. The resulting adaptive low-power high-gain observer inherits the advantages of both techniques and can be used to address the state-estimation problem for Lipschitz systems in lower triangular form with nonlinearities having a Lipschitz constant that depends on a known external input.
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INTRODUCTION

The state-estimation problem for nonlinear systems in lower-triangular form can be systematically addressed by using the so-called high-gain observers, see, e.g., [START_REF] Emel'yanov | Observers and output differentiators for nonlinear systems[END_REF], [START_REF] Tornambe | High-gain observers for non-linear systems[END_REF], [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]. This observers are characterized by having an output injection terms which scales with increasing power of a (positive) high-gain parameter. This one has to be chosen large enough to dominate the Lipschitz constants of the nonlinear terms. In this case, asymptotic convergence of the estimation error is ensured. When the Lipschitz constants depends on external inputs, adaptive techniques for the on-line tuning of the high-gain parameter have been proposed in [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF]; [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF]; [START_REF] Alessandri | Increasing-gain observers for nonlinear systems: Stability and design[END_REF]. Although the good robustness properties with respect to model perturbations of high-gain observers, their use for the state observation of systems of large state dimension is limited due to important drawbacks: the sensitivity to high-frequency measurement noise, [START_REF] Astolfi | Sensitivity to high-frequency measurement noise of nonlinear high-gain observers[END_REF]; the peaking phenomenon, [START_REF] Astolfi | Low-power peaking-free high-gain observers[END_REF]; [START_REF] Khalil | Cascade high-gain observers in output feedback control[END_REF]; possible implementation issues to the large powers of the high-gain parameter multiplying the output injection term, [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]; [START_REF] Khalil | Cascade high-gain observers in output feedback control[END_REF]. To address these issues, a new class of observers, denoted as low-power high-gain observers, has been recently proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]; [START_REF] Astolfi | Low-power peaking-free high-gain observers[END_REF]; [START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF]. The new technique proposes an interconnected cascade of highgain observers of dimension two in which the high-gain parameter shows up with powers 1 and 2, regardless the dimension of the system state dimension. The resulting observer dimension, however, is nearly doubled. Other techniques, addressing one or some of those drawbacks, have been proposed in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]; [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF]; [START_REF] Khalil | Cascade high-gain observers in output feedback control[END_REF]; [START_REF] Astolfi | Stubborn iss redesign for nonlinear high-gain observers[END_REF]Astolfi et al. ( , 2018a)); [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF]; [START_REF] Tréangle | Filtered high gain observer for a class of uncertain nonlinear systems with sampled outputs[END_REF].

The objective of this work is to investigate the use of adaptive gains in the context of low-power high-gain observers proposed by combining the updated-gain technique described in [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF] with the cascade structure proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. We provide sufficient conditions for the design of an adaptive law that tunes on-line the high-gain parameter according to the Lipschitz constant of the nonlinear terms to be dominated. Similar to [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF], we suppose that such Lipschitz constants depends on known external inputs. Asymptotic convergence of the estimation error is established. Numerical simulations are then presented to show that asymptotic estimation can be achieved with values of the high-gain parameter much lower than a constant-gain structure, for which, very conservative bounds are needed.

Notation R denotes the real numbers. Given x ∈ R n , y ∈ R m , we compactly denote (x, y) := (x , y ) .

PROBLEM STATEMENT

In this paper are considered single-input single-output nonlinear systems in the following lower triangular form ẋ1 = x 2 + φ 1 (u, y), . . .

ẋi = x i+1 + φ i (u, y, x 2 , ..., x i ), . . . ẋn = φ n (u, y, x 2 , ..., x n ), y = x 1 , (1) 
where x = (x 1 , . . . , x n ) ∈ R n is the state of the system, y ∈ R is the measured output and u ∈ R m is a known input. In this work, the presence of input disturbances or measurement noise are ignored, although all the analysis could be done to cover such case. The nonlinear functions φ i , i = 1, . . . , n, satisfy the following Lipschitz condition. Assumption 1. There exists a continuous function Ω : R m → R ≥0 such that the following is satisfied

|φ i (u, y, x2 , ..., xi ) -φ i (u, y, x 2 , ..., x i )| ≤ Ω(u) i j=2 |x j -x j |
(2) for all i = 1 . . . , n, and all (x, x, y, u) ∈ R n ×R n ×R×R m .

