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Abstract

The urban fabric is a fundamental small-scale component of urban form. Its quantitative analysis

has so far been limited either in its geographical extent or in the diversity of components

analysed. Moreover, the planning approach has traditionally privileged an aerial perspective.

A new approach integrating the pedestrian point of view is proposed. Spatial analysis procedures

are implemented with a twofold objective: identifying urban fabrics and studying their spatial

organization within a large metropolitan area. The former is achieved through multiple fabric

assessment, a three-step protocol using a network-based partition of urban space: (i) a set of

skeletal streetscape indicators is implemented on each spatial unit, considering different constit-

uents of the urban fabric; (ii) spatial patterns on the street network are identified, applying

geostatistical analysis to each indicator; and (iii) spatial patterns with Bayesian clustering are

recombined, allowing the identification and characterization of urban fabric types and subspaces

within the city. This methodology is tested on the French Riviera metropolitan area, where nine

families of urban fabric are identified. Disentangling the spatial organization of urban fabrics

represents the second objective of this paper: the geographical distribution of urban fabrics

is investigated, applying mathematical morphology and variography while considering network-

constrained topological contiguities.
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Introduction

Since Jacobs (1961) defended the idea that modern planning did not take into account the
needs of city-dwellers, academics and practitioners have increasingly worked on the impor-
tance of pedestrian perspectives in urban studies, policies and planning. This is also true in
the study of the physical form of the city, as pioneered by Lynch (1960). The pedestrian
point of view is thus integrated into the analysis of urban spaces, focusing more specifically
on the study of streetscapes. Both physical and qualitative aspects have been studied by
urban designers (Ewing and Clemente, 2013) and computer-aided techniques are enriching
the description of the physical streetscape. Nevertheless, streetscapes are not the only feature
of urban form, and their morphological characteristics need to be put into the urban context
where they are measured.

Urban morphologists proposed to study urban contexts through the analysis of the urban
fabric, which is defined as a specific combination of local patterns made up of buildings,
streets and plots and considered as the original and unique outcome of conscious and
unconscious design of the physical city (Caniggia and Maffei, 1979). In turn, different
types of urban fabric must be understood in the context of morphological regions
(Conzen, 1960), revealing the multi-scale structuring of urban form. Thanks to the ever-
growing availability of data and powerful geoprocessing tools, new methodologies have
been developed to analyse the urban fabric by quantitative approaches. Specific goals under-
lie each procedure and result in different methodological choices. However, they barely
consider the pedestrian point of view. In contrast, configurational approaches like Space
Syntax (SSx) capture the pedestrian perspective, but do not focus on the urban fabric as
defined by urban morphologists. The potential and constraints introduced by the pedestrian
perspective of the urban fabric require specific methodological and conceptual considera-
tions. These have been overlooked in traditional and more recent procedures.

Innovative approaches from other disciplines could bring several solutions that would
allow traditional urban fabric analysis to fully integrate the pedestrian perspective. In par-
ticular, quantitative urban geography is well positioned to study urban form and design
(Talen, 2011). Moreover, geographers have already adapted several geostatistical
approaches to network-constrained space, being aware of its importance for the study of
human activity in the city (Okabe and Sugihara, 2012).

The main goal of our paper is to present a new computer-aided methodology for the
study of urban fabric, which is capable of integrating the pedestrian point of view.
Geoprocessing, geostatistics and artificial intelligence (AI)-based clustering are implemented
in a new procedure to analyse and combine ‘geometry and geography’ (Batty, 2007): from
the geostatistical detection of urban fabric types to the study of their spatial organization
within the urban space. A real-world case study of the size of an entire metropolitan area is
used to test the method and evaluate the quality of the results obtained.

The paper is organized as follows. The next section provides an overview of computer-
assisted methods available to analyse urban form, highlighting issues related to the pedes-
trian point of view. ‘Case study’ section introduces the study area of the French Riviera.
‘Urban fabric identification: A new methodology ’section describes multiple fabric assess-
ment (MFA), a new three-step procedure for the identification of different urban fabrics.
‘Results: Identification of the urban fabric families’ section presents MFA results for the
area studied. ‘Spatial organization of urban fabrics’ section shows how further geographical
approaches might be applied to MFA outcomes to analyse the spatial organization of urban
fabrics and to identify settlement boundaries. A discussion pertaining to future develop-
ments concludes the paper.



Computer-aided approaches to urban morphology

The classical analysis of urban fabric

Defined as the study of the urban form, urban morphology deals with the analysis of the

physical layout and design of a city, a town or an urban fragment within these. Urban

morphology involves the study of patterns of its components and the processes of their

formation and transformation (Vernez-Moudon, 1997).
Literature on the analysis of urban form has its origins in the seminal works of urban

geographers of the early 20th century, in German-speaking countries (Hofmeister, 2004).

The works of the Conzenian and Muratorian schools after Second World War jointly

developed the concept of the urban fabric. This is defined as a typical pattern of buildings,

parcels and streets, characterizing the form of the physical city in a given historical and

cultural context, at the scale of an urban fragment (Conzen, 1960; Muratori, 1959). The

concept of the morphological region is also proposed to describe urban sectors characterized

by consistent extents of a single urban fabric and to produce more global schemes of the

morphological organization of the city. Despite efforts to develop systematic approaches for

the analysis of the urban fabric, these methodologies relied heavily on manual measure-

ments, treatment and interpretation of calculus. This has limited the extent of case studies

(Allain, 2004; Borie and Denieul, 1984; Caniggia and Maffei, 1979). Morphological regions

could be identified in small cities like Alnwick, Northumberland (Conzen, 1960), or in

medium ones like Versailles (Castex et al., 1980), but have only been hinted at for big

cities. Furthermore, the approach of classical urban morphologists to study the urban

fabric left little space for the pedestrian perception of the physical city. Meanwhile,

Lynch’s (1960) seminal work established little link between the perception of cityscapes

and the analysis of the urban fabric.

The configurational approach

Starting from the late 1970s, technologies allowed the implementation of computer-aided

quantitative approaches for the analysis of urban form (Kruger, 1977; Steadman, 1983).

