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For a self-gravitating particle of mass u in orbit around a Kerr black hole of mass M > pu, we compute the
O(u/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of
the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the
dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover
the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the
innermost stable circular equatorial orbit frequency shift as a function of the black hole’s spin amplitude, and
compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our
results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

DOI: 10.1103/PhysRevLett.113.161101

Introduction.—A salient feature of orbital dynamics
around Kerr black holes in general relativity is the existence
of an innermost stable circular orbit (ISCO) for test
particles. The ISCO radius depends on the magnitude of
the spin of the black hole and on the orientation of the
orbital plane with respect to the spin direction. Circular
(timelike) geodesic orbits below the ISCO are unstable
under perturbations away from circularity. The ISCO marks
the onset of final merger in inspiraling compact-object
binaries targeted by gravitational-wave detectors like
KAGRA [1], LIGO [2], and Virgo [3], as well as the
future missions eLISA [4] and DECIGO [5].

The familiar notion of ISCO as a well-defined, precisely
localizable marginal orbit is lost when the orbiting body is
self-gravitating. For an object of small but nonzero mass
u << M, where M is the black hole’s mass, the ISCO is
replaced with a more vaguely defined transition regime,
where the slow adiabatic inspiral, driven by radiation
reaction, gradually transits into a direct plunge [6,7].

Nonetheless, a useful notion of ISCO can be retained even
beyond the test-particle limit, if one focuses on the
conservative dynamics of the binary system, ignoring
dissipative effects. The value of the ISCO frequency for a
nondissipating binary (of any mass ratio) is a useful
diagnostic of the strong-field dynamics, and it has been
playing an important role in the development of a general-
relativistic two-body theory [8—16]. In the case 1:=u/M <1
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the problem lends itself to perturbative methods. The orbiting
object can be said to experience a gravitational self-force
(GSF) [17], whose conservative piece causes an O(n) “shift”
in the location and frequency of the ISCO, relative to the test-
particle case. This ISCO frequency shift is a valuable gauge-
invariant characteristic of the strong-field dynamics beyond
the geodesic approximation.

Recent years have seen rapid progress in the development
of rigorous methods for GSF calculations in black-hole
spacetimes [18]. A milestone came in 2009 with the
computation of the O(y) ISCO frequency shift for a
Schwarzschild black hole [19]. Many applications followed.
For instance, the computed shift was used as a benchmark in
an exhaustive survey of post-Newtonian (PN) methods and
their performance in the strong-field regime [20]. It enabled
the calibration of unknown parameters in the effective one-
body (EOB) model [13]. It also informed calculations of the
remnant mass in astrophysical black-hole mergers [21,22],
and provided crucial input for a recent model of intermedi-
ate-mass-ratio inspirals [23]. These examples illustrate the
usefulness of the ISCO frequency as a unique benchmark in
general-relativistic dynamics.

The value of the Schwarzschild ISCO frequency shift
was computed in [19] based on a direct analysis of the
restoring GSF effect on slightly eccentric orbits. This result
was reproduced in later work [15,24], with greater numerical
accuracy, using the first law of binary black-hole mechanics

© 2014 American Physical Society
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[25]. However, the important generalization to the Kerr case
has not been tackled so far (except in a scalar-field toy model
[26]), primarily because GSF methods for Kerr spacetime
are only now reaching maturity [27-29].

In this Letter, we compute the O(n) shiftin the frequency of
the ISCO in the equatorial plane of a Kerr black hole, as a
function of the spin magnitude. Modeling spin effects in
binary black-hole inspirals is a key priority in gravitational-
wave physics, as black holes in nature are expected to carry
significant spin [30,31]. Our calculation sets an accurate
strong-field benchmark for spin effects, and we expect it to
provide a crucial input to this activity, in much the same way
that the Schwarzschild result has impacted development in
the field so far.

Below we briefly describe our method and results; we
relegate full details to a forthcoming paper [32]. Throughout
we set G = ¢ = 1, we use a metric signature +2, and we use
(t, r, 0, ¢) to denote standard Boyer-Lindquist coordinates.

ISCO in the test-mass approximation.—To set the stage,
we first review the formulation of ISCO for test particles,
using the language of Hamiltonian mechanics. Consider a
particle of mass y and four-momentum p,, moving in the
equatorial plane (0 = z/2) of a Kerr black hole with mass
M > y, spin S =: aM =: gM?, and metric 9(0)ap- Our con-
vention is that ¢ > 0 (¢ < 0) represents prograde (retro-
grade) orbits. Ignoring self-interaction, a Hamiltonian that
generates geodesic motion is given by [33]

1,
H (x, pﬂ) = 596 (x”)PaP/h (1)

considered as a function on the 8D phase space spanned by the
canonical variables (x, p,). Hamilton’s equations constrain
the motion to a timelike geodesic of g(g),s With tangent four-

velocity u’(‘o) = gf(’(’;) P/ u, normalized as g(g)qsufy, ”{o) = -1
The particle’s energy p, = —u& (o) and angular momentum

Py =% UL are constants of the motion.