In other words, the Lipschitz constant of φ i depends on the value of u. We recall that under Assumption 1, standard high-gain observer design [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] can be applied only if u is living in some known compact set U ⊂ R m . When the knowledge or an estimate of U is not available, standard techniques fails to work because domination arguments cannot be applied, in other words, a lower bound for the high-gain parameter cannot be established because the Lipschitz constant is unknown. In such case, adaptive techniques need therefore be employed. Therefore, in the rest of the paper, we will suppose that u lives in a bounded but unknown compact set U for all t ≥ 0. This scenario can be also of interest to improve online the performances of the observer when the estimate of U is too "rough", namely to select the lowest possible high-gain parameter ensuring estimate convergence. The aim of this work is to combine the low-power high-gain observer approach [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] with the updated-gain approach employed in [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF].

MAIN RESULT

In order to present the construction of the observer, we first need to define, as in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], the following matrices. In particular, let (A, B, C) a triplet in prime form of dimension 2, that is

A := 0 1 0 0 , B := 0 1 , C := (1 0) ,
and let the matrices F i , Q i , N , be defined as

F i := -k i1 1 -k i2 0 , Q i := 0 k i1 0 k i2 , N := 0 0 0 1
where k i1 , k i2 > 0 are some coefficients to be selected. Finally, let the matrices M, D of dimension 2n -2 be

M :=                F 1 N 0 . . . . . . 0 Q 2 F 2 N . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . Q i F i N . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . Q n-2 F n-2 N 0 . . . . . . . . . 0 Q n-1 F n-1                , (3) 
D := diag(1, 2, 2, ..., n -1, n -1, n).
(4) As shown in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], Lemma 1), it is possible to select the coefficients k i1 , k i2 > 0 so that the matrix M defined in (3) is Hurwitz. Moreover, it is also possible to arbitrarily select its eigenvalues. However, for the purpose of this work, we need some extra properties stated by the following lemma. Lemma 1. Consider matrices M, D defined in (3), (4). There exist coefficients k i1 , k i2 > 0 for i = 1, ..., n -1, µ, p, p, ᾱ, α > 0 and a symmetric positive definite matrix P such that pI ≤ P ≤ pI,

P M + M P ≤ -µP, αP ≤ P D + DP ≤ ᾱP.
(5)

Proof. The proof is deferred to Section 4.2 where a constructive procedure for designing k i1 , k i2 is presented.

Nevertheless, one can always follow the procedure presented in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], Lemma 1) to assign the eigenvalues of M , and then verify, a posteriori, the existence of a P satisfying (5), see Section 5.

The structure of the proposed low-power high-gain observer with updated gain has therefore the following form

ξi = Aξ i + N ξ i+1 + Φ 1 (u, y, x) + Λ(L)K i (y -Cξ 1 ), . . . ξi = Aξ i + N ξ i+1 + Φ i (u, y, x) +Λ(L)K i (B ξ i-1 -Cξ i ), . . . ξn-1 = Aξ n-1 + Φ n-1 (u, y, x) +Λ(L)K n-1 (B ξ n-2 -Cξ n-1 ), x = Γξ (6a) where ξ ∈ R 2n-2
is the state of the observer, x is its stateestimate with Γ := blkdiag (C, . . . , C, I 2 ) ∈ R n×(2n-2) , the matrices A, B, C, N that have been defined above,

K i := (k i1 k i2 ) , Λ(L) := diag(L, L 2
), and the functions Φ i are defined as

Φ i (u, y, x) := φ i (u, y, x2 , ..., xi ) φ i+i (u, y, x2 , ..., xi )
with the functions φ i defined in system (1). Finally, L > 0 denotes the high-gain parameter which is updated according to the following differential equation

L = L λ 1 (λ 2 -L) + λ 3 Ω(u) (6b) with λ 1 , λ 2 ,
λ 3 > 0 some parameters to be properly chosen, and Ω the functions defined in Assumption 1. We can state now the main result of this work concerning the convergence of observer (6). Theorem 1. Consider system (1) and observer (6). Suppose u is a (locally integrable) bounded signal for all t ≥ 0. Let the coefficients k i1 , k i2 , i = 1, . . . , n -1 be chosen according to Lemma 1, and let λ 1 , λ 2 , λ 3 > 0 be selected so that λ 1 < µ ᾱ , λ 2 ≥ 1, and λ 3 ≥ 2p(pα) -1 with = √ 2(2n -3). Then, for any initial condition

(x(0), ξ(0)) ∈ R n × R 2n-2 , L(0) ≥ λ 2 any corresponding solution defined for all t ≥ 0 satisfy lim t→∞ |x(t) -x(t)| = 0.
Proof. The proof is deferred to Section 4.1.