Graph analysis played an important role in these early models. Paralleling the development

of social network analysis (Freeman, 1977), configurational approaches to urban street

networks were proposed. SSx (Hillier, 1996; Hillier and Hanson, 1984) proposed the most

innovative reconceptualization of urban form analysis by focusing on the open space avail-

able for pedestrians and by building on the theory of natural movement within this (Hillier

et al., 1993). The urban open space is partitioned into convex polygons approximated with

visual axial lines. Topological measurements of centrality are carried out on the resulting

graph, which is a dual representation of the axial line network. A similar approach is the

multiple centrality assessment (MCA, Porta et al., 2006; Sevtsuk and Mekonnen, 2012),

which develops centrality measurements on the primal representation of metric street net-

works. Links represent street centrelines while nodes correspond to their junctions. Hybrid

approaches have also been proposed between SSx and MCA (Cutini et al., 2005;

Turner, 2007).
The use of visual lines and the natural movement theory might be considered as an

integration of the pedestrian perspective applied to the analysis of urban form, and in

SSx this is even truer than for MCA. But the final goal of configurational approaches is

to study the organization of public space, open to pedestrian through-movement and to-

movement. Such methods open the way to a deeper understanding of the relationship



between urban form and pedestrian movement. Seeing them as a computer-aided
implementation of the analysis of the urban fabric, as suggested by Lévy (2005), is thus
questionable. Important components of the urban fabric (buildings, plots, site), and their
dimensional and geometrical relationships, lie outside of the scope of configurational anal-
yses. Work is presently being carried out to combine urban fabric and configurational
metrics in the description of urban form (Gil et al., 2012; Ye and Van Nes, 2014).
However, Kropf (2017) highlights the need to reconceptualize urban fabric analysis when
combining these different approaches. Our paper goes in this direction, leaving the integra-
tion with a configurative description of urban form as a future endeavour.

Computer-aided analysis of the urban fabric

One of the main motivations of our paper is the development of new computer-aided
methods to analyse both the form of the different urban fabrics, as defined by classical
urban morphologists, and their organization in morphological regions within the city. Thus,
we will turn our attention to the different methods that have been developed in this direction
during the last decades. We propose to renew these by integrating the street-based pedes-
trian point of view. This will allow us to bridge the gap with works on streetscape perceptive
analysis and to open the way for future convergence with other street-based analyses, like
configurational approaches.

Following the founding concept of urban fabric, the reviewed methods aim to describe in
different ways the arrangements of buildings, plots and streets. While configurational stud-
ies built their strength around a small number of shared methodologies, within this second
group more goal-oriented procedures have been developed. All the methods considered
integrate geoprocessing approaches to analyse the multidimensional character of the
urban fabric. Different degrees of computer-aided automation allow the study of vast
settlements at the fine grain scale of the single urban constituent (street, building, plot).
The urban block represents the spatial unit of urban morphologists’ traditional analysis: its
historical permanence allows an easier diachronic analysis of built-up forms included in its
limits. It is thus privileged in many geoprocessing methods as in Berghauser-Pont and Haupt
(2010), Puissant et al. (2010), Bernabé et al. (2013), Gil et al. (2012), Vialard (2013) and
Hermosilla et al. (2014). Other spatial partitions like regular grids have been adopted in the
study of urban form for climatological purposes (Long and Kergomard, 2005). Despite
differences in the final goal and spatial unit choice, these methodologies share a similar
multivariate approach based on the cross-analysis of different dimensions of urban form
components, like their density and geometrical properties. Typo-morphologies of city blocks
represent the main outcomes of these methodologies. Another important phase in geopro-
cessing of the urban fabric is the computer-aided algorithms used to identify different
empirical typologies of city blocks: spacematrix diagrams (Berghauser-Pont and Haupt,
2010), k-means (Bernabé et al., 2013; Gil et al., 2012; Vialard, 2013) and decision trees
(Hermosilla et al., 2014).

The integration of the pedestrian point of view in the analysis of urban form is never-
theless absent from all the aforementioned methods. First, streets are normally considered
as the limits for spatial partitioning, rather than as the core of a fragment of the urban
fabric. Second, typo-morphologies of urban blocks are identified through clustering
approaches, applied to individual spatial units, considering their local geometrical descrip-
tors without any reference to their spatial relations to neighbouring units that could be
explored by pedestrians. Spatial analysis is limited here to an a posteriori visual/qualitative
study of the clusters identified.



The skeletal streetscape

Contrary to geoprocessing methods in urban fabric analysis, the impact of street design on

human perception represents the main focus of environmental psychology studies of urban

form. Within this domain, recent developments might present valuable insights for our

study. Harvey and Aultman-Hall (2016) define and measure the streetscape of a simplified

3D model of the street for the study of human perception. More specifically, they focus on

the skeletal streetscape, defined as the main geometric characteristics of buildings and

trees along the streets (size, spacing, frequency, etc.). The skeletal streetscape provides the

structural support onto which the skin, made of design details, is fitted, completing

the description of the streetscape. The authors propose a set of indicators implemented

through a geoprocessing approach describing the geometrical organization of façades

along the streets. Like in geoprocessing of the urban fabric, streetscape indicators are

combined for classification purposes. Once again, the spatial distribution of the identified

patterns is assessed qualitatively by analysts.
The quantitative measurement of the skeletal streetscape allows the study of aspects

related to the street–building interface, highlighted and debated by several architects and

urban designers (Alexander et al., 1987; Gehl, 2010; Lynch, 1960). More recently, innovative

procedures have been proposed to measure further constituents of streetscapes like vegeta-

tion (Dubey et al., 2016), sky view (Leduc and Chauvat, 2015) and façade colours (Nguyen

and Teller, 2017, etc.). In conclusion, streetscape analysis, whether limited to the skeletal

structure or extending to include other constituents, focuses on the street–building interface

and ignores both the content of buildings and the urban fabric as a whole.

Indications for a new computer-aided and human-centred analysis of the urban fabric

We have discussed the main computer-aided methods for the analysis of urban form, focus-

ing on those aimed at the form of the urban fabric. We also highlighted their conceptual and

methodological limits when it comes to integrating the pedestrian point of view. The meth-

odological challenges underlying the goal defined in the ‘Introduction’ section are now

pointed out.
Our first need is to define a new spatial unit putting the street at the centre of the analysis.

