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Where are the zeroes of a random p-adic polynomial?

Xavier Caruso

October 30, 2018

1 Training: over finite fields

Throughout this talk, p is a fixed prime number.

Expected number of roots over Fp

Let P ∈ Fp[X] be a random polynomial of degree d ≥ 1. (By “random”, we mean that each
coefficient is chosen uniformly and independanty in the finite set Fp.)

We are interested in the expected number of roots of P in Fp. In order to compute it, for each
a ∈ Fp, we define the Bernoulli variable Ba by:

Ba(P ) = 1 if a is a root of P

= 0 otherwise.

The fact that the mapping εa : Fp[X]→ Fp, P 7→ P (a) is a surjective ring homomorphism implies
that P(P (a) = b) = 1

p for all b ∈ Fp. Thus P(Ba = 1) = 1
p as well.

Now we observe that the number of zeroes of P in Fp is

Z =
∑
a∈Fp

Ba. (1)

Therefore:

E[Z] =
∑
a∈Fp

E[Ba] = p× 1

p
= 1.

Observe that this not does depend on p nor or d (when d ≥ 1).

Expected number of roots over Fq

Let q = pn be a power a p. We can count the number of roots of P over Fq using the same techniques.
For each a ∈ Fq, we define the Bernoulli variable Ba as above and consider the ring homomorphism
εa : Fp[X] → Fq, P 7→ P (a). If n ≥ d, the image of εa is Fp[a] (almost by definition). Therefore
P(Ba = 1) = 1

# Fp[a] . Consequently, if Zn is the random variable counting the number of roots of P

in Fq, we have:

E[Zn] =
∑
a∈Fq

1

# Fp[a]
=
∑
a∈Fq

p−deg(a) (2)

where deg(a) is the degree of a, that is the degree of the extension generated by a. Observe that it
does not depend on d (as soon as d ≥ n).

Repartition of roots in F̄p

Let Nn be the number of elements of F̄p with degree n, that is the number of generators of Fpn .
From the relation

∑
m|nNm = pm, we derive the formula:

Nn =
∑
m|n

µ
( n
m

)
pm = pn +O(pn/2)
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where µ is the Moebius function. Let Z ′n(P ) be the number of roots of P lying in Fpn but not in a
strict subextension. By what we have achieved before, the expected value of Z ′n is:

E[Z ′n] = Nnp
−n = 1 +O(p−n/2).

Of course we can be more precise for the smallest values of n. Here is what we find:

E[Z ′1] = 1 ; E[Z ′2] = 1− 1
p ; E[Z ′3] = 1− 1

p2

E[Z ′4] = 1− 1
p2 ; E[Z ′5] = 1− 1

p4 ; E[Z ′6] = 1− 1
p3 −

1
p4 + 1

p5

Roughly speaking, a random polynomial of degree d has, on average, one root in Fp, one more
root in Fp2 , one more root in Fp3 , etc. until Fpd . This gives d roots as expected. Trying to be more
precise is actually quite interesting. Indeed, we observe that E[Z ′n] < 1 as soon as n > 1. Thus the
E[Z ′n]′s for 1 ≤ d ≤ n cannot sum up to d exactly. This is due to the existence of multiple roots, of
course. When d goes to infinity, one can prove that:

d∑
n=1

E[Z ′n] = d−
∞∑
i=2

µ(i)

pi−1 − 1
+ o(1)

The default
∑∞
i=2

µ(i)
pi−1−1 (which is a constant, not depending on d) is then the number of “redundant”

roots; it is also the expected value for the degree of gcd(P, P ′) when the degree of P grows up.

2 Expected number of roots over Qp

We now move to p-adic polynomials.
We recall that Zp is a compact additive group. It is then equipped with a canonical measure of

probability, namely its Haar measure. We denote it by µ and extend it to Qp. We let | · | denote
the norm over Qp, normalized by |p| = p−1. With this normalization, we have µ(aE) = |a|µ(E) for
all a ∈ Qp and all measurable subset E of Qp.

In what follows, we will denote by Ωd the set of polynomials with coefficients in Zp and degree at
most d and equip Ωd with the Haar measure. Choosing at random an element in Ωd then amounts
at choosing independantly each coefficient with respect to the Haar measure on Zp.