Some qualitative comments of the result of Theorem 1 are given now.

About Assumption 1. If the state x(t) of system ( 1) is supposed to evolve in a known compact set X ⊂ R n for all t ≥ 0, then Assumption 1 can be relaxed by asking inequality (2) to hold for all (x, x, y, u)

∈ X × X × Y × R m
where Y is the projection of X on the first coordinate.

Then, as commonly done in high-gain observer design approaches, see, e.g., [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] or [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], one can implement the observer (6a) by using a saturated version of φ i on X. Note however that in practice, the compact set X usually depends on U .

Alternative design. Recall that y = x 1 . Hence, in order to improve the sensitivity to measurement noise, one may want to implement the observer (6a) by using x1 instead of y in the functions Φ i . However, this is possible only by strengthening Assumption 1 as follows

|φ i (u, x1 , ..., xi ) -φ i (u, x 1 , ..., x i )| ≤ Ω(u) i j=1 |x j -x j |
for all i = 1, . . . , n and all (x, x, u) ∈ R n × R n × ×R m . In such case, the result of Theorem 1 still holds.

Asymptotic convergence. Theorem 1 establishes the asymptotic convergence of the estimation error thus ensuring that system ( 6) is an asymptotic observer for plant (1).

With respect to standard results on high-gain observers, see [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] or [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], exponential convergence, uniform with respect to the initial estimation error, is not established since we are not assuming u in (1) to evolve in known compact sets. It would be possible to give more precise statements by reinforcing Assumption 1.

Peaking phenomenon. Since we do not assume to know a compact set where the state x of system ( 1) is evolving, we cannot follow the idea in [START_REF] Astolfi | Low-power peaking-free high-gain observers[END_REF], in which the use of saturation functions is exploited to deal with the peaking phenomenon. Nevertheless, peaking phenomenon can be attenuated by tuning the parameters of the dynamics of L, as shown in the simulations of Section 5.

Design of the parameters. The parameters λ 1 , λ 2 , λ 3 define the dynamics of L, and in particular, its speed of convergence, its sensitivity to u and the DC-gain with respect to the constant u. Theorem 1 provides sufficient conditions for the choice of the parameters for the convergence of the observer (6) which may be very conservative. In practice, we have the following phenomena.

• The ratio λ3 λ1 modulates the values of L: larger ratios correspond to larger values of L.

• For a given constant ratio λ3 λ1 , larger values of λ 1 , λ 3 , provide a faster response of L to variations of the input u.

• For given constant λ 1 , λ 3 , smaller values of λ 2 decrease the steady-state value of L in case of constant input u.

In conclusion, the design of λ 1 , λ 2 , λ 3 depends on the type of response we desire on the estimation error and such choice modulates the peaking phenomenon, the rate of convergence, the sensitivity to variations of u and the sensitivity to measurement noise in steady-state. More comments are given in Section 5.

PROOFS

Proof of Theorem 1

Consider the differential equation (6b) governing the dynamics of L in which all λ i 's are positive. First of all, if L = λ 2 , then L = Lλ 3 Ω(u) ≥ 0. Since L(0) ≥ λ 2 , this implies that for all t on the time existence of the solutions, L(t) ≥ λ 2 . On another hand, if u is bounded then Ω(u) is bounded as well. Let B Ω := sup t∈[0,∞) Ω(u) and L := λ3 λ1 B Ω + λ 2 . If L ≥ L, then L ≤ 0. This implies that L(t) is defined for all t ≥ 0 and we conclude that L(t) ∈ [λ 2 , max{L(0), L}] for any u bounded and any L(0) ≥ λ 2 .