From the street, pedestrians can perceive the surrounding elements of the urban fabric

(buildings, open spaces, plots, trees). Urban form indicators should be conceived and rede-

fined from this perspective. Measurements of skeletal streetscapes as proposed by Harvey

and Aultman-Hall (2016) seem to be an interesting starting point. Nevertheless, other

important aspects of the urban fabric, well-identified by classical urban morphology

schools, should be integrated into the approach, always including the pedestrian point of

view. Finally, the urban fabric will be defined as a morphologically attentive urban

streetscape.
Moreover, the pedestrian perspective to define the urban fabric should not simply be

reduced to the capacities of human vision. It is by moving from one street to another that

pedestrians can experience the spatial variability or homogeneity of urban fabric character-

istics. Each indicator, describing a geometrical aspect of urban form within a spatial unit,

should be evaluated considering its spatial distribution and variation. Geostatistical analysis

on street networks might then provide methodological solutions for the study of spatial

heterogeneity/homogeneity of perceivable morphological characteristics and serve as the

input for subsequent clustering models. Thus, the street network becomes the underlying



spatial support, as in street-based configurational approaches, but with a different role in the

very nature of ensuing analyses.
Finally, types of urban fabric defined as morphological streetscapes might be character-

ized by specific sub-groups of morphological patterns, which may vary from one subspace to

another. The homogeneity of a whole set of morphological descriptors, which is imposed by

traditional classification methods (k-means, hierarchical clustering, etc.), might represent a

methodological limitation.
Bearing in mind these indications, we will show in the following sections how well-

established methodologies from geoprocessing, geostatistics and AI might converge in a

new protocol of analysis of the urban fabric to provide a more appropriate integration of

the pedestrian point of view.

Case study

In order to evaluate the new methodological protocol, we will test it on a real-world case

study: that of the French Riviera metropolitan area, in southern France (see Supplemental

Appendix Figure S1). With a population of more than one million inhabitants over 1500

km2, this space represents a unique conjunction of natural and urban landscapes. First, the

topography, with an elevation ranging from sea level up to the 1700m of the pre-Alps

(passing through differently sloped hills and valleys). Second, the socio-political and histor-

ical influences on urban planning. Traditional villages and suburban developments are

spread around three high-density urban areas. From east to west, we find: Monaco and

its skyscrapers, the most densely populated sovereign nation in the world; the urban agglom-

eration of Nice with a regular meshed core inspired by the Turin model (Graff, 2013)

surrounded by hilly and less tightly planned areas; the urban agglomeration of Cannes–

Grasse–Antibes characterized by land irregularity together with the car-centred sprawling

development of the last 50 years. The combination of all these elements produces a sequence

of urban centres and peripheral areas of different sizes and morphologies. This study area
will give us the opportunity to test our method and to identify different urban fabrics by a

bottom-up approach.

Urban fabric identification: A new methodology

MFA is a new methodology for the identification and characterization of different urban

fabrics within a large study area (see Supplemental Appendix Figure S2). After defining

appropriate goal-specific spatial units (1), it can be summed up as follows: (2.a) geoprocess-

ing protocols to calculate a matrix of morphological indicators of the urban fabric; (2.b)

identification of spatial associations of indicator values (local patterns) on a network con-

strained space; (2.c) clustering of local patterns through Bayesian methods. The outcomes of

MFA allow the identification of urban fabrics in large study areas (3.a) and the study of

their spatial organization (3.b).

A new spatial unit partition of urban space: The pedestrian point of view

As discussed in the first part of this paper, when analysing urban fabrics through geo-

processing, we first need to define the base spatial unit. In order to analyse the skeletal

streetscape, Harvey and Aultman-Hall (2016) selected the proximity space on the two sides

of each street centreline, where the relative disposition of the built-up façades is measured.

In her study of the block-face, Vialard (2013) also proposed a morphological description of



elements within a one-sided buffer, going from the street-edge to the block interior. Here,

centrelines and street-edges assume a major value of geometrical reference for the descrip-

tion of the urban fabric. The interface between streets and buildings/plots is the starting

point to measure specific street-based indicators like corridor effects, façade alignments,

setbacks, etc. Other representations of the public space overlook this specific aspect and

focus on different criteria (e.g. convex spaces of axial maps and derivatives), losing this

geometrical reference. Hermosilla et al. (2014) also recognized the need to integrate mor-

phological descriptors of street-related spaces to characterize different urban fabrics, but

their analysis was still centred on the urban block, which encompasses the descriptors of its

surrounding streets.
As highlighted in previous sections, Harvey’s approach allowed a local description of

streetscapes disregarding their spatial relations. Spatial contiguities between these street-

centred fragments of urban space should be reintroduced to explore their spatial variability.

Studying different issues from urban form, Okabe and Sugihara (2012) proposed a similar

partition of urban space, namely network-based Thiessen tessellation, with the intent of

redistributing socio-demographic data on the street network.
Inspired by these studies, we propose a new division of urban space. A generalization of

Thiessen polygons is created around each street segment, to identify the portion of planar

space conventionally served by each segment. Only the closest space to street-edges can be

observed by pedestrians. A double-sided buffer approximating to visible space is selected

from the Thiessen partition (Figure 1). The resulting partition, the proximity bands (PBs)

considers different visual depths, depending on the specific aspect of the urban fabric under

analysis (‘Decomposing urban fabric components’ section). Moreover, the connectivity of

the underling street network is transferred to PBs, allowing the implementation of network-

constrained spatial statistics (‘Spatial patterns on networks: ILINCS’ section). Finally, their

Figure 1. From the Street Network to the PB implementation (above): some examples (below).



small size variability reduces the potential bias induced by the modifiable area unit problem

in statistical analysis. In our study area, 99,562 PBs were identified with street segment

lengths of between 4 and 300m and an average conventional surface of 4680m2 when a

20m band of visible space was considered (see Supplemental Appendix Table S1).

Decomposing urban fabric components

Twenty-one indicators obtained through geoprocessing in GIS were calculated for each PB.