Kac formula

Kac formula is a continuous equivalent of the trivial summation formula (1). In the p-adic case, it
reads:

ZH(P ) = lim
s→∞

ps
∫
H

|P ′(a)| · 1{|P (a)|≤p−s} da (3)

where H is a measurable subset of Qp and ZH(P ) counts the number of zeroes of P in H. From
Kac formula, it is easy to derive the expected value of ZH . Indeed, one writes:∫

Ωd

ZH(P )dP =

∫
Ωd

lim
s→∞

ps
∫
H

|P ′(a)| · 1{|P (a)|≤p−s} da dP

=

∫
H

lim
s→∞

ps
∫

Ωd

|P ′(a)| · 1{|P (a)|≤p−s} dP da =

∫
H

ρ(a)da

where the function ρ is the “density function” defined by:

ρ(a) = lim
s→∞

ps
∫

Ωd

|P ′(a)| · 1{|P (a)|≤p−s} dP. (4)

Moreover, it turns out that ρ has a simple expression. Indeed first observe that for a = 0 and
P = a0 + a1X + · · ·+ adX

d, we have:

ρ(0) = lim
s→∞

ps
∫
Z2
p

|a1| · 1{|a0|≤p−s} da0 da1 =

∫
Zp

|a1|da1 =
p

p+ 1
.
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More generally, for a ∈ Zp, the above result is still valid since the morphism Ωd → Ωd, P (X) 7→
P (X−a) preserves the measure. For a ∈ Qp, a 6∈ Zp, we perform the change of variables P (X) 7→
XdP ( 1

X ) and get this way ρ(a) = ρ( 1
a ) · |a|−2. Putting everything together, we end up with the

simple formula:

ρ(a) =
p

p+ 1
if a ∈ Zp

=
p

p+ 1
· 1

|a|2
if a 6∈ Zp.

From this, we derive E[ZH ] = µ(H) · p
p+1 if H ⊂ Zp and E[ZQp

] = 1 (independently from p and d).

3 Expected number of roots over a finite extension

We now want to count the roots of P , not only in Qp but more generally in any given finite extension
of Qp. We fix such an extension K. We denote by n its degree and by OK its ring of integers. We
endow K with its Haar measure µK , normalized by µK(OK) = 1. We recall that the norm | · |
extends uniquely to OK and we continue to use to notation | · | to refer to the norm on K. The
relation between the measure and the norm now reads µK(aE) = |a|nµK(E) for a ∈ K and E ⊂ K.
Kac formula is still valid in this extended framework. It now reads:

ZH(P ) = lim
s→∞

ps
∫
H

|P ′(a)|n · 1{|P (a)|n≤p−s} da (5)

where H is any measurable subset of K. We are now tempted to write

E[ZH ] =

∫
H

ρK(a)da where ρK(a) = lim
s→∞

ps
∫

Ωd

|P ′(a)|n · 1{|P (a)|n≤p−s} dP.

However we have to be careful since (1) the latter value is not always finite (more precisely, it is
infinite as soon as if Qp[a] 6= K) and (2) it may depend on d. Instead we define:

ρK,d(a) = lim
s→∞

ps
∫

Ωd

|P ′(a)|n · 1{|P (a)|n≤p−s} dP if Qp[a] = K

= 0 otherwise

and we extend this definition to any subextension L of K. We can then prove that the ρK,d’s are
well defined and take finite values over K (cf Theorem 2 below for a more precise statement).
Moreover, we have the following result.

Theorem 1 For any measurable subset H of K, we have:∫
Ωd

ZH(P )dP =
∑
L

∫
H∩L

ρL,d(a)da

where the sum is extended to all fields L with Qp ⊂ L ⊂ K.

In other words, the above theorem says that
∫
K
ρK,d(a)da counts the average number of roots

of a random p-adic polynomial that lie in K but not in any proper subfield. Besides, in many cases,
we can give alternative and easier formulae for ρL,d.

Theorem 2 Let L be a field with Qp ⊂ L ⊂ K. For a ∈ OL such that Qp[a] = L, we have:

ρL,d(a) = 0 if d < [L : Qp]

ρL,d(a) =
|DL|

[OL : Zp[a]]
· pd

pd + pd−1 + · · ·+ 1
if d = [L : Qp]

ρL,d(a)< ρL,d+1(a) if [L : Qp] ≤ d < 2[L : Qp]− 1

ρL,d(a) = |DL| ·
∫
Zp[a]

|x|[L:Qp]dx if d ≥ 2[L : Qp]− 1

where DL is discriminant of the extension L/Qp.
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Remark 3 When a 6∈ OL, we have the relation ρL,d(a) = ρL,d(
1
a ) · |a|−2n which gives the value of

ρL,d(a) when combined with Theorem 2 (noting that 1
a ∈ OL).

Remark 4 Theorem 2 implies that ρL,d(a) < |DL|
[OL:Zp[a]] for all d and a ∈ OL.