Now let us define the following change of coordinates

ξ i → ε i := x i -ξ i1 L i , x i+1 -ξ i2 L i+1 ∀ i = 1, . . . , n -1, ε := (ε 1 , . . . , ε n-1 ) ∈ R 2n-2 .
The ε-dynamics is then given by (computations are omitted for space reasons)

ε = LM ε - L L Dε + Ψ(L)∆Φ(u, y, x, x) (7)
where M, D are defined in ( 3), (4), Ψ(L) ∈ R 2n-2×2n-2 is defined as

Ψ(L) := diag 1 L , 1 L 2 , 1 L 2 , ..., 1 L n-1 , 1 L n-1 , 1 L n ,
and ∆Φ = (∆Φ 1 , . . . , ∆Φ n-1 ), with ∆Φ i = (∆Φ i1 , ∆Φ i2 ) and ∆Φ i (u, y, x, x) := Φ i (u, y, x) -Φ i (u, y, x), for all i = 1, . . . , n -1, where we omitted the arguments for compactness. In order to obtain a bound for Ψ(L)∆Φ, first recall that by definition of xi , e i , ε we have, for all L ≥ 1:

|x i -xi | = |x i -ξ i1 | = |e i1 | = L i |ε i1 | ≤ L i |ε i | for all i = 2, . . . , n -1 and |x n -xn | = L n |ε (n-1)2 | ≤ L n |ε n-1 |.
Therefore, by using the Lipschitz condition of Assumption 1, we also have

|φ i (u, y, x) -φ i (u, y, x)| ≤ i j=2 L j |ε j | which gives |Ψ(L)∆Φ(u, y, x, x)| ≤ n-1 i=1 Λ(L) -1 L -(i-1) |∆Φ i | ≤ n-1 i=1 Ω(u) L -i i j=2 L j |ε j | + L -(i+1) i j=2 L j |ε j |
≤ Ω(u)|ε| for any (u, y, x, x) ∈ R × R × R n × R n and any L > 1, with defined in the statement of the theorem. Now, consider the matrix P defined in Lemma 1, define V = ε P ε and compute its derivative along solutions of (7). We obtain

V ≤ -L(µ -λ 1 ᾱ) + λ 1 λ 2 α + λ 3 α -2 p p Ω(u) ε P ε.
Therefore, by selecting λ 1 , λ 2 , λ 3 according to the statement of the theorem, we obtain V ≤ -LV for some > 0. This shows that |ε| converges exponentially to zero. Furthermore, since L is bounded for all times, we deduce that also |e| converge exponentially to zero. In light of the definition of e and x in (6), we conclude the statement of the theorem.

Proof of Lemma 1

The proof of this result is a direct consequence of the next Lemmas 2 and 3 which are the base case and the inductive step of a mathematical induction. For this, let us introduce the following matrices which will be used next

M 1 := F n-1 , M i+1 := F n-i-1 Nn-i Qn-i M i i = 2, . . . , n -1, with Nn-i ∈ R 2×2i , Qn-i ∈ R 2i×2 defined as Nn-i := (N 0 ... 0) , Qn-i := (Q n-i 0 ... 0) ,
and the matrices F i , Q i , N defined as in (3). By construction, M n-1 = M . Finally, let us define

D i := diag(n-i, n-i+1), D 1 := D 1 , D i+1 := D i+1 0 0 D i .
Let us now show that the second inequality is verified with the matrix P i+1 that has been established. By the statement of the lemma, we know there exist positive constants α i , ᾱi such that α i P i ≤ P i D i + D i P i ≤ ᾱi P i . Therefore, by using the definition of P i+1 given above, we compute ( 14). Its lower bound is given by

α i+1 P i+1 0 0 P i ≤ P i+1 D i+1 + D i+1 P i+1 0 0 P i D i + D i P i
while the upper bound is computed as

P i+1 D i+1 + D i+1 P i+1 0 0 P i D i + D i P i ≤ ᾱi+1 P i+1 0 0 P i .
Due to the triangular structure of previous expression, we obtain the following two independent conditions equivalent to ( 14)

α i+1 P i+1 ≤ P i+1 D i+1 + D i+1 P i+1 ≤ ᾱ i+1 P i+1 α i+1 P i ≤ P i D i + D i P i ≤ ᾱi+1 P i (15) 
The second condition is verified for some ᾱi , α i by assumption. Therefore, we focus on the first. Let us drop the subscript i + 1 in the notation, and note that the matrix P (= P i+1 ) previously defined has the same structure of the matrix P 1 defined in Lemma 2. We can re-use the same arguments to show the existence of ᾱ > α > 0 satisfying α P ≤ P D +D P ≤ ᾱ P , for α ∈ [2n-2i+1-√ 2; 2n-2i] and ᾱ ∈ [2n -2i + 1 + √ 2; +∞[ where n is the order of the system. Thus, the two conditions being verified, by selecting α i+1 = min(α i , α ) and ᾱi+1 = max( ᾱi , ᾱ ), we show that both conditions in (15) are verified, thus establishing inequality ( 14) and completing the proof of Lemma 3.