Selection criteria of indicators are the relevance and complementarity of the information

carried by each of them when describing the urban fabric following the theory of urban

morphology analysis (Borie and Denieul, 1984) reinterpreted from the pedestrian point of

view1 (see Supplemental Appendix Figure S3).
Network morphology is analysed through the street segment Length and Linearity (or

inversely, its Windingness) (Harvey and Aultman-Hall, 2016). Three indicators measure the

Local Connectivity of the street network: each street junction is described by Boolean values

that indicate the presence/absence of nodes of degree one (cul-de-sac), four (crossings) and

other (mainly bifurcations). Their averages on each street segment are later used to identify

areas characterized by tree-like networks or meshed street grids (as in Marshall, 2012). Built-

up morphology is studied within a 50m wide PB and is first characterized by the traditional

building Coverage Ratio index (Berghauser-Pont and Haupt, 2010). This indicator is then

enriched by information about Built-up Type prevalence. The building footprint area is used

as a proxy for categorization of buildings (Sevtsuk, 2014). For the French Riviera case

study, the footprint segmentation is defined as follows: 0–125m2 (independent small

houses), 125–250m2 (large villas and small traditional multi-family buildings, which are

particularly frequent in our study area), 250–1000m2 (townhouses and medium-sized

blocks of flats), 1000–4000m2 (modern large blocks of flats, commercial, industrial or ser-

vice buildings), greater than 4000m2 (mainly functionally specialized large buildings).2 We

calculate the Specialization of Building Types by considering the presence/absence of ordi-

nary dwellings. Building Contiguity informs us whether the urban fabric is characterized by

adjoining buildings linked to the compactness of the urban built-up environment at a very

fine grain. The role of these two indicators in the characterization of the urban fabric is

recognized by classical urban morphologists (Caniggia and Maffei, 1979; Pinon, 1991). Site

Morphology measures the presence of steeply sloped surfaces in the 50m PB.
Network–Building Relationship indicators describe the building geometry analysed in

relation to the street segment. For this reason, they are computed on narrower PBs of 10

or 20 m. They include the Street Corridor Effect (Araldi and Fusco, 2016), as a ratio between

the total length of parallel façades and the street segment (similar to Harvey and Aultman-

Hall, 2016 and Vialard, 2013, only considering parallel façades); PB Building Height

(Berghauser-Pont and Haupt, 2010); Open Space Width; Height/Width Ratio (Harvey and

Aultman-Hall, 2016). The Building frequency along the street network informs us about the

serial vision of different buildings along a street (Hallowell and Baran, 2013). Following the

same approach, Land ownership fragmentation is used as an indicator of the Network–Plot

Relationship. Finally, the relationship between street Network and Site Morphology is ana-

lysed through Street Acclivity. Plot morphology per se, although central to the study of

morphogenetic processes (Caniggia and Maffei, 1979; Conzen, 1960) is considered less rel-

evant for pedestrian perception. The operational definition of each indicator is given in

Table 1.



Table 1. The 21 indicators matrix for urban fabric morphology.

Urban fabric

component Indicator

Definition and

implementation formulae

Proximity

band

width

Network

morphology

Street length Street segments length

between two intersections

Lstreet /

Windingness 1-(Euclidean distance/

Network distance)

between two intersection

1� Leucl:
Lstreet

/

Local connectivity Average of the presence

nodes of degree 1 (ND1)

X ​
NDi 0; 1½ �=2 /

Average presence nodes of

degree 4 (ND4)

/

Average presence nodes of

degree 3, 5þ (ND35þ)

/

Built-up

morphology

Prevalence of

building types

(0:125] m2 building surf./total

built-up surf.

X​

Si

Sbuilt
50

(125:250] m2 building surf./

total built-up surf.

(250:1000] m2 building surf./

total built-up surf.

(1000:4000] m2 building surf./

total built-up surf.

(4000: max] m2 building surf./

total built-up surf.

PB coverage ratio Built-up Surface/PB Surf.
X​

Stot=
X​

SPB

Building contiguity Weighted average of buildings

frequency on built-up units

X​

Sb�u ið Þ 1
Nbuild in b�u ið Þ
� �

X​

Sb�u ðiÞ

Specialization of

building types

Specialized building surf./

PB surf.

X​

SspecX​

SPB

Network–building

relationship

Street corridor effect Parallel façades length/

street length

Lpar:fac=Lstreet 10

PB building height H Building volume/PB surface
X​

Vbuilt=
X​

Sbuilt 20

Open space width W (PB surf.� built surf.)/

street length

SPB�Sbuiltð Þ=Lstreet

Height/width ratio PB building height/open

space width

H=W

Building frequency

along SN

Number of buildings/

street length

Nbuild=Lstreet

Network–plot

relationship

Land ownership

fragmentation

along the street

network

Number of plots/

street length

Nplot=Lstreet 50

Site morphology Surface slope High sloped surf. (S>30%)/

PB surface

X ​
Sloped Surfi=

X​
SPB 50

Network–site

relationship

Street acclivity Avg. arct(slope) along the

street centreline

E [arct(slope)i] /

PB: proximity band.



Spatial patterns on networks: ILINCS

The local value of an indicator for each spatial unit is not adapted to describe the wider

spatial patterns that are typical of the urban fabric, the latter being characterized by the

arrangement in space of urban components with consistent morphological values. Spatial

continuity and aggregation are key factors for their significance, especially if we adopt the

pedestrian point of view. Several authors have suggested clustering spatial units using the

raw values of morphological indicators, for example through k-means (Bernabé et al., 2013;

Gil et al., 2012; Vialard, 2013). Spatial relations between adjoining spatial units are then

overlooked and clustering of spatial units does not necessarily lead to the identification of

urban fabrics. Through Geo-SOM, Hamaina et al. (2013) introduced spatial constraints into

clustering, but their use of Euclidean distances between buildings is not coherent with our

pedestrian viewpoint of the street network. We thus propose a preliminary phase of the

detection of patterns for each morphological indicator, considering the spatial distribution

of its values.
Local indicators of spatial association (LISA; Anselin, 1995) characterize the spatial

autocorrelation of values around each unit using a local computation of Moran’s

Indicator. We propose the application of their network-constrained version (ILINCS,

Yamada and Thill, 2010) to morphological indicators at the street level. For each spatial

unit i, wij describes local contiguities j on a street network

Local Ii ¼
n pi � �pð Þ

X
j
wij pj � �pð Þ

Xn

i
pi � �pð Þ2

(1)

where pi is the local value of a given variable in i and �p is the average value in the study area.