Moreover, when Zp[a] = L, one can be more precise and compute the maximal value of ρL,d(a); we

find ρL,d(a) = |DL| · pn

pn+1 for d ≥ 2[L : Qp]− 1.

Furthermore, as a corollary of Theorem 2, we obtain:

Corollary 5 Let L be a field with Qp ⊂ L ⊂ K with L 6= Qp. Then:∫
L

ρL,d(a)da < |DL|.

Moreover, if f is the residual degree of L/Qp, we have the estimation:∫
L

ρL,d(a)da = |DL| ·
(
Nf
pf

+O

(
1

pf

))
where Nf is the number of generators of Fpf as defined in §1 and the constant hidden in the O(·) is
absolute.

4 Repartition of roots in an algebraic closure

Roots in unramified extensions

For all positive integers n, let Qpn denote the unique unramified extension of Qp of degree n. Let
also Qur

p be the union of all Qpn ; this is the maximal unramified extension of Qp.
By Corollary 5, a random p-adic polynomial of large degree has Nnp

−n+O(p−n) “new” roots in
Qpn . We observe that this is very close to the number of “new” roots in Fpn of a random polynomial
over Fp (which is exactly Nnp

−n). However, the reason for this coincidence is not clear (at least to
me).

For polynomials of degree d, the repartition is the following:

E[ZQp
] = 1

E[ZQp2
] = 1− 1

p
+O

( 1

p2

)
E[ZQp3

] = 1 +O
( 1

p2

)
...

E[ZQ
pd−1

] = 1 +O
( 1

p2

)
E[ZQ

pd
] = 1− 1

p
+O

( 1

p2

)
The total number of roots in Qur

p is then d− 2
p +O( 1

p2 ). Observing that a p-adic random polynomial

has no multiple roots almost surely, we deduce that it has 2
p +O( 1

p2 ) roots outside Qur
p on average.

Roots outside Qur
p

It is actually possible to better locate the 2
p +O( 1

p2 ) “missing roots”. We will do it when p > 2.

With this assumption, Qp has exactly two totally ramified of degree 2, namely K1 = Qp[
√
p]

and K2 = Qp[
√
up] where u ∈ Z×p is not a square. It is easy to check that |DK1

| = |DK2
| = 1

p .
Corollary 5 gives:

E[ZK1
] = E[ZK2

] =
1

p
+O

( 1

p2

)
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and we have found (a large part of) the missing roots: 1
p of them is in K1, 1

p of them is in K2.

Playing a similar game, one can count the expected number of roots outside the maximal tamely
ramified extension of Qp. Here is what we find.

Theorem 6 A random p-adic polynomial of degree at least 2p− 1 has p−p+2 +O(p−p+1) outside
the maximal tamely ramified extension of Qp.

More precisely, a theorem of Krasner asserts that there exist exactly p2 totally ramified extensions
of Qp of degree p and discriminant pp. By Corollary 5, a p-adic random polynomial has p−p +
O(p−p−1) roots in each such extension. Summing up the corresponding contributions, we find the
p−p+2 +O(p−p+1) roots promised by Theorem 6.

5 Numerical experimentations
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6 Further questions

We can imagine several natural generalizations of the results discussed above.
First of all, we may vary the distribution on the input polynomials: instead of taking uniformly

polynomials in Ωd, one can for instance consider polynomials of the form Xd + pR(x) where R
is picked uniformly in Ωd−1. This particular case would lead to very different results (almost all
roots would be in totally ramified extensions) and then promise to be interesting. Similarly, we can
restrict ourselves to polynomials having a given Newton polygon or, more generally, we can choose
a lattice Ld inside Qp[X]≤d and pick polynomials uniformly in Ld.

Another thing we can do is to consider multivariate polynomials. More precisely, if P1, . . . , Pm
are polynomials in m variables (with the same m), the set of common zeroes of the Pi’s is finite
almost surely and we can study its expected cardinality. Using a multidimensional analogue of Kac
formula, one can prove that a system of m polynomials in m variables has again 1 root in Qmp on
average. Using similar techniques, it should be feasible to study the number of roots in algebraic
extensions.

Instead of working with a system of m polynomials exactly, we can also pick a family of c
polynomials with c < m. The variety it defines has then codimension c, so that its number of points
is expected to be infinite. However, it should has a finite (m−c)-dimensional measure1 and we can
study its average. It is likely that Kac formula extends to this more general framework and that
one can derive from it interesting results.

1The d-dimensional measure of the subset A of Qm
p is defined as the limit of the quantity p−sd · # (A mod ps)

when s goes to infinity.
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