Finally, by applying iteratively Lemma 3 it is possible to prove Lemma 1 by recalling that M n-1 = M and D n-1 = D.

ACADEMIC EXAMPLE

In order to illustrate the interest of an observer designed as explained in this paper, we consider the following system

   ẋ1 = x 2 ẋ2 = x 3 ẋ3 = u sin(x 2 ) -x 2 . ( 16 
)
where u = ū sin(t), with ū > 0. In the simulation, the initial conditions are selected as x(0) = (1, 2, 3). It is possible to verify that system (16) verifies Assumption 1 with Ω(u) := 1 + |u|. For comparative purposes, we considered a low-power high-gain observer (6a) with fixed gain L (as in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]) and a lowpower high-gain observer with dynamic L given by (6b).

For both observers, the coefficients k ij are chosen, by following the procedure of [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], Lemma 1), as K 1 = (1.5, 1.05), K 2 = (1.5, 0.2632), so that the eigenvalues of M in (3) are between -.5 and -1. It is possible to verify the the matrix P defined as solution to P M + M P = -0.1I verifies Lemma 1 with p = 0.029, p = 3.301, µ = 0.3, α = 1.136, ᾱ = 7.342. Both observers are initialized in the origin.

First, we recall that a low-power high-gain observer (6a) with fixed L should take a value of L proportional to ū. If ū is unknown, convergence for a constant given L cannot be always ensured. This is shown in Figure 2, where, for L = 5, ū is selected as ū = 5, ū = 15 and ū = 30: by augmenting its value, convergence of the estimation error |x -x| is no more ensured and divergence occurs. Figure 3 shows the evolution of the estimation error |x(t) -x(t)| for the proposed low-power high-gain observer (6a) with updated gain (6b), with λ 1 = 0.2, λ 2 = 1 and λ 3 = 0.15, in the same three cases ū = 5, ū = 15 and ū = 30. Although convergences is always guaranteed, larger values of ū results in a faster convergence rate. The evolution of the gain L in the three different scenario is depicted in Figure 4. Due to the oscillating behaviour of u, we can observe that L has an oscillating behaviour around L = 3.5, L = 8.5 and L = 16 respectively. Note that even though L is increased, the peaking phenomenon is not critically augmented as in the case of standard highgain observers with fixed L. Finally, in Figure 5 we studied the influence of the parameters λ i in the dynamics (6b) of L for ū = 30. We can see that a decrease of the ratio λ1 λ3 causes an increase of the values of L. Similarly, an increase of λ 2 causes larger values of L. We recall, indeed, that the conditions of Theorem 1 are only sufficient and not necessary.

CONCLUSION

In this work we combined the techniques of adaptive gain proposed in [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF] with the low-power structure of [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. The resulting adaptive observer retains therefore the good properties explored in [START_REF] Astolfi | Low-power peaking-free high-gain observers[END_REF], that is the implementation of a high-gain parameter with powers up to 2 regardless the dimension of the system state and the good sensitivity properties with respect to measurement noise, and, at the same time, provides a self-tuning strategy with the aim of reducing the value of the implemented highgain parameter with respect to a constant-gain approach.

The adaptive law proposed in this work relies on the assumption that the Lipschitz constants of the nonlinear terms depend on a known external input. Future works will study the active use of such external input to the aim of further improving the performances in presence of measurement noise; the development of an adaptive law to address the case in which the Lipschitz constants of the nonlinear terms depend also on the measured output and the estimated state in addition to the input; the use of different gains with separated dynamics, one for each two-sized block of the observer, to obtain less conservative conditions with respect to the ones in Assumption 1; the use of the proposed adaptive observer in output feedback stabilization contexts [START_REF] Wang | Output stabilization for a class of nonlinear systems via high-gain observer with limited gain power[END_REF]; [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF]; [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF]; [START_REF] Praly | Linear output feedback with dynamic high gain for nonlinear systems[END_REF]). 
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 1 Fig. 1. Evolution of the state x of example (16), with ū = 30. Red line: x 1 . Dashed blue line: x 2 . Dotted green line: x 3 .