Araldi and Fusco (2016) discussed the application of LISA and ILINCS to the analysis of

urban morphology indicators, showing how ILINCS is best fitted when analysing patterns

from the pedestrian point of view. Despite the reduction in the variability of the spatial unit

size (Table 1), ILINCS patterns might still be biased. In another study, Fusco and Araldi

(2018) focused on the study of the statistical distribution of morphological indicators to

propose appropriate variability corrections. To consider the heteroscedasticity of morpho-

logical rates, empirical Bayesian corrections (Assunç~ao and Reis, 1999) were applied.
Through these network-constrained geostatistical analyses, we pass from a collection of

morphological values for each spatial unit to statistically significant spatial patterns that

correspond to hot- and cold-spots of given morphological characteristics, using the usual

categories of LISA analysis (High–High, Low–Low, Low–High, High–Low and Not-

Significant, see Supplemental Appendix Figure S4). These geostatistical classifications are

the result of the analysis of the values of each PB, considering the local neighbourhood

connected through the street network, with a topological depth of 3 units.

Recomposing and characterizing urban fabrics: Bayesian clustering

Our geostatistical analysis produced 21 sets of significant spatial patterns. The next step

consists of studying how these overlap to yield specific combinations. The urban fabric from

the pedestrian point of view is precisely the perception of persistent co-occurrences of given

morphological characteristics upon exploring urban space. At the same time, a few key

characteristics could identify a given urban fabric even in the presence of a certain variability

of other morphological aspects. For example, a specific compact and dense traditional



urban fabric could be characterized by consistently high building coverage ratio, street
corridor effect, building contiguity and height/width ratio, while some heterogeneity of
building types and network connectivity is seen. Clustering approaches aiming to achieve
high intra-cluster homogeneity based on variance minimization of the values of all the
indicators (like k-means, SOM and geo-SOM) are not well fitted to this task.

Bayesian clustering is applied here. This methodology is based on the Bayes’ Theorem
and it allows each spatial unit PBi to be described with a set of probabilities of belonging to
each Urban Fabric class UFj considering its description given by the set of attributes
A1i;A2i; . . . ;Ani (morphological patterns)

pPBi UFjjA1i;A2i; . . . ;Ani

� � ¼
Yn

k¼1
p AkijUFj

� �
p UFjð Þ

p A1i;A2i; . . . ;Anið Þ (2)

with the constraint

X

j

pPBi UFjð Þ ¼ 1 (3)

Two main reasons led to this choice: first, Bayesian clustering allows the identification of
groups of individuals sharing a few key characteristics among the set of attributes
A1;A2; . . . ;An, which could vary from one group to another (as discussed in Fusco,
2016). Second, Bayesian probabilities can address the uncertain assignment of observations:
hybrid street segments could have non-null probabilities of belonging to different urban
fabrics. The careful theory-driven feature selection of our analysis justifies the use of a naive
Bayesian classifier on the 21 morphological indicators.3

The combination of ILINCS and Bayesian clustering is a key feature of MFA. Instead of
grouping streets depending on the similarity of their internal geometrical profile (row indi-
cators on spatial units), we will thus perform Bayesian clustering of categorical values (HH,
LL, HL, LH, NS),4 which, in turn, summarize the statistical significance of morphological
spatial patterns defined on a street network.

Results: Identification of the urban fabric families

Using eight different random seeds, 1000-step random walks explored the solution space to
obtain optimal Bayesian clustering of spatial units. The search constraints were a minimum
cluster content of 1% of the spatial units, a minimum average probability of 0.9 for the
assignment of units to each cluster and a maximum of 20 clusters. The optimal solution is
obtained by minimizing Akaike’s (1974) information criterion, which combines the log-
likelihood of the clustering solution given the data with penalization for the increasing
number of clusters.

Within our eight random-walk searches, the nine-cluster solution was always found to be
the optimum. A successive refining phase of the nine-cluster solution was carried out by
imposing this fixed number of clusters to eight new random-walk searches. The results
obtained were almost identical and the best one showing a contingency table fit score
of 59.4%.

The projection of the 21 variables (resulting from geostatistical analyses) in mutual infor-
mation space (see Supplemental Appendix Figure S5a) shows little redundancy among mor-
phological indicators. Variables are well separated, with the exception of Building Coverage



Ratio, Building Contiguity, Height/Width Ratio and Building Frequency. The latter also have

the highest mutual information with the cluster variable (Table 2 – left). However, their

redundancy does not play an important role in the clustering results. When asked to select

the 10 collectively (rather than just individually) most informative variables for each spatial

unit, the Bayesian classifier identifies the indicators listed in Table 2 – right, in descending

order of frequency, and obtains a clustering accuracy of 93.14%. Height/Width Ratio and

Building Coverage Ratio are thus normally coupled with Street Acclivity, Building Frequency,

Street Length and the presence of Small Buildings, and identify the same urban fabric cluster

obtained with all 21 indicators. Table 2 – right also tells us that the last five morphological

indicators are seldom needed to correctly predict the cluster variable. The clustering results

are relatively robust in terms of sensitivity to input data. The use of the 10 most informative

variables on 10 test sets obtained in a 10-fold cross-validation schema produces a mean

clustering accuracy of 92.62%, just half-a-point less than the one for the model learned on

the whole data set.
Nevertheless, even the indicators that have the lowest mutual information with urban

fabric clusters in general (Table 2 – left) or that are seldom used as the most informative

variables (Table 2 – right) can have a non-negligible role in characterizing a given urban

fabric, like the PB slope for cluster 6 or the frequency of Nodes 4 for cluster 2 (see

Supplemental Appendix Table S2).
Even more clearly, the projection of the clustering solution (see Supplemental Appendix

Figure 5(b)) shows nine well defined clusters of urban fabrics (identified as UF1, UF2, etc.).

Table 2. Indicator mutual information with cluster variable (left) and frequency of observation among the
10 collectively most informative variables (right).

Indicator name

Mutual

information (%) Indicator name

Frequency of

observation (%)

Height/width ratio 37.68 Height/width ratio 100

Building coverage ratio 37.46 Building coverage ratio 97.13

Building frequency 33.88 Street acclivity 79.63

Building contiguity 29.27 Building frequency 75.61

Street corridor effect 28.22 Street length 72.01

Average building height 26.87 Buildings (0–125m2) 64.18

Street length 21.80 Street windingness 61.70

Open space width 21.27 Buildings (1000–4000m2) 59.10

Plot frequency 16.98 Average building height 51.56

Street windingness 16.34 Buildings (125–250m2) 49.57

Street acclivity 15.83 Street corridor effect 47.91

Buildings (0–125m2) 14.05 PB slope 43.15

Buildings (125–250m2) 12.83 Plot frequency 41.13

Buildings (250–1000m2) 12.46 Building contiguity 38.94

Buildings (1000–4000m2) 11.31 Open space width 36.62

PB slope 8.90 Buildings (250–1000m2) 35.57

Nodes 1 7.11 Nodes 1 11.77

Building Specialization 4.60 Building Specialization 9.59

Nodes 4 3.90 Buildings (S> 4000m2) 4.31

Buildings (S> 4000m2) 2.38 Nodes 4 3.19

Nodes 3, 5þ 1.82 Nodes 3, 5þ 0.00

PB: proximity band.