Circular orbits satisfy p, =0 and p, =0, where an
overdot denotes a proper time derivative. The ISCO is
identified by the vanishing of the restoring radial force p, =
—0OH (5)/Or under an arbitrary perturbation onto a slightly
eccentric equatorial orbit. Since the variations of &g and
ﬁ(()) are quadratic in the small eccentricity [19,32], and
since (by definition) radial perturbations become stationary
on the ISCO, it is sufficient to consider stationary
perturbations with fixed £ and L g onto a nearby, non-
geodesic circular equatorial orbit. This leads to the simple
condition

9?H )

or’
Together with p, = 0 and p, = 0, we have three equations
for {r, &) E(O)} at the ISCO location. One finds, in

particular, ") /M =3+ Z,F[(3-Z,)(3+Z, +22,)]'/,

with Z; =1+ (1- q2)1/3[(1 + q)1/3 + (1= q)l/ﬂ and
Z, = (3¢> + Z3)"/?, where the upper (lower) sign

~0. (2)

isco

corresponds to prograde (retrograde) motion [34]. The
associated orbital frequency with respect to time ¢ reads

MO, = [(r) /M3 + ¢ (3)

1SCO

ISCO in the perturbed spacetime.—We now turn to
examine O(n) backreaction effects. It is well established
[35-38] that through O(#) the particle follows a geodesic
of a certain locally defined smooth effective geometry
Yap = g(o)a/;—l—hffﬁ, where the second term (x7) is a
particular solution to the linearized vacuum Einstein
equation, obtained by subtracting a certain “singular field”

hgﬁ from the physical, retarded metric perturbation hffﬁ‘

associated with the orbiting particle. Reference [39] devel-
ops a Hamiltonian formulation of the geodesic motion in
Jap based on the effective Hamiltonian

Hx*, psy] = Ho) (3", p) + Hi[ ¥, puiv],  (4)

where the first term is given by Eq. (1) and the interaction
term reads [raising indices with the inverse background

metric g%’}]

1o
Hint[xﬂa P,,;}’] = _Zh;x?/,sym[xﬂ;y]papﬁ- (5)

Here, y is the (a priori unconstrained) trajectory that sources
the metric perturbation and hsl’fym = 5 (Rl + BaY) — Iy is
the “regularized” time-symmetric part of the perturbation,
responsible for the conservative piece of the GSF. We

assume that a gauge is chosen such that hff/'fym manifestly

ret/adv

respects the helical symmetry, and /,; ™ vanish at infinity.

This ensures that we can readily identify an “asymptotic
time” coordinate ¢, for which the invariant orbital frequency
(see below) can be defined unambiguously. Hamilton’s
canonical equations for the effective Hamiltonian (4) read

dx* OH
uo— _

dp, OH
ut = —=—, — =
dr  Jp, , dt

“ow  ©

where the proper time 7 is measured along y in g,z. We find
W = ¢ p,/p, with the normalization g,zu®u’ = —1.

For circular orbits (p, = 0 and dp,/dzr = 0), it follows
from Eq. (6) and the symmetry of H;, under Mino’s
transformation [39-41] that &£:=—u, and L:=u, are
constant along y. Restricting to circular orbits, we write
H = H[{";y(¢))], where we make a distinction between the
phase-space coordinates ¢! := {r, £, L} and the parameters
¢={r,,&, L,} labeling the source trajectory. Now, in
analogy with Eq. (2), the ISCO is identified by requiring
the stationarity of the restoring force with respect to radial
perturbations with fixed &£, £ and also fixed &,, £,. Here,
however, the restoring force, —OH/Jr, depends separately
on both r and r,, which are treated as two independent
degrees of freedom at the Hamiltonian level. We must
therefore make sure to vary simultaneously the radial
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positions of both the orbit and the source before identifying
one with the other. Hence, the stationarity condition reads

( 9,0 ) OHIL':1(2))
or  Or, or

Reference [42] obtained a similar ISCO condition in the PN
context.

