can be verified that for all x * ∈ int(D x ) (excluding by fact the case where

x in = x * 1 = x * 2 = x * 3 ) the following matrix F b C 0
is full rank and equivalently M b = 0. We conclude that the largest invariant set contained in I is the origin (x, z) = (0, 0). This shows that the origin is globally asymptotically stable. Now, recall that the control law u is saturated in D u . Therefore, in light of Lemma 1, the set D x is invariant for solution of the closed-loop system ( 14), (18). Hence, any solution starting in int(D x ) remains in D x for all forward times and converges asymptotically to the equilibrium (x, z) = 0. Finally, on this equilibrium, ż = 0 and therefore r = Cx * , which concludes the proof. 2

It is important to note that that even if x , u are explicitly used in the control law ( 18), all the results are robust to small variations of F, b and G (due to variations of the operative conditions) thanks to the robustness properties of the forwarding control method shown in Poulain and Praly (2010), Astolfi and Praly (2017),

SIMULATIONS

The following simulations are done on Matlab software. Numerical values are listed in Table 1. We choose the hot stream flow rate as the control input variable u and the output temperature of the cold stream T 1 as the controlled output. Initial state vector corresponds to the steady state for u = 0.17u M .

λ = 10J/K/s ρ = 997Kg/m 3 V = 0.002m 3 cp = 4185J/Kg/K (for water) q = 0.02Kg/s u M = 0.05Kg/s T in = x in = 360K T in = xin = 300K
Table 1. Values of the parameters of the HEX

Output regulation simulation results

Figure 2 presents the output temperature T 1 of the HEX (blue) and the regulation temperature reference (green).

Figure 3 shows the corresponding closed loop control input expressed as a fraction of the maximal flow rate u M . The fixed closed loop simulation scenarios start at t = 0 with temperature target fixed to T 1 = 315.5K. This reference is switched to T 1 = 316K at t = 10000s, and finally to T 1 = 315K at t = 20000s. We can observe the effectiveness of the the designed control law (18) and the effective asymptotic regulation of the output temperature.

Robustness: simulation results

Hereafter, we propose one simulation scenario to emphasize some robustness properties of the designed control law towards disturbed inlet temperature T in . The results of the closed loop dynamics for a perturbation on the temperature T in introduced at t = 10000s are depicted in Figures 4 and5, showing the rejection of this constant perturbation by the controller. 

CONCLUSION AND PERSPECTIVES

We proposed a robust temperature output regulation control based on a bilinear dynamical model of the countercurrent HEX. This control law is derived using forwarding approach through error integral extended system. Simulation results confirm the effectiveness and the robustness of the proposed control.

Moreover, since the proposed control law depends on all the state variables of the system, it will be interesting to design a state observer using only the boundary output measurements, so that to obtain an output feedback control law, in the same spirit of [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF].

It will be also interesting, from a practical point of view, to consider a HEX model with possible different phase changes along the exchanger (evaporators or condensers).

Finally the proposed control design approach can also be studied using an infinite dimensional dynamical model of the HEX.
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