Their interpretation in terms of urban fabric characteristics (given by the Bayesian network in
terms of probabilities, see Supplemental Appendix Table S2, Figure S6) goes beyond the
scope of this methodological paper. We will briefly say that clusters 1, 2 and 3 correspond
to the urban fabrics of the traditional compact city, cluster 4 to the modern discontinuous
urban fabric, clusters 5 and 6 to residential suburban fabrics, clusters 8 and 9 to non-
urbanized areas with sparse buildings and cluster 7 to a very specific connective artificial
fabric, with sparse specialized buildings, bonding modern and suburban fabrics together to
the traditional urban ones. Above all, when they are projected in geographic space, the
clusters identify well-defined spatial patterns of connected spatial units defining the spatial
extent of a given urban fabric type. Figure 2(a) represents the area around the city of Antibes.
Street segments are assigned to the most probable class to which they belong. The old city
centre is clearly distinguishable on the right, in a brown colour (UF1), surrounded by the
traditional urban fabric of the late 19th and early 20th (UF2). More peripheral urban sectors
belong to clusters 3 and 4, whereas vast suburban areas (UF5) border the city to the north and
south, corresponding to the Antibes Cape. The traditional fabrics of smaller cities (here
Vallauris) are islands within suburbia. Finally, the connective artificial fabric corresponds
to retail developments around extra-urban roads and to the technical space around the port of
Antibes. Similar results are found for the cities of the French Riviera (see Supplemental
Appendix Figure S7) and these are consistent with expert knowledge of the study area
(Graff, 2013). The contrast is striking with the nine-cluster solution being obtained with
raw values of morphological indicators (see Supplemental Appendix Figure S8). Lacking
any spatial constraint, the clustering procedure produces a mere typology of spatial units
and fails to recognize that specific spatial arrangements of these typologies could be charac-
terized as a unique urban fabric.

As we already mentioned in ‘Computer-aided approaches to urban morphology’ section,
different objectives lead to different methodological choices in the analysis of urban fabrics.
We assess the results obtained for the cities of the French Riviera as being particularly
satisfactory with respect to the objective of identifying different urban fabrics potentially
perceived by pedestrians moving on a street network, at the scale of a whole metropolitan
area (Fusco and Araldi, 2017).

Spatial organization of urban fabrics

In the previous section, the probabilistic results of Bayesian clustering were used for the
identification and description of each class of urban fabric. In what follows, new insights
about urban fabric organization within settlements are disclosed through the analysis of the
spatial distribution of these probabilistic outcomes. These analyses provide quantitative
support to the visual exploration of outcomes of urban form clustering. Moreover, they
reveal the multi-scale nature of urban form upon passing from the street level (skeletal
streetscape), to the neighbourhood level (urban fabric) and to the spatial organization
within a metropolitan area.

Where does the city end? Settlement boundaries and uncertainty

In the last few decades, several studies investigated indicators and techniques for measuring
characteristics of settlements such as sprawl, compactness and contiguity. Nevertheless, a
general consensus does not exist for the definition of urban boundaries and morphological
agglomerations (Chaudhry and Mackaness, 2008; Parr, 2007; Tannier et al., 2011). Methods
based on population distribution and density (Rozenfeld et al., 2008) or socio-economic



administrative partitions (Parr, 2007) mainly consider functional factors. If urban morphol-

ogy is considered independently, other procedures have been proposed: a dilation-erosion

procedure applied to the building footprint (Chaudhry and Mackaness, 2008) or fractal

approaches applied to both raster and vector representation of the building surfaces

Figure 2. MFA outcomes and quantitative analysis of their spatial arrangement. (a) Projection in geo-
graphical space of MFA outcomes, (b) Zipf’s regression of compact city agglomeration, (c) spatial distribution
of compact-city centres, (d) variograms of urban fabrics and (e) example of cross-variograms relative to UF1.



(Longley et al., 1991, 1992). A dilation method is the starting point of both these
approaches: Minkowski dilation for Tannier et al. (2011); morphological mathematics in
Benediktsson et al. (2003), Chaudhry and Mackaness (2008). The former investigates the
variation in the number of aggregated elements at each dilation step in the overall space
study, while the latter combines the dilation procedure with subsequent erosion. Both
methods are applied to a Euclidean space and to elementary components (buildings,
built-up pixels, etc.) without any semantic characterization of their urban content.

We were motivated by the same underlying principles as described in ‘Computer-aided
approaches to urban morphology’ section and propose here the application of the afore-
mentioned dilation-erosion procedure to the MFA probabilistic outcomes, while respecting
network contiguities. MFA results are used for the delineation of the boundaries of the
traditional compact city. We will first use the semantic information of our urban fabric types
and select clusters 1, 2 and 3 as sharing similar characteristics specific to the traditional
urban compact environment. We will filter PBs for which p(UF1)þp(UF2)þp(UF3)�0.8 to
focus on those elements that were assigned to the compact city with relatively low uncer-
tainty. Applying topological dilation-erosion to networks of selected spatial units, we can
identify urban spaces where compact city characteristics might be considered as belonging to
the same urban continuum, thus defining compact city borders (Figure 2(a) to (c)).

Moreover, the count of the number of street segments in each resulting aggregation
describes the hierarchy of compact urban settlements within the French Riviera. Zipf’s
regression on log(Si)�log(Ranki) shows a regression coefficient of 1.04 with a R2 value of
0.97 (Figure 2(b) and (c)). Despite the different implementation technique used, this value is
close to the 1.095 obtained at the national scale by Oliveira et al. (2018). This observation
seems to endorse the universal validity of Zipf’s Law as defended in Jiang et al. (2015). A
discussion of the validity of Zipf’s Law for urban settlements transcends the goal of this
paper. What we intended to show here is how MFA results could be used to identify and
study borders of traditional settlements within a wider metropolitan area as well as their
spatial organization at the regional scale with a network-based morphological approach.