ISCO shift in terms of redshift variable.—Following
[43], and restricting to circular orbits, let us introduce the
“redshift” function z = 1/u’. From g,su®u’ = —1 follows

—0. (7)

isco

7=E-QL, (8)

where Q = u?/u’ = d¢/dt is the circular-orbit frequency.
Let us formally expand z(Q) = z()(L) + nz(1)(R2)+
O(n*), where z()(Q) is the functional relationship for a
Kerr geodesic, and 7z(;)(€) is the leading GSF correction
for a fixed Q. We similarly expand £ and L. Varying
gaﬂu"uﬁ = —1 with respect to # at fixed Q then gives
Eny — QL) = z(0)Hin/n, whereupon Eq. (8) becomes
z = 7(0)(1 + Hin/p). We thus obtain a simple link between
H;,(Q) and the O(n) piece of z(Q), namely,

H;, z
=g )

H 2(0)

Using Eq. (9), one can show that Eq. (7) reduces to the
remarkably simple condition

Z//(Qisco) =0, (10)

where a prime denotes d/dQ, and we introduced the
modified redshift function Z(Q) := z()(Q) +37z(1)(Q)+
O(n*) = z(Q)[1 - Hin(€)/(2 )HO( ?). We now sketch
the derivation of this result, which is central to our analysis;
details will be given in [32]. The basic idea is to apply
(d/dQ) = r'(0/0r) + E(/0E) + L'(0/OL) to the iden-
tity H = —4p. From dH/dQ = 0, we obtain £ — QL' =

zH!, /(2u) because dp,/dtr = —0H/0r = 0 along circular
orbits. We also have (d/dQ)0H/0r =0, which implies
(u')E — (u?)'L' = O(n*) at the ISCO with the aid of
Eq. (7) These two relations are combined to give
Ep(Q ISC0) Ly ( 0, and are rewritten as 7 =

—E +5(z/wH}, and (2 + L) + 2L = O(p*). From
here, s1mple algebra gives 7"(Qiio) = O(n?). This estab-
lishes the equivalence of Egs. (7) and (10).

Following Refs. [13,15,20,24], we parametrize the ISCO
frequency shift due to the conservative GSF in the form

isco )

(M + ) Qiseo = MO, (9){1 +nCalq) + O(A)}. (1)

Substituting in Eq. (10), expanding through O(r), and
using the ISCO condition zf;, (Q( ) ) =0 for the back-

(0) isco

ground Kerr geodesic, where Z(o) = (1-aQ)[l + aQ—-
3(MQ)*3(1 — aQ)'/3], we find

(0)
1 ZU (QIQC )
Co=1-3 ()“)/// U (12)
cho 0 )(Qisco)

This is our main formal result. It has a convenient form, as
it involves only the redshift function along equatorial
circular orbits.

First law of binary mechanics.—Before proceeding to
numerical implementation, we show that Eq. (12) is
recoverable using the notion of minimum-energy circular
orbit (MECO), within the framework of the first law of
binary black-hole mechanics [25,44-46]. Starting from the
perturbed Hamiltonian in Eq. (4), one can derive a first-law-
type relationship that extends to O(n) the test-mass results
of [46]. This variational relation holds for generic bound
orbits. For circular orbits, it reduces to (discarding changes
in the black-hole mass and spin) [39]

SE = Q8L + 7oy, (13)

where we defined the binding energy E HE — 3 Hin€ (o)
and the angular momentum L := ul — th Notice
that the combination M = E — QL, Wthh can heuristi—
cally be viewed as the binding energy in a corotating frame,
coincides with the modified redshift function: M = uz.
The first law, Eq. (13), implies the partial differential
equations OE/0Q=QJL/0Q and JE/Ju=Q0OL/0u+ z,
which can be combined to give E = M — QOM/0Q,
L=-0M/0Q, and z=0M/0u. We expand E =
HE(0)(Q) +nE(1)(Q) + O(n*)], and similarly for L and
M. Varying these equations with respect to 7 at fixed Q
then gives E() = M —Q/\/l’(l), Ly = —/\/l/(l), and

z(1) = 2My). Eliminating M4, we obtain
1
Eqy =5 () = Qzfyy). (14)

On the other hand, by definition the MECO minimizes
the binding energy E(Q). Thus, its frequency Q. is a
solution of

E'(Qneco) = 0. (15)

For Hamiltonian systems such as ours, Q..o = Qo
(cf. Ref. [42]). Hence, using Eqs. (11) and (14) together
with the test-particle relation E’(O)(Qg?e)co) =0, Eq. (15)
yields
(0)
12 (Qiseo)
Co=1+ 26,)7“;’. (16)
E( )(leco)
1"

Equation (12) is then easily recovered by using E( 0 =
-0 atQ = QY

(0) isco?

and hence E(g) = z() — Qz (0)°
ZE/O)(Q( ) ) = 0. Indeed, since M = uz, Eq. (10) is equiv-