By construction, D n-1 = D, with D defined in (4). We have the first following result. Lemma 2. Consider the matrices M 1 and D 1 . There exist coefficients k n-1,1 and k n-1,2 and a positive definite symmetric matrix P 1 such that P 1 M 1 + M T 1 P 1 ≤ -1 P 1 (8) α 1 P 1 ≤ P 1 D 1 + D 1 P 1 ≤ ᾱ1 P 1 (9) for some positive constants 1 , α 1 and ᾱ1 .

Proof. The proof of the first inequality is based on the construction proposed in (Wang et al., 2017, Lemma 2). Consider in particular the system ξ1 = F n-1 ξ 1 in which ξ 1 = col(ξ 11 , ξ 12 ) ∈ R 2 . Let Θ(r) be a matrix of the following form

Then, consider the following change of variables ξ 1 → η 1 := Θ(r 1 )ξ 1 , η 11 := r 1 ξ 11 , η 12 := ξ 12 -r 1 ξ 11 , with r 1 > 0 to be chosen, and select

. By coming back in the ξ 1 -coordinates and by using Young's inequality, the above equality can be rewritten as V1 ≤ -1 |ξ 1 | 2 for any r 1 > 0, and k n-1 > 2r 1 , with 1 = min(2r 2 1 (k n-1,1 -2r 1 ), r 1 ). Therefore, by selecting

, the inequality ( 8) is verified and this completes the first part of the proof.

Let us now show that the inequality ( 9) is verified with the matrix P 1 established above. First, we prove the upper bound of (9). For this, note that ᾱ1 P 1 -

It implies the following conditions (positivity of the diagonal terms and of the Schur's complement):

which can be verified by selecting ᾱ1 in the set [2n -1 + √ 2; +∞[. Then, to show the lower bound of (9), we need to find α 1 > 0 such that

Constant α 1 that meet the inequality exists and have to be in the set [2n-1-√ 2; 2n-2]. This shows the existence of ᾱ1 > α 1 > 0 satisfying inequality (9). Note that those values are independent of r 1 > 0. Consequently, the proof of Lemma 1 is completed.

We have now the following lemma concerning the matrices M i , D i defined at the beginning of this section.. Lemma 3. Assume there exist a symmetric positive definite matrix P i and positive constants i , α i and ᾱi such that P i M i +M T i P i ≤i I and α i P i ≤ P i D i +D i P i ≤ ᾱi P i . Then there exist coefficients k n-i-1,1 and k n-i-1,2 and a positive definite symmetric matrix P i+1 such that

(14) for some positive constants i+1 , α i+1 and ᾱi+1 .

Proof. Again, the proof of this lemma follows the same construction of P i+1 proposed in (Wang et al., 2017, Lemma 3). Consider in particular system ξi+1 =

Let us make the following linear change of coordinate ξ i+1 → η i+1 := Θ(r i+1 )ξ i+1 with Θ(r) is defined in (10) and r i+1 is a positive constant to be chosen. By taking k n-i-1,2 = r i+1 k n-i-1,1 , the system in the new coordinates can be rewritten as

) where Γ i = col(k n-i,1 , k n-i,2 , 0, ..., 0). Consider now the positive definite function V i = χ T i P i χ i , with P i given in the statement of the lemma, and compute its derivative Vi ≤ -

for some positive constant δ 1 , independent of r i+1 and k n-i-1,1 . Then, consider the positive definite function

Then, consider the Lyapunov function

and by combining together previous inequalities, we obtain

. Therefore, by selecting χ i+1 = (ξ i+1 , χ i ) and P i+1 := blkdiag(P i+1 , P i ), P i+1 := Θ(r i+1 ) Θ(r i+1 ). By differentiating the Lypaunov function V i+1,1 = χ i+1 P i+1 χ i+1

we finally obtain Vi+1 ≤ -i+1 |χ i+1 | 2 in which i+1 = min i 4 , 2r 2 i+1 (k n-i-1,1 -2r i+1 ), 1 4 r i+1 .

Therefore P i+1 M i+1 + M T i+1 P i+1 ≤ -i+1 P i+1 , showing inequality (13) and completing the first part of the proof.