From quantitative outcomes to the archetype model

Correlography and variography represent quantitative approaches that are usually applied
in geology and ecology for the analysis of the spatial organization of phenomena under
study (Legendre and Legendre, 1998). The former investigates and tests the presence of
significant spatial autocorrelation in the data set, while the latter allows the description of
its spatial organization and the observed structure to be related to hypothesized genera-
tion processes.

‘Spatial patterns on networks: ILINCS’ section described the adoption of autocorrelation
analysis to identify statistically significant spatial patterns for each morphological indicator.
The classification outcomes identify subspaces with a specific combination of spatial auto-
correlation values by construction. Variography is adopted in this section, to quantitatively
describe the spatial arrangement of urban fabrics throughout the network.

Within the Regionalized Variables Theory, empirical semi-variograms (called variograms
for simplicity) are geostatistical functions conceived by Matheron (1965) to describe spatial
phenomena combining the structural factor with a random noise component. In this theory,
fluctuations of spatial distributions are considered to be a characteristic of the phenomena
with a specific structure at a given scale, rather than statistical noise. Variograms quantify
the similarity between the value observed at a point i and those observed at increasing
distances within its surrounding area. The final aim of these functions is to quantify the



zone of influence of a phenomenon. Variogram function c dð Þ is defined by the follow-
ing equation

c dð Þ ¼ 1

2W

Xn

h¼1

Xn

h¼1

whi yn � yið Þ2 (4)

where c decomposes the spatial variability of the observed variable among distances d. W is
the matrix of weight describing the spatial relation between values yi and the surrounding
values yh at distance d.

The application of variograms could reveal the spatial structures of the study field, the
presence of nested structures, discontinuities, anisotropies and the size of the influence zone
of phenomena (Dauphiné and Voiron-Canicio, 1988). An interesting variation of the vario-
gram is the cross-variogram, which focuses on the co-variance of two phenomena in space.
Equation (1) is reformulated as

cxy dð Þ ¼ 1

2W

Xn

h¼1

Xn

i¼1

whi xn � xið Þ yn � yið Þ (5)

Here, we will use the probabilistic outcomes of Bayesian clustering as an input of
variography in order to disentangle the complex spatial arrangement of urban fabrics.
A network-constrained topological variogram is implemented where yi represents the prob-

ability that a PB will be associated to a UF of class j, p(PBi¼Classj), while the weight matrix
W is determined by network topological contiguities.

From empirical variograms applied to each probability distribution (Figure 2(d)), two

pieces of information can be retained: the range is the distance at which data are no longer
correlated. This informs us about the extent of each urban fabric field (similarly to the
concept of urban field in Longley et al., 1991), which could be used to characterize homo-
geneous morphological regions made up of a single urban fabric type. The sill is calculated
as the limit of the variogram tending to infinity distances and informs us about the relative
compactness/dispersion of the spatial distribution of each urban fabric in the metropolitan
area. Higher c(d) values detect strong dissimilarities between association probability values
at a given distance d and they characterize those morphological regions with larger extents

combined with spatial fluctuations (namely suburbs made of urban fabrics 5 and 6 but that
integrate fragments of different types). Vice versa, smaller, compact spatial distribution are
identified by lower c(d) values (as for UF 1, 2 and 3).

cxy cross-variograms inform us about the spatial co-variation of two urban fabric types at

increasing distances. As Bayesian probabilities add up to one for each street segment, the
resulting function cxy applied to each couple of urban fabrics is always negative. The relative
distance from x-coordinates detects which urban fabrics surround the one analysed (x) at
increasing distances. In see Supplemental Appendix Figure S7(b), for example, cross-
variograms for the traditional urban fabric F1 are illustrated. This graphical representation
of the relative spatial organization could answer three questions: (a) which UF comes first
when we leave UF1? The order of cxy

�� �� represents the most probable UF to be found in the
surrounding space at a given distance d from the UF studied (for UF1: UF2 and UF3 at

small distances, UF5 at larger ones); (b) at which distance are neighbouring UFs located? The
inverted bell described by cxy identifies the minimal and maximum radii of the disks where
each UF will most probably be found; (c) how similar is the analysed UF to the others? The



max of cxy
�� �� is limited for similar urban fabrics. The connective urban fabric (UF7) is an

exception. It is organized in the form of ribbons and does not produce patches or disks
around other morphological regions.

The information extracted by variograms and cross-variograms helps analysts in the
generalization of urban fabric organization of the study area. This results in a proposal
of the archetypical model of urban settlements in the French Riviera (see Supplemental
Appendix Figure 9; see Fusco and Araldi, 2017 for a more detailed description).

Conclusions and perspectives

This paper presented MFA, a new methodology for the analysis of the urban fabric, and
showed how to exploit MFA results in the study of a vast metropolitan area. MFA is
characterized by three main methodological innovations. First, the definition of morpho-
logical indicators for PBs, integrating the pedestrian point of view of the urban fabric.
Second, geostatistical analysis is used to transform quantitative local measurements in cat-
egorical network-based patterns that are later used as inputs for clustering. Third, unlike
more traditional approaches, Bayesian clustering considers specific subsets of indicators for
each class identified. The method proved successful in the identification of urban fabrics and
their spatial arrangements in the real-world case of the French Riviera metropolitan area.

Bayesian calculus was also used to assess the capacity of optimal subsets of morpholog-
ical indicators to produce the same clustering results. The calculus cannot be used to identify
missing variables. Only a qualitative assessment of results can provide hints in this direction.
For example, the integration of vegetation into the characterization of urban forms could
allow finer distinctions within urban and suburban fabrics. Another advantage of Bayesian
clustering is its probabilistic content, which has been exploited in this analysis of spatial
structures within the metropolitan area. Probabilities could also be used to assess uncertain
characteristics of some urban fabrics and/or the uncertain assignment of street segments to
urban fabrics.

The use of street PBs to study the urban fabric might bring new perspectives to the
analysis of pedestrian-related phenomena. The contextual information resulting from
MFA could represent the input for further analysis such as geographically weighted regres-
sion, hedonistic and multilevel modelling that is traditionally implemented in domains like
walkability, retail, crime or environmental psychology.

The combination of geostatistics and Bayesian clustering represents an innovative pro-
cedure which is not limited to our definition of spatial units. These two approaches could
also be applied to other spatial partitions, more appropriate for other research goals (i.e.
block-, plot- or building-based partitions). This would allow traditional urban fabric anal-
ysis to integrate both the study of spatial heterogeneity of morphometric indicators and their
specific combinations in defining urban forms.