1SCO
alent to the MECO condition (15).
Numerical implementation and results.—The evaluation

of Cq(q) via Eq. (12) requires as input numerical data for

obtained by noting that M gy = uz (g
from which also follows

161101-3
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FIG. 1 (color online). Upper panel: Relative ISCO frequency
shift Cq, [see Eq. (11)] as a function of the dimensionless black-
hole spin, ¢ = §/M?. The red line interpolates the accurate
numerical results from our method (i), while blue data points and
error bars are from our method (ii). Lower panel: Relative
difference 6Cq/Cq =1 — CEN/ FoB /Cq between our “exact”
GSF results and earlier predicted values for Cq(g) from PN
approximations [14,16] and the EOB model of Ref. [54], the
latter having been calibrated so as to reproduce the correct value
for Cq(0). The solid (dashed) lines indicate 6Cq >0 (6Cq < 0).

(0)
Z/(/1) (Qisco

z(1y from the field hff/’fym for given ¢g and Q. The perturba-

). Reference [28] prescribes the construction of

tion hsl’;y m

regularization procedure to the (numerically computed)
retarded metric perturbation sourced by a particle on a
circular equatorial geodesic orbit of angular frequency €.
One then obtains a numerical representation of the function

z(1y(Q), from which z’(])(Qi(?C)O
repeated for a sample of g values.

To obtain Cq(g), we used two independent numerical
codes that are based on different numerical and regulari-
zation methods. In method (i), due to Shah ef al. [28], the
metric perturbation is reconstructed in a radiation gauge
from frequency-domain numerical solutions to the
Teukolsky equation [47], followed by an application of
(a variant of) the standard mode-sum regularization tech-
nique [48]. Method (ii), developed in Refs. [27,29,49,50],

itself is obtained by applying a suitable

) is extracted. This is

TABLE L. Relative ISCO frequency shift Cq, [see Eq. (11)] for a
sample of values of the spin parameter ¢ = S/M?>. Negative g
values denote retrograde orbits. The data were produced using the
numerical method of Ref. [28]. Parenthetical figures are esti-
mated numerical error bars on the last displayed decimals; e.g.,
1.245 568(2) stands for 1.245568 £ 0.000 002.

q Ca q Cq

0.1 1.245568(2) -0.1 1.257 379(3)
0.2 1.241 595(4) ~0.2 1.264 284(4)
0.3 1.239927(4) -0.3 1.271 478(7)
0.4 1.241 83(1) -04 1.278 787(6)
0.5 1.249 234(6) -0.5 1.286 093(9)
0.6 1.265 030(8) -0.6 1.293 314(9)
0.7 1.293 19(1) ~0.7 1.300 397(7)
0.8 1336 83(2) ~0.8 1.307 305(8)
0.9 1.38157(3) -0.9 1.314016(9)

uses a direct time-domain implementation of the linearized
Einstein equation in Lorenz gauge (apart from a simple
gauge transformation to assure asymptotic flatness
[13,51]), and applies m-mode regularization [52].

For each g, we computed z(;) at orbital radii r0 =

ri(ggo + Ar with Ar/(0.05M) = —n,...,n where n =10
and n =4 in cases (i) and (i) [53]. We found the first
and second derivatives of z(;) with respect to rOatAr=0
by fitting each data set with a polynomial in Ar/M. This
gave zz’l) and thus Cq via Eq. (12).

Method (i) delivers highly accurate results, and method
(ii) provides important checks. We found consistency
between the data sets for Z(1)s and the derived values of
Cq, roughly to within the error bars of method (ii). We note
for method (ii) that (1) the dominant source of error for
lg| Z 0.5 arises from a frequency-filter method for elimi-
nating a linear-in-time gauge mode in the dipole sector
[29], and (2) the error bars in Fig. 1 are estimated using a
robust combination of Monte Carlo and bootstrap methods.
[No comparison data are available for |g| > 0.6, where
method (ii), in its current state of development, becomes
ineffectual. ]

Table T and Fig. 1 show numerical results for Cq(q).
Method (i) gives Cq(0) =1.25101539+4x 1078, a
value consistent with (and as accurate as) the most accurate
g = 0 result currently available [24]. We notice that Cq(q)
reaches minimum at ¢ = 0.3 and is positive for all values in
our sample (|g| < 0.9).

The lower panel in Fig. 1 tests three earlier predictions
for Cq(q) against our “exact” self-force result: two based
on the PN approximation, at 3 PN order using a stability
analysis of the equations of motion [14] and at 3.5 PN order
using a MECO condition with a certain modified binding
energy function [16], and one arising from the EOB model
[54] with the method described in Refs. [7,55]. This
comparison illustrates the discriminative power of our
result as a new benchmark in the strong-field regime.
We expect that our results will be used in refining
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semianalytical models of inspiraling binaries over the full
range of mass ratios and spins [56,57].
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