In the second part of the paper, mathematical morphology and variography, both
adapted to urban street networks, were implemented on MFA outcomes. These methods
represent two valid procedures for a quantitative analysis of the spatial organization of
urban fabrics. Several topics could be investigated, like compact city limits, urban fabric
fields and arrangements within settlements. Through these procedures, MFA makes a con-
tribution to the long-felt need for more clarity in the identification of morphological regions
(Larkham and Morton, 2011).

In our analyses of the physical city’s form, we drew a careful distinction between the
study of the urban fabric and that of the configurational properties of street networks. MFA
is devoted solely to the former. We envisage the convergence of the urban fabric analysis



and configurational analysis as a future research perspective to better understand urban

space. After all, streets represent ‘the strongest and most familiar connection’ between these

two approaches of urban morphology studies (Kropf, 2017). The street network-based

partition of MFA shares the same primal representation as MCA in configurational studies.

Their combination is therefore easily achievable. Some adaptation is needed when results

from MFA and SSx are combined. This convergence could also be the most promising

perspective in the study of form–function relations in urban space.
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Notes

1. The set of indicators here presented could be adapted to the specificities and data availability of

each case study: Araldi et al. (2018) presented new geoprocessing algorithms for indicators, showing

the versatility and adaptability of the MFA method.
2. Going beyond this expert based-approach, Perez et al. (2018) proposed to identify building types

though Bayesian clustering of building morphological descriptors.
3. In a more exploratory data-mining approach, multi-step Bayesian clustering with latent factors

should be preferred to counter strong variable redundancy (Fusco, 2016).
4. In MFA, HL segments are normally associated to LL patterns and LH segments to HH patterns to

integrate exceptional units within a neighbouring prevalent urban fabric.
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Legendre P and Legendre L (1998) Numerical Ecology. Vol. 24. Developments in Environmental
Modelling. Amsterdam, Netherlands: Elsevier Scientific Publication Corporation.
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Appendix 

 
Figure S1. Definition of the study area 

 
Figure S2. MFA procedure work-flow. 

 
Table S1. Comparison between dimension distributions of different spatial unit partitions. 
Spatial Unit 

Partition 
Count spatial 

units 
Mean spatial 

units size 
Median unit size Standard Deviation of 

size distribution  
Skewness  

of size distribution 
Administrative(IRIS)  443 4,903,194 m2 599,539 m2 11,542,676 4.01 

Urban Blocks 20,149 63,831m2 5,185 m2 286,931 13.52 
Plot 488,858 2,976 m2 701 m2 20,813 57.25 

Streets 99,562 129 m 77,65 m 181 4.69 
Proximity Band 20m 99,562 4,680 m2 2,608 m2 7,248 4.67 

 

 



 

Figure S3. Visual representation of some morphological indicators implemented in MFA. 

 
Figure S4. Spatial patterns for three different morphological indicators. 

       

 



a:  

b:  

Figure S5. Projections in mutual information space: variables (a) and clusters (b). Cluster size is proportional 
to the number of spatial units assigned to each of them. 

 



Table. S2. Mutual information between morphological indicators and each urban fabric cluster. 
  Mutual Information [%] 

Indicator name Global  UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 
Height Width Ratio 37,7 45,6 52,1 11,2 14,4 27,2 16,6 28,8 40,0 41,3 

Building Coverage Ratio 37,5 42,0 49,4 22,1 20,0 32,1 9,6 12,9 39,8 41,1 

Building Frequency 33,9 38,1 25,1 32,6 19,9 18,9 15,1 25,6 32,5 41,0 

Building Contiguity 29,3 40,7 34,3 15,1 16,4 22,0 16,7 16,6 24,3 29,8 

Street Corridor Effect 28,2 44,3 39,8 16,7 16,3 15,3 6,3 14,6 28,2 30,0 

Average Building Height 26,9 22,3 46,5 9,2 2,9 19,2 17,3 25,1 32,2 23,1 

Street Length 21,8 32,6 15,2 8,9 8,5 16,3 12,3 15,0 12,8 38,2 

Open Space Width 21,2 48,0 33,5 9,1 7,8 7,5 5,4 8,4 19,7 26,8 

Plot Frequency 17,0 44,2 6,0 9,2 2,5 12,3 5,4 0,4 15,2 35,0 

Street Windingness 16,3 5,3 24,7 3,0 4,6 10,1 18,3 5,2 6,2 38,0 

Street Acclivity 15,8 2,3 13,8 1,1 8,2 8,0 26,0 11,1 5,0 33,3 

Buildings  (0-125 m2) 14,1 30,7 10,7 9,8 8,1 11,1 12,1 17,5 5,8 0,3 

Buildings (125-250 m2) 12,8 2,3 3,0 4,8 6,6 28,3 7,6 15,8 5,9 10,6 

Buildings (250-1000 m2) 12,5 2,1 36,5 2,4 11,5 4,7 2,2 3,7 7,1 18,3 

Buildings (1000-4000m2) 11,3 2,4 24,6 2,0 16,8 8,8 3,7 2,4 4,9 10,4 

PB Slope 8,9 0,0 1,3 0,2 0,6 8,8 13,4 3,0 3,9 27,5 

 Nodes 1 7,1  7,2 12,1 1,7 0,6 11,4 6,8 9,4 0,7 0,2 

Building Specialisation 4,6 2,6 4,4 0,5 7,9 5,3 1,4 3,4 2,5 2,7 

 Nodes 4 3,9 1,5 14,8 0,7 0,1 4,9 1,6 3,4 0,2 0,7 

Buildings (S> 4000m2) 2,4 1,6 1,4 0,9 3,0 1,8 1,6 4,5 0,8 1,6 

 Nodes 3, 5+ 1,8 0,8 6,6 0,2 0,1 1,6 0,8 1,2 0,9 1,1 
 



 
Figure S6. Characterizing urban fabrics in the French Riviera through probabilities of morphological patterns 
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Figure S7. Spatial distribution of Urban Fabrics in the French Riviera: a) Western section (cities of Cannes, 

Grasse and Antibes), b) central section (cities of Nice and Cagnes-sur-Mer). 



 
Figure S8. Classification of PBs using raw values of morphological indicators, city of Antibes.  
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